EP0826100B1 - Process for the selective lambda control of a cylinder in a multi-cylinder internal combustion engine - Google Patents

Process for the selective lambda control of a cylinder in a multi-cylinder internal combustion engine Download PDF

Info

Publication number
EP0826100B1
EP0826100B1 EP96913453A EP96913453A EP0826100B1 EP 0826100 B1 EP0826100 B1 EP 0826100B1 EP 96913453 A EP96913453 A EP 96913453A EP 96913453 A EP96913453 A EP 96913453A EP 0826100 B1 EP0826100 B1 EP 0826100B1
Authority
EP
European Patent Office
Prior art keywords
lam
lambda
cylinder
controller
accordance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP96913453A
Other languages
German (de)
French (fr)
Other versions
EP0826100A1 (en
Inventor
Willibald SCHÜRZ
Florian Tisch
Erwin Achleitner
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP0826100A1 publication Critical patent/EP0826100A1/en
Application granted granted Critical
Publication of EP0826100B1 publication Critical patent/EP0826100B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/008Controlling each cylinder individually
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1439Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the position of the sensor
    • F02D41/1441Plural sensors
    • F02D41/1443Plural sensors with one sensor per cylinder or group of cylinders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • F02D2041/1413Controller structures or design
    • F02D2041/1418Several control loops, either as alternatives or simultaneous
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/008Controlling each cylinder individually
    • F02D41/0082Controlling each cylinder individually per groups or banks
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1454Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an oxygen content or concentration or the air-fuel ratio
    • F02D41/1456Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an oxygen content or concentration or the air-fuel ratio with sensor output signal being linear or quasi-linear with the concentration of oxygen

Definitions

  • the invention relates to a method for cylinder-selective Lambda control according to a multi-cylinder internal combustion engine the preamble of claim 1.
  • the lambda control connects to the three-way catalytic converter today the most effective emission control method for Internal combustion engines.
  • One delivers in the exhaust pipe oxygen sensor located upstream of the catalytic converter, usually referred to as a lambda probe, one of oxygen content in the exhaust gas dependent signal that the lambda controller so further processed that by means of a metering device, like injectors or carburetor the cylinders of the Fuel-air mixture supplied to the internal combustion engine almost complete combustion ( ⁇ 1.00).
  • so-called jump probes are used as lambda probes, whose output signal jumps both at the transition from a fat to a lean, as well as at the transition changes from a lean to a rich exhaust state.
  • Such lambda probes based on zirconium oxide or titanium oxide have response times of around 100 ms and record therefore only the oxygen content in the total exhaust gas resulting from the individual exhaust gas packs of the individual cylinders of the internal combustion engine put together.
  • variable suction systems switching suction pipes
  • variable Valve timing a balanced cylinder charge in all operating points of the internal combustion engine with the conventional means difficult to realize.
  • each individual cylinder has its own lambda sensor with jump characteristics assign in a corresponding exhaust pipe.
  • One lambda probe each records the composition of the exhaust gas from the respective cylinder and delivers an output signal to an electronic control unit. This touches the Output signals of the two lambda probes when the respective cylinders in question are in the extension stroke or during a period that is slightly later than this and increases or decreases the fuel supply amount for the individual cylinders.
  • the oxygen sensors for cylinder-specific mixture control are also known as linear lambda sensors and are for example based on strontium titanate (SrTiO3) in Thin-film technology built up (VDI reports 939, Düsseldorf 1992, "Comparison of the response speed of automotive exhaust gas sensors for quick lambda measurement based on selected metal oxide thin films ").
  • the present invention is based on the object of specifying a method for cylinder-selective lambda control of a multi-cylinder internal combustion engine of the type mentioned at the outset, so that the deviation of the individual cylinder air numbers from the desired value is limited to a minimum at all operating points of the internal combustion engine.
  • the single-cylinder lambda control consists of two control loops, an outer control loop for control the global lambda mean and an internal control loop, in which the air ratio is controlled cylinder-selectively.
  • a linear proportional integral controller is used to regulate the mean air ratio (PI controller) used.
  • PI controller mean air ratio
  • the controlled system can be with sufficient accuracy by Dead time element and two first order delay elements replicate. With the help of this route model one can Design the controller structure, whose parameters depend on the dead time of the Lambda control loop, the time constants of the delay elements and the speed are dependent. Because these system sizes the effort can be easily determined by measurements reduce significantly for the application of the lambda controller.
  • the single-cylinder lambda controller as a two-point controller.
  • a PI controller is also used for the single-cylinder air figures used, in which the proportional and integral part set depending on the load and speed become.
  • Deviations of the single-cylinder air figures from the setpoint reduce less than 1%.
  • the air ratio amplitude in the total exhaust gas is significantly reduced compared to that of a conventional two-point lambda regulator and the conversion rate for CO and NO x of an aged catalytic converter is significantly increased.
  • the detection and evaluation of the single-cylinder air figures makes it possible to detect defects in the injection valves which are associated with a change in the dynamic properties of the flow rate, which supports on-board diagnosis (OBD II).
  • FIG. 1 with the reference numeral 10 is only schematic shown internal combustion engine BKM with 6 cylinders, 3 cylinders combined to form a cylinder bank are.
  • the cylinders are a first cylinder bank ZB1 1,2,3 assigned, the exhaust gas in a common exhaust line AST1 opens.
  • the cylinders 4,5,6 are a second cylinder bank ZB2 assigned to which an exhaust line AST2 common is.
  • the Internal combustion engine 10 has a linear lambda probe LS1 in the exhaust line AST2 a linear lambda probe LS2 is provided.
  • a positioning of the two lambda sensors LS1, LS2 near the internal combustion engine 10 favors the detectability of single-cylinder air deviations, because with increasing distance the installation location of the lambda probes LS1, LS2 from the Internal combustion engine 10 the degree of mixing of each Exhaust gas packs increased and thereby cylinder-selective detection is difficult.
  • the signals from the two lambda sensors LS1, LS2 become one Circuit block 11 supplied, the signal detection and a Controls linearization of these signals. This is due to Circuit block 11 as further input variables a cylinder identification signal ZID and a time signal, namely the Waiting time TEZ on.
  • the value for the waiting time TEZ is made up of a Map KF depends on one that represents the engine load Size, for example the air mass LM and the Speed N read out.
  • the dependence of the probe voltage is linear Lambda probe represented by the air ratio ⁇ .
  • the air ratio ⁇ In one narrow range of 0.97 ⁇ ⁇ 1.03 results in an almost linear relationship between probe voltage ULS and air ratio ⁇ .
  • the probe voltage is by means of a stored characteristic curve or a one-dimensional one Map converted into an actual lambda value LAM_IST.
  • a separate map can be made for each of the two lambda sensors are provided, with the aid of which the values of the sensor voltages be converted into air ratio values.
  • Figure 3 shows the position of the sampling points in the first two lines AP for the sensor signals of the two cylinder banks ZB1, ZB2 in relation to the push-out cycles AT of the individual Cylinder.
  • the 3rd line of Fig.3 are the push-out cycles AT of cylinders 4, 5 and 6 of cylinder bank ZB 2, in the 4th Row are the extension strokes AT of cylinders 1, 2 and 3 the cylinder bank ZB 1 shown.
  • the value of the probe signal which contains the information about the air ratio of a cylinder, is only recorded after a specific waiting time TEZ after the exhaust valve has closed (the end of the push-out cycle).
  • This waiting time TEZ depends on the load and the speed of the internal combustion engine.
  • the waiting time TEZ is stored in a map that is spanned over the air mass LM and the speed N.
  • TEZ time between reference mark and sampling time
  • the values of the sensor signals of the lambda sensors assigned to the two cylinder banks ZB1, ZB2 are queried.
  • the time interval between the signal acquisition is therefore predefined in relation to a trigger mark (tooth number) fixed to the crankshaft, depending on the load and the speed.
  • a lambda voltage value per cylinder bank is determined for each segment.
  • the setpoint LAM_SOLL is one Map dependent on the load, for example on the air mass LM and the speed N of the internal combustion engine filed.
  • LAMMW_IST_i 1.2 for the two lambda probes
  • n-6 n-5 n-4 n-3 n-2 n-1 n number of the measured value
  • LAMMW_i LAM_SUM_i (n) / 6
  • the control gain factor LAM_KPI_FAK is selected depending on a dead time LAM_TOTZ_GR in the lambda control loop, which results from the fuel storage period, the Duration of the intake, compression, work and extension cycle as well as the gas running time for the respective lambda probe.
  • This dead time LAM_TOTZ_GR is load- a map and taken depending on the speed.
  • LAM_GR_i (n) LAM_P_i (n) + LAM_I_i (n)
  • This controller output of the global lambda controller is preferably limited to ⁇ 25% of the basic injection time, ie -0.25 ⁇ LAM_GR_i ⁇ 0.25.
  • the integral component can also be limited to ⁇ 25% of the basic injection time, ie - 0.25 ⁇ LAM_I_i ⁇ 0.25.
  • a gradient method is used to identify the individual cylinder air numbers used.
  • the slope behavior of the lambda probe signal after the expiration cycle a qualitative assessment of the individual cylinder air numbers carried out, i.e. it is determined whether the exhaust gas of the current Cycle is richer or leaner than that exhaust gas from the previous cycle.
  • the air ratio gradients are calculated segment-synchronously cylinder-selective from the actual lambda values LAM_IST_i, whereby only every second measured value per cylinder bank for the gradient calculation is taken into account.
  • Tooth point scanning point Gradient for cylinder No.x Probe No.i 15 2nd 1 35 4th 2nd 55 1 1 75 5 2nd 95 3rd 1 115 6 2nd
  • Air ratio gradients can lead to false detections introduced a hysteresis LAM_ZST_HYS, the width of which can be applied is.
  • Lies is the air ratio gradient calculated using formula (1) LAM_GRD_ZYL_x within the range ⁇ LAM_ZST_HYS, so is the result of the gradient evaluation from the previous state dependent in the relevant exhaust line. To the procedure two more state variables are easier to design VOR_ZST 1, VOR_ZST 2 introduced.
  • the state variable VOR_ZST 1 saves the previous one Condition in the exhaust system of the first cylinder bank with the Probe 1, the state variable VOR_ZST 2 the previous state in the exhaust line of the second cylinder bank with the probe 2.
  • the state variables VOR_ZST 1,2 there is a sequence for determining the values (1 or 0) for LAM_ZST_1.2, as shown in Figure 5.
  • LAM_ZST_i are used to control the individual cylinder air numbers used. They serve as input variables for a single cylinder lambda controller (circuit block 15 in Fig. 1), which is used as a proportional integral controller (PI controller) is trained.
  • PI controller proportional integral controller
  • circuit blocks 11-15 in Fig. 1 are preferably in one known electronic control device 16 integrated, as used for control in modern motor vehicles anyway and control of various operating parameters such as e.g. Injection time calculation, ignition control, diagnosis, etc. is used. Also those mentioned in the description Characteristic maps are stored in memories of the control device 16.
  • LAM_I_SUM_EZ_i (n + 1) LAM_I_SUM_EZ_I (n) - LAM_I_EZ_i (n-2) + LAM_I_EZ_x (n)
  • LAM_I_EZ_x (n) is entered in a memory LAM_I_EZ_i.
  • LAM_I_EZ_i n-2 n-1 n LAMMW_I_EZ_i (n + 1) LAM_I_SUM_EZ_i (n + 1) / 3
  • LAM_P_EZ and LAM_I_EZ are each in a map filed over the load size LM and the speed N of the Internal combustion engine are clamped.
  • the integration component LAM_I_EZ_x of the single cylinder lambda controller is, for example, ⁇ 10% of the basic injection time TI_B limited, i.e. -0.1 ⁇ LAM_I_EZ_x ⁇ 0.1.
  • the invention was explained on the basis of an exemplary embodiment in which the internal combustion engine has 6 cylinders and in each case 3 cylinders are combined to form a group (cylinder bank ZB1, ZB2).
  • Each group or cylinder bank is assigned an exhaust line containing a linear lambda probe. It is also possible within the scope of the invention, for example, to provide a single exhaust line in a 4-cylinder internal combustion engine, in which a single linear lambda probe is arranged, or to form 2 groups of 4 cylinders in an 8-cylinder internal combustion engine, or in a 12 Cylinder internal combustion engine to form 3 groups of 4 cylinders or 4 groups of 3 cylinders.
  • the number of exhaust gas lines and thus the number of linear lambda sensors are then determined in accordance with the number of groups.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Description

Die Erfindung betrifft ein Verfahren zur zylinderselektiven Lambda-Regelung einer Mehrzylinder-Brennkraftmaschine gemäß dem Oberbegriff von Patentanspruch 1.The invention relates to a method for cylinder-selective Lambda control according to a multi-cylinder internal combustion engine the preamble of claim 1.

Die Lambda-Regelung stellt in Verbindung mit dem Dreiwege-Katalysator heute das wirksamste Abgasreinigungsverfahren für Brennkraftmaschinen dar. Dabei liefert ein im Abgasrohr stromaufwärts des Katalysators angeordneter Sauerstoffsensor, in der Regel als Lambda-Sonde bezeichnet, ein vom Sauerstoffgehalt im Abgas abhängiges Signal, das der Lambda-Regler derart weiterverarbeitet, daß das mittels einer Zumeßeinrichtung, wie Einspritzventile oder Vergaser den Zylindern der Brennkraftmaschine zugeführte Kraftstoff-Luftgemisch eine nahezu vollständige Verbrennung (λ = 1,00) ermöglicht.The lambda control connects to the three-way catalytic converter today the most effective emission control method for Internal combustion engines. One delivers in the exhaust pipe oxygen sensor located upstream of the catalytic converter, usually referred to as a lambda probe, one of oxygen content in the exhaust gas dependent signal that the lambda controller so further processed that by means of a metering device, like injectors or carburetor the cylinders of the Fuel-air mixture supplied to the internal combustion engine almost complete combustion (λ = 1.00).

Als Lambda-Sonden werden dabei sogenannte Sprungsonden eingesetzt, deren Ausgangssignal sich sprunghaft sowohl beim Übergang von einem fetten zu einem mageren, als auch beim Übergang von einem mageren zu einem fetten Abgaszustand ändert. Solche Lambda-Sonden auf der Basis von Zirkonoxid oder Titanoxid weisen Ansprechzeiten von etwa 100 ms auf und erfassen deshalb nur den Sauerstoffgehalt im Gesamtabgas, das sich aus den einzelnen Abgaspaketen der einzelnen Zylinder der Brennkraftmaschine zusammensetzt.So-called jump probes are used as lambda probes, whose output signal jumps both at the transition from a fat to a lean, as well as at the transition changes from a lean to a rich exhaust state. Such lambda probes based on zirconium oxide or titanium oxide have response times of around 100 ms and record therefore only the oxygen content in the total exhaust gas resulting from the individual exhaust gas packs of the individual cylinders of the internal combustion engine put together.

Eine derartige Regelung der Luftzahl λ des Summenabgases einer Mehrzylinder-Brennkraftmaschine, auch als globale Regelung bezeichnet, auf λ = 1,00 führt aufgrund der vorhandenen Durchflußstreuungen der Einspritzventile sowie der unterschiedlichen Zylinderfüllungen zu nennenswerten Abweichungen der Einzelzylinderluftzahlen vom Sollwert. Such a regulation of the air ratio λ of the total exhaust gas a multi-cylinder internal combustion engine, also as a global control referred to, leads to λ = 1.00 due to the existing Flow scatter of the injection valves and the different Cylinder fillings for significant deviations the individual cylinder air numbers from the setpoint.

Daraus resultieren sowohl negative Einflüsse auf die Rohemission der Brennkraftmaschine als auch auf die Konvertierungsrate des Katalysators. Mit zunehmender Streuung der Einzelzylinderluftzahlen steigt die Konzentration von CO und O2 im Summenabgas an. Der erhöhte O2-Gehalt im Abgas führt infolge der exothermen Konvertierungsreaktionen zu einer zusätzlichen thermischen Belastung des Katalysators, welche insbesondere bei einer Anordnung des Katalysators nahe der Brennkraftmaschine die Gefahr einer beschleunigten Alterung mit sich bringt.This results in both negative influences on the raw emissions of the internal combustion engine and on the conversion rate of the catalytic converter. The concentration of CO and O 2 in the total exhaust gas increases with increasing scatter of the individual cylinder air numbers. As a result of the exothermic conversion reactions, the increased O 2 content in the exhaust gas leads to an additional thermal load on the catalytic converter, which, particularly when the catalytic converter is arranged close to the internal combustion engine, entails the risk of accelerated aging.

Außerdem führen aufgrund der Querempfindlichkeit der herkömmlichen Sprungsonden zu Wasserstoff erhöhte Abweichungen der Einzelzylinderluftzahlen zu einer Drift der Luftzahl des Summenabgases in den mageren Bereich, wodurch eine deutliche Verschlechterung der NOx-Konvertierung des Katalysators verursacht wird.In addition, due to the cross sensitivity of the conventional jump probes to hydrogen, increased deviations of the individual cylinder air numbers lead to a drift of the air number of the total exhaust gas into the lean range, which causes a significant deterioration in the NO x conversion of the catalyst.

Darüber hinaus ist durch den zunehmenden Einsatz von variablen Sauganlagen (Schaltsaugrohre) bzw. variablen Ventilsteuerzeiten eine ausgeglichene Zylinderfüllung in allen Betriebspunkten der Brennkraftmaschine mit den herkömmlichen Mitteln nur erschwert zu realisieren.In addition, due to the increasing use of variable suction systems (switching suction pipes) or variable Valve timing a balanced cylinder charge in all operating points of the internal combustion engine with the conventional means difficult to realize.

Um das Abgas aus den einzelnen Zylindern einer Mehrzylinder-Brennkraftmaschine auf dem theoretischen Luft-Kraftstoff-Verhältnis zu halten, ist es aus der DE 40 40 527 A1 bekannt, jedem einzelnen Zylinder eine eigene Lambdasonde mit Sprungcharakteristik in einer entsprechenden Abgasleitung zuzuordnen. Je eine Lambdasonde erfaßt die Zusammensetzung des Abgases aus dem jeweiligen Zylinder und liefert ein Ausgangssignal an eine elektronische Steuereinheit. Diese tastet die Ausgangssignale der beiden Lambdasonden ab, wenn die jeweiligen in Frage stehenden Zylinder sich im Ausschiebetakt befinden oder während einer Periode, die geringfügig später liegt als diese und erhöht oder verringert die Kraftstoffzuführungsmenge für die einzelnen Zylinder. To the exhaust gas from the individual cylinders of a multi-cylinder internal combustion engine on the theoretical air-fuel ratio to hold, it is known from DE 40 40 527 A1, each individual cylinder has its own lambda sensor with jump characteristics assign in a corresponding exhaust pipe. One lambda probe each records the composition of the exhaust gas from the respective cylinder and delivers an output signal to an electronic control unit. This touches the Output signals of the two lambda probes when the respective cylinders in question are in the extension stroke or during a period that is slightly later than this and increases or decreases the fuel supply amount for the individual cylinders.

Der Einsatz von entsprechend der Anzahl der Zylinder der Brennkraftmaschine vorgesehenen Lambdasonden und deren Peripherie (z.B. für die Diagnose), insbesondere bei Brennkraftmaschinen mit sechs und mehr Zylindern führt aber zu einer Erhöhung der Komplexizität und zur Verteuerung des Kraftfahrzeugs insgesamt.The use of according to the number of cylinders Internal combustion engine provided lambda sensors and their peripherals (e.g. for diagnosis), especially for internal combustion engines with six or more cylinders leads to one Increasing complexity and increasing the cost of the motor vehicle all in all.

Aus der US 4,766,870 ist ein Verfahren zum Regeln des Kraftstoff-Luftverhältnisses bei einer Brennkraftmaschine bekannt, bei dem zylinderspezifisch Lambda-Istwerte ermittelt werden. Diese Werte werden über mehrere Zylindersignale eines Arbeitsspiels gemittelt und einem ein Integralverhalten aufweisenden Regler bezüglich des Sollwertes für alle Zylinder gemeinsam zugeführt. Diese I-Regelung wird bei bestimmten Drehzahlen überlagert mit einer zylinderindividuellen Regelung. Dabei wird je ein linearer Lambdasensor in jedem Abgasstrang einer zugeordneten Zylindergruppe vorgesehen und die Regelung geschieht gruppenweise.From US 4,766,870 is a method for regulating the air-fuel ratio known in an internal combustion engine, with which cylinder-specific actual lambda values are determined. These values are over several cylinder signals of a work cycle averaged and one with an integral behavior Controller regarding the setpoint for all cylinders together fed. This I control is at certain speeds overlaid with a cylinder-specific regulation. There is a linear lambda sensor in each exhaust line an assigned cylinder group and the control happens in groups.

Zur zylinderindividuellen Gemischregelung in einer Brennkraftmaschine ist es ferner bekannt, einen einzigen Sauerstoffsensor vorzusehen, der eine lineare Abhängigkeit seines Ausgangssignals von der Luftzahl λ und darüber hinaus eine geringe Ansprechzeit aufweist. (SAE Paper 940149 "Automatic Control of Cylinder by Cylinder Air-Fuel Mixture Using a Proportional Exhaust Gas Sensor" und SAE Paper 940376 "Individual Cylinder Air Fuel Ratio Feedback Control Using an Observer").For cylinder-specific mixture control in an internal combustion engine it is also known to have a single oxygen sensor provide a linear dependency of its Output signal from the air ratio λ and beyond one has a short response time. (SAE Paper 940149 "Automatic Control of Cylinder by Cylinder Air-Fuel Mixture Using a Proportional Exhaust Gas Sensor "and SAE Paper 940376" Individual Cylinder Air Fuel Ratio Feedback Control Using an Observer ").

Die dort vorgeschlagenen Lösungen zur Einzylinder-Lambdaregelung einer Brennkraftmaschine erfordern aber aufgrund der dabei notwendigen Matrizenoperationen sehr hohe Rechnerleistungen, so daß eine Implementierung in Serienmotorsteuersystemen für Kraftfahrzeuge mit vernünftigem Aufwand nur sehr schwer zu realisieren ist. The solutions proposed there for single-cylinder lambda control require an internal combustion engine because of this necessary matrix operations very high computing power, so that an implementation in series engine control systems very difficult for motor vehicles with reasonable effort is to be realized.

Die Sauerstoffsensoren für zylinderindividuelle Gemischregelung werden auch als lineare Lambdasonden bezeichnet und sind beispielsweise auf der Basis von Strontiumtitanat (SrTiO3) in Dünnschichttechnologie aufgebaut (VDI Berichte 939, Düsseldorf 1992, "Vergleich der Ansprechgeschwindigkeit von KFZ Abgassensoren zur schnellen Lambdamessung auf der Grundlage von ausgewählten Metalloxiddünnfilmen").The oxygen sensors for cylinder-specific mixture control are also known as linear lambda sensors and are for example based on strontium titanate (SrTiO3) in Thin-film technology built up (VDI reports 939, Düsseldorf 1992, "Comparison of the response speed of automotive exhaust gas sensors for quick lambda measurement based on selected metal oxide thin films ").

Der vorliegenden Erfindung liegt die Aufgabe zugrunde, ein Verfahren zur zylinderselektiven Lambda-Regelung einer Mehrzylinder-Brennkraftmaschine der eingangs genannten Art anzugeben, so daß bei allen Betriebspunkten der Brennkraftmaschine die Abweichung der Einzelzylinderluftzahlen vom Sollwert auf ein Minimum begrenzt ist.
Diese Aufgabe wird gemäß den Merkmalen des Patentanspruches 1 gelöst. Vorteilhafte Weiterbildungen finden sich in den Unteransprüchen.
The present invention is based on the object of specifying a method for cylinder-selective lambda control of a multi-cylinder internal combustion engine of the type mentioned at the outset, so that the deviation of the individual cylinder air numbers from the desired value is limited to a minimum at all operating points of the internal combustion engine.
This object is achieved according to the features of patent claim 1. Advantageous further developments can be found in the subclaims.

Die Einzylinder-Lambdaregelung besteht erfindungsgemäß aus zwei Regelkreisen, einer äußeren Regelschleife zur Regelung des globalen Lambdamittelwertes und einer inneren Regelschleife, in der die Luftzahl zylinderselektiv geregelt wird. Zur Regelung des Luftzahlmittelwertes wird ein linearer Proportional-Integralregler (PI-Regler) verwendet. Die Regelstrecke läßt sich mit ausreichender Genauigkeit durch ein Totzeitglied und zwei Verzögerungsglieder erster Ordnung nachbilden. Mit Hilfe dieses Streckenmodells läßt sich eine Reglerstruktur entwerfen, deren Parameter von der Totzeit des Lambdaregelkreises, den Zeitkonstanten der Verzögerungsglieder und der Drehzahl abhängig sind. Da diese Systemgrößen durch Messungen einfach zu ermitteln sind, läßt sich der Aufwand für die Applikation des Lambdareglers wesentlich reduzieren.According to the invention, the single-cylinder lambda control consists of two control loops, an outer control loop for control the global lambda mean and an internal control loop, in which the air ratio is controlled cylinder-selectively. A linear proportional integral controller is used to regulate the mean air ratio (PI controller) used. The controlled system can be with sufficient accuracy by Dead time element and two first order delay elements replicate. With the help of this route model one can Design the controller structure, whose parameters depend on the dead time of the Lambda control loop, the time constants of the delay elements and the speed are dependent. Because these system sizes the effort can be easily determined by measurements reduce significantly for the application of the lambda controller.

Zur Identifizierung des Luftzahlzustandes der einzelnen Zylinder der Brennkraftmaschine wird die Steigung des Sauerstoffsondensignales nach Ablauf der Ausschiebetakte ausgewertet. Ein positiver Gradient bedeutet, daß die Luftzahl im aktuellen Aussschiebetakt magerer ist als die Luftzahl im vorangegangenen Arbeitstakt, ein negativer Gradient im aktuellen Ausschiebetakt weist auf ein fetteres Abgaspaket hin. Da dies eine qualitative Information über den Zustand der Luftzahl des Einzelzylinder-Abgases darstellt, läßt sich der Einzylinder-Lambdaregler alsZweipunktregler realisieren. Als Regler für die Einzelzylinder-Luftzahlen wird ebenfalls ein PI-Regler verwendet, bei dem der Proportional- und Integralanteil in Abhängigkeit von der Last und der Drehzahl eingestellt werden. To identify the air ratio of the individual cylinders of the internal combustion engine is the slope of the oxygen probe signal evaluated after the expiration cycles. A positive gradient means that the air ratio in the current Extension cycle is leaner than the air ratio in the previous one Work cycle, a negative gradient in the current Extending cycle indicates a richer exhaust package. As this qualitative information about the state of the air ratio represents the single-cylinder exhaust gas, the single-cylinder lambda controller as a two-point controller. As a controller a PI controller is also used for the single-cylinder air figures used, in which the proportional and integral part set depending on the load and speed become.

Durch Einsatz des erfindungsgemäßen Verfahrens lassen sich Abweichungen der Einzelzylinder-Luftzahlen vom Sollwert auf weniger als 1% reduzieren.By using the method according to the invention Deviations of the single-cylinder air figures from the setpoint reduce less than 1%.

Außerdem ist die Luftzahlamplitude im Summenabgas im Vergleich zu jener eines konventionellen Zweipunkt-Lamabdareglers deutlich reduziert und die Konvertierungsrate für CO und NOx eines gealterten Katalysators deutlich erhöht. Darüber hinaus ist durch die Erfassung und Auswertung der Einzelzylinder-Luftzahlen die Detektion von Defekten an den Einspritzventilen möglich, die mit einer Veränderung der dynamischen Eigenschaften der Durchlfußrate verbunden sind, wodurch die On-Board-Diagnose (OBD II) unterstützt wird.In addition, the air ratio amplitude in the total exhaust gas is significantly reduced compared to that of a conventional two-point lambda regulator and the conversion rate for CO and NO x of an aged catalytic converter is significantly increased. In addition, the detection and evaluation of the single-cylinder air figures makes it possible to detect defects in the injection valves which are associated with a change in the dynamic properties of the flow rate, which supports on-board diagnosis (OBD II).

Ein Ausführungsbeispiel der Erfindung ist im folgenden unter Bezugnahme auf die schematischen Zeichnungen näher erläutert. Es zeigen:

Figur 1
ein Blockdiagramm einer Einrichtung zur zylinderselektiven Lambdaregelung einer Brennkraftmaschine,
Figur 2
den Zusammenhang zwischen Sondenspannung und Luftzahl einer linearen Lambdasonde,
Figur 3
die Lage der Abtastpunkte für die Sondenspannung in Bezug auf die Ausschiebetakte der einzelnen Zylinder,
Figur 4
eine graphische Darstellung einer Hysterese zur Bestimmung von Luftzahlgradienten und
Figur 5
ein Ablaufdiagramm zur Bestimmung von Zustandsgrößen, die angeben, ob das Abgas eines Zylinders zu fett oder zu mager ist.
An embodiment of the invention is explained in more detail below with reference to the schematic drawings. Show it:
Figure 1
1 shows a block diagram of a device for cylinder-selective lambda control of an internal combustion engine,
Figure 2
the relationship between probe voltage and air ratio of a linear lambda probe,
Figure 3
the position of the sampling points for the probe voltage in relation to the push-out cycles of the individual cylinders,
Figure 4
a graphical representation of a hysteresis for determining air gradient and
Figure 5
a flowchart for determining state variables that indicate whether the exhaust gas of a cylinder is too rich or too lean.

In Figur 1 ist mit dem Bezugszeichen 10 eine nur schematisch dargestellte Brennkraftmaschine BKM mit 6 Zylindern bezeichnet, wobei jeweils 3 Zylinder zu einer Zylinderbank zusammengefaßt sind. Einer ersten Zylinderbank ZB1 sind die Zylinder 1,2,3 zugeordnet, deren Abgas in einen gemeinsamen Abgasstrang AST1 mündet. Die Zylinder 4,5,6 sind einer zweiten Zylinderbank ZB2 zugeordnet, denen ein Abgasstrang AST2 gemeinsam ist.In Figure 1 with the reference numeral 10 is only schematic shown internal combustion engine BKM with 6 cylinders, 3 cylinders combined to form a cylinder bank are. The cylinders are a first cylinder bank ZB1 1,2,3 assigned, the exhaust gas in a common exhaust line AST1 opens. The cylinders 4,5,6 are a second cylinder bank ZB2 assigned to which an exhaust line AST2 common is.

Zur Ermittlung der Luftzahl λ ist im Abgasstrang AST1 der Brennkraftmaschine 10 eine lineare Lambdasonde LS1, im Abgasstrang AST2 eine lineare Lambdasonde LS2 vorgesehen. Eine Positionierung der beiden Lambdasonden LS1, LS2 nahe der Brennkraftmaschine 10 begünstigt die Detektierbarkeit von Einzelzylinderluftzahlabweichungen, da sich mit steigender Entfernung des Einbauortes der Lambasonden LS1, LS2 von der Brennkraftmaschine 10 der Grad der Vermischung der einzelnen Abgaspakete erhöht und dadurch eine zylinderselektive Detektion erschwert ist.To determine the air ratio λ in the exhaust line AST1 is the Internal combustion engine 10 has a linear lambda probe LS1 in the exhaust line AST2 a linear lambda probe LS2 is provided. A positioning of the two lambda sensors LS1, LS2 near the internal combustion engine 10 favors the detectability of single-cylinder air deviations, because with increasing distance the installation location of the lambda probes LS1, LS2 from the Internal combustion engine 10 the degree of mixing of each Exhaust gas packs increased and thereby cylinder-selective detection is difficult.

Die Signale der beiden Lambdasonden LS1, LS2 werden einem Schaltungsblock 11 zugeführt, der die Signalerfassung und eine Linearisierung dieser Signale steuert. Hierzu liegen am Schaltungsblock 11 als weitere Eingangsgrößen ein Zylinderidentifikationssignal ZID und ein Zeitsignal, nämlich die Wartezeit TEZ an. Der Wert für die Wartezeit TEZ wird aus einem Kennfeld KF abhängig von einer, die Motorlast repräsentierenden Größe, beispielsweise der Luftmasse LM und der Drehzahl N ausgelesen.The signals from the two lambda sensors LS1, LS2 become one Circuit block 11 supplied, the signal detection and a Controls linearization of these signals. This is due to Circuit block 11 as further input variables a cylinder identification signal ZID and a time signal, namely the Waiting time TEZ on. The value for the waiting time TEZ is made up of a Map KF depends on one that represents the engine load Size, for example the air mass LM and the Speed N read out.

In Figur 2 ist die Abhängigkeit der Sondenspannung einer linearen Lambdasonde von der Luftzahl λ dargestellt. In einem schmalen Bereich von 0,97 < λ < 1,03 ergibt sich ein nahezu linearer Zusammenhang zwischen Sondenspannung ULS und Luftzahl λ. Im fetten und im mageren Luftzahlbereich zeigt die Sondenkennlinie ein Sättigungsverhalten. Die Sondenspannung wird mittels einer abgespeicherten Kennlinie bzw. eines eindimensionalen Kennfeldes in einen Lambda-Istwert LAM_IST umgerechnet.In Figure 2, the dependence of the probe voltage is linear Lambda probe represented by the air ratio λ. In one narrow range of 0.97 <λ <1.03 results in an almost linear relationship between probe voltage ULS and air ratio λ. The shows in the rich and lean air ratio range Probe characteristic a saturation behavior. The probe voltage is by means of a stored characteristic curve or a one-dimensional one Map converted into an actual lambda value LAM_IST.

Für jede der beiden Lambdasonden kann ein eigenes Kennfeld vorgesehen werden, mit Hilfe derer die Werte der Sensorspannungen in Luftzahlwerte umgewandelt werden. A separate map can be made for each of the two lambda sensors are provided, with the aid of which the values of the sensor voltages be converted into air ratio values.

Um aus den erfaßten Sondenspannungswerten ULS der beiden Lambdasonden Informationen über die Luftzahlen der einzelnen Zylinder zu erhalten, ist es erforderlich, die Sondenspannungen ULS zu einer in Bezug auf den Kurbelwinkel definierten Stellung abzutasten. Als Bezugsgröße für die zeitliche Lage der Abtastungen werden die oberen Totpunkte Zündung (ZOT) der einzelnen Zylinder verwendet. Hierzu werden Referenzmarken, zB. Zähne auf einem der Kurbelwelle oder der Nockenwelle zugeordnetem Geberrad ausgewertet (z.B. Zahn 15: ZOT Zylinder 5, Zahn 35: ZOT Zylinder 3, Zahn 55: ZOT Zylinder 6, Zahn 75: ZOT Zylinder 2, Zahn 95: ZOT Zylinder 4, Zahn 115: ZOT Zylinder 1).Order from the detected probe voltage values ULS of the two Lambda sensors Information about the air figures of the individual To get cylinders, it is necessary to measure the probe voltages ULS to a defined in terms of crank angle Feel position. As a reference for the temporal position of the samples are the top dead center ignition (ZOT) of the single cylinder used. For this purpose, reference marks, e.g. Teeth on one associated with the crankshaft or the camshaft Encoder wheel evaluated (e.g. tooth 15: ZOT cylinder 5, tooth 35: ZOT cylinder 3, tooth 55: ZOT cylinder 6, tooth 75: ZOT cylinder 2, tooth 95: ZOT cylinder 4, tooth 115: ZOT cylinder 1).

Figur 3 zeigt in den beiden ersten Zeilen die Lage der Abtastpunkte AP für die Sensorsignale der beiden Zylinderbänke ZB1, ZB2 in Bezug auf die Ausschiebetakte AT der einzelnen Zylinder. In der 3. Zeile der Fig.3 sind die Ausschiebetakte AT der Zylinder 4, 5 und 6 der Zylinderbank ZB 2, in der 4. Zeile sind die Ausschiebetakte AT der Zylinder 1, 2, und 3 der Zylinderbank ZB 1 dargestellt. Zusätzlich ist in der letzten Zeile der Figur 3 ein Zylinderidentifikationssignal ZID eingezeichnet, an dem die jeweiligen oberen Totpunkte-Zündung (ZOT) der Zylinder 1 bis 6 markiert sind.Figure 3 shows the position of the sampling points in the first two lines AP for the sensor signals of the two cylinder banks ZB1, ZB2 in relation to the push-out cycles AT of the individual Cylinder. In the 3rd line of Fig.3 are the push-out cycles AT of cylinders 4, 5 and 6 of cylinder bank ZB 2, in the 4th Row are the extension strokes AT of cylinders 1, 2 and 3 the cylinder bank ZB 1 shown. In addition, in the last line of Figure 3, a cylinder identification signal ZID drawn, on which the respective top dead center ignition (ZOT) cylinders 1 to 6 are marked.

Zur Berücksichtigung der Abgaslaufzeit von den Auslaßventilen bis zur jeweiligen Lambdasonde wird der Wert des Sondensignals, der die Information über die Luftzahl eines Zylinders enthält, erst nach Ablauf einer bestimmten Wartezeit TEZ nach Schließen des Auslaßventils (Beendigung des Ausschiebetakts) erfaßt. Diese Wartezeit TEZ ist von der Last und der Drehzahl der Brennkraftmaschine abhängig. Im Falle einer luftmassengeführten Steuerung der Brennkraftmaschine ist die Wartezeit TEZ in einem Kennfeld abgelegt, das über der Luftmasse LM und der Drehzahl N aufgespannt ist. Nach Ablauf dieser Wartezeit TEZ (Zeit zwischen Referenzmarke und Abtastzeitpunkt) nach Überschreiten eines Zünd-OT werden die Werte der Sensorsignale der den beiden Zylinderbänken ZB1, ZB2 zugeordneten Lambdasonden abgefragt.
Der zeitliche Abstand der Signalerfassung ist also in Bezug zu einer kurbelwellenfesten Triggermarke (Zahn-Nummer) last- und drehzahlabhängig vorgegeben. Es wird pro Segment ein Lambdaspannungswert je Zylinderbank ermittelt.
To take into account the exhaust gas runtime from the exhaust valves to the respective lambda probe, the value of the probe signal, which contains the information about the air ratio of a cylinder, is only recorded after a specific waiting time TEZ after the exhaust valve has closed (the end of the push-out cycle). This waiting time TEZ depends on the load and the speed of the internal combustion engine. In the case of an air mass-controlled control of the internal combustion engine, the waiting time TEZ is stored in a map that is spanned over the air mass LM and the speed N. After this waiting time TEZ (time between reference mark and sampling time) has elapsed after an ignition TDC has been exceeded, the values of the sensor signals of the lambda sensors assigned to the two cylinder banks ZB1, ZB2 are queried.
The time interval between the signal acquisition is therefore predefined in relation to a trigger mark (tooth number) fixed to the crankshaft, depending on the load and the speed. A lambda voltage value per cylinder bank is determined for each segment.

Um die Genauigkeit der nachfolgenden Berechnung des LambdaMittelwertes aller Zylinder zu erhöhen, wird jeweils ein zusätzlicher Abtastwert AP zwischen zwei Ausschiebetakten AT aufgezeichnet.The accuracy of the subsequent calculation of the mean lambda value Increasing all cylinders will result in an additional one Sample AP between two push-out cycles AT recorded.

Als Global-Lambdaregler zur Regelung des Summenabgases dient ein Proportional-Integralregler (PI-Regler) mit dem Proportionalanteil LAM_P und dem Integrationsanteil LAM_I (Schaltungsblock 14 in Fig. 1).Es werden in Abhängigkeit vom Lambdamittelwert LAMMW_IST und dem Sollwert LAM_SOLL diese Regleranteile berechnet. Der Sollwert LAM_SOLL ist einem Kennfeld abhängig von der Last, beispielsweise von der Luftmasse LM und der Drehzahl N der Brennkraftmaschine abgelegt.Serves as a global lambda controller for controlling the total exhaust gas a proportional integral controller (PI controller) with the proportional component LAM_P and the integration component LAM_I (Circuit block 14 in Fig. 1) Lambda mean LAMMW_IST and the target value LAM_SOLL this Controller shares calculated. The setpoint LAM_SOLL is one Map dependent on the load, for example on the air mass LM and the speed N of the internal combustion engine filed.

Zur Berechnung des Lambdamittelwertes LAMMW_IST_i (i=1,2 für die beiden Lambasonden) werden für jeden Abgasstrang 6 Lambda-Meßwerte LAM_IST_i je Arbeitsspiel, entsprechend 2 Kurbelwellenumdrehungen erfaßt und abgespeichert:To calculate the lambda mean LAMMW_IST_i (i = 1.2 for the two lambda probes) are 6 for each exhaust line Lambda measured values LAM_IST_i per work cycle, corresponding to 2 Crankshaft revs recorded and saved:

LAM_IST_iLAM_IST_i

n-6 n-5 n-4 n-3 n-2 n-1 n = Nummer des Meßwertes n-6 n-5 n-4 n-3 n-2 n-1 n = number of the measured value

Die Berechnung des Lambdamittelwertes LAMMW_i erfolgt segmentsynchron für jede Lambdasonde nach folgenden Formeln: LAM_SUM_i(n) = LAM_SUM_i(n-1) - LAM_IST_i(n-6) + LAM_IST_i(n) LAMMW_i(n) = LAM_SUM_i(n)/6 The lambda mean value LAMMW_i is calculated segment-synchronously for each lambda probe using the following formulas: LAM_SUM_i (n) = LAM_SUM_i (n-1) - LAM_IST_i (n-6) + LAM_IST_i (n) LAMMW_i (n) = LAM_SUM_i (n) / 6

Diese Berechnung wird im Schaltungsblock 12 (Fig. 1) durchgeführt.This calculation is carried out in circuit block 12 (FIG. 1).

Die Eingangsgröße für den Global-Lambdaregler ist die Regelabweichung LAM_DIF_i(n), die als Differenz zwischen dem lastabhängig aus dem vorhin genannten Kennfeld entnommenen Sollwert LAM_SOLL(n) und dem Lambdamittelwert LAMMW_IST(n) definiert ist: LAM_DIF_i(n) = LAM_SOLL(n) - LAMMW_IST_i(n) The input variable for the global lambda controller is the control deviation LAM_DIF_i (n), which is defined as the difference between the setpoint value LAM_SOLL (n) taken from the map mentioned above and the average lambda value LAMMW_IST (n): LAM_DIF_i (n) = LAM_SOLL (n) - LAMMW_IST_i (n)

Die Lambdaregleranteile LAM_P_i und LAM_I_i des Global-Lambdareglers werden wie folgt berechnet: LAM_P_i(n) = LAM_KPI_FAK(n)*P_FAK_LAM_GR*(T_LS + TN) *LAM_DIF_i(n) LAM_I_i(n) = LAM_I_i(n-1) + LAM_KPI_FAK(n) * I_FAK_LAM_GR * 2 * TN * LAM_DIF_i(n) mit:

LAM_KPI_FAK =
Regelverstärkungsfaktor (zB.0-2)
P_FAK_LAM_GR =
Applizierbare Konstante (zB.0-2)
I_FAK_LAM_GR =
Applizierbare Konstante (zB.0-2)
T_LS =
Applizierbare Zeitkonstante (zB.0-0.043)[sec]
TN =
Segmentdauer [sec]
The lambda controller components LAM_P_i and LAM_I_i of the global lambda controller are calculated as follows: LAM_P_i (n) = LAM_KPI_FAK (n) * P_FAK_LAM_GR * (T_LS + TN) * LAM_DIF_i (n) LAM_I_i (n) = LAM_I_i (n-1) + LAM_KPI_FAK (n) * I_FAK_LAM_GR * 2 * TN * LAM_DIF_i (n) With:
LAM_KPI_FAK =
Control gain factor (e.g. 0-2)
P_FAK_LAM_GR =
Applicable constant (e.g. 0-2)
I_FAK_LAM_GR =
Applicable constant (e.g. 0-2)
T_LS =
Applicable time constant (e.g. 0-0.043) [sec]
TN =
Segment duration [sec]

Die Auswahl des Regelverstärkungsfaktors LAM_KPI_FAK erfolgt in Abhängigkeit einer Totzeit LAM_TOTZ_GR im Lambdaregelkreis, welche sich aus der Kraftstoffvorlagerungsdauer, der Dauer des Ansaug-, Verdichtungs-,Arbeits- und Ausschiebetaktes sowie der Gaslaufzeit zur jeweiligen Lambdasonde zusammensetzt. Diese Totzeit LAM_TOTZ_GR wird einem Kennfeld last- und drehzahlabhängig entnommen. The control gain factor LAM_KPI_FAK is selected depending on a dead time LAM_TOTZ_GR in the lambda control loop, which results from the fuel storage period, the Duration of the intake, compression, work and extension cycle as well as the gas running time for the respective lambda probe. This dead time LAM_TOTZ_GR is load- a map and taken depending on the speed.

Der Einfluß des Global-Lambdareglers ergibt sich als Summe der Regleranteile LAM_P_i und LAM_I_i: LAM_GR_i(n) = LAM_P_i(n) + LAM_I_i(n) The influence of the global lambda controller results from the sum of the controller components LAM_P_i and LAM_I_i: LAM_GR_i (n) = LAM_P_i (n) + LAM_I_i (n)

Dieser Reglerausgang des Global-Lambdareglers wird vorzugsweise auf ± 25% der Basiseinspritzzeit begrenzt, d.h. -0.25 < LAM_GR_i < 0.25. Der Integralanteil kann zusätzlich auf ±25% der Basiseinspritzzeit begrenzt werden, d.h. - 0.25 < LAM_I_i < 0.25. This controller output of the global lambda controller is preferably limited to ± 25% of the basic injection time, ie -0.25 <LAM_GR_i <0.25. The integral component can also be limited to ± 25% of the basic injection time, ie - 0.25 <LAM_I_i <0.25.

Zur Identifikation der Einzelzylinderluftzahlen wird ein Gradientenverfahren verwendet. Dabei wird aus dem Steigungsverhalten des Lambdasondensignals nach Ablauf des Ausschiebetaktes eine qualitative Beurteilung der Einzelzylinderluftzahlen durchgeführt, d.h. es wird festgestellt, ob das Abgas des aktuellen Zyklus fetter oder magerer ist, als jenes Abgas des vorangegangenen Zyklus.A gradient method is used to identify the individual cylinder air numbers used. The slope behavior of the lambda probe signal after the expiration cycle a qualitative assessment of the individual cylinder air numbers carried out, i.e. it is determined whether the exhaust gas of the current Cycle is richer or leaner than that exhaust gas from the previous cycle.

Diese Identifikation der Einzelzylinderluftzahlen wird im Schaltungsblock 13 (Fig. 1) in folgender Weise durchgeführt:This identification of the single cylinder air numbers is in the Circuit block 13 (Fig. 1) carried out in the following manner:

Die Berechnung der Luftzahlgradienten erfolgt segmentsynchron zylinderselektiv aus den vorliegenden Lambda-Istwerten LAM_IST_i, wobei nur jeder zweite Meßwert je Zylinderbank für die Gradientenberechnung berücksichtigt wird.The air ratio gradients are calculated segment-synchronously cylinder-selective from the actual lambda values LAM_IST_i, whereby only every second measured value per cylinder bank for the gradient calculation is taken into account.

Die allgemeine Berechnungsformel lautet: LAM_GRD_ZYL_x = LAM_IST_i(n) - LAM_IST_i(n-2) mit

x:
Zylindernummer 1...6
i:
Sondennummer 1,2
The general calculation formula is: LAM_GRD_ZYL_x = LAM_IST_i (n) - LAM_IST_i (n-2) With
x:
Cylinder number 1 ... 6
i:
Probe number 1.2

Abhängig von der Kurbelwellenzahnnummer, mit welchem die Abtastung der Sondensignale getriggert wird, ergeben sich folgende Werte für x und i: Abtastpunkt nach Zahn Nr.: Gradient für Zylinder Nr.x Sonde Nr.i 15 2 1 35 4 2 55 1 1 75 5 2 95 3 1 115 6 2 Depending on the crankshaft tooth number with which the scanning of the probe signals is triggered, the following values for x and i result: Tooth point scanning point: Gradient for cylinder No.x Probe No.i 15 2nd 1 35 4th 2nd 55 1 1 75 5 2nd 95 3rd 1 115 6 2nd

Aus dieser Tabelle entnimmt man, daß z.B. der Meßwert von Lambdasonde Nr. 1, dessen Abtastung durch Kurbellenwellenzahn Nr. 15 getriggert wurde, zur Berechnung des Luftzahlgradienten von Zylinder Nr. 2 verwendet wird.From this table it can be seen that e.g. the measured value of Lambda probe No. 1, its scanning by crankshaft tooth No. 15 was triggered to calculate the air ratio gradient of cylinder # 2 is used.

Die Auswertung der Luftzahlgradienten liefert als Ergebnis sogenannte Zustandsgrößen:
LAM_ZST_ZYL_i   mit i = 1,2.
The evaluation of the air ratio gradients provides so-called state variables as a result:
LAM_ZST_ZYL_i with i = 1.2.

Wird das Abgas eines Zylinders als zu fett detektiert, wird die Zustandsgröße LAM_ZST_ZYL_i = 0 gesetzt, ist das Abgas eines Zylinders zu mager, wird die Zustandsgröße
LAM_ZST_ZYL_i = 1 gesetzt.
If the exhaust gas of a cylinder is detected as too rich, the state variable LAM_ZST_ZYL_i = 0 is set, if the exhaust gas of a cylinder is too lean, the state variable becomes
LAM_ZST_ZYL_i = 1 set.

Zur Unterdrückung von Störungen, die insbesondere bei kleinen Luftzahlgradienten zu Fehldetektionen führen können, wird eine Hysterese LAM_ZST_HYS eingeführt, deren Weite applizierbar ist.To suppress interference, especially in small ones Air ratio gradients can lead to false detections introduced a hysteresis LAM_ZST_HYS, the width of which can be applied is.

In Figur 4 ist diese Hysterese graphisch dargestellt. Liegt der anhand der Formel (1) berechnete Luftzahlgradient LAM_GRD_ZYL_x innerhalb des Bereiches ± LAM_ZST_HYS, so ist das Ergebnis der Gradientenauswertung vom vorangegangenen Zustand im betreffenden Abgasstrang abhängig. Um das Verfahren einfacher zu gestalten, werden zwei weitere Zustandsgrößen VOR_ZST 1, VOR_ZST 2 eingeführt. This hysteresis is shown graphically in FIG. Lies is the air ratio gradient calculated using formula (1) LAM_GRD_ZYL_x within the range ± LAM_ZST_HYS, so is the result of the gradient evaluation from the previous state dependent in the relevant exhaust line. To the procedure two more state variables are easier to design VOR_ZST 1, VOR_ZST 2 introduced.

Die Zustandsgröße VOR_ZST 1 speichert dabei den vorangegangenen Zustand im Abgasstrang der ersten Zylinderbank mit der Sonde 1, die Zustandsgröße VOR_ZST 2 den vorangegangenen Zustand im Abgasstrang der zweiten Zylinderbank mit der Sonde 2. Abhängig von den Werten dieser Zustandsgrößen VOR_ZST 1,2 ergibt sich ein Ablauf zur Festlegung der Werte (1 oder 0) für LAM_ZST_1,2, wie er in Figur 5 dargestellt ist.The state variable VOR_ZST 1 saves the previous one Condition in the exhaust system of the first cylinder bank with the Probe 1, the state variable VOR_ZST 2 the previous state in the exhaust line of the second cylinder bank with the probe 2. Depending on the values of these state variables VOR_ZST 1,2 there is a sequence for determining the values (1 or 0) for LAM_ZST_1.2, as shown in Figure 5.

In einem ersten Schritt S1 wird abgefragt, ob die Zustandsgröße VOR_ZST_i = 0 ist. Ist das Ergebnis dieser Abfrage positiv, so wird im Schritt S2 geprüft, ob der mit Hilfe der Formel (1) berechnete Wert des Luftzahlgradienten LAM_GRD_ZYL_x kleiner ist als der Hysteresewert +LAM_ZST_HYS. Ist dies der Fall, so wird die Zustandsgröße LAM_ZST_i = 0 gesetzt (Schritt S3), andernfalls wird LAM_ZST_i = 1 gesetzt (Schritt S4).In a first step S1, a query is made as to whether the state variable VOR_ZST_i = 0. If the result of this query is positive, it is checked in step S2 whether the using the Formula (1) calculated value of the air ratio gradient LAM_GRD_ZYL_x is less than the hysteresis value + LAM_ZST_HYS. If this is the case, the state variable LAM_ZST_i = 0 is set (step S3), otherwise LAM_ZST_i = 1 is set (Step S4).

Ergibt die Abfrage in Schritt S1 ein negatives Ergebnis, so wird im Schritt S5 geprüft, ob der Wert des Luftzahlgradienten LAM_GRD_ZYL_x kleiner ist als der Hysteresewert - LAM_ZST_HYS. Ist dies der Fall, so wird die Zustandsgröße LAM_ZST_i = 0 gesetzt (Schritt S6), andernfalls wird LAM_ZST_i = 1 gesetzt (Schritt S7).If the query in step S1 yields a negative result, then it is checked in step S5 whether the value of the air ratio gradient LAM_GRD_ZYL_x is less than the hysteresis value - LAM_ZST_HYS. If this is the case, the state variable becomes LAM_ZST_i = 0 is set (step S6), otherwise LAM_ZST_i = 1 set (step S7).

Diese Zustandsgrößen LAM_ZST_i werden zur Regelung der Einzelzylinderluftzahlen herangezogen. Sie dienen als Eingangsgrößen für einen Einzelzylinder-Lambdaregler (Schaltungsblock 15 in Fig.1), der als Proportional-Integralregler (PI-Regler) ausgebildet ist.These state variables LAM_ZST_i are used to control the individual cylinder air numbers used. They serve as input variables for a single cylinder lambda controller (circuit block 15 in Fig. 1), which is used as a proportional integral controller (PI controller) is trained.

Die Schaltungsblöcke 11-15 in Fig. 1 sind vorzugsweise in eine an sich bekannte elektronische Steuerungseinrichtung 16 integriert, wie sie in modernen Kraftfahrzeugen ohnehin zur Steuerung und Regelung der verschiedensten Betriebsparameter wie z.B. Einspritzzeitberechnung, Zündungsregelung, Diagnose usw. eingesetzt wird. Auch die im Rahmen der Beschreibung erwähnten Kennfelder sind in Speichern der Steuerungseinrichtung 16 abgelegt.The circuit blocks 11-15 in Fig. 1 are preferably in one known electronic control device 16 integrated, as used for control in modern motor vehicles anyway and control of various operating parameters such as e.g. Injection time calculation, ignition control, diagnosis, etc. is used. Also those mentioned in the description Characteristic maps are stored in memories of the control device 16.

Die Berechnung der Regleranteile - Proportionalanteil LAM_P_EZ_x und Integralanteil LAM_I_EZ_x - des Einzelzylinder-Lambdareglers erfolgt abhängig vom Wert (1 oder 0), den die die Zustandsgröße LAM_ZST_i aufweist:

  • 1. Fall:
    LAM_ZST_i = O   (Abgas eines Zylinders ist zu fett) LAM_P_EZ_x(n) = -LAM_P_EZ(n) LAM_I_EZ_x(n) = LAM_I_EZ_x(n-1) - LAM_I_EZ(n) - LAMMW_I_EZ_i(n)
  • 2. Fall:
    LAM_ZST_i = 1   (Abgas eines Zylinders ist zu mager) LAM_P_EZ_x(n) = LAM_P_EZ(n) LAM_I_EZ_x(n) = LAM_I_EZ x(n-1) + LAM_I_EZ(n) - LAMMW_I_EZ_i(n)
  • The calculation of the controller components - proportional component LAM_P_EZ_x and integral component LAM_I_EZ_x - of the single cylinder lambda controller takes place depending on the value (1 or 0) that the status variable LAM_ZST_i has:
  • 1st case:
    LAM_ZST_i = O (exhaust gas from a cylinder is too rich) LAM_P_EZ_x (n) = -LAM_P_EZ (n) LAM_I_EZ_x (n) = LAM_I_EZ_x (n-1) - LAM_I_EZ (n) - LAMMW_I_EZ_i (n)
  • 2nd case:
    LAM_ZST_i = 1 (exhaust gas from a cylinder is too lean) LAM_P_EZ_x (n) = LAM_P_EZ (n) LAM_I_EZ_x (n) = LAM_I_EZ x (n-1) + LAM_I_EZ (n) - LAMMW_I_EZ_i (n)
  • Die Berechnung des Mittelwertes der I-Anteile der Zylinder einer Zylinderbank LAMMW_I_EZ_i erfolgt segmentsynchron abwechselnd mit i=1 bzw i=2 wie folgt: LAM_I_SUM_EZ_i(n+1) = LAM_I_SUM_EZ_I(n) - LAM_I_EZ_i(n-2) + LAM_I_EZ_x(n) The calculation of the mean value of the I components of the cylinders of a cylinder bank LAMMW_I_EZ_i takes place segment-synchronously alternating with i = 1 or i = 2 as follows: LAM_I_SUM_EZ_i (n + 1) = LAM_I_SUM_EZ_I (n) - LAM_I_EZ_i (n-2) + LAM_I_EZ_x (n)

    Der Wert LAM_I_EZ_x(n) wird in einen Speicher LAM_I_EZ_i eingetragen.The value LAM_I_EZ_x (n) is entered in a memory LAM_I_EZ_i.

    LAM_I_EZ_i n-2 n-1 n LAMMW_I_EZ_i(n+1) = LAM_I_SUM_EZ_i(n+1)/3 LAM_I_EZ_i n-2 n-1 n LAMMW_I_EZ_i (n + 1) = LAM_I_SUM_EZ_i (n + 1) / 3

    Die Werte LAM_P_EZ und LAM_I_EZ sind jeweils in einem Kennfeld abgelegt, die über der Lastgröße LM und der Drehzahl N der Brennkraftmaschine aufgespannt sind.The values LAM_P_EZ and LAM_I_EZ are each in a map filed over the load size LM and the speed N of the Internal combustion engine are clamped.

    Der Integrations-Anteil LAM_I_EZ_x des Einzelzylinder-Lambdareglers wird beispielsweise auf ±10% der Basiseinspritzzeit TI_B begrenzt, d.h. -0.1 < LAM_I_EZ_x < 0.1.The integration component LAM_I_EZ_x of the single cylinder lambda controller is, for example, ± 10% of the basic injection time TI_B limited, i.e. -0.1 <LAM_I_EZ_x <0.1.

    Bei der Berechnung der zylinderindividuellen Einspritzzeit TI_x wird die Ausgangsgröße des Global-Lambdareglers und die Ausgangsgröße des Einzelzylinder-Lambdareglers berücksichtigt: TI_x = TI_B * ........ (1 + TI_LAM_x) mit TI_LAM_x = LAM_GR_i + LAM_P_EZ_x + LAM_I_EZ_x

  • für x = 1,2,3: i = 1
  • für x = 4,5,6: i = 2
  • When calculating the cylinder-specific injection time TI_x, the output variable of the global lambda regulator and the output variable of the single cylinder lambda regulator are taken into account: TI_x = TI_B * ........ (1 + TI_LAM_x) with TI_LAM_x = LAM_GR_i + LAM_P_EZ_x + LAM_I_EZ_x
  • for x = 1,2,3: i = 1
  • for x = 4,5,6: i = 2
  • Die Erfindung wurde anhand eines Ausführungsbeispiels erläutert, bei dem die Brennkraftmaschine 6 Zylinder aufweist und jeweils 3 Zylinder zu einer Gruppe (Zylinderbank ZB1, ZB2) zusammengefaßt sind. Jeder Gruppe oder Zylinderbank ist dabei ein, eine lineare Lambdasonde enthaltender Abgasstrang zugeordnet.
    Ebenso ist es im Rahmen der Erfindung möglich, beispielsweise bei einer 4-Zylinder-Brennkraftmaschine einen einzigen Abgasstrang vorzusehen, in dem eine einzige lineare Lambdasonde angeordnet ist oder bei einer 8-Zylinder-Brennkraftmaschine 2 Gruppen zu je 4 Zylinder zu bilden oder bei einer 12 Zylinder-Brennkraftmaschine 3 Gruppen zu je 4 Zylinder bzw. 4 Gruppen zu je 3 Zylinder zu bilden. Entsprechend der Anzahl der Gruppen sind dann die Anzahl der Abgasstränge und damit die Anzahl der linearen Lambdasonden bestimmt.
    The invention was explained on the basis of an exemplary embodiment in which the internal combustion engine has 6 cylinders and in each case 3 cylinders are combined to form a group (cylinder bank ZB1, ZB2). Each group or cylinder bank is assigned an exhaust line containing a linear lambda probe.
    It is also possible within the scope of the invention, for example, to provide a single exhaust line in a 4-cylinder internal combustion engine, in which a single linear lambda probe is arranged, or to form 2 groups of 4 cylinders in an 8-cylinder internal combustion engine, or in a 12 Cylinder internal combustion engine to form 3 groups of 4 cylinders or 4 groups of 3 cylinders. The number of exhaust gas lines and thus the number of linear lambda sensors are then determined in accordance with the number of groups.

    Claims (15)

    1. Method for cylinder-selective control of the air/fuel ratio of an internal combustion engine (10) comprising several cylinders (x),
      having a control unit (16) which calculates a basic injection signal (TI_B) depending on a variable (LM) representing the load on the engine (10) and on the speed (N) of the engine (10)
      having a lambda control system with at least one exhaust gas stream (AST1, AST2), where each exhaust gas stream (AST1, AST2) has allocated to it an oxygen sensor (LS1, LS2) which delivers a sensor signal (ULS1, ULS2) representing the oxygen content of the overall exhaust emission resulting from the individual exhaust gas packets of the individual cylinders (x), and where
      for each value of the sensor signal (ULS1, ULS2) the associated actual value of lambda (LAM_IST_i(n)) is determined from a characteristic curve,
      from these values (LAM_IST_i(n)) a mean lambda value (LAMMW_IST_i(n)) being formed for each oxygen sensor (LS1, LS2), and where
      the difference LAM_DIF_i(n) between a target lambda value (LAM_SOLL_i(n)) determined by the load on the engine (10) and the mean actual lambda value (LAMMW_IST_i(n)) is utilized as the input quantity for a global lambda controller (14) and is fed to a global lambda controller (14) of the lambda control system for correction of the basic injection signal (TI_B), so that a theoretical air/fuel ratio (λ = 1) can be set, and where
      a proportional-plus-integral controller is used as the global lambda controller (14), having a proportional component LAM_P_i(n) = LAM_KPI_FAX(n) • P_FAX_LAM_GR • (T_LS + TN) • LAM_DIF_i(n) and an integral-action component LAM_I_i(n) = LAM_I_i(n-1) + LAM_KPI_FAX(n) • I_FAK_LAM_GR • 2 • TN • LAM_DIF_i(n) where:
      LAM_KPI_FAX = Controller gain factor
      P_FAK_LAM_GR = Variable constant
      I_FAK_LAM_GR = Variable constant
      T_LS = Variable time constant [sec]
      TN = Segment duration [sec]
      where, furthermore, the lambda control system comprises an individual-cylinder lambda controller (15) for controlling the individual air/fuel ratio of the individual cylinders (x), and
      where the cylinder-selective output quantity (LAM_P_EZ_x, LAM_I_EZ_x) of said individual-cylinder lambda controller (15) is superimposed on the output quantity (LAM_GR_i) of the global lambda controller (14), and
      where the value (TI_LAM_x) obtained therefrom is used to correct the basic injection signal (TI_B) on a per-cylinder basis.
    2. Method in accordance with Claim 1, characterized in that
      the cylinders (x) are combined into at least one group (ZB1, ZB2),
      each group (ZB1, ZB2) of cylinders (x) has allocated to it one exhaust gas stream (AST1, AST2)
      a linear oxygen sensor (LS1, LS2) is provided in each exhaust gas stream (AST1, AST2), delivering a signal (ULS1, ULS2) which corresponds to the oxygen content of the exhaust gas emission of the individual cylinders (x),
      the signals (ULS1, ULS2) from the sensors (LS1, LS2) are sampled in particular positions (AP) defined with respect to the crank angle.
    3. Method in accordance with Claim 2, characterized in that the ignition top dead centre points (ZOT) are used as reference points for the position in time of the sampling points (AP) and that the sensor signals (ULS1, ULS2) are sampled at the end of a waiting time (TEZ) following the transition of the ignition top dead centre point (ZOT).
    4. Method in accordance with Claim 3, characterized in that the waiting time (TEZ) is chosen depending on a parameter (LM) representing the load on the internal combustion engine (10) and on the speed (N) of the internal combustion engine (10).
    5. Method in accordance with Claim 1, characterized in that the controller gain factor (LAM_KPI_FAK) is chosen depending on a dead time (LAM_TOTZ_GR) which is determined by the fuel pre-feed time, the duration of the induction, compression, power and exhaust strokes together with the gas travelling time to the relevant oxygen sensor, and is taken from a characteristics map as a function of load and speed of rotation.
    6. Method in accordance with Claim 1, characterized in that the values of the output quantity (LAM_GR_i) of the global controller (14) and of the integral-action component (LAM_I_i) of the global controller (14) are limited to ± 25% of the basic injection signal (TI_B).
    7. Method in accordance with Claim 1, characterized in that the air ratio gradients (LAM_GRD_ZYL_x) are calculated on a cylinder-selective basis from the measured actual lambda values (LAM_IST_i) by taking the differences between actual lambda values (LAM_IST_i), with only every second actual lambda value per group (ZB1, ZB2) being used for calculating the air ratio gradient, and that when positive air ratio gradients (LAM_GAD_ZYL_x) are measured in the current cycle leaner emission from the respective cylinder (x) than in the preceding cycle is assumed to exist, whilst when negative air ratios (LAM_GRD_ZYL_x) are measured in the current cycle richer emission from the respective cylinder (x) than in the preceding cycle is assumed to exist.
    8. Method in accordance with Claim 7, characterized in that depending on the sign of the individual air ratio gradients (LAM_GRD_ZYL_x), said gradients have state variables (LAM_ZST_ZYL_i) allocated to them which take the value I or 0.
    9. Method in accordance with Claim 8, characterized in that the allocation of the state variables (LAM_ZST_ZYL_i) takes place via a hysteresis (LAM_ZYST_HYS) the width of which can be set, and that in the event of the calculated air ratio gradient (LAM_GRD_ZYL_x) falling within double the width of the hysteresis (± LAM_ZST_HYS), it is decided that the result of the gradient evaluation is dependent on the preceding state in the emission stream concerned (AST1, AST2) and that said state is taken account of in the allocation of the state variable (LAM_ZST_ZYL_i).
    10. Method in accordance with Claim 9, characterized in that the integral-action controller component (LAM_I_EZ_x) and the proportional controller component (LAM_P_EZ_x) of the individual-cylinder lambda controller (15) are calculated separately, depending on the value of the state variable (LAM_ZST_x).
    11. Method in accordance with Claim 10, characterized in that when the state variable (LAM_ZST_x) has the value 0, the proportional controller component (LAM_P_EZ_x) is formed in accordance with the following rule LAM_P_EZ_x(n) = -LAM_P_EZ(n) and the integral-action controller component (LAM_I_EZ_x) is formed in accordance with the following rule LAM_I_EZ_x(n) = LAM_I_EZ_x(n-1) - LAM_I_EZ(n) - LAMMW_I_EZ_i(n) where n = running index of the measured value
         LAMMW_I_EZ_i(n) = mean value of lambda
    12. Method in accordance with Claim 10, characterized in that when the state variable (LAM_ZST_x) has the value 1, the proportional controller component (LAM_P_EZ_x) is formed in accordance with the following rule LAM_P_EZ_x(n) = LAM_P_EZ(n) and the integral-action controller component (LAM_I_EZ_x) is formed in accordance with the following rule LAM_I_EZ_x(n) = LAM_I_EZ_x(n-1) + LAM_I_EZ(n) - LAMMW_I_EZ_i(n) where n = running index of the measured value
         LAMMW_I_EZ_i(n) = mean value of lambda.
    13. Method in accordance with Claims 11 or 12, characterized in that the mean lambda value (LAMMW_I_EZ_i) of the integral-action components (LAM_I_EZ) of a group (ZB1, ZB2) is formed in accordance with the following rule LAMMW_I_EZ_i(n+1) = LAM_I_SUM_EZ_i(n+1)/3 where LAM_I_SUM_EZ_i(n+1) = LAM_I_SUM_EZ_i(n) - LAM_I_EZ_i(n-2) + LAM_I_EZ_x(n) with
      LAM_I_SUM_EZ_i(n+1) = new total
      LAM_I_SUM_EZ_i(n) = old total
    14. Method in accordance with Claim 10, characterized in that the integral-action controller component (LAM_I_EZ_x) of the individual-cylinder lambda controller (15) is limited to ± 10% of the basic injection signal (TI_B).
    15. Method in accordance with Claim 10, characterized in that the integral-action controller component (LAM_I_EZ_x) and the proportional controller component (LAM_I_EZ_x) of the individual-cylinder lambda controller (15) are stored in characteristics maps as a function of engine load and speed.
    EP96913453A 1995-05-03 1996-05-02 Process for the selective lambda control of a cylinder in a multi-cylinder internal combustion engine Expired - Lifetime EP0826100B1 (en)

    Applications Claiming Priority (3)

    Application Number Priority Date Filing Date Title
    DE19516209 1995-05-03
    DE19516209 1995-05-03
    PCT/DE1996/000760 WO1996035048A1 (en) 1995-05-03 1996-05-02 Process for the selective lambda control of a cylinder in a multi-cylinder internal combustion engine

    Publications (2)

    Publication Number Publication Date
    EP0826100A1 EP0826100A1 (en) 1998-03-04
    EP0826100B1 true EP0826100B1 (en) 1999-11-03

    Family

    ID=7760963

    Family Applications (1)

    Application Number Title Priority Date Filing Date
    EP96913453A Expired - Lifetime EP0826100B1 (en) 1995-05-03 1996-05-02 Process for the selective lambda control of a cylinder in a multi-cylinder internal combustion engine

    Country Status (3)

    Country Link
    EP (1) EP0826100B1 (en)
    DE (1) DE59603569D1 (en)
    WO (1) WO1996035048A1 (en)

    Cited By (1)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    DE102008058008B3 (en) * 2008-11-19 2010-02-18 Continental Automotive Gmbh Device for operating an internal combustion engine

    Families Citing this family (11)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    JP4304793B2 (en) * 1999-11-18 2009-07-29 株式会社デンソー Air-fuel ratio control device for internal combustion engine
    DE10338775B4 (en) * 2003-08-23 2010-12-30 GM Global Technology Operations, Inc., Detroit Diagnostic device for an internal combustion engine
    DE102004026176B3 (en) 2004-05-28 2005-08-25 Siemens Ag Air fuel ratio recording method e.g. for individual cylinders of combustion engines, involves determining scanning crankshaft angle related to reference position of piston of respective cylinders and recording measuring signal
    DE102005009101B3 (en) 2005-02-28 2006-03-09 Siemens Ag Correction value determining method for internal combustion engine, involves determining correction value for controlling air/fuel-ratio based on adaptation values and temperatures of respective injection valves
    DE102006020349A1 (en) * 2006-04-28 2007-10-31 Mahle International Gmbh Piston engine and associated operating method
    DE102006026390B4 (en) 2006-06-07 2017-04-27 Bayerische Motoren Werke Aktiengesellschaft Electronic control device for controlling the internal combustion engine in a motor vehicle
    DE102006033869B3 (en) 2006-07-21 2008-01-31 Siemens Ag Method and device for diagnosing the cylinder-selective unequal distribution of a fuel-air mixture, which is supplied to the cylinders of an internal combustion engine
    DE102006044073B4 (en) 2006-09-20 2017-02-23 Bayerische Motoren Werke Aktiengesellschaft Use of an electronic control device for controlling the internal combustion engine in a motor vehicle
    GB2490706B (en) * 2011-05-11 2015-05-13 Jaguar Land Rover Ltd Engine diagnostic delay provision
    DE102011084630B4 (en) 2011-10-17 2023-12-14 Robert Bosch Gmbh Method for operating an internal combustion engine and computing unit
    DE102011084635A1 (en) 2011-10-17 2013-04-18 Robert Bosch Gmbh Method for operating an internal combustion engine and arithmetic unit

    Family Cites Families (7)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    US4290400A (en) * 1980-03-17 1981-09-22 General Motors Corporation Closed loop fuel control system for an internal combustion engine
    FR2594890B1 (en) * 1986-02-25 1990-03-09 Renault L-PROBE ELECTRONIC INJECTION METHOD AND SYSTEM FOR INTERNAL COMBUSTION ENGINE
    JP2947353B2 (en) * 1986-04-30 1999-09-13 本田技研工業株式会社 Air-fuel ratio control method for internal combustion engine
    DE3743315A1 (en) * 1987-12-21 1989-06-29 Bosch Gmbh Robert EVALUATION DEVICE FOR THE MEASURING SIGNAL OF A LAMB PROBE
    JPH04134149A (en) * 1990-09-26 1992-05-08 Mazda Motor Corp Engine controller
    EP0553570B1 (en) * 1991-12-27 1998-04-22 Honda Giken Kogyo Kabushiki Kaisha Method for detecting and controlling air-fuel ratio in internal combustion engines
    EP0670419B1 (en) * 1994-02-04 1999-12-29 Honda Giken Kogyo Kabushiki Kaisha Air/fuel ratio estimation system for internal combustion engine

    Cited By (1)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    DE102008058008B3 (en) * 2008-11-19 2010-02-18 Continental Automotive Gmbh Device for operating an internal combustion engine

    Also Published As

    Publication number Publication date
    WO1996035048A1 (en) 1996-11-07
    EP0826100A1 (en) 1998-03-04
    DE59603569D1 (en) 1999-12-09

    Similar Documents

    Publication Publication Date Title
    DE19750636B4 (en) Fuel control system for an internal combustion engine
    DE19516239C2 (en) Method for parameterizing a linear lambda controller for an internal combustion engine
    EP0826100B1 (en) Process for the selective lambda control of a cylinder in a multi-cylinder internal combustion engine
    DE3500594A1 (en) Metering system for an internal combustion engine for influencing the operating mixture
    DE3823277A1 (en) ENGINE CONTROL SYSTEM
    EP0154710A1 (en) Control apparatus for controlling the operating parameters of an internal-combustion engine
    DE102006020675A1 (en) Method for lambda and torque control of an internal combustion engine and program algorithm
    DE10148663A1 (en) Process for determining nitrogen oxide emissions in an Internal Combustion engine operating with excess of air comprises determining thermal condition of combustion chamber of engine, and calculating the mass of nitrogen oxide emissions
    DE3918772A1 (en) MOTOR CONTROL UNIT
    DE10330112B4 (en) An apparatus and method for controlling an air-fuel ratio for an internal combustion engine
    DE19545924B4 (en) Methods and apparatus for controlling air / fuel ratio learning of an internal combustion engine
    DE19859018A1 (en) Cylinder balancing for internal combustion engine involves influencing filling of cylinders with air or fresh gas on individual cylinder basis depending on detected torque contributions
    DE69205304T2 (en) Device for determining the altitude and engine control using this.
    DE19926139A1 (en) Calibration of a NOx sensor
    DE102008054215A1 (en) Method for trimming determination, particularly signal evaluation by Fourier analysis for synchronizing cylinders in internal-combustion engine, involves measuring signal by operating cycle of internal-combustion engine
    DE19612453C2 (en) Method for determining the fuel mass to be introduced into the intake manifold or into the cylinder of an internal combustion engine
    DE68903639T2 (en) METHOD AND DEVICE FOR CONTROLLING COMBUSTION ENGINES.
    WO1990007053A1 (en) Processes for metering fuel
    DE3871569T2 (en) CONTROL ARRANGEMENT OF THE AIR / FUEL RATIO IN COMBUSTION ENGINES WITH OPTIMAL CORRECTION COEFFICIENT LEARNING CHARACTERISTICS DEPENDENT ON THE OPERATING AREA.
    DE10329328B4 (en) Method for controlling an internal combustion engine
    DE3835766A1 (en) ELECTRONIC, ADAPTABLE CONTROL UNIT FOR A COMBUSTION ENGINE
    DE19629552C1 (en) IC engine exhaust gas probe temp. drift compensation device
    EP0868660B1 (en) Process for detecting cyclical fluctuations in combustion in an internal combustion engine
    EP2019195B1 (en) Method for determining the amount of fuel injected
    EP1143131B1 (en) Multiple exhaust gas system and method to regulate an air/fuel ratio of a multi-cylinder internal combustion engine

    Legal Events

    Date Code Title Description
    PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

    Free format text: ORIGINAL CODE: 0009012

    17P Request for examination filed

    Effective date: 19971022

    AK Designated contracting states

    Kind code of ref document: A1

    Designated state(s): DE FR GB SE

    GRAG Despatch of communication of intention to grant

    Free format text: ORIGINAL CODE: EPIDOS AGRA

    17Q First examination report despatched

    Effective date: 19990215

    GRAG Despatch of communication of intention to grant

    Free format text: ORIGINAL CODE: EPIDOS AGRA

    GRAH Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOS IGRA

    GRAH Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOS IGRA

    GRAA (expected) grant

    Free format text: ORIGINAL CODE: 0009210

    AK Designated contracting states

    Kind code of ref document: B1

    Designated state(s): DE FR GB SE

    REF Corresponds to:

    Ref document number: 59603569

    Country of ref document: DE

    Date of ref document: 19991209

    GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

    Effective date: 19991119

    ET Fr: translation filed
    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: SE

    Payment date: 20000522

    Year of fee payment: 5

    PLBE No opposition filed within time limit

    Free format text: ORIGINAL CODE: 0009261

    STAA Information on the status of an ep patent application or granted ep patent

    Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

    26N No opposition filed
    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: SE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20010503

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: GB

    Payment date: 20010511

    Year of fee payment: 6

    REG Reference to a national code

    Ref country code: GB

    Ref legal event code: IF02

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: GB

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20020502

    GBPC Gb: european patent ceased through non-payment of renewal fee

    Effective date: 20020502

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: ST

    Effective date: 20100129

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: FR

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20090602

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: FR

    Payment date: 20080526

    Year of fee payment: 13

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: DE

    Payment date: 20150531

    Year of fee payment: 20

    REG Reference to a national code

    Ref country code: DE

    Ref legal event code: R071

    Ref document number: 59603569

    Country of ref document: DE