EP0812514B1 - System zur optischen abtastung für einzeltafel-farbprojektionsvideoanzeigegerät - Google Patents

System zur optischen abtastung für einzeltafel-farbprojektionsvideoanzeigegerät Download PDF

Info

Publication number
EP0812514B1
EP0812514B1 EP96939268A EP96939268A EP0812514B1 EP 0812514 B1 EP0812514 B1 EP 0812514B1 EP 96939268 A EP96939268 A EP 96939268A EP 96939268 A EP96939268 A EP 96939268A EP 0812514 B1 EP0812514 B1 EP 0812514B1
Authority
EP
European Patent Office
Prior art keywords
light
projector system
medium
deflecting means
cross
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP96939268A
Other languages
English (en)
French (fr)
Other versions
EP0812514A2 (de
Inventor
Detlev Otto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koninklijke Philips NV
Original Assignee
Koninklijke Philips Electronics NV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koninklijke Philips Electronics NV filed Critical Koninklijke Philips Electronics NV
Publication of EP0812514A2 publication Critical patent/EP0812514A2/de
Application granted granted Critical
Publication of EP0812514B1 publication Critical patent/EP0812514B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3102Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM] using two-dimensional electronic spatial light modulators
    • H04N9/3105Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM] using two-dimensional electronic spatial light modulators for displaying all colours simultaneously, e.g. by using two or more electronic spatial light modulators
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3129Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM] scanning a light beam on the display screen

Definitions

  • the present invention generally relates to a single panel projector system as is defined in the preamble of claim 1.
  • CTR cathode ray tubes
  • three light valves are used instead of the three CRTs.
  • White light is split into three beams carrying one of the three primary colours (Red, Green and Blue), each of which is then modulated by one of three light valves, before the three beams are re-combined into a single projected image.
  • the light valve panels are typically thin-film transistor (TFT) array liquid crystal display (LCD) panels.
  • TFT thin-film transistor
  • LCD liquid crystal display
  • the rotating prism is used to achieve a deflection of three light rays from their original axis for scanning the above-mentioned light rays across the light valve device, the pixel elements of which are programmed with the proper video information (red, green or blue) for the passing light ray of the respective colour.
  • the human eye integrates this "colour sequential" display of three separate images into a "single" image.
  • the above-described conventional prism approach suffers from two major drawbacks.
  • the scanning motion of the output rays is nonlinear, while the light valve requires constant speed of the scanning light band. Because of this incongruity, less than the full scanning range is employed, resulting in a large overscan and therefore loss of light. Thus, the system's efficiency is degraded and it is difficult to obtain a linear scanning.
  • the glass used for the prism has a relatively high refractive index which increases cost for the material.
  • Another object of the invention is to provide a method and apparatus for a single panel projection device which does not employ a rotating prism for deflecting a plurality (e.g., three) of light rays from their original axis for scanning the light rays across a light valve device.
  • Yet another object is to provide a method and apparatus which prevents a large overscan and light loss.
  • a further object is to provide a system which is relatively low cost.
  • a scanning method and apparatus for use in a single panel projector, for projecting images having a plurality of colour components, which includes a mechanism for deflecting light into a plurality of directions, and a light panel for receiving the light deflected by the deflecting mechanism.
  • the deflecting mechanism includes a transparent optical medium having a nonuniform thickness, in which light beams enter through a centre opening of the medium and exit at areas along a side of the medium.
  • the present invention uses a transparent optical medium having a changing thickness in which the beams enter through the centre opening of the medium and exit at various points along the side of the medium.
  • the medium may advantageously have a cylindrical, egg- or spiral shape, but may have any shape suitable to meet the designer's needs.
  • the system is relatively inexpensive to manufacture as opposed to the conventional prism-based deflection systems.
  • US-A-5,398,082 discloses a projection system for projecting images having a plurality of colour components, comprising a light panel for receiving light and deflecting means comprising a transparent optical medium rotatably mounted around a rotation axis for deflecting the light across the light panel.
  • This projection system does not disclose a cylindrical transparent optical medium having a central opening along a rotation axis, a curved exterior surface and cross-sectional thickness extending from said rotation axis to said exterior surface, such that said cross-sectional thickness comprises a non-uniform thickness.
  • US-A-5,532,763 discloses also a projection system for projecting images having a plurality of colour components, comprising a light panel for receiving light and deflecting means comprising a transparent optical medium rotatably mounted around a rotation axis for deflecting the light across the light panel.
  • This projection system does not disclose a cylindrical transparent optical medium having a central opening along a rotation axis, a curved exterior surface and cross-sectional thickness extending from said rotation axis to said exterior surface, such that said cross-sectional thickness comprises a non-uniform thickness.
  • the material for the transparent optical medium need not be glass, but can be commonly available plastic or the like, and there is a high degree of freedom in designing the transparent optical medium to increase the scanning area.
  • the optical medium may be easily and advantageously shaped to match the optical system and can compensate for other nonlinearities in the system's optical path.
  • Figure 1 illustrates a basic principle of the present invention, and more specifically illustrates an optical medium 1 through which a light ray passes.
  • Figure 2 illustrates a cross-section and a side view of a deflector 2 according to the present invention.
  • Figure 3 illustrates a ray entering a body through the centre opening at a predetermined angle á.
  • Figures 4a, 4b, and 4c illustrate respective scanning patterns 6, 7, and 8, and the cross-sections of deflectors 9, 10, and 11, respectively.
  • Figures 5A and 5B illustrate a side view and a cross-section, respectively, of a deflector 15 and illustrates the deflection of three light beams according to the present invention and more specifically illustrate the relationship of the change in the outer radius of the deflector to the amount of deflection of the three light beams.
  • Figure 6 is a schematic diagram of a light path arrangement utilizing a deflector according to the present invention.
  • a rotating prism is typically used. While the scanning method relates to the conventionally used rotating prism in the single panel projector, the present invention uses, instead of a rotating prism, a transparent optical medium which has a changing thickness in which the beams enter through the centre opening of the cylindrical medium and exit at various points along the side of the medium.
  • the medium advantageously has a cylindrical-, egg- or spiral-shape.
  • Figure 1 depicts the basic principle of the invention.
  • the invention is based on the knowledge that a light ray passing through an optical medium 1 (e.g., formed of glass or the like) with two parallel transition surfaces does not change its direction. Instead, the light ray exits the medium 1 at a parallel offset s which is a function of the thickness d of the material its refractive index n and the entrance angle a.
  • a method of achieving a varying s is to change the thickness d in a controlled fashion.
  • a body made of, for example, glass hereafter referred to as a "deflector” with the following characteristics (see also Fig. 2, described below, for linear deflection).
  • a deflector glass
  • commonly-available transparent plastic may also be employed.
  • Figures 2-4c are diagram of a scanning mechanism 2 (e.g., a deflector 2) for use, for example, in a projection television system.
  • the scanning mechanism is for deflecting one or more light beam(s) parallel to its/their respective axes such that the light beam scans (e.g., "moves across"), for example, a light valve.
  • the resulting scanning motion can be either linear or non-linear.
  • the cross-section of the deflector 2 is preferably cylindrical, egg- or spiral-shaped with a circular cut-out at the centre, the dimensions being defined as r(o) and r(i) , respectively.
  • the height h is not critical so long as the basic function of the deflector is not impaired.
  • the scanning mechanism is scalable according to the designer's constraints and requirements.
  • r(i) is a constant, while r(o) is a function of the rotation angle.
  • the mathematical function describing r(o) can be linear, non-linear, periodic, monotonous, discontinuous, etc.
  • the refractive index of the deflector material may be any value greater than 1.0, even though a higher number will result in smaller overall dimensions and thus may be more preferable.
  • the deflector may have any thickness depending on the designer's requirements and constraints. However, there is generally a trade-off between the overall system's optical path, the overall dimensions and that the light throughput will be higher the smaller the refractive index is.
  • a light ray 3 entering the body 4 through the centre opening at an angle ⁇ is subjected to a deflection 5.
  • the amount of deflection 5 depends on the effective thickness of the deflector which in turn is defined by its rotation angle.
  • Figures 4a-4c respectively illustrate examples of the scanning patterns 6, 7, and 8 and the respective cross-sections 9, 10, and 11 of deflectors according to the present invention.
  • the design of the outer and inner radius given a large degree of freedom in adapting the scanning motion to the light valve's optical path and the overall system. Thus, changes in the system may be easily compensated for.
  • three light rays e.g., red, green and blue (R,G,B)
  • R,G,B red, green and blue
  • One approach would be to use three deflectors, synchronized by, for example, known mechanical means such as a gearbox.
  • the diverging exit rays 16, 17, and 18, respectively, have to be collimated with a suitable mirror arrangement (e.g., mirrors 27, 29) and a recombination optical system 30.
  • a suitable mirror arrangement e.g., mirrors 27, 29
  • a recombination optical system 30 e.g., a recombination optical system
  • the recombination optical system 30 includes, for example, intertwined dichroic mirrors (e.g., a so-called "3D dichroic combiner").
  • Fig. 6 illustrates a light path arrangement utilizing the inventive arrangement of Figures 5a and 5b.
  • white light 19 is applied to a three-dimensional dichroic splitter 20 including a plurality of dichroic mirrors (or filters) which cause the red 21, green 22 and blue 23 portions of the incoming light to exit the splitter perpendicular to the axis of the incoming ray and having a predetermined angle (e.g., an angle of 120 degrees) between each other.
  • a predetermined angle e.g., an angle of 120 degrees
  • Each ray is reflected by one of three dichroic mirrors.
  • Figure 6 simply illustrates two mirrors 24, 25 of the three mirrors.
  • the third mirror e.g., not shown
  • Each ray enters the deflector 26 core at the same angle relative to the rotation axis.
  • the rays exiting the deflector 26 undergo a deflection different for each of the three rays because each of the rays goes through a different thickness of the optical medium 26.
  • the thickness of the optical medium results in a different deflection for each of the rays.
  • Mirrors 27, 28, and 29 redirect the beams towards the three-dimensional dichroic combiner 30.
  • the rotation of the deflector 26 causes the z position of the respective rays to change according to the desired scanning motion.
  • specialized coatings could be used for the mirrors such as infrared (IR) or ultraviolet (UV) coatings for respectively filtering out IR and UV rays.
  • the above structure is advantageous in that the structure is relatively easy to construct and that the problems of the conventional rotating prism design are overcome.
  • a rotating prism for deflecting the three light rays from their original axis with the purpose of scanning the light rays across a light valve device is not used.
  • the inventive method and apparatus - prevent a large overscan and light loss. Further, a system is provided which is relatively low cost.
  • the present invention uses a transparent optical medium having a changing thickness in which the beams enter through a centre opening of the medium and exit at various points along a side of the medium.
  • optical medium having a cylindrical, egg- or a spiral shape
  • other shapes such as a polygonal shape, would also be advantageous depending upon the system configuration, system performance requirements and dimensional constraints.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Transforming Electric Information Into Light Information (AREA)
  • Projection Apparatus (AREA)
  • Mechanical Light Control Or Optical Switches (AREA)
  • Mechanical Optical Scanning Systems (AREA)

Claims (11)

  1. Einzelschirm-Projektorsystem zum Projizieren von Bildern mit mehreren Farbkomponenten, welches aufweist:
    einen Lichtschirm zur Aufnahme von Licht sowie
    Ablenkmittel (2; 4; 15; 26) mit einem transparenten, optischen Medium (1), welches um eine Drehachse rotierbar angebracht ist, um das Licht auf dem Lichtschirm abzulenken,
        dadurch gekennzeichnet, dass das transparente, optische Medium (1) eine zylindrische Form aufweist, wobei eine Längsachse des Mediums mit der Drehachse koinzidiert, das optische Medium eine mittlere Öffnung entlang der Drehachse aufweist und sich eine gekrümmte Außenfläche und eine Querschnittsdicke von der mittleren Öffnung zu der gekrümmten Außenfläche so erstrecken, dass die Querschnittsdicke gegenüber der Rotation um die Drehachse ungleichmäßig dick ist,
       wobei Strahlen des Lichts durch die mittlere Öffnung des Mediums eintreten und an Stellen entlang der gekrümmten Außenfläche des Mediums austreten.
  2. Projektorsystem nach Anspruch 1, wobei das Medium zylindrisch, eier- oder spiralförmig ist.
  3. Projektorsystem nach Anspruch 1, wobei die Ablenkmittel (2; 4; 15; 26) mindestens einen Lichtstrahl parallel zu seiner Achse so ablenken, dass der Lichtstrahl über den Lichtschirm geführt wird, und wobei eine Abtastbewegung linear oder nicht linear ist.
  4. Projektorsystem nach Anspruch 1, wobei die Ablenkmittel (2; 4; 15; 26) aus transparentem Kunststoff oder Glas bestehen.
  5. Projektorsystem nach Anspruch 1, wobei die Ablenkmittel (2; 4; 15; 26) einen spiralförmigen, halb spiralförmigen, eierförmigen oder zylindrischen Querschnitt mit einem darin vorgesehenen Ausschnitt aufweisen, wobei die mittlere Öffnung einen konstanten Radius von der Achse r(i), die Querschnittsdicke einen variablen Radius von der Achse r(o) aufweist, wobei der variable Radius r(o) eine Wirkungsweise eines Rotationswinkels der Ablenkmittel um die Drehachse vorsieht.
  6. Projektorsystem nach Anspruch 5, wobei der variable Radius r(o) direkt proportional zu dem Rotationswinkel so ausgewählt wird, dass sich ein lineares Abtastmuster ergibt.
  7. Projektorsystem nach Anspruch 1, wobei die Ablenkmittel (2; 4; 15; 26) eine Querschnittsform (10) in Form einer Spirale aufweisen.
  8. Projektorsystem nach Anspruch 1, wobei die Ablenkmittel (2; 4; 15; 26) eine Querschnittsform (11) in Form einer Halbspirale aufweisen.
  9. Projektorsystem nach Anspruch 1, wobei von den Ablenkmitteln (26) mehrere Lichtstrahlen gleichzeitig abgelenkt werden.
  10. Projektorsystem nach Anspruch 1, wobei ein Einzeldeflektor (26) vorgesehen ist, um mehrere Strahlen gleichzeitig abzulenken, und
       wobei jeder Strahl der mehreren Lichtstrahlen einen entsprechenden Rotationswinkel aufweist.
  11. Projektorsystem nach Anspruch 1, welches weiterhin Mittel (27, 29) zum Kollimieren divergierender Austrittsstrahlen sowie ein optisches Rekombinationssystem (30) aufweist, wobei das optische Rekombinationssystem ineinander greifende, dichroitische Spiegel vorsieht.
EP96939268A 1995-12-28 1996-12-09 System zur optischen abtastung für einzeltafel-farbprojektionsvideoanzeigegerät Expired - Lifetime EP0812514B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US08/579,704 US5781251A (en) 1995-12-28 1995-12-28 Method and apparatus for optical scanning for single panel color projection video display
US579704 1995-12-28
PCT/IB1996/001389 WO1997024881A2 (en) 1995-12-28 1996-12-09 Method and apparatus for optical scanning for single panel colour projection video display

Publications (2)

Publication Number Publication Date
EP0812514A2 EP0812514A2 (de) 1997-12-17
EP0812514B1 true EP0812514B1 (de) 2002-07-10

Family

ID=24318002

Family Applications (1)

Application Number Title Priority Date Filing Date
EP96939268A Expired - Lifetime EP0812514B1 (de) 1995-12-28 1996-12-09 System zur optischen abtastung für einzeltafel-farbprojektionsvideoanzeigegerät

Country Status (6)

Country Link
US (1) US5781251A (de)
EP (1) EP0812514B1 (de)
KR (1) KR100432349B1 (de)
CN (1) CN1099197C (de)
DE (1) DE69622262T2 (de)
WO (1) WO1997024881A2 (de)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100252157B1 (ko) * 1997-08-30 2000-04-15 윤종용 프로젝션 텔레비전 수상기
US6288815B1 (en) 1999-03-31 2001-09-11 Philips Electronics North America Corporation Light scanner with cylindrical lenses
US6771325B1 (en) * 1999-11-05 2004-08-03 Texas Instruments Incorporated Color recapture for display systems
US7118226B2 (en) * 1999-11-05 2006-10-10 Texas Instruments Incorporated Sequential color recapture for image display systems
US7052150B2 (en) * 1999-12-30 2006-05-30 Texas Instruments Incorporated Rod integrator
TW493085B (en) * 2000-05-30 2002-07-01 Matsushita Electric Ind Co Ltd Lightning optical device and projection video device using the same, and integrated type image device
US6710933B2 (en) * 2000-05-31 2004-03-23 Matsushita Electric Industrial Co., Ltd. Zoom lens and video camera comprising the same
US6626539B2 (en) 2001-04-30 2003-09-30 Koninklijke Philips Electronics N.V. Color video projection display system with low-retardance compensator film for improved contrast
KR100421668B1 (ko) * 2001-05-23 2004-03-10 엘지전자 주식회사 단판식 표시소자를 이용한 프로젝트의 컬러 스크롤링 장치
KR100389024B1 (ko) * 2001-06-19 2003-06-25 엘지전자 주식회사 단판식 액정패널의 광학계
US20030020839A1 (en) * 2001-06-30 2003-01-30 Dewald D. Scott Integrating filter
US6870581B2 (en) * 2001-10-30 2005-03-22 Sharp Laboratories Of America, Inc. Single panel color video projection display using reflective banded color falling-raster illumination
US6967759B2 (en) * 2001-12-31 2005-11-22 Texas Instruments Incorporated Pulse width modulation sequence generation
JP2004295125A (ja) * 2003-03-26 2004-10-21 Samsung Electronics Co Ltd スクロールユニット及びそれを採用したプロジェクションシステム
US7147332B2 (en) * 2004-07-21 2006-12-12 3M Innovative Properties Company Projection system with scrolling color illumination
CN113126061B (zh) * 2020-01-16 2023-03-10 上海耕岩智能科技有限公司 一种激光雷达及其扫描方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR729279A (fr) * 1932-01-06 1932-07-21 Electro Verre L Isolateur en verre et son mode de fabrication
US3655986A (en) * 1964-10-20 1972-04-11 Massachusetts Inst Technology Laser device
US4671634A (en) * 1985-03-19 1987-06-09 Casio Computer Co., Ltd. Liquid crystal projector
US4864390A (en) * 1986-08-22 1989-09-05 North American Philips Corporation Display system with equal path lengths
US5060058A (en) * 1989-06-07 1991-10-22 U.S. Philips Corporation Modulation system for projection display
US5023725A (en) * 1989-10-23 1991-06-11 Mccutchen David Method and apparatus for dodecahedral imaging system
US5548347A (en) * 1990-12-27 1996-08-20 Philips Electronics North America Corporation Single panel color projection video display having improved scanning
DE69125125T2 (de) * 1990-12-27 1997-08-21 Philips Electronics Nv Farbbildanzeigevorrichtung und Schaltung zur Ansteuerung vom Lichtventil einer solcher Vorrichtung
US5398082A (en) * 1993-05-20 1995-03-14 Hughes-Jvc Technology Corporation Scanned illumination for light valve video projectors
US5450219A (en) * 1993-11-17 1995-09-12 Hughes Aircraft Company Raster following telecentric illumination scanning system for enhancing light throughout in light valve projection systems
FR2731124B1 (fr) * 1995-02-27 1997-04-04 Thomson Consumer Electronics Systeme de projection couleur monovalve

Also Published As

Publication number Publication date
KR19980702527A (ko) 1998-07-15
WO1997024881A3 (en) 1997-08-21
KR100432349B1 (ko) 2004-07-16
WO1997024881A2 (en) 1997-07-10
EP0812514A2 (de) 1997-12-17
CN1099197C (zh) 2003-01-15
DE69622262T2 (de) 2003-03-06
US5781251A (en) 1998-07-14
CN1181860A (zh) 1998-05-13
DE69622262D1 (de) 2002-08-14

Similar Documents

Publication Publication Date Title
EP0812514B1 (de) System zur optischen abtastung für einzeltafel-farbprojektionsvideoanzeigegerät
KR100382953B1 (ko) 화상표시장치
EP0710423B1 (de) Bildprojektionssystem
EP1105764B1 (de) Lichtabtaster mit zylinderlinsen
US6002826A (en) Thin display optical projector
US5757341A (en) Color liquid crystal projection display systems
US5371559A (en) Light valve image projection apparatus
EP0717865B1 (de) Flüssigkristall-projektionsanzeigesysteme
US5865520A (en) Projection system
US20020135862A1 (en) Illumination system for scrolling color recycling
EP0492721A2 (de) Farbbildanzeigevorrichtung zur Ansteuerung vom Lichtventil einer solcher Vorrichtung
JP2001051231A (ja) 表示光学装置
US5612814A (en) Compact sized optical projection system
US5790305A (en) Projection system comprising a free form reflector and a free form lens
CN100370304C (zh) 投影镜头及使用该投影镜头的投影式显示装置及背面投影式显示装置
US20020008196A1 (en) Projection-type image display apparatus
EP0699313B1 (de) Optische helligkeitsabtastung mit hilfe eines transmissiven polygons für lichtmodulierenden videoprojektor
JPH11503294A (ja) 単一パネルのカラー投射型ビデオ表示装置のための光学走査のための方法と装置
KR20000075786A (ko) 다중 칼라 밴드 광원
US5999335A (en) Projecting apparatus
US6719430B2 (en) Precision optical system for display panel
KR100283707B1 (ko) 컬러 디스플레이 장치
JP2001091894A (ja) 表示光学装置
US5895109A (en) Projector
EP1455538A2 (de) Farbaufzugseinheit und damit versehene Projektionsbildanzeigevorrichtung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): DE FR GB

17P Request for examination filed

Effective date: 19980112

17Q First examination report despatched

Effective date: 19991117

RTI1 Title (correction)

Free format text: SYSTEM FOR OPTICAL SCANNING FOR SINGLE PANEL COLOUR PROJECTION VIDEO DISPLAY

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REF Corresponds to:

Ref document number: 69622262

Country of ref document: DE

Date of ref document: 20020814

REG Reference to a national code

Ref country code: GB

Ref legal event code: 746

Effective date: 20020918

ET Fr: translation filed
REG Reference to a national code

Ref country code: FR

Ref legal event code: D6

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20030411

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20041222

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20041228

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20050215

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20051209

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060701

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20051209

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060831

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20060831