EP0810269A2 - Transparent bismuth vanadate pigments - Google Patents

Transparent bismuth vanadate pigments Download PDF

Info

Publication number
EP0810269A2
EP0810269A2 EP19970810315 EP97810315A EP0810269A2 EP 0810269 A2 EP0810269 A2 EP 0810269A2 EP 19970810315 EP19970810315 EP 19970810315 EP 97810315 A EP97810315 A EP 97810315A EP 0810269 A2 EP0810269 A2 EP 0810269A2
Authority
EP
European Patent Office
Prior art keywords
bismuth
coating
pigment
minutes
metals
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP19970810315
Other languages
German (de)
French (fr)
Other versions
EP0810269B1 (en
EP0810269A3 (en
Inventor
Leonardus Johannes Hubertus Erkens
Gregor Schmitt
Hendrikus Maria Anna Hamers
Johannes Maria Martinus Luijten
Jozef Gertruda Emanuel Mains
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Novartis AG
BASF Schweiz AG
Original Assignee
Ciba Geigy AG
Ciba Spezialitaetenchemie Holding AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ciba Geigy AG, Ciba Spezialitaetenchemie Holding AG filed Critical Ciba Geigy AG
Publication of EP0810269A2 publication Critical patent/EP0810269A2/en
Publication of EP0810269A3 publication Critical patent/EP0810269A3/en
Application granted granted Critical
Publication of EP0810269B1 publication Critical patent/EP0810269B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G31/00Compounds of vanadium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/02Ingredients treated with inorganic substances
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/0006Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black containing bismuth and vanadium
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/08Intercalated structures, i.e. with atoms or molecules intercalated in their structure

Definitions

  • the present application relates to transparent bismuth vanadate pigments and their preparation.
  • the pigments used to achieve a transparent yellow color in the paint, plastics and printing ink industries are, with the exception of transparent yellow iron oxide, organic pigments.
  • the long, e.g. bismuth vanadate pigments known from US Pat. Nos. 3,843,554 and 4,115,142, which are particularly valued for their low toxicity and high color saturation and fastness properties, have hitherto existed only as highly opaque variants. For this reason, the use of bismuth vanadate pigments produced using previously known methods is limited to opaque coloring.
  • the acidic bismuth salt solution is an aqueous nitric acid solution of bismuth (III) acetate or preferably Bi (III) nitrate
  • the vanadate solution is, for example, a solution of NaVO 3 , NH 4 VO 3 , Na 3 VO 4 or V 2 O 5 in sodium hydroxide solution or potassium hydroxide solution. It is advantageous to thoroughly disperse the pigment precursor during or after the precipitation in the reaction solution, before the coating process (b), in a conventional dispersing apparatus.
  • the pigment precursors produced under (a) are preferably pigment precursors which are known as C.I. Pigment Yellow 184 referred to commercially available bismuth vanadate pigments (cf. The Bulletin of the Bismuth Institute 68, 1995).
  • the coating according to (b) is preferably carried out with 10 to 30% by weight of coating material, based on the total amount.
  • Suitable coating materials are inorganic compounds, e.g.
  • Phosphates and pyrophosphates of zinc, aluminum, calcium, magnesium, bismuth, iron or chromium such as, for example, zinc phosphate [Zn 3 (PO 4 ) 2 ], aluminum phosphate [AlPO 4 ], Calcium phosphate [Ca 3 (PO 4 ) 2 ], calcium pyrophosphate [Ca 2 P 2 O 7 ], magnesium phosphate [Mg 3 (PO 4 ) 2 ], bismuth phosphate [BiPO 4 ], iron (II) phosphate [Fe 3 (PO 4 ) 2 ], iron (III) phosphate [FePO 4 ], chromium (III) phosphate [CrPO 4 ], and calcium salts of oligophosphates, such as the calcium salt of Graham's salt, or a mixture of phosphates ;
  • Hydroxides such as aluminum hydroxide [Al (OH) 3 ], zinc hydroxide [Zn (OH) 2 ], iron (II) hydroxide [Fe (OH) 2 ], iron (III) hydroxide [Fe (OH) 3 ], Strontium hydroxide [Sr (OH) 2 ], calcium hydroxide [Ca (OH) 2 ], bismuth hydroxide [Bi (OH) 3 ], barium hydroxide [Ba (OH) 2 ], chromium (III) hydroxide [Cr (OH) 3 ], Vanadium (IV) hydroxide [V (OH) 4 ], cobalt (II) hydroxide [Co (OH) 2 ], manganese hydroxide [Mn (OH) 2 ] or a mixture of hydroxides;
  • Oxides or water-containing oxides such as tin (II) oxide hydrate [SnO ⁇ xH 2 O], tin (IV) oxide hydrate [SnO 2 • xH 2 O], titanium dioxide hydrate [TiO 2 • xH 2 O], zirconium dioxide hydrate [ZrO 2 • xH 2 O], cerium (III) oxide hydrate [Ce 2 O 3 • XH 2 O], cerium (IV) oxide hydrate [CeO 2 • xH 2 O], silicon dioxide [SiO 2 ], antimony (III) oxide hydrate [Sb 2 O 3 • xH 2 O], antimony (V) oxide hydrate [Sb 2 O 5 • xH 2 O] or a mixture of oxides or water-containing oxides.
  • tin (II) oxide hydrate [SnO ⁇ xH 2 O] tin (IV) oxide hydrate [SnO 2 • xH 2 O]
  • carbonates, nitrates, fluorides, fluorosilicates, molybdates, tungstates and in particular sulfates such as calcium carbonate [CaCO 3 ], magnesium carbonate [MgCO 3 ], bismuth oxy nitrate [BiO (NO 3 )], bismuth oxy fluoride [BiOF], calcium hexafluorosilicate [CaSiF 6 ], calcium molybdate [CaMoO 4 ], calcium sulfate [CaSO 4 ] or mixtures thereof.
  • hydroxides and in particular the phosphates of zinc and aluminum are preferred.
  • a mixture of zinc and aluminum phosphate is particularly preferred.
  • the coating agent is expediently metered into the pigment precursor suspension in aqueous solution and, if appropriate, by adding an acid or base Dependent pH used used coating material, it being advantageous to thoroughly disperse the resulting product during or after the addition of the coating agent, before the thermal treatment, in a conventional dispersing apparatus, for example a high-pressure homogenizer or a high-speed stirrer.
  • Suitable acids are e.g. Phosphoric acid and acetic acid and especially nitric acid.
  • Aqueous alkali hydroxide solutions or ammonia solutions, preferably aqueous sodium hydroxide solution, can expediently be used as bases.
  • the pH is important for the coating so that the coating materials fail. In the case of phosphates, pH values between 5 and 10, preferably between 5 and 7, are expedient.
  • For hydroxides a pH range between 1 (bismuth hydroxide) and 11 (calcium and barium hydroxide) can be used; however, the preferred aluminum and zinc hydroxides are in the range 4 to 8. Most oxides or water-containing oxides are precipitated at pH values between 2 and 4. However, higher pH values up to 10 have no negative influence. Silicon oxide precipitates in a pH range of 2-9, preferably 6-9. The other salts listed fall out in a pH range between 1 (bismuth oxin nitrate) and 8 (calcium molybdate).
  • the thermal treatment (c) (calcination) is carried out by conventional methods, preferably between 100 and 600 ° C., particularly preferably between 300 and 450 ° C. and in particular at 400 ° C.
  • the coating can, if appropriate for the intended use, be removed by treatment with an acid or base and, if appropriate, replaced with other customary coating agents, without impairing the transparency.
  • Suitable acids and bases are e.g. the same ones mentioned above in connection with pH adjustment.
  • the products obtained by the process according to the invention are characterized by a transparency never previously achieved with bismuth vanadate pigments. They are therefore new and form a further subject of the present application.
  • L * (white) or L * (black) are measured by color measurement of an alkyd-melamine lacquer application with a pigment content (solids content) of 38%, with a layer thickness (dry) of 40 ⁇ m on a black and white contrast cardboard and calculation the ClELAB formula (ISO 7724-1 to 7724-3).
  • the present invention accordingly also relates to bismuth vanadate pigments of the general composition Bi 2nd O 3rd x V 2nd O 5 , Bismuth and vanadium can be partially replaced by other metals or non-metals, characterized in that they have a transparency of ⁇ L *> 4 in an alkyd-melamine lacquer application with a pigment content of 38%, with a layer thickness, dry, of 40 ⁇ m .
  • the metals and non-metals which can partially replace bismuth and vanadium, are preferably Li, Mg, Zn, Al and in particular Ca, and W and in particular P and Mo.
  • Bismuth vanadate pigments based on the C.I. Pigment Yellow 184 types.
  • the transparent bismuth vanadates according to the invention can be used as pigments for high-molecular organic materials.
  • High molecular weight organic materials which can be pigmented with the bismuth vanadates according to the invention are, for example, cellulose ethers and esters, such as ethyl cellulose, nitrocellulose, cellulose acetate and cellulose butyrate, natural resins and synthetic resins, such as polymerization resins or condensation resins, for example aminoplasts, in particular urea and melamine-formaldehyde resins, alkyd resins, phenoplasts, polycarbonates, polyolefins, such as polyethylene and polypropylene, polystyrene, polyvinyl chloride, polyacrylonitrile, polyacrylic acid esters, polyamides, polyurethanes, polyesters, rubbers, casein, silicone and silicone resins , individually or in mixtures.
  • cellulose ethers and esters such as ethyl cellulose, nitrocellulose, cellulose acetate and cellulose butyrate
  • natural resins and synthetic resins such as polymerization resins
  • the bismuth vanadate according to the invention can be used in an amount of 0.01 to 75% by weight, preferably 0.1 to 50% by weight.
  • the colorations obtained are distinguished, in addition to the extraordinarily high color purity and transparency, by high color strength, good dispersibility, good resistance to overpainting, migration, heat, light and weather, and by a good shine from.
  • the bismuth vanadates according to the invention are particularly notable for their high transparency. Accordingly, they are preferably suitable for coloring plastics, printing inks and aqueous and / or solvent-based paints, in particular automotive paints. Their use is particularly preferred for metallic effect coatings (metal or mica).
  • Example 1 98.4 g of bismuth nitrate pentahydrate and 6.4 g of calcium nitrate tetrahydrate are dissolved with stirring in 74.4 g of nitric acid (54%) and 580 ml of water.
  • the solution obtained is mixed with a vanadate solution consisting of 35.4 g of sodium orthovanadate, 4.0 g of sodium hydroxide and 6.6 g of sodium molybdate dihydrate in 600 ml of water within 3 minutes with vigorous stirring.
  • the pH of the resulting suspension is raised to a value of 3.5 within a few minutes by adding 20% sodium hydroxide solution raised.
  • the pH of the suspension is increased to a value of 6.5 within 20 minutes by adding 1 molar sodium hydroxide solution and stirring is continued for a further 30 minutes.
  • a solution of 39.0 g of phosphoric acid (75%), 53.0 g of aluminum sulfate hydrate and 44.0 g of zinc sulfate heptahydrate dissolved in 300 ml of water is added to this suspension in 20 minutes, whereupon the pH drops. If the pH falls below 2.0, 20% sodium hydroxide solution is added.
  • the pH of the suspension is then adjusted to a value of 6.5 in 1 minute with 1 molar sodium hydroxide solution and stirred for a further 30 minutes.
  • the solid obtained is calcined at 400 ° C. for 20 hours. After the annealing product has cooled, it is deagglomerated in a powder mill.
  • the pigment obtained is applied in an AM lacquer according to the following procedure:
  • the paint is drawn out on a contrasting cardboard (wet film thickness 75 ⁇ m), flashed off for 20 minutes and baked at 130 ° C for 30 minutes.
  • Example 2 98.4 g of bismuth nitrate pentahydrate and 6.4 g of calcium nitrate tetrahydrate are dissolved with stirring in 74.4 g of nitric acid (54%) and 580 ml of water.
  • the solution obtained is mixed with a vanadate solution consisting of 35.4 g of sodium orthovanadate, 4.0 g of sodium hydroxide and 6.6 g of sodium molybdate dihydrate in 600 ml of water within 3 minutes with vigorous stirring.
  • the pH of the resulting suspension is raised to a value of 3.5 within a few minutes by adding 20% sodium hydroxide solution.
  • the pH of the suspension is increased to 6.5 within 20 minutes by adding 1 molar sodium hydroxide solution and the mixture is stirred for a further 30 minutes.
  • a solution of 9.8 g of phosphoric acid (75%), 13.3 g of aluminum sulfate hydrate and 11.0 g of zinc sulfate heptahydrate dissolved in 300 ml of water is added to this suspension in 5 minutes, after which a pH of 1.2 one poses.
  • the pH of the suspension is then adjusted to a value of 6.5 in 1 minute with 1 molar sodium hydroxide solution and stirred for a further 30 minutes.
  • the solid obtained is calcined at 400 ° C. for 20 hours. After the annealing product has cooled, it is deagglomerated in a powder mill.
  • the pigment obtained is applied in an AM lacquer and subjected to a color measurement.
  • Example 3 239.0 g bismuth nitrate pentahydrate and 12.8 g calcium nitrate tetrahydrate are dissolved with stirring in 140.0 g nitric acid (54%) and 1150.0 ml water.
  • a vanadate solution consisting of 70.8 g of sodium orthovanadate, 7.9 g of sodium hydroxide and 13.2 g of sodium molybdate dihydrate in 700 ml of water is added to the resulting solution within 1 minute with vigorous stirring.
  • the pH of the resulting suspension is raised to a value of 3.5 within a few minutes by adding 20% sodium hydroxide solution.
  • the pH of the suspension is increased to a value of 6.5 within 20 minutes by adding 1 molar sodium hydroxide solution and stirring is continued for a further 30 minutes.
  • a solution of 39.0 g of phosphoric acid (75%), 53.0 g of aluminum sulfate hydrate and 44.0 g of zinc sulfate heptahydrate dissolved in 200 ml of water is added to this suspension in 5 minutes, after which the pH is 1.0 sets.
  • the pH of the suspension is then adjusted to a value of 6.5 in 50 minutes with 50% sodium hydroxide solution and stirred for a further 30 minutes.
  • the solid obtained is calcined at 400 ° C. for 16 hours. After the annealing product has cooled, it is deagglomerated in a powder mill.
  • Example 4 98.4 g of bismuth nitrate pentahydrate and 6.4 g of calcium nitrate tetrahydrate are dissolved with stirring in 74.4 g of nitric acid (54%) and 580 ml of water.
  • a vanadate solution consisting of 35.4 g of sodium orthovanadate, 4.0 g of sodium hydroxide and 6.6 g of sodium molybdate dihydrate in 600 ml of water is added to the resulting solution within 3 minutes with vigorous stirring.
  • the pH of the resulting suspension is raised to a value of 3.5 within a few minutes by adding 20% sodium hydroxide solution.
  • the pH of the suspension is increased to 6.5 within 60 minutes by adding 20% sodium hydroxide solution and the mixture is left to stir for a further 30 minutes.
  • a solution of 53.0 g of aluminum sulfate hydrate and 44.0 g of zinc sulfate heptahydrate dissolved in 600 ml of water is added to this suspension in 10 minutes, after which a pH of 3.1 is established.
  • the pH of the suspension is then adjusted to a value of 6.5 in 1 minute with 1 molar sodium hydroxide solution and stirred for a further 30 minutes. After filtration, washing three times with 500 ml of water and drying at 100 ° C., the solid obtained is calcined at 400 ° C. for 24 hours. After the annealing product has cooled, it is deagglomerated in a powder mill.
  • Example 5 123.6 g of bismuth nitrate pentahydrate are dissolved with stirring in 53.0 g of nitric acid (54%) and 570 ml of water. The solution obtained is mixed with a vanadate solution consisting of 48.9 g of sodium orthovanadate, 5.5 g of sodium hydroxide in 600 ml of water within 3 minutes with vigorous stirring. The pH of the resulting suspension is raised to a value of 3.5 within a few minutes by adding 20% sodium hydroxide solution. After a stirring time of 30 minutes, the pH of the suspension is increased to 6.5 within 60 minutes by adding 20% sodium hydroxide solution and the mixture is stirred for a further 16 hours.
  • the annealing product After the annealing product has cooled, it is deagglomerated in a powder mill. 50 g of the pigment obtained are redispersed in 2.0 l of water and 5.0 g of sodium hexametaphosphate for 20 minutes at 100 ° C. using a high-speed stirrer. A solution of 7.6 g of cerium (III) chloride in 250 ml of water is added to the suspension obtained in 10 minutes, after which a pH of 4.1 is established. The pH of the suspension is raised to a value of 10.0 with 1 molar sodium hydroxide solution in 15 minutes and stirring is continued for 30 minutes. After filtration, washing twice with 500 ml of water and drying at 100 ° C., the solid obtained is calcined at 400 ° C. for 16 hours. After the annealing product has cooled, it is deagglomerated in a powder mill.

Abstract

Production of highly transparent bismuth vanadate pigment from an amorphous precursor made by conventional precipitation from a solution optionally also containing other metal or non-metal salts or oxides comprises (a) coating the precursor with 1-50 (preferably 10-30) wt.% conventionally-used inorganic coating material; and then (b) heat-treating the product by a known method at 50-800 degrees C and finally de-agglomerating it. The claimed pigment is of formula Bi2O3.V2O5 (optionally with the Bi and V partially replaced by other metals or non-metals) and shows a transparency of DELTA L* > 4 when present at 38% pigment concentration in a 40 mu m dry thickness film of an alkyd-melamine lacquer.

Description

Die vorliegende Anmeldung betrifft transparente Bismuthvanadat-Pigmente und ihre Herstellung.The present application relates to transparent bismuth vanadate pigments and their preparation.

Bei den zur Erzielung eines transparenten gelben Farbtones in der Lack-, Kunststoff- und Druckfarbenindustrie eingesetzten Pigmenten handelt es sich, mit Ausnahme von transparentem gelbem Eisenoxid, um organische Pigmente. Die seit langem, z.B. aus den US-Patenten 3 843 554 und 4 115 142, bekannten Bismuthvanadat-Pigmente, die insbesondere wegen ihrer geringen Toxizität und ihrer hohen Farbsättigung und Echtheitseigenschaften sehr geschätzt werden, existierten bislang nur als hochdeckende Varianten. Deshalb ist der Einsatz der nach bisher bekannten Methoden hergestellten Bismuthvanadat-Pigmenten auf deckende Einfärbungen beschränkt.The pigments used to achieve a transparent yellow color in the paint, plastics and printing ink industries are, with the exception of transparent yellow iron oxide, organic pigments. The long, e.g. bismuth vanadate pigments known from US Pat. Nos. 3,843,554 and 4,115,142, which are particularly valued for their low toxicity and high color saturation and fastness properties, have hitherto existed only as highly opaque variants. For this reason, the use of bismuth vanadate pigments produced using previously known methods is limited to opaque coloring.

Um die obenerwähnten Vorteile der Bismuth vanadat-Pigmente auch für die heutzutage stark aufkommenden transparenten Applikationen zu nützen, war es wünschenswert, diese auch in einer transparenten Variante herstellen zu können.In order to be able to use the above-mentioned advantages of the bismuth vanadate pigments for the transparent applications that are becoming increasingly popular today, it was desirable to be able to produce them in a transparent variant.

Aus der einschlägigen Literatur sind unzählige Herstellungsmethoden für verschieden artige Bismuthvanadat-Pigmente bekannt. Alle führen zu opaken Formen. Im allgemeinen wird durch Vermischen von bismuth- und vanadium haltiger Lösungen in Gegenwart lösliche r Metallsalze und gegebenenfalls löslicher Phosphate, Sulfate und/oder Silikate der amorphe Pigmentvorläufer ausgefällt, der nachträglich durch Calcinieren in die pigmentäre Form überführt wird. Verfahren dieser Art sind z.B. in US 5 536 309, US 4 115 142, US 4 272 296, US 4 316 746, US 4 455 174, US 4 752 460, US 5 203 917, US 5 336 312, US 5 399 197 und EP 441 101 beschrieben.Countless production methods for various types of bismuth vanadate pigments are known from the relevant literature. All lead to opaque shapes. In general, by mixing solutions containing bismuth and vanadium in the presence of soluble metal salts and optionally soluble phosphates, sulfates and / or silicates, the amorphous pigment precursor is precipitated, which is subsequently converted into the pigmentary form by calcination. Methods of this type are e.g. in US 5 536 309, US 4 115 142, US 4 272 296, US 4 316 746, US 4 455 174, US 4 752 460, US 5 203 917, US 5 336 312, US 5 399 197 and EP 441 101 .

Es ist nun gefunden worden, dass durch Beschichtung eines nach üblichen Methoden, wie sie beispielsweise in den eben erwähnten Publikationen beschrieben sind, hergestellten Pigmentvorläufers mit einem für die Beschichtung von Pigmenten üblichen Beschichtungsmaterial und anschliessender Calcinierung, ganz überraschend transparente Bismuthvanadat-Pigmente entstehen, mit ansonsten guten Pigmenteigenschaften.It has now been found that by coating a pigment precursor produced by customary methods, as described, for example, in the publications just mentioned, with a coating material customary for coating pigments and subsequent calcination, surprisingly transparent bismuth vanadate pigments are formed, otherwise good pigment properties.

Die vorliegende Erfindung betrifft demnach ein Verfahren zur Herstellung von transparenten Bismuthvanadat-Pigmenten, dadurch gekennzeichnet, dass

  • a) ein amorpher Pigmentvorläufer nach allgemein üblichen Methoden durch Ausfällung aus einer sauren Bismuthsalzlösung und einer Vanadatlösung, welche gelöste Metallsalze, Metalloxide oder Nichtmetalloxide enthalten können, hergestellt wird,
  • b) der so erhaltene amorphe Pigmentvorläufer mit 1 bis 50 Gew.%, bezogen auf die Gesamtmenge, eines für die Beschichtung von Pigmenten üblichen anorganischen Beschichtungsmaterials bei einem pH zwischen 1 und 11 überzogen und dann
  • c) bei Temperaturen von 50 bis 800°C nach allgemein bekannten Methoden thermisch behandelt und anschliessend desagglomeriert wird.
The present invention accordingly relates to a method for producing transparent bismuth vanadate pigments, characterized in that
  • a) an amorphous pigment precursor is prepared by precipitation from an acid bismuth salt solution and a vanadate solution, which may contain dissolved metal salts, metal oxides or non-metal oxides, by generally customary methods,
  • b) the amorphous pigment precursor thus obtained is coated with 1 to 50% by weight, based on the total amount, of an inorganic coating material customary for the coating of pigments at a pH between 1 and 11 and then
  • c) thermally treated at temperatures of 50 to 800 ° C according to generally known methods and then deagglomerated.

Die Möglichkeiten der Herstellung verschiedenartiger amorpher Pigmentvorläufer gemäss (a) ist allgemein bekannt und z.B. in den obenerwähnten Patent publikationen beschrieben. So handelt es sich z.B. bei der sauren Bismuth salzlösung um eine wässrige salpetersaure Lösung von Bismuth(lll)-acetat oder bevorzugt Bi(lll)-nitrat und bei der Vanadat lösung z.B. um eine Lösung von NaVO3, NH4VO3, Na3VO4 oder V2O5 in Natronlauge oder Kalilauge. Es ist von Vorteil den Pigmentvorläufer während oder nach der Fällung in der Reaktions lösung, vor dem Beschichtungsvorgang (b), in einer üblichen Dispergierapparatur gründlich zu dispergieren.The possibilities of producing various amorphous pigment precursors according to (a) are generally known and are described, for example, in the above-mentioned patent publications. For example, the acidic bismuth salt solution is an aqueous nitric acid solution of bismuth (III) acetate or preferably Bi (III) nitrate, and the vanadate solution is, for example, a solution of NaVO 3 , NH 4 VO 3 , Na 3 VO 4 or V 2 O 5 in sodium hydroxide solution or potassium hydroxide solution. It is advantageous to thoroughly disperse the pigment precursor during or after the precipitation in the reaction solution, before the coating process (b), in a conventional dispersing apparatus.

Bei den unter (a) erzeugten Pigment vorläufern handelt es sich vorzugsweise um Pigmentvorläufer der als C.I. Pigment Yellow 184 bezeichneten handelsüblichen Bismuth vanadat-Pigmente (vgl. The Bulletin of the Bismuth Institute 68, 1995).The pigment precursors produced under (a) are preferably pigment precursors which are known as C.I. Pigment Yellow 184 referred to commercially available bismuth vanadate pigments (cf. The Bulletin of the Bismuth Institute 68, 1995).

Die Beschichtung gemäss (b) erfolgt vorzugsweise mit 10 bis 30 Gew.% Beschichtungsmaterial, bezogen auf die Gesamtmenge.The coating according to (b) is preferably carried out with 10 to 30% by weight of coating material, based on the total amount.

Geeignete Beschichtungsmaterialien sind anorganische Verbindungen, wie z.B.Suitable coating materials are inorganic compounds, e.g.

Phosphate und Pyrophosphate von Zink, Aluminium, Calcium, Magnesium, Bismuth, Eisen oder Chrom, wie z.B. Zinkphosphat [Zn3(PO4)2], Aluminiumphosphat [AlPO4], Calciumphosphat [Ca3(PO4)2], Calciumpyrophosphat [Ca2P2O7], Magnesiumphosphat [Mg3(PO4)2], Bismuthphosphat [BiPO4], Eisen(II)-phosphat [Fe3(PO4)2], Eisen(III)-phosphat [FePO4], Chrom(lll)-phosphat [CrPO4], sowie Calcium-Salze von Oligophosphaten, wie z.B. das Calcium-Salz des Graham'schen Salzes, oder eine Mischung von Phosphaten;Phosphates and pyrophosphates of zinc, aluminum, calcium, magnesium, bismuth, iron or chromium, such as, for example, zinc phosphate [Zn 3 (PO 4 ) 2 ], aluminum phosphate [AlPO 4 ], Calcium phosphate [Ca 3 (PO 4 ) 2 ], calcium pyrophosphate [Ca 2 P 2 O 7 ], magnesium phosphate [Mg 3 (PO 4 ) 2 ], bismuth phosphate [BiPO 4 ], iron (II) phosphate [Fe 3 (PO 4 ) 2 ], iron (III) phosphate [FePO 4 ], chromium (III) phosphate [CrPO 4 ], and calcium salts of oligophosphates, such as the calcium salt of Graham's salt, or a mixture of phosphates ;

Hydroxide, wie z.B. Aluminiumhydroxid [Al(OH)3], Zinkhydroxid [Zn(OH)2], Eisen(II)-hydroxid [Fe(OH)2], Eisen(lll)-hydroxid [Fe(OH)3], Strontiumhydroxid [Sr(OH)2], Calciumhydroxid [Ca(OH)2], Bismuthhydroxid [Bi(OH)3], Bariumhydroxid [Ba(OH)2], Chrom(III)-hydroxid [Cr(OH)3], Vanadium(lV)-hydroxid [V(OH)4], Cobalt(ll)-hydroxid [Co(OH)2], Manganhydroxid [Mn(OH)2] oder eine Mischung von Hydroxiden;Hydroxides such as aluminum hydroxide [Al (OH) 3 ], zinc hydroxide [Zn (OH) 2 ], iron (II) hydroxide [Fe (OH) 2 ], iron (III) hydroxide [Fe (OH) 3 ], Strontium hydroxide [Sr (OH) 2 ], calcium hydroxide [Ca (OH) 2 ], bismuth hydroxide [Bi (OH) 3 ], barium hydroxide [Ba (OH) 2 ], chromium (III) hydroxide [Cr (OH) 3 ], Vanadium (IV) hydroxide [V (OH) 4 ], cobalt (II) hydroxide [Co (OH) 2 ], manganese hydroxide [Mn (OH) 2 ] or a mixture of hydroxides;

Oxide oder wasserhaltige Oxide, wie z.B. Zinn(ll)-oxidhydrat [SnO·xH2O], Zinn(IV)-oxidhydrat [SnO2•xH2O], Titandioxidhydrat [TiO2•xH2O], Zirkondioxidhydrat [ZrO2•xH2O], Cer(lll)-oxidhydrat [Ce2O3•XH2O], Cer(lV)-oxidhydrat [CeO2•xH2O], Siliciumdioxid [SiO2], Antimon(III)-oxidhydrat [Sb2O3•xH2O], Antimon(V)-oxidhydrat [Sb2O5•xH2O] oder eine Mischung von Oxiden bzw. wasserhaltigen Oxiden.Oxides or water-containing oxides, such as tin (II) oxide hydrate [SnO · xH 2 O], tin (IV) oxide hydrate [SnO 2 • xH 2 O], titanium dioxide hydrate [TiO 2 • xH 2 O], zirconium dioxide hydrate [ZrO 2 • xH 2 O], cerium (III) oxide hydrate [Ce 2 O 3 • XH 2 O], cerium (IV) oxide hydrate [CeO 2 • xH 2 O], silicon dioxide [SiO 2 ], antimony (III) oxide hydrate [Sb 2 O 3 • xH 2 O], antimony (V) oxide hydrate [Sb 2 O 5 • xH 2 O] or a mixture of oxides or water-containing oxides.

Ebenfalls geeignet sind Carbonate, Nitrate, Fluoride, Fluoro silicate, Molybdate, Wolframate und insbesondere Sulfate, wie z.B. Calciumcarbonat [CaCO 3], Magnesiumcarbonat [MgCO3], Bismuthoxinitrat [BiO(NO3)], Bismuthoxifluorid [BiOF], Calciumhexafluorosilicat [CaSiF6], Calciummolybdat [CaMoO4], Calciumsulfat [CaSO4] oder Mischungen davon.Also suitable are carbonates, nitrates, fluorides, fluorosilicates, molybdates, tungstates and in particular sulfates, such as calcium carbonate [CaCO 3 ], magnesium carbonate [MgCO 3 ], bismuth oxy nitrate [BiO (NO 3 )], bismuth oxy fluoride [BiOF], calcium hexafluorosilicate [CaSiF 6 ], calcium molybdate [CaMoO 4 ], calcium sulfate [CaSO 4 ] or mixtures thereof.

Weiterhin sind alle Kombinationen von Phosphaten, Hydroxiden, Oxiden bzw. wasserhaltigen Oxiden und Salzen möglich, die sich durch Auffällen auf amorphen Pigmentvorläufer aufbringen lassen.Furthermore, all combinations of phosphates, hydroxides, oxides or water-containing oxides and salts are possible, which can be applied to amorphous pigment precursors by precipitation.

Bevorzugt werden die Hydroxyde und insbesondere die Phosphate von Zink und Aluminium. Besonders bevorzugt ist ein Gemisch von Zink- und Aluminium phosphat.The hydroxides and in particular the phosphates of zinc and aluminum are preferred. A mixture of zinc and aluminum phosphate is particularly preferred.

Das Beschichtungsmittel wird zweckmässig in wässriger Lösung der Pigmentvorläufersuspension zudosiert und gegebenenfalls durch Zugabe einer Säure oder Base ein vom verwendetem Beschichtungsmaterial abhängiger pH eingestellt, wobei es vorteilhaft ist, das anfallende Produkt während oder nach der Zugabe des Beschichtungsmittels, vor der thermischen Behandlung, in einer üblichen Dispergierapparatur, z.B. einem Hochdruckhomogenisator oder einem Hochgeschwindigkeits rührer, gründlich zu dispergieren.The coating agent is expediently metered into the pigment precursor suspension in aqueous solution and, if appropriate, by adding an acid or base Dependent pH used used coating material, it being advantageous to thoroughly disperse the resulting product during or after the addition of the coating agent, before the thermal treatment, in a conventional dispersing apparatus, for example a high-pressure homogenizer or a high-speed stirrer.

Geeignete Säuren sind z.B. Phosphorsäure und Essigsäure und insbesondere Salpetersäure. Als Basen können zweckmässig wässrige Alkalihydroxyd lösungen bzw. Ammoniaklösungen verwendet werden, vorzugsweise wässrige Natronlauge. Der pH ist für die Beschichtung wichtig, damit die Beschichtungs materialien ausfallen. Bei Phosphaten sind pH-Werte zwischen 5 und 10, bevorzugt, zwischen 5 und 7 zweckmässig. Bei Hydroxyden ist ein pH-Bereich zwischen 1 (Bismuthhydroxid) und 11 (Calcium- und Bariumhydroxyd) einsetzbar; die bevorzugten Aluminium- und Zinkhydroxyd fallen jedoch im Bereich zwischen 4 und 8 aus. Die meisten Oxide bzw. wasserhaltigen Oxide werden bei pH-Werten zwischen 2 und 4 ausgefällt. Höhere pH-Werte bis zu 10 haben aber keinen negativen Einfluss. Siliciumoxid fällt in einem pH-Bereich von 2-9, vorzugsweise 6-9 aus. Die weiteren aufgeführten Salze fallen in einem pH-Bereich zwischen 1(Bismuthoxinitrat) und 8 (Calciummolybdat) aus.Suitable acids are e.g. Phosphoric acid and acetic acid and especially nitric acid. Aqueous alkali hydroxide solutions or ammonia solutions, preferably aqueous sodium hydroxide solution, can expediently be used as bases. The pH is important for the coating so that the coating materials fail. In the case of phosphates, pH values between 5 and 10, preferably between 5 and 7, are expedient. For hydroxides, a pH range between 1 (bismuth hydroxide) and 11 (calcium and barium hydroxide) can be used; however, the preferred aluminum and zinc hydroxides are in the range 4 to 8. Most oxides or water-containing oxides are precipitated at pH values between 2 and 4. However, higher pH values up to 10 have no negative influence. Silicon oxide precipitates in a pH range of 2-9, preferably 6-9. The other salts listed fall out in a pH range between 1 (bismuth oxin nitrate) and 8 (calcium molybdate).

Die thermische Behandlung (c) (Calcinierung) wird nach üblichen Methoden vorzugsweise zwischen 100 und 600°C, besonders bevorzugt zwischen 300 und 450 °C und insbesondere bei 400°C durchgeführt.The thermal treatment (c) (calcination) is carried out by conventional methods, preferably between 100 and 600 ° C., particularly preferably between 300 and 450 ° C. and in particular at 400 ° C.

Nach der Calcinierung kann die Beschichtung, wenn für die vorgesehene Verwendung zweckmässig, durch Behandlung mit einer Säure oder Base entfernt werden und gegebenenfalls mit anderen üblichen Beschichtungs mitteln ersetzt werden, ohne Beeinträchtigung der Transparenz. Geeignete Säuren und Basen sind z.B. die gleichen, die oben bereits im Zusammenhang mit der pH-Einstellung erwähnt wurden.After the calcination, the coating can, if appropriate for the intended use, be removed by treatment with an acid or base and, if appropriate, replaced with other customary coating agents, without impairing the transparency. Suitable acids and bases are e.g. the same ones mentioned above in connection with pH adjustment.

Die durch das erfindungsgemässe Verfahren erhaltenen Produkte sind, wie bereits erwähnt, durch eine bei Bismuthvanadat-Pigmenten bisher nie erlangten Transparenz gekennzeichnet. Sie sind demnach neu und bilden einen weiteren Gegenstand der vorliegenden Anmeldung.As already mentioned, the products obtained by the process according to the invention are characterized by a transparency never previously achieved with bismuth vanadate pigments. They are therefore new and form a further subject of the present application.

Die Transparenz wird hier durch ΔL* gemäss CIELAB gekennzeichnet und zwar mit AL*>4, wobei ΔL* = L* (weiss) - L* (schwarz)

Figure imgb0001
ist.The transparency is identified here by ΔL * according to CIELAB, namely with AL *> 4, whereby ΔL * = L * (white) - L * (black)
Figure imgb0001
is.

L* (weiss) bzw. L* (schwarz) werden durch Farbmessung einer Alkyd-Melamin Lack applikation bei einem Pigmentanteil (Festkörpergehalt) von 38 %, mit einer Schichtdicke (trocken) von 40 µm auf einem Schwarz-Weiss-Kontrastkarton und Berechnung nach der ClELAB-Formel (ISO 7724-1 bis 7724-3) ermittelt.L * (white) or L * (black) are measured by color measurement of an alkyd-melamine lacquer application with a pigment content (solids content) of 38%, with a layer thickness (dry) of 40 µm on a black and white contrast cardboard and calculation the ClELAB formula (ISO 7724-1 to 7724-3).

Die vorliegende Erfindung betrifft demnach auch Bismuth vanadat-Pigmente der allgemeinen Zusammensetzung Bi 2 O 3 x V 2 O 5 ,

Figure imgb0002
wobei Bismuth und Vanadium teilweise durch andere Metalle oder Nichtmetalle ersetzt sein können, dadurch gekennzeichnet, dass sie eine Transparenz von ΔL*>4 in einer Alkyd-Melamin-Lackapplikation bei einem Pigmentanteil von 38 %, mit einer Schichtdicke, trocken, von 40 µm aufweisen.The present invention accordingly also relates to bismuth vanadate pigments of the general composition Bi 2nd O 3rd x V 2nd O 5 ,
Figure imgb0002
Bismuth and vanadium can be partially replaced by other metals or non-metals, characterized in that they have a transparency of ΔL *> 4 in an alkyd-melamine lacquer application with a pigment content of 38%, with a layer thickness, dry, of 40 µm .

Bei den Metallen und Nichtmetallen, die Bismuth und Vanadium teilweise ersetzten können, handelt es sich vorzugsweise um Li, Mg, Zn, Al und insbesondere Ca, sowie W und insbesondere P und Mo.The metals and non-metals, which can partially replace bismuth and vanadium, are preferably Li, Mg, Zn, Al and in particular Ca, and W and in particular P and Mo.

Bevorzugt handelt es sich um Bismuthvanadat-Pigmente auf Basis der oben bereits erwähnten C.I. Pigment Yellow 184-Typen.Bismuth vanadate pigments based on the C.I. Pigment Yellow 184 types.

Die erfindungsgemässen transparenten Bismuthvanadate können als Pigmente für hochmolekulare organische Materialien verwendet werden.The transparent bismuth vanadates according to the invention can be used as pigments for high-molecular organic materials.

Hochmolekulare organische Materialien, die mit den erfindungsgemässen Bismuthvanadaten pigmentiert werden können, sind z.B. Cellulose ether und -ester, wie Ethylcellulose, Nitrocellulose, Celluloseacetat und Cellulosebutyrat, natürliche Harze und Kunstharze, wie Polymerisationsharze oder Kondensationsharze, z.B. Aminoplaste, insbesondere Harnstoff- und Melamin-Formaldehydharze, Alkydharze, Phenoplaste, Polycarbonate, Polyolefine, wie Polyethylen und Polypropylen, Polystyrol, Polyvinylchlorid, Polyacrylnitril, Polyacrylsäureester, Polyamide, Polyurethane, Polyester, Gummi, Casein, Silikon und Silikonharze, einzeln oder in Mischungen.High molecular weight organic materials which can be pigmented with the bismuth vanadates according to the invention are, for example, cellulose ethers and esters, such as ethyl cellulose, nitrocellulose, cellulose acetate and cellulose butyrate, natural resins and synthetic resins, such as polymerization resins or condensation resins, for example aminoplasts, in particular urea and melamine-formaldehyde resins, alkyd resins, phenoplasts, polycarbonates, polyolefins, such as polyethylene and polypropylene, polystyrene, polyvinyl chloride, polyacrylonitrile, polyacrylic acid esters, polyamides, polyurethanes, polyesters, rubbers, casein, silicone and silicone resins , individually or in mixtures.

Dabei spielt es keine Rolle, ob die erwähnten hochmolekularen organischen Verbindungen als plastische Massen, Schmelzen oder in Form von Spinnlösungen, Lacken, Anstrichstoffen oder Druckfarben vorliegen. Je nach Verwendungs zweck erweist es sich als vorteilhaft, die erfindungsgemässen Bismuth vanadate als Toner oder in Form von Präparaten einzusetzen. Bezogen auf das zu pigmentierende hochmolekulare organische Material kann man die erfindungsgemässen Bismuthvanadate in einer Menge von 0,01 bis 75 Gew.-%, vorzugsweise 0,1 bis 50 Gew.-%, einsetzen.It does not matter whether the high-molecular organic compounds mentioned are present as plastic masses, melts or in the form of spinning solutions, lacquers, paints or printing inks. Depending on the intended use, it proves to be advantageous to use the bismuth vanadate according to the invention as a toner or in the form of preparations. Based on the high molecular weight organic material to be pigmented, the bismuth vanadates according to the invention can be used in an amount of 0.01 to 75% by weight, preferably 0.1 to 50% by weight.

Die erhaltenen Ausfärbungen, beispielsweise in Kunststoffen, Fasern, Lacken oder Drucken zeichnen sich, ausser durch die ausserordentlich hohe Farbton-Reinheit und Transparenz durch hohe Farbstärke, gute Dispergierbarkeit, gute Überlackier-, Migrations-, Hitze-, Licht- und Wetterbeständigkeit, sowie durch einen guten Glanz, aus.The colorations obtained, for example in plastics, fibers, paints or prints, are distinguished, in addition to the extraordinarily high color purity and transparency, by high color strength, good dispersibility, good resistance to overpainting, migration, heat, light and weather, and by a good shine from.

Die erfindungsgemässen Bismuthvanadate zeichnen sich aber, wie bereits erwähnt, ganz besonders durch ihre hohe Transparenz aus. Demnach eignen sie sich vorzugsweise zum Färben von Kunststoffen, Druck farben und wässrigen und/oder lösungsmittel haltigen Lacken, insbesondere Automobillacken. Ganz besonders bevorzugt ist ihre Verwendung für Metalleffektlackierungen (Metall oder Mica).However, as already mentioned, the bismuth vanadates according to the invention are particularly notable for their high transparency. Accordingly, they are preferably suitable for coloring plastics, printing inks and aqueous and / or solvent-based paints, in particular automotive paints. Their use is particularly preferred for metallic effect coatings (metal or mica).

Die nachfolgenden Beispiele dienen zur Erläuterung der Erfindung. Sofern nichts anderes vermerkt, bedeuten Prozente Gewichtsprozente.The following examples serve to explain the invention. Unless otherwise noted, percentages mean percentages by weight.

Beispiel 1: 98,4 g Bismuthnitratpentahydrat und 6,4 g Calciumnitrattetrahydrat werden unter Rühren in 74,4 g Salpetersäure (54%-ig) und 580 ml Wasser gelöst. Die erhaltene Lösung wird innerhalb von 3 Minuten unter intensivem Rühren mit einer Vanadat lösung, bestehend aus 35,4 g Natriumorthovanadat, 4,0 g Natriumhydroxid und 6,6 g Natriummolybdatdihydrat in 600 ml Wasser, versetzt. Der pH der entstandenen Suspension wird inner halb von einigen Minuten durch Zugabe von 20 %-iger Natronlauge auf einen Wert von 3,5 angehoben. Nach einer Rührzeit von 60 Minuten erhöht man durch Zugabe von 1 molarer Natronlauge den pH der Suspension innerhalb von 20 Minuten auf einen Wert von 6,5 und lässt weitere 30 Minuten rühren. Zu dieser Suspension gibt man in 20 Minuten eine Lösung aus 39,0 g Phosphorsäure (75%-ig), 53,0 g Aluminiumsulfathydrat und 44,0 g Zinksulfatheptahydrat aufgelöst in 300 ml Wasser, worauf der pH-Wert sinkt. Wird ein p H-Wert von 2,0 unterschritten, wird 20%-ige Natronlauge zudosiert. Der pH der Suspension wird dann in 60 Minuten mit 1 molarer Natronlauge auf einen Wert von 6,5 eingestellt und weitere 30 Minuten gerührt. Nach Filtration, zweimaligem Waschen mit 500 ml Wasser und trocknen bei 100°C wird der erhaltene Feststoff 20 Stunden bei 400°C geglüht. Nach Abkühlen des Glühproduktes wird es in einer Pulver-Mühle desagglomeriert. Example 1 : 98.4 g of bismuth nitrate pentahydrate and 6.4 g of calcium nitrate tetrahydrate are dissolved with stirring in 74.4 g of nitric acid (54%) and 580 ml of water. The solution obtained is mixed with a vanadate solution consisting of 35.4 g of sodium orthovanadate, 4.0 g of sodium hydroxide and 6.6 g of sodium molybdate dihydrate in 600 ml of water within 3 minutes with vigorous stirring. The pH of the resulting suspension is raised to a value of 3.5 within a few minutes by adding 20% sodium hydroxide solution raised. After a stirring time of 60 minutes, the pH of the suspension is increased to a value of 6.5 within 20 minutes by adding 1 molar sodium hydroxide solution and stirring is continued for a further 30 minutes. A solution of 39.0 g of phosphoric acid (75%), 53.0 g of aluminum sulfate hydrate and 44.0 g of zinc sulfate heptahydrate dissolved in 300 ml of water is added to this suspension in 20 minutes, whereupon the pH drops. If the pH falls below 2.0, 20% sodium hydroxide solution is added. The pH of the suspension is then adjusted to a value of 6.5 in 1 minute with 1 molar sodium hydroxide solution and stirred for a further 30 minutes. After filtration, washing twice with 500 ml of water and drying at 100 ° C., the solid obtained is calcined at 400 ° C. for 20 hours. After the annealing product has cooled, it is deagglomerated in a powder mill.

Das erhaltene Pigment wird in einem AM-Lack nach folgender Vorgehensweise appliziert:The pigment obtained is applied in an AM lacquer according to the following procedure:

37,0 g eines Alkydmelamin-Lackes der folgenden Zusammensetzung

  • 18,7 g eines kurzkettigen Alkydharzes (Setal® 84xx70 (70 %) der Firma Synthese)
  • 7,2 g eines Melaminharzes (Setamin® US 132 BB70 (70%) der Firma Synthese)
  • 7,8 g Solvesso® 100 (aromatische Kohlenwasserstoffe; Esso)
  • 1,7 g Butanol
  • 0,8 g Depanol J (Terpen-Kohlenwasserstoff)
  • 0,8 g Isophoron
werden zusammen mit 11,0 g des unter Beispiel 1 hergestellten Pigments und 40 g Glaskugeln (Durchmesser 3 mm) in einem 100 ml Glasgefäss mit Schraubdeckelverschluss gegeben und auf einer Scandex-Apparatur dispergiert bis eine Feinheit von <10 µ (Hegman-Gauge) erreicht ist.37.0 g of an alkyd melamine lacquer of the following composition
  • 18.7 g of a short-chain alkyd resin (Setal® 84xx70 (70%) from synthesis)
  • 7.2 g of a melamine resin (Setamin® US 132 BB70 (70%) from synthesis)
  • 7.8 g Solvesso® 100 (aromatic hydrocarbons; Esso)
  • 1.7 g butanol
  • 0.8 g Depanol J (terpene hydrocarbon)
  • 0.8 g isophorone
are placed together with 11.0 g of the pigment produced in Example 1 and 40 g of glass balls (diameter 3 mm) in a 100 ml glass vessel with a screw cap and dispersed on a Scandex apparatus until a fineness of <10 μ (Hegman gauge) is achieved is.

Der Lack wird auf einem Kontrastkarton ausgezogen (Nassfilmdicke 75 µm), 20 Minuten abgelüftet und während 30 Minuten bei 130°C eingebrannt.The paint is drawn out on a contrasting cardboard (wet film thickness 75 µm), flashed off for 20 minutes and baked at 130 ° C for 30 minutes.

Farbmessungen nach der ClELAB-Methode (ISO 7724-1 bis 7724-3) ergeben folgende Werte: ΔL* = 11,2; ΔE* = 25,0Color measurements according to the ClELAB method (ISO 7724-1 to 7724-3) give the following values: ΔL * = 11.2; ΔE * = 25.0

Beispiel 2: 98,4 g Bismuthnitratpentahydrat und 6,4 g Calciumnitrattetrahydrat werden unter Rühren in 74,4 g Salpetersäure (54%-ig) und 580 ml Wasser gelöst. Die erhaltene Lösung wird innerhalb von 3 Minuten unter intensivem Rühren mit einer Vanadat lösung, bestehend aus 35,4 g Natriumorthovanadat, 4,0 g Natriumhydroxid und 6,6 g Natriummolybdatdihydrat in 600 ml Wasser, versetzt. Der pH der entstandenen Suspension wird innerhalb von einigen Minuten durch Zugabe von 20 %-iger Natronlauge auf einen Wert von 3,5 angehoben. Nach einer Rührzeit von 60 Minuten erhöht man durch Zugabe von 1 molarer Natronlauge den pH der Suspensi on innerhalb von 20 Minuten auf einen Wert von 6,5 und lässt weitere 30 Minuten rühren. Zu dieser Suspension gibt man in 5 Minuten eine Lösung aus 9,8 g Phosphorsäure (75%-ig), 13,3 g Aluminiumsulfathydrat und 11,0 g Zinksulfatheptahydrat aufgelöst in 300 ml Wasser, worauf sich ein pH-Wert von 1,2 ein stellt. Der pH der Suspension wird dann in 90 Minuten mit 1 molarer Natronlauge auf einen Wert von 6,5 eingestellt und weitere 30 Minuten gerührt. Nach Filtration, einmaligem Waschen mit 500 ml Wasser und trocknen bei 100 °C wird der erhaltene Feststoff 20 Stunden bei 400°C geglüht. Nach Abkühlen des Glühproduktes wird es in einer Pulver-Mühle desagglomeriert. Example 2: 98.4 g of bismuth nitrate pentahydrate and 6.4 g of calcium nitrate tetrahydrate are dissolved with stirring in 74.4 g of nitric acid (54%) and 580 ml of water. The solution obtained is mixed with a vanadate solution consisting of 35.4 g of sodium orthovanadate, 4.0 g of sodium hydroxide and 6.6 g of sodium molybdate dihydrate in 600 ml of water within 3 minutes with vigorous stirring. The pH of the resulting suspension is raised to a value of 3.5 within a few minutes by adding 20% sodium hydroxide solution. After a stirring time of 60 minutes, the pH of the suspension is increased to 6.5 within 20 minutes by adding 1 molar sodium hydroxide solution and the mixture is stirred for a further 30 minutes. A solution of 9.8 g of phosphoric acid (75%), 13.3 g of aluminum sulfate hydrate and 11.0 g of zinc sulfate heptahydrate dissolved in 300 ml of water is added to this suspension in 5 minutes, after which a pH of 1.2 one poses. The pH of the suspension is then adjusted to a value of 6.5 in 1 minute with 1 molar sodium hydroxide solution and stirred for a further 30 minutes. After filtration, washing once with 500 ml of water and drying at 100 ° C., the solid obtained is calcined at 400 ° C. for 20 hours. After the annealing product has cooled, it is deagglomerated in a powder mill.

Das erhaltene Pigment wird, wie in Beispiel 1 beschrieben, in einem AM-Lack appliziert und einer Farbmessung unterzogen. Man erhält folgende Werte: ΔL* = 8,1; ΔE* = 19,7.As described in Example 1, the pigment obtained is applied in an AM lacquer and subjected to a color measurement. The following values are obtained: ΔL * = 8.1; ΔE * = 19.7.

Beispiel 3: 239,0 g Bismuthnitratpentahydrat und 12,8 g Calciumnitrattetrahydrat werden unter Rühren in 140,0 g Salpetersäure (54%-ig) und 1150,0 ml Wasser gelöst. Die erhaltene Lösung wird innerhalb von 1 Minute unter intensivem Rühren mit einer Vanadatlösung, bestehend aus 70,8 g Natriumorthovanadat, 7,9 g Natriumhydroxid und 13,2 g Natriummolybdatdihydrat in 700 ml Wasser, versetzt. Der pH der entstandenen Suspension wird innerhalb von einigen Minuten durch Zugabe von 20 %-iger Natronlauge auf einen Wert von 3,5 angehoben. Nach einer Rührzeit von 60 Minuten erhöht man durch Zugabe von 1 molarer Natronlauge den pH der Suspension innerhalb von 20 Minuten auf einen Wert von 6,5 und lässt weitere 30 Minuten rühren. Zu dieser Suspension gibt man in 5 Minuten eine Lösung aus 39,0 g Phosphorsäure (75%-ig), 53,0 g Aluminiumsulfathydrat und 44,0 g Zinksulfatheptahydrat aufgelöst in 200 ml Wasser, worauf sich ein pH-Wert von 1,0 einstellt. Der pH der Suspension wird dann in 10 Minuten mit 50%-iger Natronlauge auf einen Wert von 6,5 eingestellt und weitere 30 Minuten gerührt. Nach Filtration, einmaligem Waschen mit 500 ml Wasser und trocknen bei 100 °C wird der erhaltene Feststoff 16 Stunden bei 400°C geglüht. Nach Abkühlen des Glühproduktes wird es in 2 l Wasser erneut angeschlämmt und mittels einem Hochgeschwindigkeitsrührer 10 Minuten desagglomeriert. Zu dieser Suspension gibt man in 5 Minuten eine Lösung aus 35,0 g Phosphorsäure (75%-ig), 53,0 g Aluminiumsulfathydrat und 44,0 g Zinksulfatheptahydrat aufgelöst in 1200 ml Wasser worauf sich ein pH-Wert von 2,0 einstellt. Der pH der Suspension wird dann in 10 Minuten mit 20%-iger Natronlauge auf einen Wert von 6,5 eingestellt und weitere 30 Minuten gerührt. Nach Filtration, einmaligem Waschen mit 500 ml Wasser und trocknen bei 100 °C wird der erhaltene Feststoff 16 Stunden bei 400 °C geglüht. Nach Abkühlen des Glühproduktes wird es in einer Pulver-Mühle desagglomeriert. Example 3: 239.0 g bismuth nitrate pentahydrate and 12.8 g calcium nitrate tetrahydrate are dissolved with stirring in 140.0 g nitric acid (54%) and 1150.0 ml water. A vanadate solution consisting of 70.8 g of sodium orthovanadate, 7.9 g of sodium hydroxide and 13.2 g of sodium molybdate dihydrate in 700 ml of water is added to the resulting solution within 1 minute with vigorous stirring. The pH of the resulting suspension is raised to a value of 3.5 within a few minutes by adding 20% sodium hydroxide solution. After a stirring time of 60 minutes, the pH of the suspension is increased to a value of 6.5 within 20 minutes by adding 1 molar sodium hydroxide solution and stirring is continued for a further 30 minutes. A solution of 39.0 g of phosphoric acid (75%), 53.0 g of aluminum sulfate hydrate and 44.0 g of zinc sulfate heptahydrate dissolved in 200 ml of water is added to this suspension in 5 minutes, after which the pH is 1.0 sets. The pH of the suspension is then adjusted to a value of 6.5 in 50 minutes with 50% sodium hydroxide solution and stirred for a further 30 minutes. After filtration, once Wash with 500 ml of water and dry at 100 ° C, the solid obtained is calcined at 400 ° C for 16 hours. After the glow product has cooled, it is reslurried in 2 l of water and deagglomerated for 10 minutes using a high-speed stirrer. A solution of 35.0 g of phosphoric acid (75%), 53.0 g of aluminum sulfate hydrate and 44.0 g of zinc sulfate heptahydrate dissolved in 1200 ml of water is added to this suspension in 5 minutes, after which a pH of 2.0 is established . The pH of the suspension is then adjusted to a value of 6.5 in 20 minutes with 20% sodium hydroxide solution and stirred for a further 30 minutes. After filtration, washing once with 500 ml of water and drying at 100 ° C., the solid obtained is calcined at 400 ° C. for 16 hours. After the annealing product has cooled, it is deagglomerated in a powder mill.

Das erhaltene Pigment wird, wie in Beispiel 1 beschrieben, in einem AM-Lack appliziert und einer Farbmessung unterzogen. Man erhält folgende Werte: ΔL* = 9,2; ΔE* = 20,7.As described in Example 1, the pigment obtained is applied in an AM lacquer and subjected to a color measurement. The following values are obtained: ΔL * = 9.2; ΔE * = 20.7.

Beispiel 4: 98,4 g Bismuthnitratpentahydrat und 6,4 g Calciumnitrattetrahydrat werden unter Rühren in 74,4 g Salpetersäure (54%-ig) und 580 ml Wasser gelöst. Die erhaltene Lösung wird innerhalb von 3 Minuten unter intensivem Rühren mit einer Vanadat iösung, bestehend aus 35,4 g Natriumorthovanadat, 4,0 g Natriumhydroxid und 6,6 g Natriummolybdatdihydrat in 600 ml Wasser, versetzt. Der pH der entstandenen Suspension wird innerhalb von einigen Minuten durch Zugabe von 20 %-iger Natronlauge auf einen Wert von 3,5 angehoben. Nach einer Rührzeit von 30 Minuten erhöht man durch Zugabe von 20%-iger Natronlauge den pH der Suspension innerhalb von 60 Minuten auf einen Wert von 6,5 und lässt weitere 30 Minuten rühren. Zu dieser Suspension gibt man in 10 Minuten eine Lösung aus 53,0 g Aluminiumsulfathydrat und 44,0 g Zinksulfatheptahydrat aufgelöst in 600 ml Wasser, worauf sich ein pH-Wert von 3,1 ein stellt. Der pH der Suspension wird dann in 120 Minuten mit 1 molarer Natronlauge auf einen Wert von 6,5 eingestellt und weitere 30 Minuten gerührt. Nach Filtration, dreimaligem Waschen mit 500 ml Wasser und trocknen bei 100°C wird der erhaltene Feststoff 24 Stunden bei 400°C geglüht. Nach Abkühlen des Glühproduktes wird es in einer Pulver-Mühle desagglomeriert. Example 4: 98.4 g of bismuth nitrate pentahydrate and 6.4 g of calcium nitrate tetrahydrate are dissolved with stirring in 74.4 g of nitric acid (54%) and 580 ml of water. A vanadate solution consisting of 35.4 g of sodium orthovanadate, 4.0 g of sodium hydroxide and 6.6 g of sodium molybdate dihydrate in 600 ml of water is added to the resulting solution within 3 minutes with vigorous stirring. The pH of the resulting suspension is raised to a value of 3.5 within a few minutes by adding 20% sodium hydroxide solution. After a stirring time of 30 minutes, the pH of the suspension is increased to 6.5 within 60 minutes by adding 20% sodium hydroxide solution and the mixture is left to stir for a further 30 minutes. A solution of 53.0 g of aluminum sulfate hydrate and 44.0 g of zinc sulfate heptahydrate dissolved in 600 ml of water is added to this suspension in 10 minutes, after which a pH of 3.1 is established. The pH of the suspension is then adjusted to a value of 6.5 in 1 minute with 1 molar sodium hydroxide solution and stirred for a further 30 minutes. After filtration, washing three times with 500 ml of water and drying at 100 ° C., the solid obtained is calcined at 400 ° C. for 24 hours. After the annealing product has cooled, it is deagglomerated in a powder mill.

Das erhaltene Pigment wird, wie in Beispiel 1 beschrieben, in einem AM-Lack appliziert und einer Farbmessung unterzogen. Man erhält folgende Werte: ΔL* = 6,0, ΔE* = 15,2.As described in Example 1, the pigment obtained is applied in an AM lacquer and subjected to a color measurement. The following values are obtained: ΔL * = 6.0, ΔE * = 15.2.

Beispiel 5: 123,6 g Bismuthnitratpentahydrat werden unter Rühren in 53,0 g Salpetersäure (54%-ig) und 570 ml Wasser gelöst. Die erhaltene Lösung wird innerhalb von 3 Minuten unter intensivem Rühren mit einer Vanadat lösung, bestehend aus 48,9 g Natriumorthovanadat, 5,5 g Natriumhydroxid in 600 ml Wasser, versetzt. Der pH der entstandenen Suspension wird innerhalb von einigen Minuten durch Zugabe von 20 %-iger Natronlauge auf einen Wert von 3,5 angehoben. Nach einer Rührzeit von 30 Minuten erhöht man durch Zugabe von 20%-iger Natronlauge den pH der Suspension innerhalb von 60 Minuten auf einen Wert von 6,5 und lässt weitere 16 Stunden rühren. Zu dieser Suspension gibt man 1 g Natriumhexamethaphosphat und dispergiert 6 Minuten mittels eines Hochgeschwindigkeitsrührers. Nach der Dispergierung gibt man zu dieser Suspension in 10 Minuten eine Lösung aus 66,5 g Aluminiumsulfathydrat und 55,0 g Zinksulfatheptahydrat und 49,0 g Phosphorsäure (75%-ig) aufgelöst in 600 ml Wasser, worauf sich ein pH-Wert von 1,9 einstellt Der pH der Suspension wird dann in 30 Minuten mit 20%-iger Natronlauge auf einen Wert von 6,5 eingestellt und weitere 30 Minuten gerührt. Nach Filtration, zweimaligem waschen mit 500 ml Wasser und trocknen bei 100 °C wird der erhaltene Feststoff 24 Stunden bei 400 °C geglüht. Nach Abkühlen des Glühproduktes wird es in einer Pulver-Mühle desagglomeriert. 50 g des erhaltenen Pigments werden in 2,0 l Wasser und 5,0 g Natriumhexametaphosphat 20 Minuten bei 100°C mittels eines Hochgeschwindigkeitsrührers redispergiert. Zu der erhaltenen Suspension gibt man in 10 Minuten eine Lösung aus 7,6 g Cerium(lll)-chlorid in 250 ml Wasser worauf sich ein pH von 4,1 einstellt. Der pH der Suspension wird in 15 Minuten mit 1 molarer Natronlauge auf einen Wert von 10,0 erhöht und lässt 30 Minuten weiter rühren. Nach Filtration, zweimaligem Waschen mit 500 ml Wasser und trocknen bei 100 °C wird der erhaltene Feststoff 16 Stunden bei 400°C geglüht Nach Abkühlen des Glühproduktes wird es in einer Pulver-Mühle desagglomeriert. Example 5: 123.6 g of bismuth nitrate pentahydrate are dissolved with stirring in 53.0 g of nitric acid (54%) and 570 ml of water. The solution obtained is mixed with a vanadate solution consisting of 48.9 g of sodium orthovanadate, 5.5 g of sodium hydroxide in 600 ml of water within 3 minutes with vigorous stirring. The pH of the resulting suspension is raised to a value of 3.5 within a few minutes by adding 20% sodium hydroxide solution. After a stirring time of 30 minutes, the pH of the suspension is increased to 6.5 within 60 minutes by adding 20% sodium hydroxide solution and the mixture is stirred for a further 16 hours. 1 g of sodium hexamethaphosphate is added to this suspension and dispersed for 6 minutes using a high-speed stirrer. After the dispersion, a solution of 66.5 g of aluminum sulfate hydrate and 55.0 g of zinc sulfate heptahydrate and 49.0 g of phosphoric acid (75% strength) dissolved in 600 ml of water is added to this suspension in 10 minutes, which results in a pH of The pH of the suspension is then adjusted to 6.5 in 20 minutes with 20% sodium hydroxide solution and the mixture is stirred for a further 30 minutes. After filtration, washing twice with 500 ml of water and drying at 100 ° C., the solid obtained is calcined at 400 ° C. for 24 hours. After the annealing product has cooled, it is deagglomerated in a powder mill. 50 g of the pigment obtained are redispersed in 2.0 l of water and 5.0 g of sodium hexametaphosphate for 20 minutes at 100 ° C. using a high-speed stirrer. A solution of 7.6 g of cerium (III) chloride in 250 ml of water is added to the suspension obtained in 10 minutes, after which a pH of 4.1 is established. The pH of the suspension is raised to a value of 10.0 with 1 molar sodium hydroxide solution in 15 minutes and stirring is continued for 30 minutes. After filtration, washing twice with 500 ml of water and drying at 100 ° C., the solid obtained is calcined at 400 ° C. for 16 hours. After the annealing product has cooled, it is deagglomerated in a powder mill.

Das erhaltene Pigment wird, wie in Beispiel 1 beschrieben, in einem AM-Lack appliziert und einer Farbmessung unterzogen. Man erhält folgende Werte: ΔL* = 7,9; ΔE* = 19,5.As described in Example 1, the pigment obtained is applied in an AM lacquer and subjected to a color measurement. The following values are obtained: ΔL * = 7.9; ΔE * = 19.5.

Claims (12)

Verfahren zur Herstellung von transparenten Bismuth vanadat-Pigmenten, dadurch gekennzeichnet, dass a) ein amorpher Pigmentvorläufer nach allgemein üblichen Methoden durch Ausfällung aus einer sauren Bismuthsalzlösung und einer Vanadatlösung, welche gelöste Metallsalze, Metalloxide oder Nichtmetalloxide enthalten können, hergestellt wird, b) der so erhaltene amorphe Pigmentvorläufer mit 1 bis 50 Gew.%, bezogen auf die Gesamtmenge, eines für die Beschichtung von Pigmenten üblichen anorganischen Beschichtungsmaterials überzogen und dann c) bei Temperaturen von 50 bis 800°C nach allgemein bekannten Methoden thermisch behandelt und anschliessend desagglomeriert wird. Process for the production of transparent bismuth vanadate pigments, characterized in that a) an amorphous pigment precursor is prepared by precipitation from an acid bismuth salt solution and a vanadate solution, which may contain dissolved metal salts, metal oxides or non-metal oxides, by generally customary methods, b) the amorphous pigment precursor thus obtained is coated with 1 to 50% by weight, based on the total amount, of an inorganic coating material customary for the coating of pigments and then c) thermally treated at temperatures of 50 to 800 ° C according to generally known methods and then deagglomerated. Verfahren gemäss Anspruch 1, dadurch gekennzeichnet, dass die Beschichtung (b) mit 10 bis 30 Gew.-% Beschichtungsmaterial, bezogen auf die Gesamtmenge, erfolgt.A method according to claim 1, characterized in that the coating (b) with 10 to 30 wt .-% coating material, based on the total amount. Verfahren gemäss Anspruch 1, dadurch gekennzeichnet, dass als Beschichtungs material anorganische Verbindungen ausgewählt aus der Gruppe bestehend aus Phosphaten und Pyrophosphaten, Hydroxide, Oxiden und wasserhaltigen Oxiden, sowie Carbonaten, Nitraten, Fluoriden, Fluorosilicaten, Molybdaten und Sulfaten oder Mischungen derselben, verwendet werden.A method according to claim 1, characterized in that inorganic compounds selected from the group consisting of phosphates and pyrophosphates, hydroxides, oxides and water-containing oxides, and carbonates, nitrates, fluorides, fluorosilicates, molybdate and sulfates or mixtures thereof are used as coating material. Verfahren gemäss Anspruch 3, dadurch gekennzeichnet, dass Hydroxyde oder Phosphate von Zink oder Aluminium oder Mischungen davon verwendet werden.A method according to claim 3, characterized in that hydroxides or phosphates of zinc or aluminum or mixtures thereof are used. Verfahren gemäss Anspruch 4, dadurch gekennzeichnet, dass Phosphate von Zink oder Aluminium oder Mischungen davon verwendet werden.A method according to claim 4, characterized in that phosphates of zinc or aluminum or mixtures thereof are used. Verfahren gemäss Anspruch 1, dadurch gekennzeichnet, das der Pigmentvorläufer während oder nach der Fällung in der Reaktionslösung, vor dem Beschichtungsvorgang (b) in einer üblichen Dispergierapparatur gründlich dispergiert wird.A method according to claim 1, characterized in that the pigment precursor is thoroughly dispersed in a conventional dispersion apparatus during or after the precipitation in the reaction solution, before the coating process (b). Verfahren gemäss Anspruch 1, dadurch gekennzeichnet, dass das im Beschichtungsvorgang (b) anfallende Produkt während oder nach der Zugabe des Beschichtungsmittels, vor der thermischen Behandlung, in einer üblichen Dispergier apparatur gründlich dispergiert wird.A method according to claim 1, characterized in that the product obtained in the coating process (b) during or after the addition of the coating agent, before the thermal treatment, is thoroughly dispersed in a conventional dispersing apparatus. Verfahren gemäss Anspruch 1, dadurch gekennzeichnet, dass die Beschichtung nach der Calcinierung (c) durch Behandlung mit einer Säure oder Base, entfernt wird.A method according to claim 1, characterized in that the coating after the calcination (c) is removed by treatment with an acid or base. Bismuthvanadat-Pigmente der allgemeinen Zusammensetzung Bi 2 O 3 x V 2 O 5 ,
Figure imgb0003
wobei Bismuth und Vanadium teilweise durch andere Metalle oder Nichtmetalle ersetzt sein können, dadurch gekennzeichnet, dass sie eine Transparenz von ΔL*>4 in einer Alkyd-Melamin-Lackapplikation bei einem Pigmentanteil von 38 %, mit einer Schichtdicke, trocken, von 40 µm aufweisen.
Bismuth vanadate pigments of the general composition Bi 2nd O 3rd x V 2nd O 5 ,
Figure imgb0003
Bismuth and vanadium can be partially replaced by other metals or non-metals, characterized in that they have a transparency of ΔL *> 4 in an alkyd-melamine lacquer application with a pigment content of 38%, with a layer thickness, dry, of 40 µm .
Bismuthvanadat-Pigmente gemäss Anspruch 9, dadurch gekennzeichnet, dass es sich bei den Metallen und Nichtmetallen, die Bismuth und Vanadium teilweise ersetzen können, um Li, Mg, Zn, Al und Ca, sowie W, P und Mo handelt.Bismuth vanadate pigments according to Claim 9, characterized in that the metals and non-metals, which bismuth and vanadium can partially replace, are Li, Mg, Zn, Al and Ca, and W, P and Mo. Bismuthvanadat-Pigmente gemäss Anspruch 9, dadurch gekennzeichnet, dass es sich um Bismuthvanadate auf Basis der C.I. Pigment Yellow 184-Typen handelt.Bismuth vanadate pigments according to claim 9, characterized in that they are bismuth vanadates based on the C.I. Pigment Yellow 184 types. Mit Bismuthvanadat-Pigmenten gemäss Anspruch 9 pigmentiertes hochmolekulares organisches Material.High-molecular organic material pigmented with bismuth vanadate pigments according to claim 9.
EP19970810315 1996-05-31 1997-05-22 Transparent bismuth vanadate pigments Expired - Lifetime EP0810269B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CH137096 1996-05-31
CH1370/96 1996-05-31
CH137096 1996-05-31

Publications (3)

Publication Number Publication Date
EP0810269A2 true EP0810269A2 (en) 1997-12-03
EP0810269A3 EP0810269A3 (en) 1998-07-22
EP0810269B1 EP0810269B1 (en) 2003-09-03

Family

ID=4208833

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19970810315 Expired - Lifetime EP0810269B1 (en) 1996-05-31 1997-05-22 Transparent bismuth vanadate pigments

Country Status (6)

Country Link
US (1) US5853472A (en)
EP (1) EP0810269B1 (en)
JP (1) JPH10101338A (en)
KR (1) KR100499596B1 (en)
DE (1) DE59710675D1 (en)
TW (1) TW373006B (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000020515A1 (en) * 1998-10-01 2000-04-13 Ciba Specialty Chemicals Holding Inc. Red-tinged bismuth vanadate pigments
EP3024896A4 (en) * 2013-07-25 2017-02-15 Basf Se Bismuth vanadate pigments
CN113877632A (en) * 2021-11-16 2022-01-04 江西省科学院应用化学研究所 Preparation method of 2D bismuth vanadate @ PDA core-shell structure composite material loaded with noble metal nanoparticles

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19840156A1 (en) * 1998-09-03 2000-03-09 Basf Ag Bismuth vanadate pigments with at least one coating containing metal fluoride
DE19934206A1 (en) * 1999-07-21 2001-01-25 Basf Ag Pigment preparations containing phosphate
JP5444232B2 (en) * 2007-10-18 2014-03-19 ラバー ナノ プロダクツ (プロプライエタリー) リミテッド Production of coating materials for use as activators in sulfur vulcanization.
JP5251809B2 (en) * 2009-09-25 2013-07-31 東洋インキScホールディングス株式会社 Aqueous dispersion and water-based coating composition having solar heat shielding effect
CN105838111B (en) * 2016-05-25 2018-02-23 赣州有色冶金研究所 Pearlescent pigment with heat discoloration effect and preparation method thereof and system
JP7098992B2 (en) * 2018-03-20 2022-07-12 セイコーエプソン株式会社 Inkjet ink set
CN115043427B (en) * 2022-07-28 2023-07-04 中南大学 High-concentration colloidal antimony pentoxide and preparation method thereof

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4063956A (en) * 1976-09-16 1977-12-20 E. I. Du Pont De Nemours And Company Heat stable monoclinic bismuth vanadate pigment
EP0074049A2 (en) * 1981-09-05 1983-03-16 BASF Aktiengesellschaft Pigment containing yellow bismuth vanadate and process for manufacturing the same
EP0239526A2 (en) * 1986-02-19 1987-09-30 Ciba-Geigy Ag Inorganic compounds based on bismuth vanadate
EP0430888A1 (en) * 1989-11-30 1991-06-05 Ciba-Geigy Ag Process for preparing bismuth vanadate pigments and bismuth vanadate pigments of high tinting strength
GB2238549A (en) * 1989-11-30 1991-06-05 Ciba Geigy Ag Process for stabilising bismuth vanadate pigments against attack by hydrochloric acid
EP0640566A1 (en) * 1993-08-24 1995-03-01 BASF Lacke + Farben AG Bismuth vanadate pigments
EP0723998A1 (en) * 1995-01-25 1996-07-31 Bayer Ag Colour-fast yellow bismuth vanadate pigment

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3843554A (en) * 1970-09-24 1974-10-22 Du Pont Catalyst compositions of scheelite crystal structure containing vanadium,bismuth and cation vacancies
DE2402694A1 (en) * 1974-01-21 1975-07-24 Hoechst Ag A PROCESS FOR THE PRODUCTION OF EASILY DISPERSIBLE AND GRIP STABLE MOLYBDATROTCHROME YELLOW PIGMENTS
US4115142A (en) * 1976-06-22 1978-09-19 E. I. Du Pont De Nemours And Company Pigmentary bright primrose yellow monoclinic bismuth vanadate and processes for the preparation thereof
IT1110668B (en) * 1979-02-09 1985-12-23 Montedison Spa NEW INORGANIC PIGMENTS AND PROCESS TO PREPARE THEM
IT1195261B (en) * 1980-02-25 1988-10-12 Montedison Spa NEW INORGANIC PIGMENTS AND PROCESS TO PREPARE THEM
EP0441101A1 (en) * 1990-01-11 1991-08-14 Ciba-Geigy Ag Phosphate modified bismuth vanadate pigments
DE4040849A1 (en) * 1990-12-20 1992-06-25 Bayer Ag Bismuth Vanadate pigments, process for their preparation and their use
US5336312A (en) * 1991-04-24 1994-08-09 Ferro Corporation Bismuth-containing colorants
DE4200925A1 (en) * 1992-01-16 1993-07-22 Basf Ag bismuth vanadate
JP2732330B2 (en) * 1992-03-27 1998-03-30 大日精化工業株式会社 Yellow-based zirconium-dissolved bismuth vanadate pigment and method for producing the same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4063956A (en) * 1976-09-16 1977-12-20 E. I. Du Pont De Nemours And Company Heat stable monoclinic bismuth vanadate pigment
EP0074049A2 (en) * 1981-09-05 1983-03-16 BASF Aktiengesellschaft Pigment containing yellow bismuth vanadate and process for manufacturing the same
EP0239526A2 (en) * 1986-02-19 1987-09-30 Ciba-Geigy Ag Inorganic compounds based on bismuth vanadate
EP0430888A1 (en) * 1989-11-30 1991-06-05 Ciba-Geigy Ag Process for preparing bismuth vanadate pigments and bismuth vanadate pigments of high tinting strength
GB2238549A (en) * 1989-11-30 1991-06-05 Ciba Geigy Ag Process for stabilising bismuth vanadate pigments against attack by hydrochloric acid
EP0640566A1 (en) * 1993-08-24 1995-03-01 BASF Lacke + Farben AG Bismuth vanadate pigments
EP0723998A1 (en) * 1995-01-25 1996-07-31 Bayer Ag Colour-fast yellow bismuth vanadate pigment

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
DATABASE WPI Week 9346 Derwent Publications Ltd., London, GB; AN 93-365426 XP002066367 & JP 05 271 568 A (DAINICHISEIKA COLOR & CHEM. MFG. AND UKIMA GOSEI KAGAKU KK) , 19.Oktober 1993 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000020515A1 (en) * 1998-10-01 2000-04-13 Ciba Specialty Chemicals Holding Inc. Red-tinged bismuth vanadate pigments
US6444025B1 (en) 1998-10-01 2002-09-03 Ciba Specialty Chemicals Corporation Red-tinged bismuth vanadate pigments
EP3024896A4 (en) * 2013-07-25 2017-02-15 Basf Se Bismuth vanadate pigments
US9868860B2 (en) 2013-07-25 2018-01-16 Basf Se Bismuth vanadate pigments
CN113877632A (en) * 2021-11-16 2022-01-04 江西省科学院应用化学研究所 Preparation method of 2D bismuth vanadate @ PDA core-shell structure composite material loaded with noble metal nanoparticles

Also Published As

Publication number Publication date
EP0810269B1 (en) 2003-09-03
KR970074871A (en) 1997-12-10
US5853472A (en) 1998-12-29
DE59710675D1 (en) 2003-10-09
JPH10101338A (en) 1998-04-21
EP0810269A3 (en) 1998-07-22
TW373006B (en) 1999-11-01
KR100499596B1 (en) 2005-09-08

Similar Documents

Publication Publication Date Title
EP0074049B1 (en) Pigment containing yellow bismuth vanadate and process for manufacturing the same
EP0911369B1 (en) Red iron oxide pigments, process for its preparation and its use
EP0265820A1 (en) Platelet-shaped substituted iron oxide pigments
EP0984044B1 (en) Bismuth vanadate based pigments having at least one metalfluoride-containing coating
DE4037878B4 (en) Process for stabilizing bismuth vanadate pigments against the attack of hydrochloric acid
DE2334542C2 (en) Process for the production of an extended corrosion-inhibiting metal molybdate pigment
EP0723998B1 (en) Colour-fast yellow bismuth vanadate pigment
EP0239526A2 (en) Inorganic compounds based on bismuth vanadate
DE3145620C2 (en)
EP0940451B1 (en) Brilliant goniochromatic pigments based on iron oxide platelets bearing multiple coatings
EP0810269B1 (en) Transparent bismuth vanadate pigments
EP0618174B1 (en) Process for the preparation of transparent yellow iron oxide pigments
EP0372335B1 (en) Black pigment, process for preparing it and its use
EP0523399A1 (en) Thermally stable black pigment, process for its preparation and its use
DE1592973A1 (en) Titanium dioxide pigment
EP0441101A1 (en) Phosphate modified bismuth vanadate pigments
EP0742271A2 (en) Coloured pigments
EP0704498B1 (en) Highly transparent yellow iron oxide pigments, process for their preparation and their use
EP0430888B1 (en) Process for preparing bismuth vanadate pigments and bismuth vanadate pigments of high tinting strength
EP1129142B1 (en) Red-tinged bismuth vanadate pigments
DE2325307B2 (en) Chromate pigments, process for their production and their use in paints and graphic paints
DE2234519A1 (en) PROCESS FOR THE PRODUCTION OF SURFACE-COVERED OXIDE PARTICLES
EP0304399B1 (en) Process for preparing bismuth vanadates
EP0169810B1 (en) Greenish orthorhombic lead chromate pigments
EP0313017B1 (en) Process for manufacturing lead molybdate pigments, and like colour fast pigments

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): CH DE FR GB IT LI

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): CH DE FR GB IT LI

K1C3 Correction of patent application (complete document) published

Effective date: 19971203

17P Request for examination filed

Effective date: 19980804

17Q First examination report despatched

Effective date: 20000118

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE FR GB IT LI

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
REF Corresponds to:

Ref document number: 59710675

Country of ref document: DE

Date of ref document: 20031009

Kind code of ref document: P

ET Fr: translation filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040531

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040531

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20040604

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050522

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20100422 AND 20100428

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

Ref country code: FR

Ref legal event code: CD

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 59710675

Country of ref document: DE

Representative=s name: ROOS, PETER, DIPL.-PHYS.UNIV. DR.RER.NAT., DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 19

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20160520

Year of fee payment: 20

Ref country code: GB

Payment date: 20160503

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20160530

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 59710675

Country of ref document: DE

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20170521

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20170521