EP0822610B1 - Reflector antenna - Google Patents

Reflector antenna Download PDF

Info

Publication number
EP0822610B1
EP0822610B1 EP19970104674 EP97104674A EP0822610B1 EP 0822610 B1 EP0822610 B1 EP 0822610B1 EP 19970104674 EP19970104674 EP 19970104674 EP 97104674 A EP97104674 A EP 97104674A EP 0822610 B1 EP0822610 B1 EP 0822610B1
Authority
EP
European Patent Office
Prior art keywords
reflector
frequency
main reflector
absorption means
subreflector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP19970104674
Other languages
German (de)
French (fr)
Other versions
EP0822610A2 (en
EP0822610A3 (en
Inventor
Manfred Hochmann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Airbus Defence and Space GmbH
Original Assignee
EADS Deutschland GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by EADS Deutschland GmbH filed Critical EADS Deutschland GmbH
Publication of EP0822610A2 publication Critical patent/EP0822610A2/en
Publication of EP0822610A3 publication Critical patent/EP0822610A3/en
Application granted granted Critical
Publication of EP0822610B1 publication Critical patent/EP0822610B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q19/00Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
    • H01Q19/10Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces
    • H01Q19/18Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces having two or more spaced reflecting surfaces
    • H01Q19/19Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces having two or more spaced reflecting surfaces comprising one main concave reflecting surface associated with an auxiliary reflecting surface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q17/00Devices for absorbing waves radiated from an antenna; Combinations of such devices with active antenna elements or systems
    • H01Q17/001Devices for absorbing waves radiated from an antenna; Combinations of such devices with active antenna elements or systems for modifying the directional characteristic of an aerial

Definitions

  • the invention relates to a reflector antenna according to the Cassegrainfast, in which on the surface of a reflector, an absorbent in the form of an annular surface is applied.
  • DE 26 10 506 C2 describes a reflector antenna, in which on the surface of a reflector, an absorbent is applied in an annular surface. Preferably, the absorbent is placed on the edge of the subreflector of a Cassegrain antenna.
  • the absorption medium is selected such that the electromagnetic radiation is attenuated in a narrow frequency band with up to 20 dB, while in the other frequency ranges the attenuation reaches approximately 0 dB.
  • this antenna can be operated in several frequency bands with almost constant gain and sufficient opening angle.
  • the construction of the main reflector according to the invention has various advantages. Due to the partial construction of the main reflector by means of a frequency-selective radar-absorbing construction, it is possible to dispense with the use of a frequency-selective radome designed for the operating frequency of the antenna, thus eliminating the resulting radome reflections in the frequency range of a radar observing the antenna. If the entire main reflector according to the prior art is produced in a frequency-selective radar-absorbing construction, the result is reflection losses greater than 1 dB due to the interaction between the radar-absorbing construction and the frequency-selective layer in the operating frequency range of the antenna. These losses reduce the antenna gain and thus also considerably limit the range of the antenna.
  • FIG. 1 shows a section through a Cassegrain antenna which consists of a main reflector 1 and a subreflector 2.
  • the feed horn has not been reproduced for the sake of simplicity.
  • Both reflectors have metallically reflecting surfaces 8.
  • a combination of an absorbent 3 and a frequency-selective structure 4 is embedded in the main reflector.
  • the frequency-selective structure 4 is in this case on the absorbent 3, that all not the resonance frequency of the structure 4 corresponding frequencies are attenuated in the absorbent 3.
  • n-fold Reflections 3, 5, 7, .
  • the main reflector which has an annular subarea of a frequency-selective and radar-absorbing construction, it is possible to dispense with the use of a frequency-selective radome.
  • the frequency-selective radar-absorbing construction is designed in such a way that almost lossless metallic reflection takes place in the range of the operating frequency (eg 35 GHz), whereas a radar absorbing effect is achieved in the frequency range of incidental external radiation (eg 2 to 20 GHz)
  • the broadband Radarabsorption can be realized by a lossy sandwich construction or by a monolithic absorber 3.
  • the frequency-selective structure applied to the absorption layer 3 can be formed with the aid of differently shaped individual reflector elements: for this purpose metallic Jerusalem crosses or cross dipoles have become known in addition to metallic circular rings.
  • FIG. 3 the course of a 3-fold reflection is shown in simplified form.
  • the incident beam 5 strikes the main reflector 1, which is not covered here with an absorbent.
  • the reflected from the main reflector 1 beam hits the subreflector 2, where it is then reflected again at the main reflector 1 and then thrown back as a reflected beam 6 in about the same direction as the incident beam 5.
  • the other n-fold reflections will also expire.
  • the location of all points of impact of the reflected rays on the main reflector 1 characterizes the region and the boundary of the absorbent 3.
  • the absorbent 3 forms an annular surface whose geometry can be derived as follows.
  • the inner radius of the circular ring corresponds to the radius r of the subreflector.
  • s describes the distance of the vertices of main and subreflector.
  • the relevant condition for a 3-fold reflection results from the fact that the incident wavefront from the main to the sub-reflector is reflected such that the angle of incidence corresponds to that of the surface normal of the subreflector.
  • the point of intersection of the incident beam on the main reflector then gives the maximum radius of that circular area on the main reflector, for which just a triple reflection can take place when the point of intersection of the reflected beam at the subreflector lies at its outer boundary.

Landscapes

  • Aerials With Secondary Devices (AREA)

Description

Die Erfindung betrifft eine Reflektorantenne nach dem Cassegrainprinzip, bei der auf der Oberfläche eines Reflektors ein Absorptionsmittel in Form einer Ringfläche aufgebracht ist.The invention relates to a reflector antenna according to the Cassegrainprinzip, in which on the surface of a reflector, an absorbent in the form of an annular surface is applied.

Die DE 26 10 506 C2 beschreibt eine Reflektorantenne, bei der auf der Oberfläche eines Reflektors ein Absorptionsmittel in einer Ringfläche aufgebracht ist. Vorzugsweise wird das Absorptionsmittel auf dem Rand des Subreflektors einer Cassegrain-Antenne angeordnet. Das Absorptionsmittel ist dabei derart ausgewählt, daß die elektromagnetische Strahlung in einem schmalen Frequenzband mit bis zu 20 dB bedämpft wird, während in den anderen Frequenzbereichen die Dämpfung annähernd 0 dB erreicht. Damit kann diese Antenne in mehreren Frequenzbändern mit nahezu gleichbleibendem Gewinn und ausreichendem Öffnungswinkel betrieben werden.DE 26 10 506 C2 describes a reflector antenna, in which on the surface of a reflector, an absorbent is applied in an annular surface. Preferably, the absorbent is placed on the edge of the subreflector of a Cassegrain antenna. The absorption medium is selected such that the electromagnetic radiation is attenuated in a narrow frequency band with up to 20 dB, while in the other frequency ranges the attenuation reaches approximately 0 dB. Thus, this antenna can be operated in several frequency bands with almost constant gain and sufficient opening angle.

Im Gegensatz dazu soll aber bei Reflektorantennen, die als Sensoren eingesetzt werden, die elektromagnetische Strahlung nur im Bereich der Betriebsfrequenz reflektiert werden, während in den übrigen Frequenzbereichen zum Zweck der Tarnung eine breitbandige Dämpfung erwünscht ist.In contrast, however, in reflector antennas, which are used as sensors, the electromagnetic radiation to be reflected only in the range of the operating frequency, while in the other frequency ranges for the purpose of camouflage a broadband attenuation is desired.

Es ist deshalb Aufgabe der Erfindung, eine Parabolantenne mit Subreflektor nach dem Cassegrain-Prinzip zu konzipieren, die nur im Bereich der Betriebsfrequenz die elektromagnetische Strahlung reflektiert, während in den anderen Frequenzbereichen eine hohe Dämpfung erzielt wird.It is therefore an object of the invention to design a parabolic antenna with subreflector according to the Cassegrain principle, which reflects the electromagnetic radiation only in the range of the operating frequency, while in the other frequency ranges, a high attenuation is achieved.

Diese Aufgabe wird bei einer Reflektorantenne nach dem Cassegrain-Prinzip des Anspruchs 1 erfindungsgemäß gelöst.This object is achieved according to the invention in a reflector antenna according to the Cassegrain principle of claim 1.

Weitere vorteilhafte Ausgestaltungen der Reflektorantenne sind in den Unteransprüchen beschrieben.Further advantageous embodiments of the reflector antenna are described in the subclaims.

Die erfindungsgemäße Bauweise des Hauptreflektors weist verschiedene Vorteile auf. Durch den partiellen Aufbau des Hauptreflektors mittels einer frequenzselektiven radarabsorbierenden Bauweise kann auf die Verwendung eines auf die Betriebsfrequenz der Antenne ausgelegten frequenzselektiven Radoms verzichtet werden, womit die daraus resultierenden Radomreflexionen im Frequenzbereich eines die Antenne beobachtenden Radars entfallen. Wird der gesamte Hauptreflektor gemäß dem Stand der Technik in einer frequenzselektiven radarabsorbierenden Bauweise erstellt, so ergeben sich aufgrund der Wechselwirkung zwischen der radarabsorbierenden Bauweise und der frequenzselektiven Schicht im Betriebsfrequenzbereich der Antenne Reflexionsverluste größer als 1 dB. Diese Verluste reduzieren den Antennengewinn und schränken damit auch die Reichweite der Antenne erheblich ein. Mittels der beschriebenen Erfindung wird nur ein begrenzter Bereich der Paraboloberfläche in einer solchen Bauweise realisiert, so daß ohne erhebliche Absorptionseinbußen im Frequenzbereich der die Antenne beobachtenden Radargeräte auch deutlich niedrigere Reflexionsverluste erzielt werden, welche entsprechend dem Flächenverhältnis des frequenzselektiven radarabsorbierenden kreisförmigen Bereiches zur Gesamtparabolfläche des Hauptreflektors reduziert werden. Wird z. B. 20 % des Hauptreflektors in einer frequenzselektiven radarabsorbierenden Bauweise realisiert, so verringern sich die Reflexionsverluste auf etwa 0,2 dB.The construction of the main reflector according to the invention has various advantages. Due to the partial construction of the main reflector by means of a frequency-selective radar-absorbing construction, it is possible to dispense with the use of a frequency-selective radome designed for the operating frequency of the antenna, thus eliminating the resulting radome reflections in the frequency range of a radar observing the antenna. If the entire main reflector according to the prior art is produced in a frequency-selective radar-absorbing construction, the result is reflection losses greater than 1 dB due to the interaction between the radar-absorbing construction and the frequency-selective layer in the operating frequency range of the antenna. These losses reduce the antenna gain and thus also considerably limit the range of the antenna. By means of the described invention, only a limited area of the parabolic surface is realized in such a construction, so that significantly lower reflection losses are achieved without significant absorption losses in the frequency range of the antenna observing radars, which reduces according to the area ratio of the frequency-selective radar-absorbing circular area to the total parabolic area of the main reflector become. If z. B. realized 20% of the main reflector in a frequency-selective radar-absorbing design, the reflection losses decrease to about 0.2 dB.

Ein Ausführungsbeispiel der Erfindung ist in der Zeichnung schematisch vereinfacht dargestellt und wird in der folgenden Beschreibung erläutert. Es zeigen

Fig. 1
eine Seitenansicht (Schnitt) einer Cassegrain-Antenne,
Fig. 2
die Draufsicht zu Fig. 1,
Fig. 3
den Verlauf eines einfallenden Strahles im Fall einer 3-fach Reflexion.
An embodiment of the invention is shown schematically simplified in the drawing and will be explained in the following description. Show it
Fig. 1
a side view (section) of a Cassegrain antenna,
Fig. 2
the plan view of Fig. 1,
Fig. 3
the course of an incident beam in the case of a 3-fold reflection.

In der Fig. 1 ist ein Schnitt durch eine Cassegrain-Antenne dargestellt, die aus einem Hauptreflektor 1 und einem Subreflektor 2 besteht. Das Speisehorn ist zur Vereinfachung nicht wiedergegeben worden. Beide Reflektoren weisen metallisch reflektierende Oberflächen 8 auf. In den Hauptreflektor ist eine Kombination aus einem Absorptionsmittel 3 und einer frequenzselektiven Struktur 4 eingelassen. Die frequenzselektive Struktur 4 liegt hierbei derart auf dem Absorptionsmittel 3, daß alle nicht der Resonanzfrequenz der Struktur 4 entsprechenden Frequenzen im Absorptionsmittel 3 gedämpft werden. Das Absorptionsmittel 3 hat im Ausführungsbeispiel gemäß Fig. 1 und Fig. 2 eine etwa kreisringförmige Berandung, die sich aus dem geometrischen Ort aller Auftreffpunkte von Strahlen auf dem Hauptreflektor ergibt, welche zwischen Sub- und Hauptreflektor n-fach (n = 3, 5, 7, ...) reflektiert werden.FIG. 1 shows a section through a Cassegrain antenna which consists of a main reflector 1 and a subreflector 2. The feed horn has not been reproduced for the sake of simplicity. Both reflectors have metallically reflecting surfaces 8. In the main reflector, a combination of an absorbent 3 and a frequency-selective structure 4 is embedded. The frequency-selective structure 4 is in this case on the absorbent 3, that all not the resonance frequency of the structure 4 corresponding frequencies are attenuated in the absorbent 3. In the exemplary embodiment according to FIGS. 1 and 2, the absorbent 3 has an approximately annular boundary which results from the geometrical location of all points of incidence of rays on the main reflector which are n-fold between the subreflector and main reflector (n = 3, 5, 7, ...) are reflected.

Der vorliegenden Antennenkonzeption liegt die Erkenntnis zugrunde, daß bei der Bestrahlung einer Parabolantenne mittels einer externen Strahlungsquelle neben den 1-fach-Reflexionen, die besonders an den Subreflektorhalterungen, dem Subreflektor selbst und an Inhomogenitäten bzw. Rändern des Hauptreflektors erzeugt werden, auch n-fach-Reflexionen (n = 3, 5, 7, ...) zwischen dem Sub- und dem Hauptreflektor entstehen. Diese Mehrfachreflexionen, insbesondere die 3- und 5-fach-Reflexionen, beinhalten dabei über einen relativ großen Aspektwinkelbereich und innerhalb breiter Frequenzbänder die höchsten rückgestreuten Energieanteile.The present antenna design is based on the finding that in the irradiation of a parabolic antenna by means of an external radiation source in addition to the 1-fold reflections that are generated especially on the Subreflektorhalterungen, the subreflector itself and inhomogeneities or edges of the main reflector, n-fold Reflections (n = 3, 5, 7, ...) arise between the sub and the main reflector. These multiple reflections, in particular the 3-fold and 5-fold reflections, contain the highest backscattered energy components over a relatively large aspect angle range and within broad frequency bands.

Bisher war es üblich, die Antenne mit einem frequenzselektiven Radom zu überdecken, wobei die Frequenz der einfallenden Fremdstrahlung weit genug von der Betriebsfrequenz der eigenen Anlage entfernt sein muß, da das Radom für die Betriebsfrequenz transparent ausgeführt sein muß. Dieses Verfahren ist jedoch nur in den Fällen sinnvoll, wenn die gerätespezifischen Anforderungen eine Konfiguration des Radoms zuläßt, die eine Reflexion der einfallenden Strahlung in eine andere als die Einfallsrichtung mit Hilfe einer entsprechenden Formung des Radoms erlaubt. Spekulare Einfachreflexionen an der Radomoberfläche lassen sich jedoch nicht vermeiden.So far, it has been customary to cover the antenna with a frequency-selective radome, wherein the frequency of the incident external radiation must be far enough away from the operating frequency of their own system, since the radome must be made transparent to the operating frequency. However, this method is useful only in cases where the device-specific requirements allow a configuration of the radome, which allows a reflection of the incident radiation in a direction other than the direction of incidence by means of a corresponding shaping of the radome. However, simple single reflections on the radome surface can not be avoided.

Aufgrund des erfindungsgemäßen Aufbaus des Hauptreflektors, der eine ringförmige Teilfläche aus einer frequenzselektiven und radarabsorbierenden Bauweise aufweist, kann auf die Verwendung eines frequenzselektiven Radoms verzichtet werden.Due to the construction according to the invention of the main reflector, which has an annular subarea of a frequency-selective and radar-absorbing construction, it is possible to dispense with the use of a frequency-selective radome.

Die frequenzselektive radarabsorbierende Bauweise wird hierbei derart ausgelegt, daß im Bereich der Betriebsfrequenz (z. B. 35 GHz) eine nahezu verlustlose metallische Reflexion erfolgt, während im Frequenzbereich einfallender Fremdstrahlung (z. B. 2 - 20 GHz) hingegen eine radarabsorbierende Wirkung erzielt wird. Die breitbandige Radarabsorption kann durch eine verluststoffbehaftete Sandwichbauweise oder durch einen monolithischen Absorber 3 realisiert werden. Die auf der Absorptionsschicht 3 aufgebrachte frequenzselektive Struktur kann mit Hilfe unterschiedlich geformter Einzelreflektorelemente gebildet werden: hierfür sind neben metallischen Kreisringen auch metallische Jerusalemkreuze oder Kreuzdipole bekannt geworden.In this case, the frequency-selective radar-absorbing construction is designed in such a way that almost lossless metallic reflection takes place in the range of the operating frequency (eg 35 GHz), whereas a radar absorbing effect is achieved in the frequency range of incidental external radiation (eg 2 to 20 GHz) , The broadband Radarabsorption can be realized by a lossy sandwich construction or by a monolithic absorber 3. The frequency-selective structure applied to the absorption layer 3 can be formed with the aid of differently shaped individual reflector elements: for this purpose metallic Jerusalem crosses or cross dipoles have become known in addition to metallic circular rings.

In der Fig. 3 ist vereinfacht der Verlauf einer 3-fach-Reflexion dargestellt. Der einfallende Strahl 5 trifft auf den Hauptreflektor 1, der hier nicht mit einem Absorptionsmittel belegt ist. Der vom Hauptreflektor 1 reflektierte Strahl trifft den Subreflektor 2, wird dort auch anschließend nochmals am Hauptreflektor 1 reflektiert und dann als reflektierter Strahl 6 etwa in die gleiche Richtung wie der einfallende Strahl 5 zurückgeworfen. In ähnlicher Weise laufen auch die anderen n-fach-Reflexionen ab. Der Ort aller Auftreffpunkte der reflektierten Strahlen auf dem Hauptreflektor 1 kennzeichnet den Bereich und die Berandung des Absorptionsmittels 3. Bei einem symetrischen Cassegrainsystem nach Fig. 1 und 2 bildet das Absorptionsmittel 3 eine Kreisringfläche, deren Geometrie sich folgendermaßen herleiten läßt. Der äußere Radius der Kreisringfläche ist eine Funktion des Focus foc des Hauptreflektors 1, der Geometrieparameter a, b und r (= Radius) des Subreflektors 2, sowie des Abstandes s der Scheitelpunkte von Sub- und Hauptreflektor: R max = f ( foc , a , b , r )

Figure imgb0001
In FIG. 3, the course of a 3-fold reflection is shown in simplified form. The incident beam 5 strikes the main reflector 1, which is not covered here with an absorbent. The reflected from the main reflector 1 beam hits the subreflector 2, where it is then reflected again at the main reflector 1 and then thrown back as a reflected beam 6 in about the same direction as the incident beam 5. Similarly, the other n-fold reflections will also expire. The location of all points of impact of the reflected rays on the main reflector 1 characterizes the region and the boundary of the absorbent 3. In a symmetric Cassegrainsystem of Fig. 1 and 2, the absorbent 3 forms an annular surface whose geometry can be derived as follows. The outer radius of the annular surface is a function of the focus foc of the main reflector 1, the geometry parameters a, b and r (= radius) of the subreflector 2, as well as the distance s of the vertices of sub and main reflector: R Max = f ( foc . a . b . r )
Figure imgb0001

Der innere Radius des Kreisringes entspricht dem Radius r des Subreflektors. Der Hauptreflektor wird hierbei durch ein Rotationsparaboloid beschrieben, dessen Mittenquerschnitt der Formel genügt: f Hauptreflektor ( x ) = x 2 4 foc

Figure imgb0002
The inner radius of the circular ring corresponds to the radius r of the subreflector. The main reflector is described here by a paraboloid of revolution whose center cross-section satisfies the formula: f main reflector ( x ) = x 2 4 foc
Figure imgb0002

Der Subreflektor ist ein Rotationshyperholoid, dessen Mittenquerschnitt der Formel entspricht: f Subreflektor ( x ) = a 1 + x 2 b .

Figure imgb0003
The subreflector is a rotational hyperholoid whose center cross section corresponds to the formula: f subreflector ( x ) = a 1 + x 2 b ,
Figure imgb0003

Für die Bestimmung des äußeren Radius der Kreisringfläche werden beide Formeln in einem Koordinatensystem in Bezug gesetzt, so daß sich hieraus eine neue Funktion für den Subreflektor ergibt zu: f Subreflektor ( x ) = a 1 + x 2 b + s a .

Figure imgb0004
For determining the outer radius of the annular surface, both formulas are related in a coordinate system, so that a new function for the subreflector results from this: f subreflector ( x ) = a 1 + x 2 b + s - a ,
Figure imgb0004

Hierbei beschreibt s den Abstand der Scheitelpunkte von Haupt- und Subreflektor. Die maßgebliche Bedingung für eine 3-fach-Reflexion ergibt sich dadurch, daß die anfallende Wellenfront vom Haupt- auf den Subreflektor derart reflektiert wird, daß der Einfallswinkel demjenigen der Flächennormalen des Subreflektors entspricht. Der Schnittpunkt des einfallenden Strahls auf dem Hauptreflektor gibt dann den maximalen Radius derjenigen kreisförmigen Fläche auf dem Hauptreflektor wieder, für die gerade noch eine 3-fach-Reflexion erfolgen kann, wenn der Schnittpunkt des reflektierten Strahls am Subreflektor an dessen äußerer Begrenzung liegt. Durch die Steigung der Normalen des Subreflektors an der Stelle x = r ist der vom Subreflektor reflektierte Strahl gegeben durch f reflektiert ( x ) = ( x + r ) b 2 1 + ( r b ) 2 a x + f Subreflektor ( r ) .

Figure imgb0005
Here s describes the distance of the vertices of main and subreflector. The relevant condition for a 3-fold reflection results from the fact that the incident wavefront from the main to the sub-reflector is reflected such that the angle of incidence corresponds to that of the surface normal of the subreflector. The point of intersection of the incident beam on the main reflector then gives the maximum radius of that circular area on the main reflector, for which just a triple reflection can take place when the point of intersection of the reflected beam at the subreflector lies at its outer boundary. By the slope of the normal of the subreflector at the point x = r of the reflected beam from the subreflector is given by f reflects ( x ) = - ( x + r ) b 2 1 + ( r b ) 2 a x + f subreflector ( - r ) ,
Figure imgb0005

Mit dem Schnittpunkt der Funktionen freflektiert(x) und fHauptreflektor(x) ergibt sich nun direkt ein Ausdruck für den maximalen Radius der Kreisringfläche: R max = | 2 foc f ( r ) ( 2 foc f ( r ) ) 2 4 foc r f ( r ) + 4 foc × f Subreflektor ( r ) | .

Figure imgb0006

mit der Steigung der Funktion fSubreflektor(x) gemäß f ( x ) = d d x f Subreflektor ( x ) = a x b 2 1 + ( x b ) 2
Figure imgb0007
Reflected with the intersection of the functions f (x) and f main reflector (x), there is now an expression for the maximum radius of the circular ring surface: R Max = | - 2 foc f ' ( - r ) ( - 2 foc f ' ( - r ) ) 2 - 4 foc r f ' ( - r ) + 4 foc × f subreflector ( - r ) | ,
Figure imgb0006

with the slope of the function f subreflector (x) according to f ' ( x ) = d d x f subreflector ( x ) = a x b 2 1 + ( x b ) 2
Figure imgb0007

Hieraus ergeben sich für ein gerechnetes Beispiel folgende Dimensionierungen: Fokus: foc = 142,40 mm Radius des Hauptreflektors: rHauptrefl. = 150,00 mm Geometrieparameter des Subreflektors: a = 42,40 mm b = 52,63 mm r = 30,00 mm Scheitelpunktabstand s = 120,00 mm Kreisring des Absorbers Rmax = 76,34 mm Rmin = 30,00 mm This results in the following dimensions for a calculated example: Focus: foc = 142.40 mm Radius of the main reflector: r main ref. = 150.00 mm Geometry parameters of the subreflector: a = 42.40 mm b = 52.63 mm r = 30.00 mm Vertex distance s = 120.00 mm Circular ring of the absorber R max = 76.34 mm R min = 30.00 mm

Claims (5)

  1. A reflector antenna according to the Cassegrain principle comprising a main reflector (1) and a sub-reflector (2), in which an absorption means (3) in the form of an annular surface is applied on the surface of the main reflector (1), wherein
    - the absorption means (3) is arranged on the main reflector (3);
    - a frequency-selective structure (4) is applied to the absorption means (3);
    characterised in that the outer radius (Rmax) of the annular surface of the absorption means (3) is given by the maximum radius of that circular surface on the main reflector (1) for which precisely 3-fold reflection of the incident electromagnetic waves can just take place.
  2. A reflector antenna according to Claim 1, characterised in that the inner radius of the annular surface of the absorption means (3) corresponds to the parallel projection of the outer radius of the sub-reflector (2) onto the main reflector (1).
  3. A reflector antenna according to Claim 1 or 2, characterised in that the absorption means (3) is produced by means of a sandwich structure which contains lossy materials.
  4. A reflector antenna according to Claim 1 or 2, characterised in that the absorption means (3) consists of a monolithic absorber.
  5. A reflector antenna according to at least one of Claims 1 to 4, characterised in that the frequency-selective structure (4) consists of metal elements such as annuli, Jerusalem crosses or crossed dipoles.
EP19970104674 1996-07-31 1997-03-19 Reflector antenna Expired - Lifetime EP0822610B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19630784 1996-07-31
DE1996130784 DE19630784C1 (en) 1996-07-31 1996-07-31 Reflector antenna

Publications (3)

Publication Number Publication Date
EP0822610A2 EP0822610A2 (en) 1998-02-04
EP0822610A3 EP0822610A3 (en) 2000-07-26
EP0822610B1 true EP0822610B1 (en) 2006-05-17

Family

ID=7801300

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19970104674 Expired - Lifetime EP0822610B1 (en) 1996-07-31 1997-03-19 Reflector antenna

Country Status (2)

Country Link
EP (1) EP0822610B1 (en)
DE (2) DE19630784C1 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2304192A1 (en) * 1975-03-14 1976-10-08 Thomson Csf SELECTIVE GAIN REDUCTION ANTENNA
DE4006352A1 (en) * 1990-03-01 1991-09-05 Dornier Luftfahrt Radar absorber for aircraft or spacecraft - has dielectric properties variable using alternate high and low conductivity layers

Also Published As

Publication number Publication date
DE59712653D1 (en) 2006-06-22
EP0822610A2 (en) 1998-02-04
EP0822610A3 (en) 2000-07-26
DE19630784C1 (en) 1998-01-02

Similar Documents

Publication Publication Date Title
DE60015822T2 (en) Multi-lobe antenna with frequency-selective or polarization-sensitive zones
DE1257227B (en) Cassegrain antenna
DE2246650C2 (en) Aplanatic high frequency antenna
DE2239228C3 (en) Antenna with a toric main reflector
DE2610506C2 (en) Reflector or lens antenna
DE60107939T2 (en) REFLECTOR ANTENNA WITH COMMON APERTURE AND IMPROVED FEEDING DRAFT
DE202022107107U1 (en) Integrated base station antenna
DE2812903C2 (en) Antenna with a primary radiator, a main reflector and an auxiliary reflector eccentric to this
DE3341284A1 (en) ANTENNA SYSTEM WITH TWO REFLECTORS
DE2441638C3 (en) Broadband antenna with a spiral arranged near a reflector
EP0822610B1 (en) Reflector antenna
DE2319731A1 (en) ECCENTRIC CASSEGRAIN ANTENNA
DE69907948T2 (en) DIELECTRIC LAMINATED REFLECTOR FOR PARABOLA
DE3644891A1 (en) RECEIVER FOR MICROWAVES AND MILLIMETER WAVES
DE2920781C2 (en) Reflector antenna, consisting of a main reflector, a primary radiator and a subreflector
EP0284897B1 (en) Dual reflector microwave directional antenna
DE2632030C2 (en)
DE2806495C2 (en) Two reflector antenna
DE2551545A1 (en) Cassegrain aerial for very short wavelengths - has horn exciter with circular cross:section and ring: shaped ribs one quarter wavelength deep
DE4200755A1 (en) Centrally fed, two-reflector, microwave directional antenna - has coaxial, primary horn radiator with toroidal annular aperture with parallel polarised field
EP0192048A1 (en) Reflector antenna with struts in the radiating area
DE872970C (en) Method for reducing undesired radiation from directional radio antennas through the use of screens or screens
DE754559C (en) Arrangement for directional transmission or reception of ultra-high frequency electromagnetic oscillations
DE1541478A1 (en) Cassegrain antenna for microwaves
WO2005031921A1 (en) Reflector antenna

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): DE FR GB IT

17P Request for examination filed

Effective date: 19980522

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): DE FR GB IT

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: EADS DEUTSCHLAND GMBH

AKX Designation fees paid

Free format text: DE FR GB IT

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRE;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.SCRIBED TIME-LIMIT

Effective date: 20060517

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 59712653

Country of ref document: DE

Date of ref document: 20060622

Kind code of ref document: P

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20060621

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20070220

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20110324

Year of fee payment: 15

Ref country code: FR

Payment date: 20110404

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20110325

Year of fee payment: 15

Ref country code: GB

Payment date: 20110321

Year of fee payment: 15

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20120319

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20121130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120319

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120402

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 59712653

Country of ref document: DE

Effective date: 20121002

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120319

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121002