EP0817164B2 - Noise absorbing structures and walls made therefrom - Google Patents
Noise absorbing structures and walls made therefrom Download PDFInfo
- Publication number
- EP0817164B2 EP0817164B2 EP97401411A EP97401411A EP0817164B2 EP 0817164 B2 EP0817164 B2 EP 0817164B2 EP 97401411 A EP97401411 A EP 97401411A EP 97401411 A EP97401411 A EP 97401411A EP 0817164 B2 EP0817164 B2 EP 0817164B2
- Authority
- EP
- European Patent Office
- Prior art keywords
- membrane
- structure according
- frame
- plates
- structures
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000012528 membrane Substances 0.000 claims description 70
- 230000021715 photosynthesis, light harvesting Effects 0.000 claims description 22
- 238000010521 absorption reaction Methods 0.000 claims description 14
- 230000005291 magnetic effect Effects 0.000 claims description 8
- 230000004048 modification Effects 0.000 claims description 8
- 238000012986 modification Methods 0.000 claims description 8
- 230000003068 static effect Effects 0.000 claims description 8
- 239000004020 conductor Substances 0.000 claims description 7
- 239000002184 metal Substances 0.000 claims description 3
- 238000005096 rolling process Methods 0.000 description 9
- 230000000694 effects Effects 0.000 description 7
- 239000000463 material Substances 0.000 description 4
- 238000005192 partition Methods 0.000 description 4
- 239000004033 plastic Substances 0.000 description 4
- 229920003023 plastic Polymers 0.000 description 4
- 230000006978 adaptation Effects 0.000 description 2
- 238000004026 adhesive bonding Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000006073 displacement reaction Methods 0.000 description 2
- 230000010287 polarization Effects 0.000 description 2
- 238000004804 winding Methods 0.000 description 2
- 239000002033 PVDF binder Substances 0.000 description 1
- 239000006096 absorbing agent Substances 0.000 description 1
- 229920001971 elastomer Polymers 0.000 description 1
- 239000000806 elastomer Substances 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 239000011491 glass wool Substances 0.000 description 1
- 230000010365 information processing Effects 0.000 description 1
- 239000000696 magnetic material Substances 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 229920002635 polyurethane Polymers 0.000 description 1
- 239000004814 polyurethane Substances 0.000 description 1
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G10—MUSICAL INSTRUMENTS; ACOUSTICS
- G10K—SOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
- G10K11/00—Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
- G10K11/16—Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
- G10K11/172—Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using resonance effects
Definitions
- the invention generally relates to structures of noise absorption and walls formed at means of these structures and more particularly such light and compact structures, applicable especially in the aeronautical industry for the equipment of reactors, their nacelles and cabins of aircraft, in the transportation industry, in the industry of the building, etc ...
- the present invention aims to provide important improvements to these structures.
- an absorption structure noise including a support frame on which is stretched and fixed a waterproof membrane of which the outside face of the frame receives acoustic waves, a gas such as air filling a volume delimited by the frame and the membrane, and energy dissipation means housed in this volume, characterized in that the means of dissipation are gas rolling type, electrostatic type or of the electromagnetic type and are modifiable, adjustable or controllable for modification or adaptation of the acoustic impedance of said structure with the characteristics noise to absorb, the above structure is closed so waterproof and contains an expandable volume element and contractile such as a balloon or a bellows for example, filled with air and communicating with the outside through an orifice of static pressure equalization, this occupying element a significant fraction of the volume of said structure.
- an expandable volume element and contractile such as a balloon or a bellows for example
- the structures according to the invention thanks to the fact that their acoustic impedances are changeable or adjustable, can be designed or adjusted to absorb incident noise or to deflect it by reflection, by example according to the positions they occupy in a noise absorption or protective wall against noise.
- the energy dissipation means are of the rolling type gas and include plates arranged inside from the frame, a short distance from the membrane, and means for modifying this distance.
- the means at gas rolling dissipation include at least a gas flow passage connecting a chamber closed delimited inside the frame by the membrane to another room located inside said structure.
- this passage can be a conduit formed between two superimposed plates associated with means for modifying or adjusting the distance between them for modification or adjustment of the section of passage of the conduit.
- the gas rolling dissipation means include rods carried by the membrane and extending perpendicularly to it inside the frame in fixed tubes which are closed at their opposite end to the membrane and which delimit with the rods of the conduits gas rolling annulars.
- the energy dissipation means include electrode plates arranged in parallel to the membrane at a distance from it, and at least another electrode formed on the membrane and connected with said plates to polarization means such that a direct current source associated with a circuit electrical or electronic including elements of energy dissipation by Joule effect.
- the membrane may have one or more metallized zones opposite the plates aforementioned electrodes, or else it is made in an electrically charged plastic, to which case the polarization means are not necessary.
- Elements of energy dissipation by effect Joule include for example an electrical resistance, advantageously adjustable, the structure according to the invention then comprising controlled means of adjustment of the value of this resistance for adaptation acoustic impedance.
- the energy dissipation means are of the electromagnetic type and include electrical conductors displaced by the membrane in relation to elements magnetic carried by the frame or made up by it, the aforementioned electrical conductors comprising for example windings connected to the membrane or one or more printed electrical circuits or deposited on the membrane.
- a membrane can be used magnetic displaceable with respect to an electrical circuit.
- Each structure of the aforementioned type is intended to be juxtaposed and assembled to a plurality of structures of the same type to form a flat or curved wall, convex or concave in which the structures have similar or different acoustic impedances to absorb noise or deflect it by reflection According to the case.
- the means of dissipation energy of at least some of the structures are associated to means for controlling, adjusting or control themselves controllable by a processing system some information.
- the noise absorption structure according to the invention essentially comprises a thin gas-tight membrane 10 which is stretched and fixed on the upper face of a frame support 12, the upper part of which is formed with partitions perpendicular to the membrane and whose part lower 16 has a parallel bottom wall 18 to the membrane.
- the membrane 10 can be produced in particular plastic, elastomer, metal or in any material allowing a membrane to be produced thin enough and flexible to be deformable by acoustic waves to absorb.
- This membrane being fragile, acoustically transparent means (not shown) are provided to cover and protect it external mechanical attack, these means being for example constituted by a metallic fabric associated with a layer of glass wool or the like.
- the support frame 12 is made of any material rigid suitable, in particular of metal or material plastic, depending on the applications to which the structure according to the invention is intended.
- the membrane 10 can be fixed on the frame 12 by its edges 20 folded over the periphery of the part upper part of the frame 12.
- An surround 22 can be attached to the periphery of the frame 12 as shown schematically in Figure 1 to ensure the connection structures between them, for example thanks to attachment or assembly means 24 such as tenons and dovetail grooves.
- this element 26 can be constituted by a flexible balloon or a bellows connected to the outside by a passage or orifice 28 of static pressure equalization, crossing for example the bottom wall 18 of the frame 12.
- This element 26 occupies a relatively significant volume delimited by frame 12 and the membrane 10, for example about a third of this volume.
- the pressure or the gas temperature increases or decreases so corresponding to the interior of element 26 and compensates at least partially the pressure variations at inside the structure, which makes it possible to membrane 10 almost insensitive to variations in external static pressure and temperature.
- the elements 26 allow each structure to be adapted to changes static pressure in the duct.
- the membrane 10 can be fixed by gluing on the upper peripheral part of the frame 12, as already indicated, as well as on the upper edges of the partitions internal 14 of frame 12.
- the internal partitions 14 of the frame 12 can be replaced by perpendicular studs 30 at the membrane and on whose ends the membrane can be fixed by gluing.
- the studs 30 can be carried by a plate openwork 32, by a grid, or by any other means appropriate.
- the noise absorption structure according to the invention also includes means of dissipation of energy of which various embodiments are represented by way of example in FIGS. 4 to 13.
- the means of energy dissipation are of the gas rolling type (for example air).
- the internal partitions 14 of the frame 12 delimit with the membrane 10 of the chambers 34 closed by a wall bottom 36 and which communicate with the lower volume of the frame 12 by a conduit 38 of relatively cross section small and relatively long compared to to its section, allowing energy dissipation by laminar gas flow.
- the conduit 38 is replaced by a channel 40 formed in hollow in the upper face of the bottom wall 36 to which is associated with a cover plate 42 which constitutes the upper wall of channel 40.
- An orifice 44 of the plate 42 connects the chamber 34 to the channel 40, while an orifice 46 of the bottom wall 36 connects the channel 40 at the lower volume of the frame 12.
- the channel 40 can be formed in a spiral in the bottom wall 36 of the chamber 34.
- the membrane 10 deforms and behaves like a very damped oscillator whose frequency central is a function of the membrane tension, of its density and thickness, between other.
- the deformation of the membrane causes a laminar gas flow in the dissipating means of energy constituted by the conduit 38 or the channel 40.
- the acoustic impedance of a structure according to the invention is perfectly suited to the characteristics incident noise when it is completely absorbed, without reflection by the membrane.
- the invention provides means for modify, adjust or control this acoustic impedance.
- the means of energy dissipation include a channel 40 of the type shown in Figures 5 and 6, modification or adjustment acoustic impedance can be obtained by variation of the cross section of channel 40.
- modification or adjustment acoustic impedance can be obtained by variation of the cross section of channel 40.
- FIG. 7 we can form, on the face of the plate 42 which is turned on the side of the bottom wall 36, ribs in projection 48 engaged with a small clearance in the channel 40 of the plate 36, and means 50 are provided for modification the distance between the plate 42 and the wall of bottom 36, these means 50 being for example of the type memory of shape or piezoelectric type, controlled by an appropriate electrical circuit.
- the membrane 10 carries rods 52 which extend inside of the support frame, perpendicular to the membrane, and which are engaged in tubes 54 carried by an intermediate wall 36 of the support frame, so that the displacement of the rods 52 in the tubes 54 caused by deformations of the membrane 10 results in a laminar gas flow in the tubes 54 and by a corresponding energy dissipation.
- the means of energy dissipation are also gas rolling type and include horizontal plates 56 arranged parallel to the membrane 10 and a short distance from it inside the frame support, these plates 56 being carried by means 58 making it possible to modify the distance d between the membrane 10 and the plates 56.
- these means 58 are carried by the intermediate wall 36 and include controlled shape memory elements by an appropriate electrical circuit 60.
- the energy dissipation means include plates electrodes 62 arranged inside the frame of support, parallel to the membrane 10 and at a short distance of it, and for example carried by the wall intermediate 36 of the support frame through dielectric elements 64.
- the membrane 10 comprises electrodes associated with the plates 62, such as example that metallized zones 66 of its surface, these zones 66 and the plates 62 being connected to the poles from a direct current source 68 via an energy dissipating element such as a resistor electric 70 which is advantageously a resistance variable controlled by an appropriate means 72, resistance 70 absorbing energy by the Joule effect and variation of its value allowing to modify the impedance acoustics of the structure according to the invention.
- holes 74 are drilled in the electrode plates 62 to avoid any rolling effect gas between them and the membrane 10.
- the electrostatic attraction exerted by plates 62 on the membrane plays the role of an anti-stiffness dynamic which opposes the stiffness of the contained gas in the structure. This reduces the thickness (or height) total of the structure and therefore its size.
- the membrane 10 and / or the plates electrodes 62 could consist of an electret, such as for example a plastic material of the polyurethane type or PVDF permanently electrically charged, the means for biasing the electrodes being then deleted.
- the energy dissipation means are of the electromagnetic type.
- the membrane 10 is connected, inside the frame, to electric windings 76 movable relative to magnetic elements 78 constituting by example the intermediate wall 34 of the support frame.
- parts 78 protruding towards the membrane can be pierced with through holes 80.
- magnetic elements 82 e.g. permanent magnets
- electrical conductors 84 are carried by the latter, by being constituted for example by a or electrical circuits printed or deposited on the membrane. The displacement of these electrical conductors 84 in the magnetic field lines of elements 80 results in energy dissipation.
- FIG. 13 it is a part of the support frame 12 which can be produced made of magnetic material and constitute a permanent magnet whose field lines can be cut by the electrical conductors 84 of the membrane 10 for an energy dissipation effect.
- a membrane is used magnetic which moves relative to a circuit electric to dissipate energy.
- the elementary noise absorption structures which have just been described can be assembled together to form flat, curved, concave or convex walls, of large dimension.
- the elementary structures of FIGS. 4, 5, 8 and 9 can have dimensions, on the surface, of the order of 5 ⁇ 5 cm 2 and can be combined to form a structure of the type of that represented in FIG. 1 having a surface of the order of 20 x 20 cm 2 , the heights of these structures generally being between 15 and 50 mm.
- the acoustic impedances of elementary structures can be adjusted individually or in small groups of structures.
- Adjusting the acoustic impedances makes it possible to have an impedance well suited for certain surface areas of a wall with maximum absorption of the incident noise, while other surface areas of the wall will have different impedances to partially absorb the noise incident and partially reflect it in a determined direction.
- the possibility of impedance adjustment acoustics of each elementary structure allows to obtain a spatial evolution of the characteristics acoustics of a wall.
- the structures according to the invention such as those of figure 2, adapt automatically to variations in external static pressure and for example to the evolution of the static pressure in a conduit.
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Acoustics & Sound (AREA)
- Multimedia (AREA)
- Soundproofing, Sound Blocking, And Sound Damping (AREA)
- Electrostatic, Electromagnetic, Magneto- Strictive, And Variable-Resistance Transducers (AREA)
Description
L'invention conceme en général des structures d'absorption de bruit et des parois formées au moyen de ces structures et plus particulièrement de telles structures légères et de faible encombrement, applicables notamment dans l'industrie aéronautique pour l'équipement de réacteurs, de leurs nacelles et de cabines d'avions, dans l'industrie des transports, dans l'industrie du bâtiment, etc...The invention generally relates to structures of noise absorption and walls formed at means of these structures and more particularly such light and compact structures, applicable especially in the aeronautical industry for the equipment of reactors, their nacelles and cabins of aircraft, in the transportation industry, in the industry of the building, etc ...
On a déjà proposé, dans la Demande de Brevet français n° 94 00539 (publiée sous le n° 2 715 244) des structures légères d'absorption de bruit qui comprennent chacune un cadre de support sur lequel est fixée et tendue une membrane étanche, et des plaques disposées sous la membrane pour former avec elles un amortisseur passif à laminage d'air. L'incidence d'ondes acoustiques sur la membrane, du côté opposé auxdites plaques, provoque une déformation vibratoire de la membrane qui se traduit par un écoulement laminaire d'air entre la membrane et les plaques et donc par une absorption d'énergie. Lorsque l'impédance acoustique d'une telle structure est correctement adaptée aux ondes acoustiques incidentes, une grande partie de l'énergie de ces ondes acoustiques est absorbée par la structure dans une bande de fréquences relativement large.We have already proposed, in the Patent Application French n ° 94 00539 (published under n ° 2 715 244) lightweight noise absorption structures that include each a support frame on which is fixed and stretched a waterproof membrane, and plates arranged under the membrane to form with them a passive air-laminated shock absorber. The incidence of waves acoustic on the membrane, on the side opposite said plates, causes a vibrational deformation of the membrane which results in laminar flow of air between the membrane and the plates and therefore by a energy absorption. When the acoustic impedance of such a structure is correctly adapted to waves incident acoustics, a large part of the energy of these acoustic waves is absorbed by the structure in a relatively wide frequency band.
La présente invention a pour but d'apporter des perfectionnements importants à ces structures.The present invention aims to provide important improvements to these structures.
Elle a pour objet des structures légères du type précité et dont les impédances acoustiques sont modifiables, réglables ou pilotables et susceptibles de suivre les évolutions des sources de bruit à absorber.It relates to light structures of the type mentioned above and whose acoustic impedances can be modified, adjustable or controllable and likely to follow changes in the noise sources to be absorbed.
Elle a également pour objet des structures légères du type précité, comprenant des moyens de modification, de réglage ou de pilotage de leurs impédances acoustiques, qui sont eux-mêmes pilotables par un système de traitement de l'information.It also relates to light structures of the aforementioned type, comprising modification means, adjusting or controlling their impedances acoustic, which are themselves controllable by a information processing system.
Elle a encore pour objet des parois légères et de faible épaisseur, réalisées par juxtaposition et assemblage de ces structures.It also relates to light walls and thin, made by juxtaposition and assembly of these structures.
Elle a encore pour objet de compenser les influences des variations de la pression et de la température extérieures sur la membrane de la structure d'absorption de bruit.Its purpose is still to compensate influences of pressure and temperature variations exterior on the membrane of the structure noise absorption.
Elle propose, à cet effet, une structure d'absorption de bruit comprenant un cadre de support sur lequel est tendue et fixée une membrane étanche dont la face extérieure au cadre reçoit des ondes acoustiques, un gaz tel par exemple que de l'air remplissant un volume délimité par le cadre et la membrane, et des moyens de dissipation d'énergie logés dans ce volume, caractérisée en ce que les moyens de dissipation sont du type à laminage de gaz, du type électrostatique ou du type électromagnétique et sont modifiables, réglables ou pilotables pour modification ou adaptation de l'impédance acoustique de ladite structure aux caractéristiques du bruit à absorber, la structure précitée est fermée de façon étanche et contient un élément volumique expansible et contractile tel qu'un ballon ou un soufflet par exemple, rempli d'air et communiquant avec l'extérieur par un orifice d'égalisation de pression statique, cet élément occupant une fraction notable du volume de ladite structure.To this end, it offers an absorption structure noise including a support frame on which is stretched and fixed a waterproof membrane of which the outside face of the frame receives acoustic waves, a gas such as air filling a volume delimited by the frame and the membrane, and energy dissipation means housed in this volume, characterized in that the means of dissipation are gas rolling type, electrostatic type or of the electromagnetic type and are modifiable, adjustable or controllable for modification or adaptation of the acoustic impedance of said structure with the characteristics noise to absorb, the above structure is closed so waterproof and contains an expandable volume element and contractile such as a balloon or a bellows for example, filled with air and communicating with the outside through an orifice of static pressure equalization, this occupying element a significant fraction of the volume of said structure.
Les structures selon l'invention, grâce au fait que leurs impédances acoustiques sont modifiables ou réglables, peuvent être conçues ou réglées pour absorber le bruit incident ou pour le dévier par réflexion, par exemple en fonction des positions qu'elles occupent dans une paroi d'absorption de bruit ou de protection contre le bruit.The structures according to the invention, thanks to the fact that their acoustic impedances are changeable or adjustable, can be designed or adjusted to absorb incident noise or to deflect it by reflection, by example according to the positions they occupy in a noise absorption or protective wall against noise.
Dans un premier mode de réalisation, les moyens de dissipation d'énergie sont du type à laminage de gaz et comprennent des plaques disposées à l'intérieur du cadre, à faible distance de la membrane, et des moyens de modification de cette distance.In a first embodiment, the energy dissipation means are of the rolling type gas and include plates arranged inside from the frame, a short distance from the membrane, and means for modifying this distance.
Dans un autre mode de réalisation, les moyens de dissipation à laminage de gaz comprennent au moins un passage d'écoulement de gaz reliant une chambre fermée délimitée à l'intérieur du cadre par la membrane à une autre chambre située à l'intérieur de ladite structure.In another embodiment, the means at gas rolling dissipation include at least a gas flow passage connecting a chamber closed delimited inside the frame by the membrane to another room located inside said structure.
Par exemple, ce passage peut être un conduit formé entre deux plaques superposées associées à des moyens de modification ou de réglage de la distance entre elles pour modification ou réglage de la section de passage du conduit.For example, this passage can be a conduit formed between two superimposed plates associated with means for modifying or adjusting the distance between them for modification or adjustment of the section of passage of the conduit.
Selon un autre mode de réalisation, les moyens de dissipation à laminage de gaz comprennent des tiges portées par la membrane et s'étendant perpendiculairement à celle-ci à l'intérieur du cadre dans des tubes fixes qui sont fermés à leur extrémité opposée à la membrane et qui délimitent avec les tiges des conduits annulaires de laminage de gaz.According to another embodiment, the gas rolling dissipation means include rods carried by the membrane and extending perpendicularly to it inside the frame in fixed tubes which are closed at their opposite end to the membrane and which delimit with the rods of the conduits gas rolling annulars.
Selon encore un autre mode de réalisation de l'invention, les moyens de dissipation d'énergie comprennent des plaques électrodes disposées parallèlement à la membrane à distance de celle-ci, et au moins une autre électrode formée sur la membrane et reliée avec lesdites plaques à des moyens de polarisation tels qu'une source de courant continu associée à un circuit électrique ou électronique comprenant des éléments de dissipation d'énergie par effet Joule.According to yet another embodiment of the invention, the energy dissipation means include electrode plates arranged in parallel to the membrane at a distance from it, and at least another electrode formed on the membrane and connected with said plates to polarization means such that a direct current source associated with a circuit electrical or electronic including elements of energy dissipation by Joule effect.
Par exemple, la membrane peut comporter une ou plusieurs zones métallisées en regard des plaques électrodes précitées, ou bien elle est réalisée en une matière plastique chargée électriquement, auquel cas les moyens de polarisation ne sont pas nécessaires.For example, the membrane may have one or more metallized zones opposite the plates aforementioned electrodes, or else it is made in an electrically charged plastic, to which case the polarization means are not necessary.
Les éléments dé dissipation d'énergie par effet Joule comprennent par exemple une résistance électrique, avantageusement réglable, la structure selon l'invention comprenant alors des moyens commandés de réglage de la valeur de cette résistance pour adaptation de l'impédance acoustique.Elements of energy dissipation by effect Joule include for example an electrical resistance, advantageously adjustable, the structure according to the invention then comprising controlled means of adjustment of the value of this resistance for adaptation acoustic impedance.
Selon un autre mode de réalisation, les moyens de dissipation d'énergie sont du type electromagnétique et comprennent des conducteurs électriques déplacés par la membrane par rapport à des éléments magnétiques portés par le cadre ou constitués par celui-ci, les conducteurs électriques précités comprenant par exemple des bobinages reliés à la membrane ou un ou plusieurs circuits électriques imprimés ou déposés sur la membrane.According to another embodiment, the energy dissipation means are of the electromagnetic type and include electrical conductors displaced by the membrane in relation to elements magnetic carried by the frame or made up by it, the aforementioned electrical conductors comprising for example windings connected to the membrane or one or more printed electrical circuits or deposited on the membrane.
En variante, on peut utiliser une membrane magnétique déplaçable par rapport à un circuit électrique. Alternatively, a membrane can be used magnetic displaceable with respect to an electrical circuit.
Chaque structure du type précité est destinée à être juxtaposée et assemblée à une pluralité de structures du même type pour former une paroi plane ou incurvée, convexe ou concave dans laquelle les structures ont des impédances acoustiques semblables ou différentes pour absorber le bruit ou le dévier par réflexion selon les cas.Each structure of the aforementioned type is intended to be juxtaposed and assembled to a plurality of structures of the same type to form a flat or curved wall, convex or concave in which the structures have similar or different acoustic impedances to absorb noise or deflect it by reflection According to the case.
Dans une telle paroi, les moyens de dissipation d'énergie d'au moins certaines des structures sont associés à des moyens de commande, de réglage ou de pilotage eux-mêmes pilotables par un système de traitement de l'information.In such a wall, the means of dissipation energy of at least some of the structures are associated to means for controlling, adjusting or control themselves controllable by a processing system some information.
On peut ainsi, notamment, adapter les impédances acoustiques de certaines parties ou de toutes les parties d'une paroi pour tenir compte d'une modification ou d'une évolution dans le temps des caractéristiques du bruit à absorber.It is thus possible, in particular, to adapt the impedances acoustics of some or all parts the parts of a wall to account for a modification or an evolution over time of the characteristics noise to absorb.
L'invention sera mieux comprise et d'autres caractéristiques, détails et avantages de celle-ci apparaítront plus clairement à la lecture de la description qui suit, faite à titre d'exemple en référence aux dessins annexés dans lesquels :
- la figure 1 est une vue schématique en perspective avec arrachement partiel d'une structure d'absorption de bruit selon l'invention ;
- la figure 2 est une vue schématique en coupe selon la ligne II-II de la figure 1 ;
- la figure 3 est une vue schématique partielle en perspective d'une variante de réalisation ;
- les figures 4 à 13 représentent schématiquement divers modes de réalisation des moyens de dissipation d'énergie.
- Figure 1 is a schematic perspective view with partial cutaway of a noise absorption structure according to the invention;
- Figure 2 is a schematic sectional view along line II-II of Figure 1;
- Figure 3 is a partial schematic perspective view of an alternative embodiment;
- Figures 4 to 13 schematically represent various embodiments of the energy dissipation means.
La structure d'absorption de bruit selon l'invention,
dont un premier mode de réalisation est représenté
à titre d'exemple aux figures 1 et 2, comprend essentiellement
une membrane 10 fine et étanche au gaz qui
est tendue et fixée sur la face supérieure d'un cadre de
support 12 dont la partie supérieure estformée avec des
cloisons perpendiculaires à la membrane et dont la partie
inférieure 16 comporte une paroi de fond 18 parallèle
à la membrane.The noise absorption structure according to the invention,
a first embodiment of which is shown
by way of example in FIGS. 1 and 2, essentially comprises
a thin gas-
La membrane 10 peut être réalisée notamment
en matière plastique, en élastomère, en métal ou
en toute matière permettant de réaliser une membrane
suffisamment fine et souple pour être déformable par
des ondes acoustiques à absorber. Cette membrane
étant fragile, des moyens acoustiquement transparents
(non représentés) sont prévus pour la recouvrir et la protéger
des agressions mécaniques extérieures, ces
moyens étant par exemple constitués par une toile métallique
associée à une couche de laine de verre ou analogue.The
Le cadre de support 12 est réalisé en toute matière
rigide appropriée, notamment en métal ou en matière
plastique, en fonction des applications auxquelles
la structure selon l'invention est destinée.The
La membrane 10 peut être fixée sur le cadre
12 par ses bords 20 rabattus sur la périphérie de la partie
supérieure du cadre 12. Un entourage 22 peut être
rapporté sur la périphérie du cadre 12 comme représenté
schématiquement en figure 1 pour assurer la liaison
des structures entre elles, par exemple grâce à des
moyens 24 d'accrochage ou d'assemblage tels que des
tenons et des rainures en queue d'aronde.The
Quand la structure selon l'invention forme une
enceinte étanche, on peut prévoir en partie inférieure
du cadre 12, comme représenté schématiquement en
figure 2, un élément 26 susceptible de se contracter et
de s'expanser en fonction des variations de la pression
statique et/ou de la température extérieures à la structure
d'absorption du bruit selon l'invention, cet élément
26 pouvant être constitué par un ballon souple ou un
soufflet relié à l'extérieur par un passage ou orifice 28
d'égalisation de pression statique, traversant par exemple
la paroi de fond 18 du cadre 12.When the structure according to the invention forms a
waterproof enclosure, can be provided at the bottom
of
Cet élément 26 occupe une partie relativement
importante du volume délimité par le cadre 12 et la
membrane 10, par exemple d'environ un tiers de ce volume.
Quand la pression ou la température augmente
ou diminue à l'extérieur de la structure, la pression ou
la température du gaz augmente ou diminue de façon
correspondante à l'intérieur de l'élément 26 et compense
au moins partiellement les variations de pression à
l'intérieur de la structure, ce qui permet de rendre la
membrane 10 à peu près insensible aux variations de
pression statique et de température extérieures.This element 26 occupies a relatively
significant volume delimited by
De plus, lorsque la surface interne d'un conduit de passage de fluide comprend des structures selon l'invention ou est formée de telles structures, les éléments 26 permettent d'adapter chaque structure à l'évolution de la pression statique dans le conduit.In addition, when the internal surface of a duct fluid passage comprises structures according to the invention or is formed of such structures, the elements 26 allow each structure to be adapted to changes static pressure in the duct.
La membrane 10 peut être fixée par collage sur
la partie périphérique supérieure du cadre 12, comme
déjà indiqué, ainsi que sur les bords supérieurs des cloisons
internes 14 du cadre 12.The
En variante, et comme représenté schématiquement
en figure 3, les cloisons internes 14 du cadre
12 peuvent être remplacées par des plots 30 perpendiculaires
à la membrane et sur les extrémités desquels
la membrane peut être fixée par collage.Alternatively, and as shown schematically
in FIG. 3, the
Les plots 30 peuvent être portés par une plaque
ajourée 32, par une grille, ou par tout autre moyen
approprié. The
La structure d'absorption de bruit selon l'invention comprend également des moyens de dissipation d'énergie dont divers modes de réalisation sont représentés à titre d'exemple aux figures 4 à 13.The noise absorption structure according to the invention also includes means of dissipation of energy of which various embodiments are represented by way of example in FIGS. 4 to 13.
En figure 4, les moyens de dissipation d'énergie
sont du type à laminage de gaz, (par exemple d'air).
Les cloisons internes 14 du cadre 12 délimitent avec la
membrane 10 des chambres 34 fermées par une paroi
de fond 36 et qui communiquent avec le volume inférieur
du cadre 12 par un conduit 38 de section relativement
faible et de longueur relativement importante par rapport
à sa section, permettant une dissipation d'énergie
par écoulement laminaire de gaz.In Figure 4, the means of energy dissipation
are of the gas rolling type (for example air).
The
Dans la variante de réalisation de la figure 5,
le conduit 38 est remplacé par un canal 40 formé en
creux dans la face supérieure de la paroi de fond 36 à
laquelle est associée une plaque de recouvrement 42
qui constitue la paroi supérieure du canal 40. Un orifice
44 de la plaque 42 relie la chambre 34 au canal 40, tandis
qu'un orifice 46 de la paroi de fond 36 relie le canal
40 au volume inférieur du cadre 12.In the variant embodiment of FIG. 5,
the
Comme on le voit mieux en figure 6, qui est
une vue de dessus des moyens de dissipation d'énergie
de la figure 5, le canal 40 peut être formé en spirale dans
la paroi de fond 36 de la chambre 34.As best seen in Figure 6, which is
a top view of the energy dissipation means
In FIG. 5, the
Sous l'effet de la pression des ondes acoustiques
incidentes, la membrane 10 se déforme et se comporte
comme un oscillateur très amorti dont la fréquence
centrale est une fonction de la tension de la membrane,
de sa masse volumique et de son épaisseur, entre
autres. La déformation de la membrane provoque un
écoulement laminaire de gaz dans les moyens de dissipation
d'énergie constitués par le conduit 38 ou le canal
40.Under the effect of the pressure of acoustic waves
incident, the
L'impédance acoustique d'une structure selon l'invention est parfaitement adaptée aux caractéristiques du bruit incident lorsque celui-ci est totalement absorbé, sans réflexion par la membrane.The acoustic impedance of a structure according to the invention is perfectly suited to the characteristics incident noise when it is completely absorbed, without reflection by the membrane.
L'invention prévoit des moyens permettant de modifier, de régler ou de piloter cette impédance acoustique.The invention provides means for modify, adjust or control this acoustic impedance.
Par exemple, dans le cas où les moyens de
dissipation d'énergie comprennent un canal 40 du type
représenté aux figures 5 et 6, la modification ou le réglage
de l'impédance acoustique peut être obtenu par
variation de la section transversale du canal 40. Pour
cela, comme représenté schématiquement en figure 7,
on peut former, sur la face de la plaque 42 qui est tournée
du côté de la paroi de fond 36, des nervures en
saillie 48 engagées avec un jeu faible dans le canal 40
de la plaque 36, et on prévoit des moyens 50 de modification
de la distance entre la plaque 42 et la paroi de
fond 36, ces moyens 50 étant par exemple du type à
mémoire de forme ou du type piezoélectrique, commandés
par un circuit électrique approprié.For example, if the means of
energy dissipation include a
La modification de la distance entre la plaque
42 et la paroi 36 modifie la section transversale du canal
40 et donc les conditions d'écoulement laminaire du gaz
dans ce canal, ce qui modifie en conséquence l'impédance
acoustique de la structure selon l'invention.Changing the distance between the
Lorsque les moyens de dissipation d'énergie sont du type représenté en figure 4, on peut modifier l'impédance acoustique de la structure en agissant sur le volume de la partie inférieure du cadre 12 (volume sous la paroi 36) par exemple en utilisant un élément gonflable analogue à l'élément 26 de la figure 2, que l'on relie à des moyens de réglage de pression.When the means of energy dissipation are of the type represented in figure 4, one can modify the acoustic impedance of the structure by acting on the volume of the lower part of the frame 12 (volume under the wall 36) for example using an element inflatable similar to element 26 of Figure 2, which one connects to pressure adjustment means.
Dans la variante de réalisation de la figure 8,
la membrane 10 porte des tiges 52 qui s'étendent à l'intérieur
du cadre de support, perpendiculairement à la
membrane, et qui sont engagées dans des tubes 54 portés
par une paroi intermédiaire 36 du cadre de support,
de telle sorte que le déplacement des tiges 52 dans les
tubes 54 provoqué par les déformations de la membrane
10 se traduise par un écoulement laminaire de gaz
dans les tubes 54 et par une dissipation d'énergie correspondante.In the variant embodiment of FIG. 8,
the
Dans la variante de réalisation de la figure 9,
les moyens de dissipation d'énergie sont également du
type à laminage de gaz et comprennent des plaques horizontales
56 disposées parallèlement à la membrane
10 et à faible distance de celle-ci à l'intérieur du cadre
de support, ces plaques 56 étant portées par des
moyens 58 permettant de modifier la distance d entre
la membrane 10 et les plaques 56. Par exemple, ces
moyens 58 sont portés par la paroi intermédiaire 36 et
comprennent des éléments à mémoire de forme commandés
par un circuit électrique approprié 60.In the alternative embodiment of FIG. 9,
the means of energy dissipation are also
gas rolling type and include horizontal plates
56 arranged parallel to the
La modification de la distance d entre une plaque
56 et la membrane 10 entraíne une modification de
l'impédance acoustique de la structure selon l'invention.Changing the distance d between a plate
56 and the
Dans le mode de réalisation de la figure 10, les
moyens de dissipation d'énergie comprennent des plaques
électrodes 62 disposées à l'intérieur du cadre de
support, parallèlement à la membrane 10 et à faible distance
de celle-ci, et par exemple portées par la paroi
intermédiaire 36 du cadre support par l'intermédiaire
d'éléments diélectriques 64. La membrane 10 comporte
des électrodes associées aux plaques 62, telles par
exemple que des zones métallisées 66 de sa surface,
ces zones 66 et les plaques 62 étant reliées aux pôles
d'une source 68 de courant continu par l'intermédiaire
d'un élément de dissipation d'énergie tel qu'une résistance
électrique 70 qui est avantageusement une résistance
variable commandée par un moyen approprié 72,
la résistance 70 absorbant l'énergie par effet Joule et la
variation de sa valeur permettant de modifier l'impédance
acoustique de la structure selon l'invention.In the embodiment of FIG. 10, the
energy dissipation means include plates
electrodes 62 arranged inside the frame of
support, parallel to the
De préférence, des trous 74 sont percés dans
les plaques électrodes 62 pour éviter tout effet de laminage
de gaz entre elles et la membrane 10.Preferably, holes 74 are drilled in
the electrode plates 62 to avoid any rolling effect
gas between them and the
L'attraction électrostatique exercée par les plaques 62 sur la membrane joue le rôle d'une anti-raideur dynamique qui s'oppose à la raideur du gaz contenu dans la structure. Cela permet de réduire l'épaisseur (ou hauteur) totale de la structure et donc son encombrement. The electrostatic attraction exerted by plates 62 on the membrane plays the role of an anti-stiffness dynamic which opposes the stiffness of the contained gas in the structure. This reduces the thickness (or height) total of the structure and therefore its size.
En variante, la membrane 10 et/ou les plaques
électrodes 62 pourraient être constituées d'un electret,
tel par exemple qu'une matière plastique du type polyuréthanne
ou PVDF chargée électriquement en permanence,
les moyens de polarisation des électrodes étant
alors supprimés.As a variant, the
Dans le mode de réalisation de la figure 11, les
moyens de dissipation d'énergie sont du type électromagnétique.
La membrane 10 est reliée, à l'intérieur du
cadre, à des bobinages électriques 76 mobiles par rapport
à des éléments magnétiques 78 constituant par
exemple la paroi intermédiaire 34 du cadre de support.
Pour éviter tout effet de laminage de gaz, les parties 78
en saillie vers la membrane peuvent être percées de
trous traversants 80.In the embodiment of FIG. 11, the
energy dissipation means are of the electromagnetic type.
The
Dans la variante de réalisation de la figure 12,
des éléments magnétiques 82 (par exemple des
aimants permanents) sont disposés sous la membrane
10 et des conducteurs électriques 84 sont portés par
cette dernière, en étant constitués par exemple par un
ou des circuits électriques imprimés ou déposés sur la
membrane. Le déplacement de ces conducteurs électriques
84 dans les lignes de champ magnétique des
éléments 80 se traduit par une dissipation d'énergie.In the variant embodiment of FIG. 12,
magnetic elements 82 (e.g.
permanent magnets) are arranged under the
Dans la variante de réalisation de la figure 13,
c'est une partie du cadre support 12 qui peut être réalisée
en matière magnétique et constituer un aimant permanent
dont les lignes de champ peuvent être coupées
par les conducteurs électriques 84 de la membrane 10
pour un effet de dissipation d'énergie.In the variant embodiment of FIG. 13,
it is a part of the
Dans une autre variante, on utilise une membrane magnétique qui se déplace par rapport à un circuit électrique pour dissiper de l'énergie.In another variant, a membrane is used magnetic which moves relative to a circuit electric to dissipate energy.
Les structures élémentaires d'absorption de bruit qui viennent d'être décrites peuvent être assemblées les unes aux autres pour former des parois planes, incurvées, concaves ou convexes, de grande dimension. Par exemple, les structures élémentaires des figures 4, 5, 8 et 9 peuvent avoir des dimensions, en surface, de l'ordre de 5 x 5 cm2 et être associées pour former une structure du type de celle représentée en figure 1 ayant une surface de l'ordre de 20 x 20 cm2, les hauteurs de ces structures étant en général comprises entre 15 et 50 mm. Les impédances acoustiques des structures élémentaires peuvent être réglées individuellement ou par petits groupes de structures. Le réglage des impédances acoustiques permet d'avoir une impédance bien adaptée pour certaines zones de surface d'une paroi avec une absorption maximale du bruit incident, tandis que d'autres zones de surface de la paroi auront des impédances différentes pour absorber partiellement le bruit incident et le réfléchir partiellement dans une direction déterminée.The elementary noise absorption structures which have just been described can be assembled together to form flat, curved, concave or convex walls, of large dimension. For example, the elementary structures of FIGS. 4, 5, 8 and 9 can have dimensions, on the surface, of the order of 5 × 5 cm 2 and can be combined to form a structure of the type of that represented in FIG. 1 having a surface of the order of 20 x 20 cm 2 , the heights of these structures generally being between 15 and 50 mm. The acoustic impedances of elementary structures can be adjusted individually or in small groups of structures. Adjusting the acoustic impedances makes it possible to have an impedance well suited for certain surface areas of a wall with maximum absorption of the incident noise, while other surface areas of the wall will have different impedances to partially absorb the noise incident and partially reflect it in a determined direction.
Par ailleurs, la possibilité de réglage de l'impédance acoustique de chaque structure élémentaire permet d'obtenir une évolution spatiale des caractéristiques acoustiques d'une paroi. On peut également obtenir une paroi à impédance acoustique non localisée lorsque les parties inférieures des structures élémentaires sont reliées entre elles, l'impédance acoustique des moyens de liaison étant un paramètre de réglage des bandes de fréquences acoustiques à traiter. De plus, comme déjà indiqué, les structures selon l'invention telles que celles de la figure 2, s'adaptent automatiquement aux variations de la pression statique extérieure et par exemple à l'évolution de la pression statique dans un conduit.In addition, the possibility of impedance adjustment acoustics of each elementary structure allows to obtain a spatial evolution of the characteristics acoustics of a wall. We can also get a wall with non-localized acoustic impedance when the lower parts of elementary structures are interconnected, the acoustic impedance of connecting means being a parameter for adjusting the acoustic frequency bands to be processed. Moreover, as already indicated, the structures according to the invention such as those of figure 2, adapt automatically to variations in external static pressure and for example to the evolution of the static pressure in a conduit.
Claims (14)
- A noise-absorption structure comprising a support frame (12) over which a gastight membrane (10) is tensioned and fixed, the outside face of the membrane receiving soundwaves, a gas such as air, for example, filling an internal volume defined by the frame (12) and the membrane (10), and energy-dissipation means housed in said volume, characterized in that the energy-dissipation means are of the laminar gas-flow type, of the electrostatic type, or of the electromagnetic type, and are modifiable, adjustable, or controllable in order to modify the acoustic impedance of said structure as a function of the characteristics of the noise to be absorbed and the structure is closed in gastight manner and contains an expandable and contractible volume element (26) such as a balloon or a bellows, for example, filled with air and communicating with the outside via a static pressure equalizing orifice (28), said element (26) occupying a considerable fraction of the inside volume of said structure.
- A structure according to claim 1, characterized in that the laminar gas flow type dissipation means comprise plates (56) disposed inside the frame (12), a short distance from the membrane (10), and means (58, 60) for modifying this distance.
- A structure according to claim 1, characterized in that the laminar gas flow dissipation means comprise at least one gas flow passage or duct (38) connecting a closed chamber (34) defined inside the frame (12) by the membrane (10) to another chamber inside said structure.
- A structure according to claim 3, characterized in that said passage is a channel (40) formed between two superposed plates (36, 42).
- A structure according to claim 4, characterized in that the structure comprises means (48, 50) for modifying the section of the channel (40) by modifying the distance between the two superposed plates (36, 42).
- A structure according to claim 1, characterized in that the laminar gas flow dissipation means comprise rods (52) carried by the membrane (10) and extending perpendicularly therefrom inside the frame in fixed tubes (54) which are closed at their ends remote from the membrane (10) and which co-operate with the rods (52) to define annular gas-flow channels.
- A structure according to claim 1, characterized in that its internal volume defined by the membrane (10), the support frame (12) and a bottom wall (18) carried by the frame (12) is adjustable, for example by means of an inflatable element housed inside by the frame.
- A structure according to claim 1, characterized in that the dissipation means of the electrostatic type comprise electrode plates (62) disposed parallel to the membrane (10) at a distance therefrom, and at least one other electrode formed on the membrane and connected together with said plates (62) to bias means (68) including energy-dissipation elements, such as a resistor (70) for example.
- A structure according to claim 8, characterized in that the structure comprises means (72) for adjusting the resistance of the resistor (70).
- A structure according to claim 8 or 9, characterized in that the membrane (10) includes one or more metal-coated zones (66) facing said electrode plates (62).
- A structure according to claim 1, characterized in that the dissipation means of the electrostatic type comprise electrode plates disposed parallel to the membrane at a distance therefrom and at least one electrode formed by the membrane (10), said electrode and/or the plates being permanently electrically charged.
- A structure according to claim 1, characterized in that the dissipation means of the electromagnetic type comprise a magnetic membrane moved relative to an electric circuit or electric conductors moved by the membrane (10) relative to magnetics elements (78, 82) carried by the frame (12) or constituted thereby, the electric conductors comprising for example coils (76) connected to the membrane (10) or electric circuits (84) printed or deposited on the membrane.
- A structure according to any one of claims 1 to 12, characterized in that the structure is juxtaposed and assembled with a plurality of structures of the same type to form a wall that is plane or curved, convex or concave, in which the structures have acoustic impedances that are similar or different for absorbing the incident noise or for deflecting it by reflection, as appropriate.
- A wall comprising a plurality of structures according to claim 13, characterized in that the energy dissipation means of at least some of said structures are associated with modification, adjustment, or control means themselves controllable by a data processor system, and are, for example, adaptable to the noise that is to be absorbed and to variation thereof.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR9608064A FR2750527B1 (en) | 1996-06-28 | 1996-06-28 | NOISE ABSORPTION STRUCTURES AND WALLS MADE OF SUCH STRUCTURES |
FR9608064 | 1996-06-28 |
Publications (3)
Publication Number | Publication Date |
---|---|
EP0817164A1 EP0817164A1 (en) | 1998-01-07 |
EP0817164B1 EP0817164B1 (en) | 2001-11-28 |
EP0817164B2 true EP0817164B2 (en) | 2004-08-25 |
Family
ID=9493519
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP97401411A Expired - Lifetime EP0817164B2 (en) | 1996-06-28 | 1997-06-19 | Noise absorbing structures and walls made therefrom |
Country Status (5)
Country | Link |
---|---|
US (1) | US6332027B1 (en) |
EP (1) | EP0817164B2 (en) |
CA (1) | CA2209302C (en) |
DE (1) | DE69708523T3 (en) |
FR (1) | FR2750527B1 (en) |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5919029A (en) * | 1996-11-15 | 1999-07-06 | Northrop Grumman Corporation | Noise absorption system having active acoustic liner |
FR2767410B1 (en) * | 1997-08-14 | 1999-10-29 | Thomson Marconi Sonar Sas | SUBMARINE ACOUSTIC ABSORBER |
US6382603B1 (en) * | 2001-02-08 | 2002-05-07 | Lockheed Martin Corporation | Ridged elastomer mount |
SI1779375T1 (en) * | 2004-08-06 | 2013-04-30 | Niels Werner Larsen | Method, device and system for altering the reverberation time of a room |
US7992678B2 (en) * | 2005-05-12 | 2011-08-09 | Pilaar James G | Inflatable sound attenuation system |
JP4782193B2 (en) * | 2005-05-13 | 2011-09-28 | ラルセン、ニールス、ヴェルナー | Method, apparatus, and system for changing reverberation time in space |
US7819221B1 (en) * | 2005-09-27 | 2010-10-26 | The United States Of America As Represented By The Secretary Of The Air Force | Lightweight acoustic damping treatment |
US8295505B2 (en) * | 2006-01-30 | 2012-10-23 | Sony Ericsson Mobile Communications Ab | Earphone with controllable leakage of surrounding sound and device therefor |
JP2008213547A (en) * | 2007-02-28 | 2008-09-18 | Nissan Motor Co Ltd | Noise control unit |
RU2357109C1 (en) * | 2007-11-07 | 2009-05-27 | Международный Научно-Исследовательский Институт Проблем Управления (Мниипу) | Device and method for influence at vortical structures in turbulent air jet |
US20170040014A1 (en) * | 2015-08-07 | 2017-02-09 | Alcatel-Lucent Usa Inc. | Acoustic Noise Attenuation Device, Assembly And Metamaterial Structure |
CN110106999A (en) * | 2019-03-29 | 2019-08-09 | 深圳中天精装股份有限公司 | A kind of assembled architecture sound-absorbing timber partition and its design method |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4068736A (en) † | 1975-04-14 | 1978-01-17 | Tempmaster Corporation | Method and device for reducing noise |
DE2834823B1 (en) † | 1978-08-09 | 1979-10-25 | Messerschmitt Boelkow Blohm | Volume changing resonators based on the plate spring principle |
EP0244755B1 (en) † | 1986-05-06 | 1991-02-06 | Stankiewicz GmbH | Construction part with acoustical characteristics |
DE4228356A1 (en) † | 1992-08-26 | 1994-03-03 | Deutsche Aerospace | Cavity resonator |
DE9418063U1 (en) † | 1994-11-11 | 1995-01-19 | Wilhelmi Werke GmbH & Co KG, 35633 Lahnau | Component for sound absorption |
DE9414943U1 (en) † | 1994-09-14 | 1996-01-18 | M. Faist GmbH & Co KG, 86381 Krumbach | Foil resonance absorber |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2076049B (en) * | 1980-05-17 | 1983-10-26 | Rolls Royce | Variable acoustic impedance lining |
FR2715244B1 (en) * | 1994-01-19 | 1996-03-29 | Bertin & Cie | Method and device for absorbing energy from acoustic waves. |
US5778081A (en) * | 1996-03-04 | 1998-07-07 | United Technologies Corp | Active noise control using phased-array active resonators |
JP3510427B2 (en) * | 1996-08-15 | 2004-03-29 | 三菱重工業株式会社 | Active sound absorbing wall |
-
1996
- 1996-06-28 FR FR9608064A patent/FR2750527B1/en not_active Expired - Lifetime
-
1997
- 1997-06-19 DE DE69708523T patent/DE69708523T3/en not_active Expired - Lifetime
- 1997-06-19 EP EP97401411A patent/EP0817164B2/en not_active Expired - Lifetime
- 1997-06-26 CA CA2209302A patent/CA2209302C/en not_active Expired - Fee Related
-
1998
- 1998-01-07 US US09/003,900 patent/US6332027B1/en not_active Expired - Lifetime
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4068736A (en) † | 1975-04-14 | 1978-01-17 | Tempmaster Corporation | Method and device for reducing noise |
DE2834823B1 (en) † | 1978-08-09 | 1979-10-25 | Messerschmitt Boelkow Blohm | Volume changing resonators based on the plate spring principle |
EP0244755B1 (en) † | 1986-05-06 | 1991-02-06 | Stankiewicz GmbH | Construction part with acoustical characteristics |
DE4228356A1 (en) † | 1992-08-26 | 1994-03-03 | Deutsche Aerospace | Cavity resonator |
DE9414943U1 (en) † | 1994-09-14 | 1996-01-18 | M. Faist GmbH & Co KG, 86381 Krumbach | Foil resonance absorber |
DE9418063U1 (en) † | 1994-11-11 | 1995-01-19 | Wilhelmi Werke GmbH & Co KG, 35633 Lahnau | Component for sound absorption |
Also Published As
Publication number | Publication date |
---|---|
EP0817164A1 (en) | 1998-01-07 |
FR2750527B1 (en) | 1998-08-21 |
EP0817164B1 (en) | 2001-11-28 |
CA2209302C (en) | 2010-12-14 |
DE69708523T3 (en) | 2005-06-09 |
DE69708523D1 (en) | 2002-01-10 |
CA2209302A1 (en) | 1997-12-28 |
FR2750527A1 (en) | 1998-01-02 |
US6332027B1 (en) | 2001-12-18 |
DE69708523T2 (en) | 2002-06-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0817164B2 (en) | Noise absorbing structures and walls made therefrom | |
EP3414756B1 (en) | Acoustic absorber, acoustic wall and method for design and production | |
FR2473242A1 (en) | ACTIVE DOME ELECTROACOUSTIC TRANSDUCER | |
EP0002161A2 (en) | Piezo-electric transducing device and process for its manufacture | |
WO2007006729A1 (en) | Device with optimized capacitive volume | |
EP3039672B1 (en) | Acoustic panel | |
WO2017077236A1 (en) | Multi-glazed window incorporating a noise reduction device | |
FR2790731A1 (en) | METHOD OF SIMULATING EXTERNAL THERMAL FLOWS ABSORBED IN FLIGHT BY THE EXTERNAL RADIATIVE ELEMENTS OF A SPACE ENGINE AND SPACE ENGINE FOR THE IMPLEMENTATION OF THIS PROCESS | |
FR2466931A1 (en) | DIRECTIONAL ELECTRO-ACOUSTIC TRANSDUCER | |
EP3411874A1 (en) | Low thickness perforated mille-feuille acoustic resonator for absorbing or radiating very low acoustic frequencies | |
EP0852050B1 (en) | Method for damping vibration and the pressure wave from a material | |
FR2797552A1 (en) | ELECTRO-ACOUSTIC TRANSDUCER | |
EP0118329A2 (en) | Velocity hydrophone | |
WO2017077233A1 (en) | Apparatus for natural ventilation of a room having a ventilation passage combined with a noise absorber | |
EP0663136B1 (en) | Diffusing volume electroacoustic transducer | |
FR2693070A1 (en) | Electro-acoustic electrodynamic transducers with moving coil. | |
EP3371519A1 (en) | Unit for the natural ventilation of a room, provided with a sound absorber | |
EP3278330B1 (en) | Acoustic impedance matching device and loudspeaker provided with such a device | |
WO1992000874A1 (en) | Device for absorbing sound energy originating inside the hull of a vessel, and modular acoustic baffle forming a part thereof | |
WO2017077231A1 (en) | Apparatus for natural ventilation of a room | |
FR2670351A1 (en) | SOUND RECORDING AND RESTITUTING APPARATUS. | |
EP3639526A1 (en) | Loudspeaker | |
FR2671899A1 (en) | Coating for wide band passive acoustic absorption in a liquid | |
FR2618284A1 (en) | Acoustic enclosure with high musical definition | |
EP4315315A1 (en) | Acoustic absorbing structures |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): DE GB |
|
17P | Request for examination filed |
Effective date: 19980619 |
|
AKX | Designation fees paid |
Free format text: DE GB |
|
RBV | Designated contracting states (corrected) |
Designated state(s): DE GB |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
17Q | First examination report despatched |
Effective date: 20001219 |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE GB |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: IF02 |
|
REF | Corresponds to: |
Ref document number: 69708523 Country of ref document: DE Date of ref document: 20020110 |
|
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 20020128 |
|
RAP2 | Party data changed (patent owner data changed or rights of a patent transferred) |
Owner name: SNECMA MOTEURS Owner name: BERTIN & CIE |
|
PLBI | Opposition filed |
Free format text: ORIGINAL CODE: 0009260 |
|
PLBF | Reply of patent proprietor to notice(s) of opposition |
Free format text: ORIGINAL CODE: EPIDOS OBSO |
|
26 | Opposition filed |
Opponent name: EADS DEUTSCHLAND GMBH Effective date: 20020816 |
|
PLBF | Reply of patent proprietor to notice(s) of opposition |
Free format text: ORIGINAL CODE: EPIDOS OBSO |
|
PUAH | Patent maintained in amended form |
Free format text: ORIGINAL CODE: 0009272 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: PATENT MAINTAINED AS AMENDED |
|
27A | Patent maintained in amended form |
Effective date: 20040825 |
|
AK | Designated contracting states |
Kind code of ref document: B2 Designated state(s): DE GB |
|
GBTA | Gb: translation of amended ep patent filed (gb section 77(6)(b)/1977) | ||
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20150521 Year of fee payment: 19 Ref country code: GB Payment date: 20150527 Year of fee payment: 19 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 69708523 Country of ref document: DE |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20160619 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170103 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160619 |