EP0835757B1 - Method of driving the piezoelectric elements in a print head of a droplets generator - Google Patents

Method of driving the piezoelectric elements in a print head of a droplets generator Download PDF

Info

Publication number
EP0835757B1
EP0835757B1 EP97810560A EP97810560A EP0835757B1 EP 0835757 B1 EP0835757 B1 EP 0835757B1 EP 97810560 A EP97810560 A EP 97810560A EP 97810560 A EP97810560 A EP 97810560A EP 0835757 B1 EP0835757 B1 EP 0835757B1
Authority
EP
European Patent Office
Prior art keywords
channels
channel
impulse
activated
expulsion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP97810560A
Other languages
German (de)
French (fr)
Other versions
EP0835757A2 (en
EP0835757A3 (en
Inventor
Joachim Heinzl
Alfred Zollner
Peter Möstl
Gerhard Beurer
Joachim Kretschmer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xaar Technology Ltd
Original Assignee
Xaar Technology Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xaar Technology Ltd filed Critical Xaar Technology Ltd
Publication of EP0835757A2 publication Critical patent/EP0835757A2/en
Publication of EP0835757A3 publication Critical patent/EP0835757A3/en
Application granted granted Critical
Publication of EP0835757B1 publication Critical patent/EP0835757B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J29/00Details of, or accessories for, typewriters or selective printing mechanisms not otherwise provided for
    • B41J29/38Drives, motors, controls or automatic cut-off devices for the entire printing mechanism
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/015Ink jet characterised by the jet generation process
    • B41J2/04Ink jet characterised by the jet generation process generating single droplets or particles on demand
    • B41J2/045Ink jet characterised by the jet generation process generating single droplets or particles on demand by pressure, e.g. electromechanical transducers
    • B41J2/04501Control methods or devices therefor, e.g. driver circuits, control circuits
    • B41J2/04525Control methods or devices therefor, e.g. driver circuits, control circuits reducing occurrence of cross talk
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/015Ink jet characterised by the jet generation process
    • B41J2/04Ink jet characterised by the jet generation process generating single droplets or particles on demand
    • B41J2/045Ink jet characterised by the jet generation process generating single droplets or particles on demand by pressure, e.g. electromechanical transducers
    • B41J2/04501Control methods or devices therefor, e.g. driver circuits, control circuits
    • B41J2/04541Specific driving circuit
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/015Ink jet characterised by the jet generation process
    • B41J2/04Ink jet characterised by the jet generation process generating single droplets or particles on demand
    • B41J2/045Ink jet characterised by the jet generation process generating single droplets or particles on demand by pressure, e.g. electromechanical transducers
    • B41J2/04501Control methods or devices therefor, e.g. driver circuits, control circuits
    • B41J2/04568Control according to number of actuators used simultaneously
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/015Ink jet characterised by the jet generation process
    • B41J2/04Ink jet characterised by the jet generation process generating single droplets or particles on demand
    • B41J2/045Ink jet characterised by the jet generation process generating single droplets or particles on demand by pressure, e.g. electromechanical transducers
    • B41J2/04501Control methods or devices therefor, e.g. driver circuits, control circuits
    • B41J2/04581Control methods or devices therefor, e.g. driver circuits, control circuits controlling heads based on piezoelectric elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/015Ink jet characterised by the jet generation process
    • B41J2/04Ink jet characterised by the jet generation process generating single droplets or particles on demand
    • B41J2/045Ink jet characterised by the jet generation process generating single droplets or particles on demand by pressure, e.g. electromechanical transducers
    • B41J2/04501Control methods or devices therefor, e.g. driver circuits, control circuits
    • B41J2/04588Control methods or devices therefor, e.g. driver circuits, control circuits using a specific waveform
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/015Ink jet characterised by the jet generation process
    • B41J2/04Ink jet characterised by the jet generation process generating single droplets or particles on demand
    • B41J2/045Ink jet characterised by the jet generation process generating single droplets or particles on demand by pressure, e.g. electromechanical transducers
    • B41J2/04501Control methods or devices therefor, e.g. driver circuits, control circuits
    • B41J2/04591Width of the driving signal being adjusted
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2202/00Embodiments of or processes related to ink-jet or thermal heads
    • B41J2202/01Embodiments of or processes related to ink-jet heads
    • B41J2202/10Finger type piezoelectric elements

Definitions

  • WO 95/25011 describes a method for operating a print head of an ink jet printer known.
  • the printhead has one Large number of channels arranged side by side, each with a nozzle assigned. By activating a channel, the corresponding one is Ejected a droplet of ink. With control impulses is achieved that pressure waves within an activated Decay faster. With this solution, the Amplitude values of the pulses set, for which linear amplifiers are needed. These have poor efficiency and require a complex circuit. Limit the pulse widths to integer multiples of an acoustic period L / c, where L is the channel length and c is the speed of sound in the liquid is. Due to the complexity of the impulses it is only possible all channels with the same control voltage and to operate with the same pulse width.
  • the present invention is based on the object to provide a method of operating a printhead which avoids the above disadvantage. This task is accomplished by the Combination of features of the claims solved.
  • FIGs 1 to 3 is part of a piezoelectric schematic Printhead 1 of an ink jet printer based on the shear converter principle greatly enlarged and not shown to scale. It consists of a piezoceramic plate 2, in which side by side a variety of longitudinal, identical, in cross section rectangular channels 3 is incorporated and one Cover plate 4 and a nozzle plate 5, which at one end each channel 3 has a nozzle 6. On the opposite All channels 3 are at the front end with one another via a transverse channel 7 connected in the cover plate 4. A connecting line opens into channel 7 8 to an ink reservoir 9.
  • Each partition 10 between the channels 3 is on both sides on a partial area with an electrode 11, ie an electrically conductive layer Mistake.
  • the plate 2 is mounted on a base plate 12.
  • An electrical voltage is applied to the pair of electrodes of a wall 10 applied, so arises due to the direction of polarization of the piezo material, a shear of the channel partition 10.
  • the clamping deforms the wall 10 as in FIG. 3 is outlined. If two adjacent walls 10 are deformed in opposite directions, so there is an increase or decrease in volume of the activated channel 3a.
  • the applied to the electrodes 11 Pulse shape becomes an intake pulse and an opposite one Ejection pulse divided. They deform during the intake pulse Walls of the activated channel 3a as shown in Figure 3, see above that ink is drawn from channel 7 into activated channel 3a becomes.
  • the activated walls 10 become in opposite directions deformed so that a droplet from the nozzle 6 of the activated Channel is ejected.
  • connection channel 7 Because of the connection channel 7 are now when activating one Channel 3a not only the immediately adjacent channels 3b, but also more distant channels through the emerging Pressure vibration affected.
  • the inventors have found that the ejection speed of the droplets from an activated Channel 3a is different with constant pulse shape, depending on whether at the same time with this one channel 3a none or a third adjacent channel 3c or both third adjacent channels 3c to be activated. This difference in drop speed is disadvantageous because it adversely affects the printed image. It can be changed by changing the pulse shape depending on the number of the simultaneously activated third adjacent channels avoided become.
  • FIG. 5 shows a similar diagram for the ejection pulse t2, the pulse width on the time axis in turn as a multiple the acoustic period and on the ordinate the refill time are plotted as multiples of the acoustic period.
  • the pulse voltage is adjusted in such a way that in turn a constant Drop speed of 6m / s is achieved.
  • the refill time is the amount of time it takes for the fluid meniscus reached its starting position at the nozzle 6 again Has.
  • the three variants are plotted on which at the same time with the activated channel no third Neighbor, a third neighbor or two third neighbors activated become.
  • the curves found have several intersection points. It is therefore possible to operate on one of these intersections get by with just a single output pulse shape.
  • Optimal is the intersection at which the refill time is minimal is. This is 1.1 times the acoustic period of the Case.
  • Figure 6 shows the three determined pulse shapes for operation with none (Fig. 6a), one (Fig. 6b) and two activated at the same time third adjacent channels (Fig. 6c).
  • the suction impulses 13 different pulse widths and the shape of the Ejection pulses 14 are constant.
  • the outermost two channels 3d of the printhead cannot be activated because of their outer wall is rigid.
  • 64 could be activated in the print head Channels, so he has a total of 66 or 68 channels, whereby the outermost n channels are unused.
  • a printhead with 64 channels that can be activated requires 65 piezo actuators and 66 electrical connections.
  • the outer wall of the outermost Channels 3d act for the pressure oscillation in the transverse channel 7 like a mirror. The reflection there took place in one the nearby operated channel has the same influence as if the mirrored one third or sixth adjacent channel operated simultaneously would. This is when assigning the intake pulse width appropriately considered this channel.
  • FIG. 1 schematically shows an integrated control circuit 15, which is conveniently attached to the base plate 12. Thereby becomes the number of lines used to control the printhead 1 are significantly reduced.
  • FIG. 7 The function of the integrated control circuit is shown in FIG. 7 clarified.
  • the block diagram shows the most important internal ones Sub-functions consisting of circuit breaker 16, selection logic 17 and shift register 18.
  • Sub-functions consisting of circuit breaker 16, selection logic 17 and shift register 18.
  • For the electrical connection to Printer controls are used in this particular embodiment only 13 lines required.
  • the power supply for the power and logic part is done via the connections POWER, PGND, VCC, and GND.
  • Via RESET connection the control is set to a defined basic state.
  • the connections G1 to G4 and the connection NEXT are used for Control of drop generation, where G1 to G3 are the three different ones Intake pulse widths and G4 as the exhaust pulse width means.
  • the connections DSERIN, DSEROUT and DCLK serve of data transmission, with the DSEROUT output for service purposes serves.
  • the data block transferred to the shift register is sent back to the PC or the printer control and there with the data block transmitted via DSERIN compared. Thus a correct data transmission are checked.
  • An entire data block is used for operation via DSERIN all 64 nozzles (in the aforementioned example) into the shift register read.
  • the nozzles 6 are operated in three phases. In the data block So there is the information which nozzles in the next Phases are operated, i.e. the pattern to be printed.
  • FIG. 8 shows the first part of the selection logic 17.
  • the NEXT signal activates the first phase Ph1 belonging nozzles, provided by the content of the shift register (the upper row of digits in Fig. 8) is selected are.
  • the signals Ph1, Ph2 and Ph3 are used in succession the NEXT signals generated by the phase switch 22.
  • the output signals on the output conductors 23, 24, 25 of the phase selection switch 22 are via AND gates 26 with the input signals linked from the shift register 18. This ensures that only at most every third channel of the printhead is activated at the same time.
  • Ph3 is with the next NEXT signal started again with Ph1.
  • the DSERIN input has been read into the shift register 18 the three phases repeated, the nozzles 6 in the same pattern activated again. This allows different shades of gray be achieved. If no shades of gray are required, it follows Read in a new data block after every third NEXT pulse clocked into the shift register 18 via the input DSERIN by DCKL. As soon as the new data block has been read in, this can be done next pattern printed with a sequence of three NEXT pulses become. The data transmission and the NEXT pulses are through the printer hardware synchronized and in function of the movement the print head controlled relative to the paper to be printed.
  • the second part of the selection logic 17 is shown in FIG. 9. It shows an embodiment with one with simple logic gates built circuit for the selection of the pulse shape any channel i, depending on the adjacent channels.
  • the signal for channel i is at one of the three inputs of three AND gates 27 connected.
  • the signal for the two third adjacent channels i-3 and i + 3 is connected to the other two inputs in the first gate 27 via an inverter 28 each second gate 27 via an EXCLUSIVE OR and to the third gate directly connected.
  • a signal appears t10, t11 or t12 on the first, second or third gate 27.
  • This selection circuit 30 is for all channels that can be activated 3 of the print head 1 is present, as shown in FIG. 10 is.
  • Each of the three outputs t10, t11, t12 of the circuits 30 is via an AND gate 31 with the three lines 32, 33, 34 linked to which the three signals G1, G2 and G3 for the three different intake pulses 13 are pending.
  • the exit of the three gates 31 assigned to a circuit 30 go to the input an OR gate 35.
  • the pulse length at the outputs of the Gate 35 is then dimensioned so that the drop speed is independent of the number of thirds activated at the same time Adjacent channels.
  • the circuit 36 according to FIG. 10 still follows known intrusion of the ejection pulses to the activated ones Channels (inputs at the top of Fig. 10), with which then the circuit breakers 16, the electrodes 11 are controlled.
  • circuit shown is only one of many possible Embodiments that for the sake of simplicity was chosen.
  • Logic functions can be done by any combination of gates can be realized, with simplifications are conceivable in which partial functions are already in others
  • Function blocks can be realized, for example by double To avoid negations.
  • the solution according to the invention can be refined if in addition to the number of third adjacent channels, the number of the sixth adjacent channels activated at the same time (their influence on the exit speed is however lower) is taken into account.
  • the circuitry is however higher and there are a total of nine different suction pulse shapes required, from each of which the applicable by a appropriate logic circuit is to be determined.
  • FIG. 11 shows a further possibility of refinement:
  • the decay of the pressure waves in neighboring ones is shown Channels if channel 0 has been activated.
  • the pressure fluctuations in the first adjacent channel are relatively considerable and decrease with increasing channel spacing.
  • printheads which are the phases follow quickly, i.e. quickly from a nozzle group the other is switched over, it is advisable to use the Selection of the pulse shape, in particular the pulse duration, in addition to take into account how many first and second adjacent channels in a fixed interval before the activated channel is triggered were operated.
  • the exemplary embodiment described is a Piezoelectric printhead of the shear transducer type. But there are other types of piezoelectric printheads are also possible Example those with a bending oscillator over each nozzle, for Example according to EP-A-713 773. With this type of converter also two neighboring nozzles are activated at the same time. Also at the present invention is applicable to these printheads because even with these via pressure vibrations when activating one Adjacent channels can be affected. In this case of course the link condition is different, so for example the number of simultaneously activated first and second adjacent channels can be taken into account.

Landscapes

  • Particle Formation And Scattering Control In Inkjet Printers (AREA)

Description

Aus der WO 95/25011 ist ein Verfahren zum Betrieb eines Druckkopfs eines Ink-Jet-Printers bekannt. Der Druckkopf hat eine Vielzahl nebeneinander angeordneter Kanäle, die je einer Düse zugeordnet sind. Durch Aktivieren eines Kanals wird aus der betreffenden Düse ein Tintentröpfchen ausgestossen. Mit Steuerimpulsen wird erreicht, dass Druckwellen innerhalb eines aktivierten Kanals schneller abklingen. Bei dieser Lösung werden die Amplitudenwerte der Impulse eingestellt, wofür Linearverstärker benötigt werden. Diese haben einen schlechten Wirkungsgrad und erfordern eine aufwendige Schaltung. Die Impulsbreiten beschränken sich auf ganzzahlige Vielfache einer akustischen Periode L/c, wobei L die Kanallänge und c die Schallgeschwindigkeit in der Flüssigkeit ist. Durch die Komplexität der Impulse ist es nur möglich, alle Kanäle mit der gleichen Ansteuerspannung und gleichen Impulsbreite zu betreiben.WO 95/25011 describes a method for operating a print head of an ink jet printer known. The printhead has one Large number of channels arranged side by side, each with a nozzle assigned. By activating a channel, the corresponding one is Ejected a droplet of ink. With control impulses is achieved that pressure waves within an activated Decay faster. With this solution, the Amplitude values of the pulses set, for which linear amplifiers are needed. These have poor efficiency and require a complex circuit. Limit the pulse widths to integer multiples of an acoustic period L / c, where L is the channel length and c is the speed of sound in the liquid is. Due to the complexity of the impulses it is only possible all channels with the same control voltage and to operate with the same pulse width.

Aus der US-A-5 461 403 ist ein weiteres Betriebsverfahren für einen piezoelektrischen Druckkopf bekannt. Die Breite der Steuerimpulse wird variiert, um die Tropfengeschwindigkeit und das Tropfenvolumen zu modulieren. Damit sollen verschiedene Graustufen erzeugt werden. Eine Variation der Impulsbreite führt zu einer Veränderung der Tropfengrösse. Die zahlreichen Werte der Impulsparameter erfordern eine aufwendige Tabellierung. Durch die Komplexität der Tabelle ist es nur möglich, alle Kanäle mit der gleichen Antsteuerspannung und gleichen Impulsbreite zu betreiben.Another operating method for is known from US-A-5 461 403 known a piezoelectric print head. The width of the Control pulses are varied to determine the drop speed and to modulate the drop volume. So different Grayscale are generated. A variation in the pulse width leads to change the drop size. The numerous values the pulse parameters require extensive tabulation. Due to the complexity of the table, it is only possible to use all channels with the same control voltage and pulse width to operate.

Bei beiden vorbekannten Lösungen kann es zu einer Beeinträchtigung des Druckbildes kommen, wenn der Druckkopf mit konstanter Relativgeschwindigkeit gegenüber dem zu bedruckenden Papier bewegt wird. Der vorliegenden Erfindung liegt die Aufgabe zugrunde, ein Verfahren zum Betrieb eines Druckkopfes anzugeben, welches den obigen Nachteil vermeidet. Diese Aufgabe wird durch die Merkmalskombination der Ansprüche gelöst.With both previously known solutions, there can be an impairment of the print image come when the print head with constant Relative speed compared to the paper to be printed becomes. The present invention is based on the object to provide a method of operating a printhead which avoids the above disadvantage. This task is accomplished by the Combination of features of the claims solved.

Nachfolgend wird ein Ausführungsbeispiel der Erfindung anhand der Zeichnungen erläutert. Darin zeigt:

Figur 1
einen schematischen Längsschnitt durch einen Druckkopf mit einem Blockschaltbild der Ansteuerung,
Figur 2
einen Horizontalschnitt durch den Druckkopf,
Figur 3
einen Querschnitt,
Figuren 4 und 5
Kennlinienverläufe der Steuerimpulse,
Figur 6
drei verschiedene Impulsformen,
Figur 7
ein Blockschaltbild einer integrierten Ansteuerung,
Figur 8
eine Schaltung für die Gruppenauswahl,
Figur 9
ein Ausführungsbeispiel einer Logikschaltung zur Auswahl einer Impulsform,
Figur 10
ein Ausführungsbeispiel einer Logikschaltung für mehrere Kanäle, und
Figur 11
das Abklingen der Druckwellen in benachbarten Kanälen.
An exemplary embodiment of the invention is explained below with reference to the drawings. It shows:
Figure 1
1 shows a schematic longitudinal section through a print head with a block diagram of the control,
Figure 2
a horizontal section through the printhead,
Figure 3
a cross section,
Figures 4 and 5
Characteristic curves of the control impulses,
Figure 6
three different pulse shapes,
Figure 7
a block diagram of an integrated control,
Figure 8
a circuit for group selection,
Figure 9
an embodiment of a logic circuit for selecting a pulse shape,
Figure 10
an embodiment of a logic circuit for multiple channels, and
Figure 11
the decay of the pressure waves in neighboring channels.

In Figuren 1 bis 3 ist schematisch ein Teil eines piezoelektrischen Druckkopfes 1 eines Ink-Jet-Printers nach dem Scherwandlerprinzip stark vergrössert und nicht massstäblich dargestellt. Er besteht aus einer Piezokeramikplatte 2, in welcher nebeneinander eine Vielzahl von längsverlaufenden, identischen, im Querschnitt rechteckigen Kanälen 3 eingearbeitet ist sowie einer Deckplatte 4 und einer Düsenplatte 5, welche am einen Stirnende jedes Kanals 3 eine Düse 6 aufweist. Auf dem gegenüberliegenden Stirnende sind alle Kanäle 3 miteinander über einen Querkanal 7 in der Deckplatte 4 verbunden. In Kanal 7 mündet eine Verbindungsleitung 8 zu einem Tintenvorratsbehälter 9. Jede Trennwand 10 zwischen den Kanälen 3 ist beidseitig auf einer Teilfläche mit einer Elektrode 11, also einer elektrisch leitenden Schicht versehen. Die Platte 2 ist auf einer Grundplatte 12 montiert. Wird an das Elektrodenpaar einer Wand 10 eine elektrische Spannung angelegt, so entsteht, bedingt durch die Polarisationsrichtung des Piezomaterials, eine Scherung der Kanaltrennwand 10. Durch die Einspannung verformt sich die Wand 10 wie in Figur 3 skizziert ist. Werden zwei benachbarte Wände 10 gegensinnig verformt, so erfolgt eine Volumenvergrösserung bzw. -verkleinerung des aktivierten Kanals 3a. Die an die Elektroden 11 angelegte Impulsform wird in einen Ansaugimpuls und einen gegensinnigen Ausstossimpuls unterteilt. Beim Ansaugimpuls verformen sich die Wände des aktivierten Kanals 3a wie in Figur 3 dargestellt, so dass Tinte aus dem Kanal 7 in den aktivierten Kanal 3a angesaugt wird. Beim Ausstossimpuls werden die aktivierten Wände 10 gegensinnig verformt, so dass ein Tröpfchen aus der Düse 6 des aktivierten Kanals ausgestossen wird.In Figures 1 to 3 is part of a piezoelectric schematic Printhead 1 of an ink jet printer based on the shear converter principle greatly enlarged and not shown to scale. It consists of a piezoceramic plate 2, in which side by side a variety of longitudinal, identical, in cross section rectangular channels 3 is incorporated and one Cover plate 4 and a nozzle plate 5, which at one end each channel 3 has a nozzle 6. On the opposite All channels 3 are at the front end with one another via a transverse channel 7 connected in the cover plate 4. A connecting line opens into channel 7 8 to an ink reservoir 9. Each partition 10 between the channels 3 is on both sides on a partial area with an electrode 11, ie an electrically conductive layer Mistake. The plate 2 is mounted on a base plate 12. An electrical voltage is applied to the pair of electrodes of a wall 10 applied, so arises due to the direction of polarization of the piezo material, a shear of the channel partition 10. The clamping deforms the wall 10 as in FIG. 3 is outlined. If two adjacent walls 10 are deformed in opposite directions, so there is an increase or decrease in volume of the activated channel 3a. The applied to the electrodes 11 Pulse shape becomes an intake pulse and an opposite one Ejection pulse divided. They deform during the intake pulse Walls of the activated channel 3a as shown in Figure 3, see above that ink is drawn from channel 7 into activated channel 3a becomes. When the ejection pulse occurs, the activated walls 10 become in opposite directions deformed so that a droplet from the nozzle 6 of the activated Channel is ejected.

Wie aus Figur 3 ersichtlich ist, werden beim dargestellten Scherwandlertyp bei der Aktivierung des einen Kanals 3a auch die beiden unmittelbar daneben angeordneten Kanäle 3b beeinflusst. Die Impulsform wird so gewählt, dass die dadurch hervorgerufene Druckschwingung in diesen Nachbarkanälen 3b nicht ausreicht, um ein Tröpfchen aus deren Düsen auszustossen. Beim beschriebenen Wandlertyp sollte aber nicht gleichzeitig mit den aktivierten Wänden 10 des Kanals 3a eine der unmittelbar benachbarten Wände 10 auch aktiviert werden, weil sonst die Druckschwingungen im Kanal 3b zu gross würden. Deshalb ist es bei diesem Wandlertyp zweckmässig, die Kanäle 3 und damit die Düsen 6 so zu betreiben, dass nur jeweils höchstens jeder dritte Kanal gleichzeitig aktiviert wird. Die Kanäle und deren Ansteuerung werden also in Dreiergruppen aufgeteilt, welche nacheinander betrieben werden. Die Kanäle können jedoch auch in Vierer-, Fünfer- oder Sechsergruppen aufgeteilt werden, welche nacheinander betrieben werden.As can be seen from Figure 3, are shown in the Scherwandler type when activating one channel 3a also the influenced directly adjacent channels 3b. The pulse shape is chosen so that the resulting one Pressure vibration in these adjacent channels 3b is not sufficient to eject a droplet from their nozzles. With the described However, the converter type should not coincide with the activated one Walls 10 of the channel 3a one of the immediately adjacent walls 10 can also be activated because otherwise the pressure fluctuations in Channel 3b would be too large. That is why it is with this type of converter expedient to operate the channels 3 and thus the nozzles 6 so that only every third channel is activated at the same time becomes. The channels and their control are therefore in Divided into groups of three, which are operated one after the other. However, the channels can also be in groups of four, five or six which are operated one after the other.

Wegen des Verbindungskanals 7 werden nun beim Aktivieren des einen Kanals 3a nicht nur die unmittelbar benachbarten Kanäle 3b, sondern auch weiter entfernte Kanäle durch die entstehende Druckschwingung beeinflusst. Die Erfinder haben festgestellt, dass die Ausstossgeschwindigkeit der Tröpfchen aus einem aktivierten Kanal 3a bei konstanter Impulsform unterschiedlich ist, je nachdem ob gleichzeitig mit diesem einen Kanal 3a keiner oder ein dritter Nachbarkanal 3c oder beide dritten Nachbarkanäle 3c aktiviert werden. Dieser Unterschied in der Tropfengeschwindigkeit ist nachteilig, weil er das Druckbild ungünstig beeinflusst. Er kann durch Änderung der Impulsform je nach der Anzahl der gleichzeitig aktivierten dritten Nachbarkanäle vermieden werden.Because of the connection channel 7 are now when activating one Channel 3a not only the immediately adjacent channels 3b, but also more distant channels through the emerging Pressure vibration affected. The inventors have found that the ejection speed of the droplets from an activated Channel 3a is different with constant pulse shape, depending on whether at the same time with this one channel 3a none or a third adjacent channel 3c or both third adjacent channels 3c to be activated. This difference in drop speed is disadvantageous because it adversely affects the printed image. It can be changed by changing the pulse shape depending on the number of the simultaneously activated third adjacent channels avoided become.

In Figur 4 ist beispielsweise die für eine konstante Tropfengeschwindigkeit von v=6m/s erforderliche Spannung für den Ansaugimpuls in Funktion der Impulsdauer aufgetragen. Wie aus Figur 4 ersichtlich ist, kann die Impulsform durch Änderung der angelegten Spannung und/oder durch Änderung der Impulsbreite t1 so angepasst werden, dass die Tropfengeschwindigkeit unabhängig von der Anzahl gleichzeitig aktivierter dritter Nachbarkanäle konstant ist. Wegen der einfacheren Schaltung wird die Anpassung nur der Impulsbreite bevorzugt. Wie aus Figur 4 hervorgeht, ist die minimale Ansaug-Impulshöhe bei keinem gleichzeitig aktivierten dritten Nachbarkanal 0,91 der akustischen Periode. Um mit der gleichen Ansteuerspannung dieselbe Ausstossgeschwindigkeit bei einem oder zwei gleichzeitig aktivierten dritten Nachbarkanälen zu erreichen, ist eine Impulsbreite von 1,23 bzw. 1,33 der akustischen Periode erforderlich.In Figure 4 is, for example, that for a constant drop speed of v = 6m / s required voltage for the suction pulse plotted as a function of the pulse duration. As from Figure 4 can be seen, the pulse shape by changing the applied Voltage and / or adjusted by changing the pulse width t1 be that the drop speed regardless of the number of simultaneously activated third adjacent channels is constant is. Because of the simpler circuit, the adjustment preferred only the pulse width. As can be seen from FIG the minimum suction pulse height with none activated at the same time third adjacent channel 0.91 of the acoustic period. To with the same drive voltage the same ejection speed with one or two simultaneously activated third adjacent channels to achieve a pulse width of 1.23 or 1.33 der acoustic period required.

Figur 5 zeigt ein ähnliches Diagramm für den Ausstossimpuls t2, wobei auf der Zeitachse wiederum die Impulsbreite als Vielfaches der akustischen Periode und auf der Ordinate die Nachfüllzeit als Vielfaches der akustischen Periode aufgetragen sind. Die Impulsspannung ist jeweils so angepasst, dass wiederum eine konstante Tropfengeschwindigkeit von 6m/s erzielt wird. Die Nachfüllzeit ist die Zeitspanne, welche benötigt wird, bis der Flüssigkeitsmeniskus an der Düse 6 wieder seine Ausgangslage erreicht hat. Es sind wiederum die drei Varianten aufgetragen, bei welchen gleichzeitig mit dem aktivierten Kanal kein dritter Nachbar, ein dritter Nachbar oder zwei dritte Nachbarn aktiviert werden. Die ermittelten Kurven weisen mehrere Schnittpunkte auf. Es ist also möglich, beim Betrieb auf einen dieser Schnittpunkte mit lediglich einer einzigen Ausstossimpulsform auszukommen. Optimal ist dabei der Schnittpunkt, bei dem die Nachfüllzeit minimal ist. Dies ist beim 1,1-fachen der akustischen Periode der Fall.FIG. 5 shows a similar diagram for the ejection pulse t2, the pulse width on the time axis in turn as a multiple the acoustic period and on the ordinate the refill time are plotted as multiples of the acoustic period. The pulse voltage is adjusted in such a way that in turn a constant Drop speed of 6m / s is achieved. The refill time is the amount of time it takes for the fluid meniscus reached its starting position at the nozzle 6 again Has. Again, the three variants are plotted on which at the same time with the activated channel no third Neighbor, a third neighbor or two third neighbors activated become. The curves found have several intersection points. It is therefore possible to operate on one of these intersections get by with just a single output pulse shape. Optimal is the intersection at which the refill time is minimal is. This is 1.1 times the acoustic period of the Case.

Figur 6 zeigt die drei ermittelten Impulsformen für den Betrieb mit gleichzeitig keinem (Fig. 6a), einem (Fig. 6b) und zwei aktivierten dritten Nachbarkanälen (Fig. 6c). Dabei haben die Ansaugimpulse 13 unterschiedliche Impulsbreiten und die Form der Ausstossimpulse 14 ist konstant.Figure 6 shows the three determined pulse shapes for operation with none (Fig. 6a), one (Fig. 6b) and two activated at the same time third adjacent channels (Fig. 6c). The suction impulses 13 different pulse widths and the shape of the Ejection pulses 14 are constant.

Wie aus Figur 3 ersichtlich ist, sind jeweils die äussersten beiden Kanäle 3d des Druckkopfs nicht aktivierbar, weil deren äussere Wand starr ist. Würden im Druckkopf zum Beispiel 64 aktivierbare Kanäle benötigt, so hat er total zum Beispiel 66 oder 68 Kanäle, wobei jeweils die äussersten n Kanäle unbenützt sind. Ein Druckkopf mit 64 aktivierbaren Kanälen braucht 65 Piezoaktoren und 66 elektrische Verbindungen. Die äussere Wand der äussersten Kanäle 3d wirkt für die Druckschwingung im Querkanal 7 wie ein Spiegel. Die dort erfolgte Reflexion hat auf einen in der Nähe betriebenen Kanal den gleichen Einfluss als ob der gespiegelte dritte oder sechste Nachbarkanal gleichzeitig betrieben würde. Dies wird bei der Zuordnung der Ansaugimpulsbreite dieses Kanals zweckmässig berücksichtigt.As can be seen from Figure 3, are the outermost two channels 3d of the printhead cannot be activated because of their outer wall is rigid. For example, 64 could be activated in the print head Channels, so he has a total of 66 or 68 channels, whereby the outermost n channels are unused. A printhead with 64 channels that can be activated requires 65 piezo actuators and 66 electrical connections. The outer wall of the outermost Channels 3d act for the pressure oscillation in the transverse channel 7 like a mirror. The reflection there took place in one the nearby operated channel has the same influence as if the mirrored one third or sixth adjacent channel operated simultaneously would. This is when assigning the intake pulse width appropriately considered this channel.

Figur 1 zeigt schematisch eine integrierte Ansteuerschaltung 15, die zweckmässig auf der Grundplatte 12 befestigt ist. Dadurch wird die Anzahl der Leitungen, die zur Steuerung des Druckkopfs 1 erforderlich sind, erheblich verringert.FIG. 1 schematically shows an integrated control circuit 15, which is conveniently attached to the base plate 12. Thereby becomes the number of lines used to control the printhead 1 are significantly reduced.

Die Funktion der integrierten Ansteuerschaltung wird in Figur 7 verdeutlicht. Das Blockschaltbild zeigt die wichtigsten internen Teilfunktionen bestehend aus Leistungsschalter 16, Auswahllogik 17 und Schieberegister 18. Für die elektrische Verbindung zur Druckersteuerung werden in diesem speziellen Ausführungsbeispiel nur 13 Leitungen benötigt. Ein Vorteil dabei ist, dass die Anzahl der Leitungen selbst bei einer Erhöhung der Anzahl Kanäle und damit der Anzahl Wandler konstant bleibt. Die Spannungsversorgung für den Leistungs- und Logikteil geschieht über die Anschlüsse POWER, PGND, VCC, und GND. Über einen RESET-Anschluss wird die Ansteuerung in einen definierten Grundzustand versetzt. Die Anschlüsse G1 bis G4 sowie der Anschluss NEXT dienen der Steuerung der Tropfenerzeugung, wobei G1 bis G3 die drei verschiedenen Ansaugimpulsbreiten und G4 die als Ausstossimpulsbreite bedeutet. Die Anschlüsse DSERIN, DSEROUT und DCLK dienen der Datenübertragung, wobei der Ausgang DSEROUT zu Servicezwekken dient. Der ins Schieberegister übertragene Datenblock wird zum PC oder zur Druckersteuerung zurückgesendet und dort mit dem über DSERIN übertragenen Datenblock verglichen. Somit kann eine korrekte Datenübertragung überprüft werden. Ferner besteht die Möglichkeit, Statusinformationen vom Druckkopf zu übertragen (Temperatur zu hoch, Tinte leer usw.) und am PC auszuwerten. Über DSERIN wird jeweils ein ganzer Datenblock für den Betrieb aller 64 Düsen (im vorerwähnten Beispiel) ins Schieberegister eingelesen. Die Düsen 6 werden in drei Phasen betrieben. Im Datenblock steht also die Information, welche Düsen in den nächsten Phasen betrieben werden, also das zu druckende Muster.The function of the integrated control circuit is shown in FIG. 7 clarified. The block diagram shows the most important internal ones Sub-functions consisting of circuit breaker 16, selection logic 17 and shift register 18. For the electrical connection to Printer controls are used in this particular embodiment only 13 lines required. One advantage is that the number of the lines even with an increase in the number of channels and thus the number of converters remains constant. The power supply for the power and logic part is done via the connections POWER, PGND, VCC, and GND. Via a RESET connection the control is set to a defined basic state. The connections G1 to G4 and the connection NEXT are used for Control of drop generation, where G1 to G3 are the three different ones Intake pulse widths and G4 as the exhaust pulse width means. The connections DSERIN, DSEROUT and DCLK serve of data transmission, with the DSEROUT output for service purposes serves. The data block transferred to the shift register is sent back to the PC or the printer control and there with the data block transmitted via DSERIN compared. Thus a correct data transmission are checked. Furthermore, there is Ability to transfer status information from the printhead (Temperature too high, ink empty etc.) and evaluated on the PC. An entire data block is used for operation via DSERIN all 64 nozzles (in the aforementioned example) into the shift register read. The nozzles 6 are operated in three phases. In the data block So there is the information which nozzles in the next Phases are operated, i.e. the pattern to be printed.

Figur 8 stellt den ersten Teil der Auswahllogik 17 dar. Sobald ein Datenblock eingelesen ist, aktiviert das NEXT-Signal die zur ersten Phase Ph1 gehörenden Düsen, sofern sie durch den Inhalt des Schieberegisters (in Fig. 8 die obere Ziffernreihe) ausgewählt sind. Die Signale Ph1, Ph2 und Ph3 werden nacheinander mit den NEXT-Signalen erzeugt durch den Phasenschalter 22. Die Ausgangssignale auf den Ausgangsleitern 23, 24, 25 des Phasenwahlschalters 22 werden über AND-Gatter 26 mit den Eingangssignalen aus dem Schieberegister 18 verknüpft. Damit ist sicher gestellt, dass nur jeweils höchstens jeder dritte Kanal des Druckkopfes gleichzeitig aktiviert wird. Nach Ph3 wird mit dem nächsten NEXT-Signal wieder mit Ph1 begonnen. Falls zu diesem Zeitpunkt nicht bereits durch ein DCLK-Signal ein neuer Datenblock über den DSERIN-Eingang ins Schieberegister 18 eingelesen wurde, werden die drei Phasen wiederholt, die Düsen 6 also im gleichen Muster nochmals aktiviert. Damit können unterschiedliche Grautöne erzielt werden. Werden keine Grauabstufungen gefordert, so folgt nach jedem dritten NEXT-Impuls das Einlesen eines neuen Datenblocks ins Schieberegister 18 über den Eingang DSERIN getaktet durch DCKL. Sobald der neue Datenblock eingelesen ist, kann das nächste Muster mit einer Folge von drei NEXT-Impulsen gedruckt werden. Die Datenübertragung und die NEXT-Impulse werden durch die Drucker-Hardware synchronisiert und in Funktion der Bewegung des Druckkopfes relativ zum zu bedruckenden Papier gesteuert.FIG. 8 shows the first part of the selection logic 17. As soon as If a data block is read in, the NEXT signal activates the first phase Ph1 belonging nozzles, provided by the content of the shift register (the upper row of digits in Fig. 8) is selected are. The signals Ph1, Ph2 and Ph3 are used in succession the NEXT signals generated by the phase switch 22. The output signals on the output conductors 23, 24, 25 of the phase selection switch 22 are via AND gates 26 with the input signals linked from the shift register 18. This ensures that only at most every third channel of the printhead is activated at the same time. After Ph3 is with the next NEXT signal started again with Ph1. If at this time not already a new data block via a DCLK signal the DSERIN input has been read into the shift register 18 the three phases repeated, the nozzles 6 in the same pattern activated again. This allows different shades of gray be achieved. If no shades of gray are required, it follows Read in a new data block after every third NEXT pulse clocked into the shift register 18 via the input DSERIN by DCKL. As soon as the new data block has been read in, this can be done next pattern printed with a sequence of three NEXT pulses become. The data transmission and the NEXT pulses are through the printer hardware synchronized and in function of the movement the print head controlled relative to the paper to be printed.

Der zweite Teil der Auswahllogik 17 ist in Figur 9 dargestellt. Sie zeigt ein Ausführungsbeispiel mit einer mit einfachen Logik-Gattern aufgebauten Schaltung für die Auswahl der Impulsform an einem beliebigen Kanal i, abhängig von den Nachbarkanälen. Das Signal für den Kanal i ist an je einen der drei Eingänge von drei AND-Gattern 27 angeschlossen. Das Signal für die beiden dritten Nachbarkanäle i-3 und i+3 ist an die beiden andern Eingänge beim ersten Gatter 27 über je einen Inwerter 28, beim zweiten Gatter 27 über ein EXCLUSIVE OR und ans dritte Gatter direkt angeschlossen. Je nachdem ob keiner, einer oder beide dritten Nachbarkanäle i±1 bei eingeschaltetem Signal für den Kanal i gleichzeitig aktiviert wird, erscheint also ein Signal t10, t11 oder t12 am ersten, zweiten oder dritten Gatter 27. The second part of the selection logic 17 is shown in FIG. 9. It shows an embodiment with one with simple logic gates built circuit for the selection of the pulse shape any channel i, depending on the adjacent channels. The The signal for channel i is at one of the three inputs of three AND gates 27 connected. The signal for the two third adjacent channels i-3 and i + 3 is connected to the other two inputs in the first gate 27 via an inverter 28 each second gate 27 via an EXCLUSIVE OR and to the third gate directly connected. Depending on whether one, one or both third adjacent channels i ± 1 when the signal for the channel is switched on i is activated at the same time, a signal appears t10, t11 or t12 on the first, second or third gate 27.

Diese Auswahlschaltung 30 ist für sämtliche aktivierbaren Kanäle 3 des Druckkopfes 1 vorhanden, wie dies in Figur 10 dargestellt ist. Jeder der drei Ausgänge t10, t11, t12 der Schaltungen 30 ist über je ein AND-Gatter 31 mit den drei Leitungen 32, 33, 34 verknüpft, an welchen die drei Signale G1, G2 und G3 für die drei verschiedenen Ansaugimpulse 13 anstehen. Der Ausgang der drei einer Schaltung 30 zugeordneten Gatter 31 geht an den Eingang eines OR-Gatters 35. Die Impulslänge an den Ausgängen der Gatter 35 ist dann so bemessen, dass die Tropfengeschwindigkeit unabhängig ist von der Anzahl der gleichzeitig aktivierten dritten Nachbarkanäle. Der Schaltung 36 nach Figur 10 folgt noch die an sich bekannte Aufschaltung der Ausstossimpulse auf die aktivierten Kanäle (Eingänge oben bei Fig. 10), womit dann über die Leistungsschalter 16 die Elektroden 11 angesteuert werden.This selection circuit 30 is for all channels that can be activated 3 of the print head 1 is present, as shown in FIG. 10 is. Each of the three outputs t10, t11, t12 of the circuits 30 is via an AND gate 31 with the three lines 32, 33, 34 linked to which the three signals G1, G2 and G3 for the three different intake pulses 13 are pending. The exit of the three gates 31 assigned to a circuit 30 go to the input an OR gate 35. The pulse length at the outputs of the Gate 35 is then dimensioned so that the drop speed is independent of the number of thirds activated at the same time Adjacent channels. The circuit 36 according to FIG. 10 still follows known intrusion of the ejection pulses to the activated ones Channels (inputs at the top of Fig. 10), with which then the circuit breakers 16, the electrodes 11 are controlled.

Die dargestellte Schaltung ist nur eines von vielen möglichen Ausführungsbeispielen, das der einfacheren Darstellung wegen gewählt wurde. Logikfunktionen können durch eine beliebige Kombination von Gattern realisiert werden, wobei auch Vereinfachungen denkbar sind, bei denen Teilfunktionen bereits in andern Funktionsblöcken realisiert werden, zum Beispiel um doppelte Negierungen zu vermeiden.The circuit shown is only one of many possible Embodiments that for the sake of simplicity was chosen. Logic functions can be done by any combination of gates can be realized, with simplifications are conceivable in which partial functions are already in others Function blocks can be realized, for example by double To avoid negations.

Die erfindungsgemässe Lösung lässt sich noch verfeinern, wenn zusätzlich zur Anzahl der dritten Nachbarkanäle auch die Anzahl der gleichzeitig aktivierten sechsten Nachbarkanäle (deren Einfluss auf die Austrittsgeschwindigkeit allerdings geringer ist) berücksichtigt wird. Der Schaltungsaufwand ist dabei allerdings höher und es sind insgesamt neun verschiedene Ansaugimpulsformen erforderlich, aus welchen jeweils die zutreffende durch eine entsprechende Logikschaltung zu ermitteln ist.The solution according to the invention can be refined if in addition to the number of third adjacent channels, the number of the sixth adjacent channels activated at the same time (their influence on the exit speed is however lower) is taken into account. The circuitry is however higher and there are a total of nine different suction pulse shapes required, from each of which the applicable by a appropriate logic circuit is to be determined.

Figur 11 zeigt eine weitere Möglichkeit der Verfeinerung: Dargestellt ist das Abklingen der Druckwellen in benachbarten Kanälen, wenn der Kanal 0 aktiviert wurde. Wie ersichtlich, sind die Druckschwingungen im ersten Nachbarkanal relativ erheblich und vermindern sich mit zunehmendem Kanalabstand. Sind die Druckschwingungen in einem Kanal noch nicht abgeklungen, bevor er aktiviert wird (zum Beispiel in Phase 2 oder 3 in Fig. 8), so ergeben sich aufgrund dieser Vorgeschichte veränderte Anfangsbedingungen, was sich ebenfalls auf die Tropfengeschwindigkeit auswirkt. Insbesondere bei Druckköpfen, bei welchen sich die Phasen rasch folgen, also rasch von einer Düsengruppe auf die andere umgeschaltet wird, ist es zweckmässig, bei der Auswahl der Impulsform, insbesondere der Impulsdauer, zusätzlich zu berücksichtigen, wieviele erste und zweite Nachbarkanäle in einem festen Zeitabstand vor dem Auslösen des aktivierten Kanals betrieben wurden.FIG. 11 shows a further possibility of refinement: The decay of the pressure waves in neighboring ones is shown Channels if channel 0 has been activated. As can be seen the pressure fluctuations in the first adjacent channel are relatively considerable and decrease with increasing channel spacing. Are the Pressure vibrations in a channel have not subsided before it is activated (for example in phase 2 or 3 in Fig. 8), so there are changed initial conditions due to this history, which also affects the drop speed effect. Especially with printheads, which are the phases follow quickly, i.e. quickly from a nozzle group the other is switched over, it is advisable to use the Selection of the pulse shape, in particular the pulse duration, in addition to take into account how many first and second adjacent channels in a fixed interval before the activated channel is triggered were operated.

Beim beschriebenen Ausführungsbeispiel handelt es sich um einen piezoelektrischen Druckkopf des Scherwandlertyps. Es sind aber auch andere Typen piezoelektrischer Druckköpfe möglich, zum Beispiel solche mit einem Biegeschwinger über jeder Düse, zum Beispiel gemäss EP-A-713 773. Bei diesem Wandlertyp können auch zwei benachbarte Düsen gleichzeitig aktiviert werden. Auch bei diesen Druckköpfen ist die vorliegende Erfindung anwendbar, weil auch bei diesen über Druckschwingungen beim Aktivieren einer Düse benachbarte Kanäle beeinflusst werden. In diesem Fall ist natürlich die Verknüpfungsbedingung anders, so dass zum Beispiel die Anzahl der gleichzeitig aktivierten ersten und zweiten Nachbarkanäle berücksichtigt werden kann.The exemplary embodiment described is a Piezoelectric printhead of the shear transducer type. But there are other types of piezoelectric printheads are also possible Example those with a bending oscillator over each nozzle, for Example according to EP-A-713 773. With this type of converter also two neighboring nozzles are activated at the same time. Also at the present invention is applicable to these printheads because even with these via pressure vibrations when activating one Adjacent channels can be affected. In this case of course the link condition is different, so for example the number of simultaneously activated first and second adjacent channels can be taken into account.

Claims (9)

  1. A method for controlling piezo-elements in a printhead (1) of a droplet generator with a multitude of adjacently arranged ink channels (3), where the piezo elements (10, 11) are controlled such that the exit velocity of the droplets is independent of the number of simultaneously activated neighboring channels (3c), wherein
    the form of the activation impulses is modified depending upon how many neighboring channels (3c) are simultaneously activated.
  2. The method according to claim 1, wherein the impulse duration of the suction impulse (13) and/or the expulsion impulse (14) is varied.
  3. The method according to claim 2, wherein no more than each nth channel (3) is activated and wherein three different impulse forms are used depending upon whether activation occurs in none, one or two nth neighboring channels (3c).
  4. The method according to claim 2, wherein no more than each nth channel (3) is activated simultaneously and nine different impulse forms are used depending upon whether activation occurs in none, one or two nth neighboring channels and/or none, one or two 2nth neighboring channels.
  5. The method according to one of claims 1 to 4, wherein the impulse form is varied depending upon how many first and second neighboring channels were activated at a fixed time interval prior to triggering of actual droplet expulsion.
  6. The method according to one of claims 1 to 5, wherein the activation impulses comprise a suction impulse and an expulsion impulse, wherein the expulsion impulses are maintained constant.
  7. The method according to claim 6, wherein the expulsion impulses are selected in a manner such that refilling time of channels is minimal.
  8. The method according to one of claims 1 to 7, wherein an end of a suction impulse of each operated channel coincides with the beginning of an expulsion impulse of this channel.
  9. The method according to one of claims 1 to 8, wherein on both sides of the printhead n channels are not operated, and wherein the last operated channel is operated in such a manner as if the non-existing 2nth neighboring channel were additionally operated.
EP97810560A 1996-10-08 1997-08-08 Method of driving the piezoelectric elements in a print head of a droplets generator Expired - Lifetime EP0835757B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CH244696 1996-10-08
CH2446/96 1996-10-08
CH02446/96A CH691049A5 (en) 1996-10-08 1996-10-08 A method for controlling piezo-elements in a printhead of a droplet generator.

Publications (3)

Publication Number Publication Date
EP0835757A2 EP0835757A2 (en) 1998-04-15
EP0835757A3 EP0835757A3 (en) 1999-03-31
EP0835757B1 true EP0835757B1 (en) 2002-11-27

Family

ID=4234019

Family Applications (1)

Application Number Title Priority Date Filing Date
EP97810560A Expired - Lifetime EP0835757B1 (en) 1996-10-08 1997-08-08 Method of driving the piezoelectric elements in a print head of a droplets generator

Country Status (5)

Country Link
US (1) US6286925B1 (en)
EP (1) EP0835757B1 (en)
CA (1) CA2217833C (en)
CH (1) CH691049A5 (en)
DE (1) DE59708813D1 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100589987B1 (en) * 1997-05-15 2006-06-14 자아 테크날러쥐 리미티드 Operation of droplet deposition apparatus
EP0936069B1 (en) * 1998-02-13 2007-07-25 Toshiba Tec Kabushiki Kaisha Ink-jet head driving device
GB2338928B (en) 1998-07-02 2000-08-09 Tokyo Electric Co Ltd A driving method of an ink-jet head
GB2338927B (en) * 1998-07-02 2000-08-09 Tokyo Electric Co Ltd A driving method of an ink-jet head
JP2000203014A (en) * 1999-01-08 2000-07-25 Fujitsu Ltd Head drive circuit and inkjet printer equipped with head drive circuit
DE19911399C2 (en) * 1999-03-15 2001-03-01 Joachim Heinzl Method for controlling a piezo print head and piezo print head controlled according to this method
US7278701B2 (en) * 2003-07-30 2007-10-09 Lexmark International, Inc. Method of informing a user of an imaging apparatus of an event via a print fade
US20070273731A1 (en) * 2006-05-26 2007-11-29 Icf Technology Limited Method for driving an ink jet head having piezoelectric actuator
WO2009116993A1 (en) * 2008-03-17 2009-09-24 Hewlett-Packard Development Company, L.P. Print head diaphragm support
EP2988939B1 (en) 2013-04-23 2019-04-17 HP Scitex Ltd Cross-talk suppression of adjacent inkjet nozzles
JP6999317B2 (en) * 2017-07-21 2022-01-18 東芝テック株式会社 Inkjet heads and inkjet printers
JP2019188613A (en) * 2018-04-18 2019-10-31 東芝テック株式会社 Liquid discharge head
WO2022003771A1 (en) * 2020-06-29 2022-01-06 コニカミノルタ株式会社 Method for controlling driving of inkjet head, and inkjet recording apparatus

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5221931A (en) * 1988-04-26 1993-06-22 Canon Kabushiki Kaisha Driving method for ink jet recording head and ink jet recording apparatus performing the method
GB8830398D0 (en) * 1988-12-30 1989-03-01 Am Int Droplet deposition apparatus
GB9022662D0 (en) * 1990-10-18 1990-11-28 Xaar Ltd Method of operating multi-channel array droplet deposition apparatus
JP2935886B2 (en) * 1990-11-09 1999-08-16 シチズン時計株式会社 Inkjet head
US5142296A (en) * 1990-11-09 1992-08-25 Dataproducts Corporation Ink jet nozzle crosstalk suppression
US5461403A (en) * 1991-08-16 1995-10-24 Compaq Computer Corporation Droplet volume modulation techniques for ink jet printheads
JP3193127B2 (en) * 1992-06-05 2001-07-30 株式会社リコー Driving method of liquid jet recording head
JPH07132590A (en) * 1993-11-09 1995-05-23 Brother Ind Ltd Driving of ink jet device
SG93789A1 (en) * 1994-03-16 2003-01-21 Xaar Ltd Improvements relating to pulsed droplet deposition apparatus
CH688960A5 (en) 1994-11-24 1998-06-30 Pelikan Produktions Ag Droplet generator for microdroplets, especially for an inkjet printer.

Also Published As

Publication number Publication date
CA2217833C (en) 2005-07-26
DE59708813D1 (en) 2003-01-09
EP0835757A2 (en) 1998-04-15
CA2217833A1 (en) 1998-04-08
EP0835757A3 (en) 1999-03-31
US6286925B1 (en) 2001-09-11
CH691049A5 (en) 2001-04-12

Similar Documents

Publication Publication Date Title
DE69109880T2 (en) Ink jet recording head and ink jet recording apparatus with this recording head.
DE69405885T2 (en) Apparatus and method for driving an ink jet recording head
EP0835757B1 (en) Method of driving the piezoelectric elements in a print head of a droplets generator
DE69016396T2 (en) Method and apparatus for printing with resizable ink drops using a responsive ink jet printhead.
DE69725390T2 (en) Ink jet recording apparatus and method for driving the same
DE69214564T3 (en) Longitudinal actuator for a high density ink jet printhead
DE69809201T2 (en) Driving method of an inkjet printhead
DE69015953T2 (en) Printing process with several tonal values.
DE60019035T2 (en) Dynamic memory based activation cell for a thermal ink jet printhead
DE60101297T2 (en) Ink jet recording device and driving method therefor
DE69227142T2 (en) Ink jet recorder and high speed recording method
DE60006332T2 (en) Liquid jet device, method for its control and computer-readable storage medium storing the method
DE69601823T2 (en) Inkjet head
DE69119088T2 (en) OPERATING METHOD FOR A MULTI-CHANNEL DEVICE FOR THE DEPOSITION OF DROPLETS
DE4307762A1 (en) Ink jet nozzle structure for dot matrix ink jet print head - has ink jet nozzles arranged in zigzag line pattern and ink reservoir has several small chambers corresp. to nozzles
DE69505960T2 (en) IMPROVEMENTS ON A PULSE DROPLET DEPOSITOR
DE69203901T2 (en) Piezoelectric device for generating a jet from ink droplets.
DE69632016T2 (en) Head drive device for an ink jet printer
DE60122980T2 (en) Ink jet recording apparatus and associated control method
DE69416484T2 (en) Control method for ink ejection device
DE602004007857T2 (en) ink-jet head
DE60201473T2 (en) Printhead substrate, printhead, printhead cartridge, and printer
DE69606821T2 (en) Ink jet recording device
DE69904553T2 (en) Sequence for controlling an ink jet element to minimize the formation of horizontal bands and jagged vertical lines
DE69619859T2 (en) OPERATION OF A PULSE DROPLET DEPOSITOR

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): BE CH DE FR GB IE IT LI NL SE

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

17P Request for examination filed

Effective date: 19990824

AKX Designation fees paid

Free format text: BE CH DE FR GB IE IT LI NL SE

17Q First examination report despatched

Effective date: 20000516

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: PELIKAN HARDCOPY PRODUCTION AG

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: XAAR TECHNOLOGY LIMITED

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE CH DE FR GB IE IT LI NL SE

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: ISLER & PEDRAZZINI AG

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20021127

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: GERMAN

REF Corresponds to:

Ref document number: 59708813

Country of ref document: DE

Date of ref document: 20030109

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20030718

Year of fee payment: 7

ET Fr: translation filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20030801

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030808

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030809

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030831

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030831

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20030828

EUG Se: european patent has lapsed
REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040831

BERE Be: lapsed

Owner name: *XAAR TECHNOLOGY LTD

Effective date: 20040831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050301

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20050301

BERE Be: lapsed

Owner name: *XAAR TECHNOLOGY LTD

Effective date: 20040831

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20080828

Year of fee payment: 12

Ref country code: FR

Payment date: 20080818

Year of fee payment: 12

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20100430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090808

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20140806

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20140806

Year of fee payment: 18

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 59708813

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20150808

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160301

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150808