EP0808412B1 - Positive-displacement machine having vanes - Google Patents

Positive-displacement machine having vanes Download PDF

Info

Publication number
EP0808412B1
EP0808412B1 EP96903072A EP96903072A EP0808412B1 EP 0808412 B1 EP0808412 B1 EP 0808412B1 EP 96903072 A EP96903072 A EP 96903072A EP 96903072 A EP96903072 A EP 96903072A EP 0808412 B1 EP0808412 B1 EP 0808412B1
Authority
EP
European Patent Office
Prior art keywords
curvature
radius
solutions
equations
arch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP96903072A
Other languages
German (de)
French (fr)
Other versions
EP0808412A1 (en
Inventor
André Leroy
Jean-Marie Flamme
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of EP0808412A1 publication Critical patent/EP0808412A1/en
Application granted granted Critical
Publication of EP0808412B1 publication Critical patent/EP0808412B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C21/00Component parts, details or accessories not provided for in groups F01C1/00 - F01C20/00
    • F01C21/10Outer members for co-operation with rotary pistons; Casings
    • F01C21/104Stators; Members defining the outer boundaries of the working chamber
    • F01C21/106Stators; Members defining the outer boundaries of the working chamber with a radial surface, e.g. cam rings

Definitions

  • the object of the invention is a volumetric machine with mobile sealing elements comprising at least one capsulism essentially comprising a capsule consisting of a cylindrical tubular part with non-circular director and two end flanges, a cylindrical piston of which the directrix is a circle with center O and radius R p , provided with grooves guiding the sealing elements in the piston, this piston being in rotoidal connection with the capsule around its axis, as well as a fluid distribution system allowing its admission and its exhaust.
  • the mobile sealing elements are most often pallets but can be rollers.
  • the director of the tubular part of the capsule consists, successively and alternately, of n arcs of a circle called arcs of conformity, of possibly zero angular opening, of center O and of radius R p + J, J designating the radial clearance between these arcs and the directrix of the piston, as well as n geometric arcs called arcs, limiting in the centrifugal direction the movement of the sealing elements in the grooves.
  • Each arch has, with the adjacent conforming arcs, two connection points M i and M f in which the radii of curvature are respectively equal to R ci and R cf and in which the angles of the tangents, ⁇ i and ⁇ f respectively , differ by ⁇ / 2 from the corresponding polar angles ⁇ i and ⁇ f ; each hoop also contains a point Me in which the polar radius is maximum, equal to R p + J + H, in which the angle of the tangent ⁇ e differs from ⁇ / 2 from the corresponding polar angle ⁇ e and in which the radius of curvature R ce is less than R p .
  • the designer is in the context of a compromise between the need to have as regular a variation as possible in the curvature on the arcs M i M e and M e M f respectively and the search for a radius of curvature as large as possible, with as little variation as possible, in the vicinity of point M e , over the greatest possible angular opening.
  • the first possibility is preferably used when 2 ⁇ e ⁇ ⁇ i + ⁇ f and the second when 2 ⁇ e ⁇ ⁇ i + ⁇ f .
  • the table below specifies, for the different possible combinations of the values of the parameters a and b, whether the radii of curvature R ci , R ce and R cf must be imposed a priori. if they are calculated from equation (I) or if they are solutions, with the geometric parameters A ⁇ 1 , ..., A ⁇ a , B ⁇ 1 , ..., B ⁇ b , of the system of equations (II) to (VII) possibly supplemented by equations (VIII) and (IX).
  • the last column of this table indicates the numbers of the equations of this system.
  • FIG. 1 illustrates by way of example a rotary vane compressor in accordance with the invention.
  • Figures 2, 3 and 4 completely or partially show the outline of the capsule corresponding to the compressor illustrated in figure 1.
  • Figure 1 shows a cross section in the compressor used as an example.
  • the tubular part (1) of the fixed capsule the piston (2), the director circular (20) of its outer surface and the five grooves such as (3) each guiding a pallet such as (4), the point of piercing O of the axis common to the capsule, the piston and their rotoid connection.
  • the two intake lights such as (5)
  • the two lights exhaust
  • valves such as (7).
  • the tubular part of the capsule (1) is internally limited by a cylindrical surface whose non-circular director (10) is the capsule profile.
  • the direction of rotation of the piston around its axis is indicated by the arrow.
  • a first arch of the capsule profile is limited by the points M i and M f ; the polar radius increases monotonously on this arch from point M i to point M e and decreases monotonically from point M e to point M f .
  • the distance between point O and point M e is equal to (R p + J + H).
  • the points M i , M e and M f are identified on the arch by the respective angles ⁇ i , ⁇ e and ⁇ f .
  • a first conformance arc originates from point M f and ends from point M ' i .
  • the second arch extends from point M ' i to point M' f and contains the point M ' e symmetrical with the point M e with respect to the point O.
  • the second conformance arc originates from point M ' f and ends from point M i .
  • the radius of curvature R ci at point M i is equal to 89.847 mm.
  • the radius of curvature R cf at point M f is equal to 47.234 mm.
  • the radius of curvature is between 30 mm and 25.990 mm.
  • Figure 3 an arch, the two conforming arcs of the capsule profile shown in Figure 2 and the developed of this arch on which there is the angular point D e as well as the points D i and D f , centers of respective curvature of the arch at points M e , M i and M f .
  • FIG. 4 represents on an enlarged scale part of the developed shown in FIG. 3 as well as its two tangents at the angular point D e which determine an angle of 36 °, equal to the angle ⁇ d - ⁇ m .
  • the displacement of the compressor a cross section of which is represented in FIG. 1, calculated from the chamber of maximum accessible volume, for pallets of thickness equal to 4 mm and a capsule width of 54 mm, is 172 cm. 3 .

Description

L'objet de l'invention est une machine volumétrique à éléments mobiles d'étanchéité comprenant au moins un capsulisme comportant essentiellement une capsule constituée d'une partie tubulaire cylindrique à directrice non-circulaire et de deux flasques d'extrémité, un piston cylindrique dont la directrice est un cercle de centre O et de rayon Rp, muni de rainures guidant les éléments d'étanchéité dans le piston, ce piston étant en liaison rotoïde avec la capsule autour de son axe, ainsi qu'un système de distribution du fluide permettant son admission et son échappement. Dans cette machine, les éléments mobiles d'étanchéité sont le plus souvent des palettes mais peuvent être des rouleaux. La directrice de la partie tubulaire de la capsule, appelée profil de capsule, est constituée, successivement et alternativement, de n arcs de cercle appelés arcs de conformité, d'ouverture angulaire éventuellement nulle, de centre O et de rayon Rp + J, J désignant le jeu radial entre ces arcs et la directrice du piston, ainsi que de n arcs géométriques appelés arceaux, limitant dans la direction centrifuge le mouvement des éléments d'étanchéité dans les rainures. Chaque arceau a, avec les arcs de conformité adjacents, deux points de raccordement Mi et Mf en lesquels les rayons de courbure sont respectivement égaux à Rci et à Rcf et en lesquels les angles des tangentes, τi et τf respectivement, diffèrent de π/2 des angles polaires correspondants i et f ; chaque arceau contient également un point Me en lequel le rayon polaire est maximal, égal à Rp + J + H, en lequel l'angle de la tangente τe diffère de π/2 de l'angle polaire e correspondant et en lequel le rayon de courbure Rce est inférieur à Rp.The object of the invention is a volumetric machine with mobile sealing elements comprising at least one capsulism essentially comprising a capsule consisting of a cylindrical tubular part with non-circular director and two end flanges, a cylindrical piston of which the directrix is a circle with center O and radius R p , provided with grooves guiding the sealing elements in the piston, this piston being in rotoidal connection with the capsule around its axis, as well as a fluid distribution system allowing its admission and its exhaust. In this machine, the mobile sealing elements are most often pallets but can be rollers. The director of the tubular part of the capsule, called the capsule profile, consists, successively and alternately, of n arcs of a circle called arcs of conformity, of possibly zero angular opening, of center O and of radius R p + J, J designating the radial clearance between these arcs and the directrix of the piston, as well as n geometric arcs called arcs, limiting in the centrifugal direction the movement of the sealing elements in the grooves. Each arch has, with the adjacent conforming arcs, two connection points M i and M f in which the radii of curvature are respectively equal to R ci and R cf and in which the angles of the tangents, τ i and τ f respectively , differ by π / 2 from the corresponding polar angles  i and  f ; each hoop also contains a point Me in which the polar radius is maximum, equal to R p + J + H, in which the angle of the tangent τ e differs from π / 2 from the corresponding polar angle  e and in which the radius of curvature R ce is less than R p .

On connaít de nombreuses machines volumétriques répondant à cette définition et notamment les machines décrites successivement dans les brevets et demandes de brevets suivants : US 2 791 185, JP 58-174102 et FR 2 547 622.We know many volumetric machines that meet this definition and in particular the machines described successively in patents and patent applications following: US 2 791 185, JP 58-174102 and FR 2 547 622.

Dans chacun de ces brevets, un profil de capsule original est revendiqué, dans le brevet US 2 791 185 pour répondre à une organisation particulière de la machine, dans le brevet JP 58-174102 pour accélérer la sortie des palettes et ralentir leur rentrée. dans le brevet FR 2 547 622 pour fournir un meilleur compromis entre les différentes sujétions qu'imposc la conception de machines à hautes performances.In each of these patents, an original capsule profile is claimed, in the patent US 2,791,185 to respond to a particular organization of the machine, in the patent JP 58-174102 to accelerate the exit of the pallets and slow their return. in the patent FR 2,547,622 to provide a better compromise between the different subjugations than imposed the design of high performance machines.

On peut constater au travers de ces trois brevets une tendance à l'amélioration progressive de l'élément géométrique de la machine le plus critique pour les performances, et une tendance pratiquement inévitable à une augmentation sensible du nombre de paramètres nécessaires pour préciser un profil de capsule, ce qui entraíne une difficulté pour exprimer à travers ces paramètres les contraintes d'optimalisation, et surtout, pour hiérarchiser celles-ci.We can see through these three patents a trend of progressive improvement of the most critical geometric element of the machine for performance, and a practically inevitable tendency to a significant increase in the number of parameters necessary to specify a capsule profile, which causes difficulty in expressing through these parameters the optimization constraints, and above all, to prioritize them.

Dans les machines conformes à l'invention, on s'écarte de cette tendance en proposant une nouvelle géométrie du profil de capsule qui répond directement aux deux exigences majeures auxquelles sont soumises actuellement les machines à hautes performances, à savoir la compacité et la tranquillité de marche, tout en n'ayant recours qu'à un nombre minimal de paramètres pour préciser cette géométrie. In machines according to the invention, we depart from this tendency by proposing a new geometry of the capsule profile which directly meets the two requirements major to which high performance machines are currently subjected, know the compactness and tranquility of walking, while using only a number minimal parameters to specify this geometry.

L'invention suppose imposées a priori les données géométriques suivantes : Rp, n, H/Rp, J, i , e, f, auxquelles on peut au plus ajouter les rayons de courbure Rci, Rce et Rcf.

  • Rp est l'échelle de la machine et est imposé en relation avec la valeur souhaitée de la cylindrée pour une largeur unitaire du capsulisme ;
  • n est généralement égal à 1, 2 ou 3 ;
  • le rapport H/Rp est imposé aussi grand que possible pour réduire l'encombrement de la machine ; ce rapport est toutefois limité par la possibilité de matérialiser les rainures dans le piston, ce qui est d'autant plus difficile que la valeur de n est faible, et par la nécessité d'obtenir un profil qui ait en chacun de ses points un rayon de courbure suffisant, notamment pour assurer un contact entre l'élément d'étanchéité et la capsule avec une pression de Hertz aussi faible que possible, et qui ait une courbure suffisante pour éviter la rentrée des éléments d'étanchéité dans le piston sous l'action conjuguée de la pression du fluide et des réactions d'inertie ;
  • le jeu J est imposé par des considérations technologiques et économiques ;
  • i et (2π/n - f) sont imposés pour assurer une bonne étanchéité entre le piston et la capsule, compte tenu notamment, du niveau de la différence de pressions entre l'admission et l'échappement, du rapport H/Rp souhaité, du jeu J imposé et de la largeur des palettes ou du diamètre des rouleaux selon le cas ;
  • e peut être égal à (i + f )/2 ou s'écarter de cette valeur, notamment pour rendre dissymétriques les réactions d'inertie sur l'arc MiMe et sur l'arc MeMf, permettant ainsi. dans une certaine mesure, la régularisation du couple moteur ; dans cette perspective, on rapprochera le plus souvent le point Me du point Mi (2e ≤ i + f ) lorsque le fluide est en moyenne à plus basse pression sur l'arc MiMe que sur l'arc MeMf et on rapprochera le plus souvent le point Me du point Mf (2e ≥ i + f) dans le cas inverse ; on peut observer que la dissymétrie des arcs MiMe et MeMf doit être d'autant plus faible que les valeurs de n et de H/Rp sont élevées ;
  • lorsque les rayons de courbure Rci, Rce et Rcf sont imposés a priori, leurs valeurs doivent être aussi grandes que possible pour minimiser, à H/Rp fixé. l'encombrement de la machine, la valeur de Rce étant toutefois limitée à une valeur inférieure à Rp, celles de Rci et de Rcf étant limitées par le risque de rentrée des éléments d'étanchéité dans le piston, dans les conditions où les pressions d'admission et d'échappement sont identiques ou voisines.
The invention presupposes that the following geometric data are imposed a priori: R p , n, H / R p , J,  i ,, e ,  f , to which we can add at most the radii of curvature Rci, Rce and Rcf.
  • R p is the scale of the machine and is imposed in relation to the desired value of the displacement for a unit width of the capsulism;
  • n is generally 1, 2 or 3;
  • the H / R p ratio is imposed as large as possible to reduce the size of the machine; this ratio is however limited by the possibility of materializing the grooves in the piston, which is all the more difficult as the value of n is low, and by the need to obtain a profile which has a radius at each of its points of sufficient curvature, in particular to ensure contact between the sealing element and the capsule with a Hertz pressure as low as possible, and which has a sufficient curvature to prevent the re-entry of the sealing elements in the piston under the combined action of fluid pressure and inertia reactions;
  • game J is imposed by technological and economic considerations;
  • i and (2π / n -  f ) are imposed to ensure a good seal between the piston and the capsule, taking into account in particular, the level of the pressure difference between the intake and the exhaust, the H / R ratio p desired, the clearance J imposed and the width of the pallets or the diameter of the rollers as the case may be;
  • e can be equal to ( i +  f ) / 2 or deviate from this value, in particular to make the inertia reactions on the arc M i M e and on the arc M e M f dissymmetrical, allowing. to a certain extent, the regulation of the engine torque; in this perspective, the point M e will most often be brought closer to the point M i (2 e ≤  i +  f ) when the fluid is on average at lower pressure on the arc M i M e than on the arc M e M f and we will most often bring point M e closer to point M f (2 e ≥  i +  f ) in the opposite case; it can be observed that the asymmetry of the arcs M i M e and M e M f must be lower the higher the values of n and H / R p ;
  • when the radii of curvature Rci, Rce and Rcf are imposed a priori, their values must be as large as possible to minimize, at H / R p fixed. the size of the machine, the value of Rce being however limited to a value less than R p , those of Rci and Rcf being limited by the risk of re-entry of the sealing elements in the piston, under the conditions where the pressures intake and exhaust are identical or similar.

Les machines conformes à l'invention ont un profil de capsule dont un arceau a pour équation intrinsèque, c'est-à-dire expnmée indépendamment de tout repère :

Figure 00020001
équation (I) dans laquelle :

  • δ = 1 lorsque τ ≤ τe et δ = 0 lorsque τ > τe,
  • 2 ≤ a ≤ 4 , 2 ≤ b ≤ 4 , -1 ≤ a - b ≤ 1 , a + b ≥ 5 ,
  • ds représente l'accroissement infiniment petit de l'abscisse curviligne s en un point courant M de l'arceau, calculée à partir d'une origine quelconque,
  • τ désigne l'angle de la tangente à l'arceau en M ,
  • dτ représente l'accroissement infiniment petit de l'angle τ en M ,
  • α1 , ... , αa désignent un ensemble de a paramètres de forme de l'arceau, β1 , ..., βb un ensemble de b paramètres de forme de l'arceau, ces paramètres de forme étant suffisamment grands pour que la développée de l'arceau au voisinage du point Me présente, à la précision ε près inférieure ou égale à 1 µm , un point anguleux De , ce qui se traduit par les deux conditions suivantes :
    Figure 00030001
    Figure 00030002
    dans lesquelles (τe - τm) représente l'angle que fait l'une des tangentes à la développée de l'arceau au point anguleux De, avec la direction radiale précisée par e, et (τd - τe) représente l'angle de l'autre tangente au point anguleux De , avec cette même direction radiale, - les Aα désignent un ensemble de a paramètres géométriques, les Bβ un ensemble de b paramètres géométriques, les a + b paramètres géométriques Aα1 , ... , Aαa, Bβ1 , ... , Bβb et éventuellement le rayon de courbure Rce étant solutions du système constitué des six équations (II) à (VII) ci-après, complété éventuellement par l'équation (VIII) si le rayon de courbure Rci est imposé et par l'équation (IX) si le rayon de courbure Rcf est imposé :
    Figure 00030003
    Figure 00040001
    Figure 00040002
    Figure 00040003
    Figure 00040004
    Figure 00040005
    Figure 00050001
    Figure 00050002
The machines in accordance with the invention have a capsule profile of which an arch has an intrinsic equation, that is to say expnmed independently of any reference:
Figure 00020001
equation (I) in which:
  • δ = 1 when τ ≤ τ e and δ = 0 when τ> τ e ,
  • 2 ≤ a ≤ 4, 2 ≤ b ≤ 4, -1 ≤ a - b ≤ 1, a + b ≥ 5,
  • ds represents the infinitely small increase in the curvilinear abscissa s at a current point M of the arch, calculated from any origin,
  • τ denotes the angle of the tangent to the arch in M,
  • dτ represents the infinitely small increase in the angle τ in M,
  • α 1 , ..., α a denote a set of a shape parameters of the arch, β 1 , ..., β b a set of b shape parameters of the arch, these shape parameters being sufficiently large so that the developed of the arch in the vicinity of the point M e has, at the accuracy ε near less than or equal to 1 μm, an angular point D e , which results in the following two conditions:
    Figure 00030001
    Figure 00030002
    in which (τ e - τ m ) represents the angle made by one of the tangents to the developed of the arch at the angular point D e , with the radial direction specified by  e , and (τ d - τ e ) represents the angle of the other tangent to the angular point D e , with this same radial direction, - the A α designate a set of a geometric parameters, the B β a set of b geometric parameters, the a + b geometric parameters Aα 1 , ..., Aα a , Bβ 1 , ..., Bβ b and possibly the radius of curvature R ce being solutions of the system consisting of the six equations (II) to (VII) below, possibly supplemented by the equation (VIII) if the radius of curvature R ci is imposed and by equation (IX) if the radius of curvature R cf is imposed:
    Figure 00030003
    Figure 00040001
    Figure 00040002
    Figure 00040003
    Figure 00040004
    Figure 00040005
    Figure 00050001
    Figure 00050002

Lorsque toutes les données géométriques (Rp , n , H/Rp , J , i , e , f , Rci , Rce et Rcf) sont imposées a priori, ce qui suppose qu'elles l'ont été raisonnablement, c'est-à-dire en respectant les considérations qui ont été précisées plus haut, a doit être égal à quatre, b doit également être égal à quatre et le concepteur doit choisir dans l'équation (I) les huit paramètres de forme α1 , ... , α4 , β1 , ..., β4. En opérant ce choix, le concepteur se situe dans le cadre d'un compromis entre la nécessité d'avoir une variation aussi régulière que possible de la courbure sur les arcs MiMe et MeMf respectivement et la recherche d'un rayon de courbure aussi grand que possible, à variation aussi faible que possible, au voisinage du point Me, sur l'ouverture angulaire la plus grande possible.When all the geometric data (R p , n, H / R p , J,  i ,  e ,  f , Rci, Rce and Rcf) are imposed a priori, which supposes that they were reasonably done, that is to say respecting the considerations which have been specified above, a must be equal to four, b must also be equal to four and the designer must choose in equation (I) the eight parameters of form α 1 , ..., α 4 , β 1 , ..., β 4 . By making this choice, the designer is in the context of a compromise between the need to have as regular a variation as possible in the curvature on the arcs M i M e and M e M f respectively and the search for a radius of curvature as large as possible, with as little variation as possible, in the vicinity of point M e , over the greatest possible angular opening.

Si l'un ou plusieurs des rayons de courbure Rci, Rce ou Rcf ne doivent pas être imposées a priori, on peut appliquer l'invention selon l'une des sept variantes suivantes qui présentent toutes l'intérêt d'une réduction du nombre de paramètres à choisir. Il est remarquable de constater que dans ces variantes. la valeur calculée de tout rayon de courbure non imposé en l'un des points Mi, Me ou Mf est automatiquement celle qui donne la courbure moyenne la plus faible possible sur les arcs MiMe ou MeMf selon le cas, compte tenu des autres contraintes imposées a priori.

  • Selon une première variante, Rce et Rci sont imposés a priori, a = 4 , b = 3 , les sept paramètres géométriques Aα1 , ... , Aα4 , Bβ1 , ... , Bβ3 sont solutions du système constitué des sept équations (II) à (VIII) ; Rcf est calculé ensuite à partir de l'équation (I) où l'on remplacé τ par τf.
  • Selon une seconde variante, Rce et Rcf sont imposés a priori, a = 3 , b = 4 : les sept paramètres géométriques Aα1 , ... , Aα3 , Bβ1, ..., Bβ4 sont solutions du système constitué des sept équations (II) à (VII) et (IX) ; Rci est calculé ensuite à partir de l'équation (I) où l'on a remplacé τ par τi.
  • Selon une troisième variante, seul Rce est imposé a priori, a = 3 , b = 3 ; les six paramètres géométriques Aα1 , ..., Aα3 , Bβ1, ..., Bβ3 sont solutions du système constitué des six équations (II) à (VII) : Rci et Rcf sont calculés ensuite à partir de l'équation (I) où l'on a remplacé τ par τi et par τf respectivement.
  • Selon une quatrième variante, Rci et Rcf sont imposés a priori, a ≥ 3 , b ≥ 3 , a + b = 7 ; le rayon de courbure Rce et les sept paramètres géométriques Aα1 , ..., Aαa, Bβ1, ..., Bβb sont solutions du système constitué des huit équations (II) à (IX) . Selon cette variante de l'invention, on dégage deux cas particuliers correspondant respectivement à a = 3 et b = 4 d'une part ou à a = 4 et b = 3 d'autre part. On exploite de préférence la première possibilité lorsque 2τe ≤ τi + τf et la seconde quand 2τe ≥ τi + τf. On peut observer que lorsque 2τe = τi + τf et lorsque α1 = β1 , α2 = β2, α3 = β3, le paramètre géométrique Bβ4 ou Aα4 selon le cas devient identiquement nul, quelle que soit la valeur choisie pour le paramètre de forme β4 ou α4.
  • Selon une cinquième variante, seul Rci est imposé a priori, a ≥ 3 , b ≥ 2 , a + b = 6 ; le rayon de courbure Rce et les six paramètres géométriques Aα1 , ... , Aαa , Bβ1, ..., Bβb sont solutions du système constitué des sept équations (II) à (VIII) ; Rcf est calculé ensuite à partir de l'équation (I) où l'on a remplacé τ par τf. Selon cette variante de l'invention, on dégage deux cas particuliers correspondant respectivement à a = 3 et b = 3 d'une part ou à a = 4 et b = 2 d'autre part. On exploite de préférence la première possibilité lorsque 2τe ≤ τi + τf et la seconde quand 2τe ≥ τi + τf.
  • Selon une sixième variante, seul Rcf est imposé a priori, a ≥ 2 , b ≥ 3 , a + b = 6 ; le rayon de courbure Rce et les six paramètres géométriques Aα1 , ..., Aαa , Bβ1, ..., Bβb sont solutions du système constitué des sept équations (II) à (VII) et (IX) ; Rci est calculé ensuite à partir de l'équation (I) où l'on a remplacé τ par τi. Selon cette variante de l'invention, on dégage deux cas particuliers correspondant respectivement à a = 2 et b = 4 d'une part ou à a = 3 et b = 3 d'autre part. On exploite de préférence la première possibilité lorsque 2τe ≤ τi + τf et la seconde quand 2τe ≥ τi + τf.
  • Selon une septième variante, a ≥ 2 , b ≥ 2 , a + b = 5 ; le rayon de courbure Rce et les cinq paramètres géométriques Aα1 , ... , Aαa , Bβ1, ... , Bβb sont solutions du système constitué des six équations (II) à (VII) ; Rci et Rcf sont calculés ensuite à partir de l'équation (I) où l'on a remplacé τ par τi et par τf respectivement.
If one or more of the radii of curvature Rci, Rce or Rcf need not be imposed a priori, the invention can be applied according to one of the following seven variants which all have the advantage of reducing the number of parameters to choose. It is remarkable to note that in these variants. the calculated value of any radius of curvature not imposed at one of the points M i , M e or M f is automatically the one which gives the lowest possible average curvature on the arcs M i M e or M e M f according to the case, taking into account the other constraints imposed a priori.
  • According to a first variant, Rce and Rci are imposed a priori, a = 4, b = 3, the seven geometric parameters Aα 1 , ..., Aα 4 , Bβ 1 , ..., Bβ 3 are solutions of the system consisting of seven equations (II) to (VIII); Rcf is then calculated from equation (I) where we replace τ by τ f .
  • According to a second variant, Rce and Rcf are imposed a priori, a = 3, b = 4: the seven geometric parameters Aα 1 , ..., Aα 3 , Bβ 1 , ..., Bβ 4 are solutions of the system made up of seven equations (II) to (VII) and (IX); Rci is then calculated from equation (I) where we have replaced τ by τ i .
  • According to a third variant, only Rce is imposed a priori, a = 3, b = 3; the six geometric parameters Aα 1 , ..., Aα 3 , Bβ 1 , ..., Bβ 3 are solutions of the system consisting of the six equations (II) to (VII): Rci and Rcf are then calculated from equation (I) where we replaced τ by τ i and by τ f respectively.
  • According to a fourth variant, Rci and Rcf are imposed a priori, a ≥ 3, b ≥ 3, a + b = 7; the radius of curvature Rce and the seven geometric parameters Aα 1 , ..., Aα a , Bβ 1 , ..., Bβ b are solutions of the system made up of the eight equations (II) to (IX). According to this variant of the invention, two specific cases emerge corresponding respectively to a = 3 and b = 4 on the one hand or to a = 4 and b = 3 on the other hand. The first possibility is preferably used when 2τ e ≤ τ i + τ f and the second when 2τ e ≥ τ i + τ f . We can observe that when 2τ e = τ i + τ f and when α 1 = β 1 , α 2 = β 2 , α 3 = β 3 , the geometric parameter Bβ 4 or Aα 4 according to the case becomes identically zero, whatever either the value chosen for the form parameter β 4 or α 4 .
  • According to a fifth variant, only Rci is imposed a priori, a ≥ 3, b ≥ 2, a + b = 6; the radius of curvature Rce and the six geometric parameters Aα 1 , ..., Aα a , Bβ 1 , ..., Bβ b are solutions of the system made up of the seven equations (II) to (VIII); Rcf is then calculated from equation (I) where we have replaced τ by τ f . According to this variant of the invention, two specific cases emerge corresponding respectively to a = 3 and b = 3 on the one hand or to a = 4 and b = 2 on the other hand. The first possibility is preferably used when 2τ e ≤ τ i + τ f and the second when 2τ e ≥ τ i + τ f .
  • According to a sixth variant, only Rcf is imposed a priori, a ≥ 2, b ≥ 3, a + b = 6; the radius of curvature Rce and the six geometric parameters Aα 1 , ..., Aα a , Bβ 1 , ..., Bβ b are solutions of the system made up of the seven equations (II) to (VII) and (IX); Rci is then calculated from equation (I) where we have replaced τ by τ i . According to this variant of the invention, two specific cases emerge corresponding respectively to a = 2 and b = 4 on the one hand or to a = 3 and b = 3 on the other hand. The first possibility is preferably used when 2τ e ≤ τ i + τ f and the second when 2τ e ≥ τ i + τ f .
  • According to a seventh variant, a ≥ 2, b ≥ 2, a + b = 5; the radius of curvature Rce and the five geometric parameters Aα 1 , ..., Aα a , Bβ 1 , ..., Bβ b are solutions of the system made up of the six equations (II) to (VII); Rci and Rcf are then calculated from equation (I) where τ has been replaced by τ i and by τ f respectively.

Selon cette variante de l'invention, on dégage deux cas particuliers correspondant respectivement à a = 2 et b = 3 d'une part ou à a = 3 et b = 2 d'autre part. On exploite de préférence la première possibilité lorsque 2τe ≤ τi + τf et la seconde quand 2τe ≥ τi + τf. On peut observer que lorsque 2τe = τi + τf et lorsque α1 = β1 , α2 = β2, le paramètre géométrique Bβ3 ou Aα3 selon le cas devient identiquement nul, quelle que soit la valeur choisie pour le paramètre de forme β3 ou α3.According to this variant of the invention, two specific cases emerge corresponding respectively to a = 2 and b = 3 on the one hand or to a = 3 and b = 2 on the other hand. The first possibility is preferably used when 2τ e ≤ τ i + τ f and the second when 2τ e ≥ τ i + τ f . We can observe that when 2τ e = τ i + τ f and when α 1 = β 1 , α 2 = β 2 , the geometric parameter Bβ 3 or Aα 3 according to the case becomes identically zero, whatever the value chosen for the shape parameter β 3 or α 3 .

Le tableau ci-après précise, pour les différentes combinaisons possibles des valeurs des paramètres a et b, si les rayons de courbure Rci , Rce et Rcf doivent être imposés a priori. s'ils sont calculés à partir de l'équation (I) ou s'ils sont solutions, avec les paramètres géométriques Aα1 , ... , Aαa, Bβ1 , ... , Bβb, du système d'équations (II) à (VII) éventuellement complété par les équations (VIII) et (IX). La dernière colonne de ce tableau indique les numéros des équations de ce système. a b Rci Rce Rcf n° des équations 4 4 choisi choisi choisi (II) à (IX) 4 3 choisi choisi calculé (II) à (VIII) 3 4 calculé choisi choisi (II) à (VII), (IX) 3 3 calculé choisi calculé (II) à (VII) 4 3 choisi solution choisi (II) à (IX) 3 4 choisi solution choisi (II) à (IX) 3 3 choisi solution calculé (II) à (VIII) 4 2 choisi solution calculé (II) à (VIII) 3 3 calculé solution choisi (II) à (VII), (IX) 2 4 calculé solution choisi (II) à (VII), (IX) 3 2 calculé solution calculé (II) à (VII) 2 3 calculé solution calculé (II) à (VII) The table below specifies, for the different possible combinations of the values of the parameters a and b, whether the radii of curvature R ci , R ce and R cf must be imposed a priori. if they are calculated from equation (I) or if they are solutions, with the geometric parameters Aα 1 , ..., Aα a , Bβ 1 , ..., Bβ b , of the system of equations (II) to (VII) possibly supplemented by equations (VIII) and (IX). The last column of this table indicates the numbers of the equations of this system. at b R ci R this R cf n ° of equations 4 4 selected selected selected (II) to (IX) 4 3 selected selected calculated (II) to (VIII) 3 4 calculated selected selected (II) to (VII), (IX) 3 3 calculated selected calculated (II) to (VII) 4 3 selected solution selected (II) to (IX) 3 4 selected solution selected (II) to (IX) 3 3 selected solution calculated (II) to (VIII) 4 2 selected solution calculated (II) to (VIII) 3 3 calculated solution selected (II) to (VII), (IX) 2 4 calculated solution selected (II) to (VII), (IX) 3 2 calculated solution calculated (II) to (VII) 2 3 calculated solution calculated (II) to (VII)

Les avantages des machines volumétriques conformes à l'invention et tout particulièrement de celles où le nombre de paramètres de forme est limité à cinq sont les suivants :

  • pour H et e choisis raisonnablement, une variation de courbure le long de chaque arceau plus réduite que dans toute solution connue, ce qui entraíne une régularisation des effets d'inertie sur les éléments mobiles d'étanchéité et ainsi une réduction substantielle de leur plus grande valeur,
  • un accès possible à des valeurs du rapport H/Rp jusqu'à présent inaccessibles, ce qui confère aux machines à palettes conformes à l'invention une compacité supérieure à celle des machines connues,
  • en conséquence des deux avantages précédents, un accès à des machines à palettes embarquées dont les performances dépassent celles des machines connues.
The advantages of the volumetric machines according to the invention and more particularly of those where the number of shape parameters is limited to five are the following:
  • for H and  e chosen reasonably, a variation in curvature along each arch more reduced than in any known solution, which leads to a regularization of the effects of inertia on the mobile sealing elements and thus a substantial reduction of their more great value,
  • possible access to values of the H / R p ratio hitherto inaccessible, which gives the pallet machines according to the invention a compactness greater than that of known machines,
  • as a consequence of the two preceding advantages, access to on-board pallet machines whose performance exceeds that of known machines.

En particulier, pour les machines à palettes caractérisées par une valeur de n égale à 2, qui correspondent aux cas pratiques les plus intéressants, et pour une définition du profil de capsule qui exploite cinq paramètres de forme, le plus grand rapport H/Rp pratiquement envisageable : (H/Rp)limite, peut être évalué comme suit en fonction de l'angle Δ défini comme la plus grande des deux ouvertures angulaires (e - i) et (f - e) : (H/Rp)limite ≅ 0,16 . (Δ)2 In particular, for vane machines characterized by a value of n equal to 2, which correspond to the most interesting practical cases, and for a definition of the capsule profile which exploits five shape parameters, the greatest H / R p ratio practically possible: (H / R p ) limit , can be evaluated as follows according to the angle Δ defined as the larger of the two angular openings ( e -  i ) and ( f -  e ): (H / R p ) limit ≅ 0.16. (Δ) 2

La figure 1 illustre à titre d'exemple un compresseur volumétrique à palettes conforme à l'invention.FIG. 1 illustrates by way of example a rotary vane compressor in accordance with the invention.

Les figures 2, 3 et 4 représentent complètement ou partiellement le tracé du profil de capsule correspondant au compresseur illustré à la figure 1.Figures 2, 3 and 4 completely or partially show the outline of the capsule corresponding to the compressor illustrated in figure 1.

La figure 1 montre une section droite dans le compresseur retenu à titre d'exemple. On distingue sur cette figure la partie tubulaire (1) de la capsule fixe, le piston (2), la directrice circulaire (20) de sa surface extérieure et les cinq rainures telles que (3) guidant chacune une palette telle que (4), le point de percée O de l'axe commun à la capsule, au piston et à leur liaison rotoïde. les deux lumières d'admission telles que (5), les deux lumières d'échappement telles que (6) et leurs clapets tels que (7). La partie tubulaire de la capsule (1) est limitée intérieurement par une surface cylindrique dont la directrice non-circulaire (10) est le profil de capsule. Le sens de rotation du piston autour de son axe est indiqué par la flèche.Figure 1 shows a cross section in the compressor used as an example. We distinguishes in this figure the tubular part (1) of the fixed capsule, the piston (2), the director circular (20) of its outer surface and the five grooves such as (3) each guiding a pallet such as (4), the point of piercing O of the axis common to the capsule, the piston and their rotoid connection. the two intake lights such as (5), the two lights exhaust such as (6) and their valves such as (7). The tubular part of the capsule (1) is internally limited by a cylindrical surface whose non-circular director (10) is the capsule profile. The direction of rotation of the piston around its axis is indicated by the arrow.

On reconnaít sur la figure 2 le profil de capsule (10) constitué de n = 2 arceaux identiques et de n = 2 arcs de conformité, appartenant au même cercle de centre O et de rayon (Rp + J), ainsi que la directrice circulaire (20) de la surface extérieure du piston dont le centre est aussi le point O et dont le rayon est égal à Rp We recognize in Figure 2 the capsule profile (10) consisting of n = 2 identical arches and n = 2 conforming arcs, belonging to the same circle with center O and radius (R p + J), as well as the director circular (20) of the external surface of the piston whose center is also the point O and whose radius is equal to R p

Un premier arceau du profil de capsule est limité par les points Mi et Mf; le rayon polaire croít de manière monotone sur cet arceau depuis le point Mi jusqu'au point Me et décroít de manière monotone depuis le point Me jusqu'au point Mf. La distance entre le point O et le point Me est égale à (Rp + J + H) . Par rapport à l'axe OX, les points Mi, Me et Mf sont repérés sur l'arceau par les angles respectifs i, e et f. On distingue également sur cette figure les trois angles τi, τe et τf des tangentes à l'arceau aux points respectifs Mi, Me et Mf, repérés par rapport à la direction de l'axe OX .A first arch of the capsule profile is limited by the points M i and M f ; the polar radius increases monotonously on this arch from point M i to point M e and decreases monotonically from point M e to point M f . The distance between point O and point M e is equal to (R p + J + H). With respect to the axis OX, the points M i , M e and M f are identified on the arch by the respective angles  i ,  e and  f . We also distinguish in this figure the three angles τ i , τ e and τ f of the tangents to the arch at the respective points M i , M e and M f , identified with respect to the direction of the axis OX.

Un premier arc de conformité a pour origine le point Mf et pour extrémité le point M'i.A first conformance arc originates from point M f and ends from point M ' i .

Le second arceau s'étend du point M'i au point M'f et contient le point M'e symétrique du point Me par rapport au point O.The second arch extends from point M ' i to point M' f and contains the point M ' e symmetrical with the point M e with respect to the point O.

Le deuxième arc de conformité a pour origine le point M'f et pour extrémité le point Mi.The second conformance arc originates from point M ' f and ends from point M i .

Le profil de capsule est à définir pour les données géométriques suivantes :

  • Rp + J = 30 mm
  • H = 9,25 mm
  • i = 4°
  • e = 85°
  • f = 176°
  • The capsule profile is to be defined for the following geometric data:
  • R p + J = 30 mm
  • H = 9.25 mm
  • i = 4 °
  • e = 85 °
  • f = 176 °
  • Ce profil doit par conséquent être défini par cinq paramètres de forme et. puisque 2e ≤ i + f, on impose que a soit égal à 2 et que b soit égal à 3 . On a choisi après expérimentation numérique les valeurs suivantes des paramètres de forme :
       α1 = 10   α2 = 15
       β1 = 10   β2 = 15   β3 = 6
    This profile must therefore be defined by five shape parameters and. since 2 e ≤  i +  f , we impose that a is equal to 2 and that b is equal to 3. The following values of the shape parameters have been chosen after numerical experimentation:
    α 1 = 10 α 2 = 15
    β 1 = 10 β 2 = 15 β 3 = 6

    La résolution du système des six équations (II) à (VII) donne les résultats suivants :
       Rce = 25,989594 mm
       A1 = 6,007911 mm   A2 = - 0,709261 mm
       B1 = - 2,882993 mm   B2 = 0,113064 mm   B3 = 12,397607 mm .
    Solving the system of six equations (II) to (VII) gives the following results:
    R ce = 25.989594 mm
    A 1 = 6.007911 mm A 2 = - 0.709261 mm
    B 1 = - 2.882993 mm B 2 = 0.1113064 mm B 3 = 12.397607 mm.

    On en déduit à un degré près : τe - τm = 24°   et   τd - τe = 12° We deduce to a degree: τ e - τ m = 24 ° and τ d - τ e = 12 °

    Le rayon de courbure Rci au point Mi est égal à 89.847 mm. Le rayon de courbure Rcf au point Mf est égal à 47,234 mm .The radius of curvature R ci at point M i is equal to 89.847 mm. The radius of curvature R cf at point M f is equal to 47.234 mm.

    Entre les angles polaires égaux à 47° et 118°, le rayon de courbure est compris entre 30 mm et 25,990 mm .Between the polar angles equal to 47 ° and 118 °, the radius of curvature is between 30 mm and 25.990 mm.

    Sur la figure 3 sont représentés un arceau, les deux arcs de conformité du profil de capsule montré à la figure 2 et la développée de cet arceau sur laquelle on distingue le point anguleux De ainsi que les points Di et Df, centres de courbure respectifs de l'arceau aux points Me, Mi et Mf.In Figure 3 are shown an arch, the two conforming arcs of the capsule profile shown in Figure 2 and the developed of this arch on which there is the angular point D e as well as the points D i and D f , centers of respective curvature of the arch at points M e , M i and M f .

    La figure 4 représente à échelle agrandie une partie de la développée montrée à la figure 3 ainsi que ses deux tangentes au point anguleux De qui déterminent un angle de 36° , égal à l'angle τd - τm .FIG. 4 represents on an enlarged scale part of the developed shown in FIG. 3 as well as its two tangents at the angular point D e which determine an angle of 36 °, equal to the angle τ d - τ m .

    En ce qui concerne les efforts d'inertie au centre de gravité d'une palette du compresseur représenté à la figure 1, le rapport de ces efforts à ceux que la palette subirait si le profil de capsule était en chacun de ses points remplacé par le cercle de même rayon polaire, est égal à 1,18.Regarding the inertia forces at the center of gravity of a compressor pallet shown in Figure 1, the ratio of these forces to those that the pallet would undergo if the profile of capsule was at each of its points replaced by the circle of the same polar radius, is equal to 1.18.

    Enfin la cylindrée du compresseur dont une section droite est représentée à la figure 1, calculée à partir de la chambre de volume maximal accessible, pour des palettes d'épaisseur égale à 4 mm et une largeur de capsule de 54 mm, est de 172 cm3.Finally, the displacement of the compressor, a cross section of which is represented in FIG. 1, calculated from the chamber of maximum accessible volume, for pallets of thickness equal to 4 mm and a capsule width of 54 mm, is 172 cm. 3 .

    Claims (10)

    1. Displacement machine with moving sealing elements (4), comprising at least one encapsulation essentially including a capsule consisting of a cylindrical tubular part (1) with non-circular directrix (10) and two end flanges, a cylindrical piston (2) whose directrix (20) is a circle of centre O and of radius Rp, provided with grooves (3) which guide the sealing elements (4) in the piston (2), this piaton being in rotary connection with the capsule about its axis (0), as well as a system for distributing the fluid, allowing its inlet and its outlet, the directrix of the tubular part of the capsule (10), called the capsule profile, being constituted successively and alternately by n circle arcs called conformity arcs, with optionally zero angular aperture, of centre O and of radius Rp + J, J denoting the radial play between these arcs and the directrix of the piston, as well as n geometrical arcs, called arches, which limit the movement of the sealing elements in the grooves in the centrifugal direction, each arch having, with the adjacent conformity arcs, two connection points Mi and Mf at which the radii of curvature are respectively equal to Rci and to Rcf, at which the angles τi and τf, respectively, of the tangents differ by π/2 from the corresponding polar angles i and f, each arch also containing a point Me at which the polar radius is a maximum, equal to Rp + J + H, at which the angle τe of the tangent differs by π/2 from the corresponding polar angle e and at which the radius of curvature Rce is less than Rp, characterized in that an arch has as intrinsic equation:
      Figure 00190001
      equation (I) in which:
      δ = 1 when τ ≤ τe and δ = 0 when τ > τe,
      2 ≤ a ≤ 4, 2 ≤ b ≤ 4, -1 ≤ a - b ≤ 1, a + b ≥ 5,
      ds represents the infinitely small increase in the curvilinear abscissa s at a running point M on the arch, calculated from an arbitrary origin,
      τ denotes the angle of the tangent to the arch at M,
      dτ represents the infinitely small increase in the angle τ at M,
      α1, ..., αa denote a set of a shape parameters of the arch, β1, ..., βb denote a set of b shape parameters of the arch, these shape parameters being sufficiently large for the evolute of the arch in the vicinity of the point Me to have, to within a precision of less than or equal to 1 µm, an angular point De,
      the Aα denote a set of a geometrical parameters, the Bβ denote a set of b geometrical parameters, the a + b geometrical parameters Aα1, ..., Aαa, Bβ1, ..., Bβb and, optionally, the radius of curvature Rce being solutions of the system consisting of the following six equations (II) to (VII), optionally supplemented by the equation (VIII) if the radius of curvature Rci is set and by equation (IX) if the radius of curvature Rcf is set:
      Figure 00210001
      Figure 00210002
      Figure 00210003
      Figure 00210004
      Figure 00210005
      Figure 00220001
      Figure 00220002
      Figure 00220003
    2. Machine according to Claim 1, characterized in that the radii of curvature Rce, Rci and Rcf are a priori set, a = 4, b = 4, the eight geometrical parameters Aα1, ..., Aα4, Bβ1, ...,4 are solutions of the system consisting of the eight equations (II) to (IX).
    3. Machine according to Claim 1, characterized in that the radii of curvature Rce and Rci are a priori set, a = 4, b = 3, the seven geometrical parameters Aα1, ..., Aα4, Bβ1, ...,3 are solutions of the system consisting of the seven equations (II) to (VIII).
    4. Machine according to Claim 1, characterized in that the radii of curvature Rce and Rcf are a priori set, a = 3, b = 4, the seven geometrical parameters Aα1 ..., Aα3, Bβ1, ...,4 are solutions of the system consisting of the seven equations (II) to (VII) and (IX).
    5. Machine according to Claim 1, characterized in that the radius of curvature Rce is a priori set, a = 3, b = 3, the six geometrical parameters Aα1, ..., Aαa, Bβ1, ..., Bβb are solutions of the system consisting of the six equations (II) to (VII).
    6. Machine according to Claim 1, characterized in that the radii of curvature Rci to Rcf are a priori set, a ≥ 3, b ≥ 3, a + b = 7, the radius of curvature Rce and the seven geometrical parameters Aα1, ..., Aαa, Bβ1, ..., Bβb are solutions of the system consisting of the eight equations (II) to (IX).
    7. Machine according to Claim 1, characterized in that the radius of curvature Rci is a priori set, a ≥ 3, b ≥ 2, a + b = 6, the radius of curvature Rce and the six geometrical parameters Aα1, ..., Aαa, Bβ1, ...,b are solutions of the system consisting of the seven equations (II) to (VIII).
    8. Machine according to Claim 1, characterized in that the radius of curvature Rcf is a priori set, a ≥ 2, b ≥ 3, a + b = 6, the radius of curvature Rce and the six geometrical parameters Aα1, ..., Aαa, Bβ1, ..., Bβb are solutions of the system consisting of the seven equations (II) to (VII) and (IX).
    9. Machine according to Claim 1, characterized in that a ≥ 2, b ≥ 2, a + b = 5, the radius of curvature Rce and the five geometrical parameters Aα1, ..., Aαa, Bβ1, ..., Bβb are solutions of the system consisting of the six equations (II) to (VII).
    10. Machine with vanes according to Claim 9, for which n = 2, characterized in that the ratio H/Rp is close to the limit ratio (H/Rp)limit specified by the expression: (H/Rp)limit ≅ 0.16 · (Δ)2 in which Δ represents the greater of the two angular apertures (e-i and (f-e).
    EP96903072A 1995-02-10 1996-02-08 Positive-displacement machine having vanes Expired - Lifetime EP0808412B1 (en)

    Applications Claiming Priority (3)

    Application Number Priority Date Filing Date Title
    FR9501557A FR2730528B1 (en) 1995-02-10 1995-02-10 VOLUMETRIC MACHINE WITH MOVABLE SEALING ELEMENTS AND CAPSULE PROFILE WITH OPTIMALLY VARIABLE CURVATURE
    FR9501557 1995-02-10
    PCT/FR1996/000210 WO1996024754A1 (en) 1995-02-10 1996-02-08 Positive-displacement machine having vanes

    Publications (2)

    Publication Number Publication Date
    EP0808412A1 EP0808412A1 (en) 1997-11-26
    EP0808412B1 true EP0808412B1 (en) 1998-11-04

    Family

    ID=9476031

    Family Applications (1)

    Application Number Title Priority Date Filing Date
    EP96903072A Expired - Lifetime EP0808412B1 (en) 1995-02-10 1996-02-08 Positive-displacement machine having vanes

    Country Status (5)

    Country Link
    US (1) US5888058A (en)
    EP (1) EP0808412B1 (en)
    DE (1) DE69600922T2 (en)
    FR (1) FR2730528B1 (en)
    WO (1) WO1996024754A1 (en)

    Families Citing this family (1)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    US20050136201A1 (en) * 2003-12-22 2005-06-23 Pepsico, Inc. Method of improving the environmental stretch crack resistance of RPET without solid stating

    Family Cites Families (6)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    JPS57108484A (en) * 1980-12-24 1982-07-06 Mitsubishi Motors Corp Pulsation-preventing pressure-balancing type vane pump
    JPS5810190A (en) * 1981-07-13 1983-01-20 Diesel Kiki Co Ltd Vane type compressor
    JPS5835289A (en) * 1981-08-26 1983-03-01 Hitachi Ltd Movable blade type compressor
    JPS5870086A (en) * 1981-10-23 1983-04-26 Diesel Kiki Co Ltd Vane type compressor
    JPS61268894A (en) * 1985-05-22 1986-11-28 Diesel Kiki Co Ltd Vane type compressor
    JPS63170579A (en) * 1987-01-09 1988-07-14 Diesel Kiki Co Ltd Vane type compressor

    Also Published As

    Publication number Publication date
    EP0808412A1 (en) 1997-11-26
    WO1996024754A1 (en) 1996-08-15
    FR2730528A1 (en) 1996-08-14
    DE69600922T2 (en) 1999-07-29
    DE69600922D1 (en) 1998-12-10
    US5888058A (en) 1999-03-30
    FR2730528B1 (en) 1997-04-30

    Similar Documents

    Publication Publication Date Title
    CA2724073C (en) Compressor impeller blade with variable elliptic connection
    EP0468877B1 (en) Apparatus for multiphase pumping or compression and its application
    EP3411602B1 (en) Planetary gear reduction device with at least one planet gear bearing comprising lubrication means
    CH688579A5 (en) article of manufacture having a device entered "ment.
    FR2781031A1 (en) Motor vehicle IC engine, has flywheel containing at least one oscillating component to combat cyclic irregularity at low revs
    FR2732725A1 (en) FUEL PUMP AND METHOD FOR MANUFACTURING THE SAME
    EP1181466A1 (en) Internal combustion engine comprising a means for reducing acyclisms for operation at low engine speeds
    FR2680841A1 (en) JOINT WITH TRANSVERSE GROOVES, AT CONSTANT SPEED AND HAVING A FIXED CENTER.
    FR2668209A1 (en) Molecular suction pump
    CA2464335C (en) Rotary volumetric machine
    EP0794346A1 (en) Constant velocity ball joint
    EP0808412B1 (en) Positive-displacement machine having vanes
    WO2008149038A2 (en) Hydrodynamic bearing with asymmetrical lobes
    EP3317537B1 (en) Harmonic distribution radial piston hydraulic machine
    WO2007048979A1 (en) Radial piston-type hydraulic motor with cylinder block cooling
    WO1996024754A9 (en) Positive-displacement machine having vanes
    EP1466092B1 (en) Hydraulic radial piston motor
    EP0263218B1 (en) Hydraulic mechanism with fluid distribution disk and counter disk
    FR2712631A1 (en) Blade root for axial flow compressors and turbines
    EP3045656B1 (en) Multifunction rotary machine with deformable rhomb
    EP1724475A1 (en) Crankshaft and en engine with such a crankshaft
    FR2931870A1 (en) Rotating piece e.g. turbine shaft, for e.g. jet engine of aircraft, has balancing units comprising ring, where center of gravity of ring is remote from symmetry axle of its internal surface and positioned to compensate unbalance of piece
    FR3104655A1 (en) Three-point contact bearing with improved drain
    EP3997353A1 (en) Recirculation of lubricant in a turbomachine rolling-element bearing
    BE462076A (en)

    Legal Events

    Date Code Title Description
    PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

    Free format text: ORIGINAL CODE: 0009012

    17P Request for examination filed

    Effective date: 19970729

    AK Designated contracting states

    Kind code of ref document: A1

    Designated state(s): DE FR

    GRAG Despatch of communication of intention to grant

    Free format text: ORIGINAL CODE: EPIDOS AGRA

    17Q First examination report despatched

    Effective date: 19980306

    GRAG Despatch of communication of intention to grant

    Free format text: ORIGINAL CODE: EPIDOS AGRA

    GRAH Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOS IGRA

    GRAH Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOS IGRA

    GRAA (expected) grant

    Free format text: ORIGINAL CODE: 0009210

    AK Designated contracting states

    Kind code of ref document: B1

    Designated state(s): DE FR

    REF Corresponds to:

    Ref document number: 69600922

    Country of ref document: DE

    Date of ref document: 19981210

    PLBE No opposition filed within time limit

    Free format text: ORIGINAL CODE: 0009261

    STAA Information on the status of an ep patent application or granted ep patent

    Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

    26N No opposition filed
    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: FR

    Payment date: 20020222

    Year of fee payment: 7

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: DE

    Payment date: 20020423

    Year of fee payment: 7

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: DE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20030902

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: FR

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20031031

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: ST