EP0807054B1 - Segel - Google Patents

Segel Download PDF

Info

Publication number
EP0807054B1
EP0807054B1 EP95935520A EP95935520A EP0807054B1 EP 0807054 B1 EP0807054 B1 EP 0807054B1 EP 95935520 A EP95935520 A EP 95935520A EP 95935520 A EP95935520 A EP 95935520A EP 0807054 B1 EP0807054 B1 EP 0807054B1
Authority
EP
European Patent Office
Prior art keywords
sail
pocket
inner membrane
air
membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP95935520A
Other languages
English (en)
French (fr)
Other versions
EP0807054A1 (de
Inventor
Robert Charles Finch Hill
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Altosail Ltd
Original Assignee
Altosail Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Altosail Ltd filed Critical Altosail Ltd
Publication of EP0807054A1 publication Critical patent/EP0807054A1/de
Application granted granted Critical
Publication of EP0807054B1 publication Critical patent/EP0807054B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H9/00Marine propulsion provided directly by wind power
    • B63H9/04Marine propulsion provided directly by wind power using sails or like wind-catching surfaces
    • B63H9/06Types of sail; Constructional features of sails; Arrangements thereof on vessels
    • B63H9/061Rigid sails; Aerofoil sails
    • B63H9/0615Inflatable aerofoil sails

Definitions

  • This invention relates to a sail for a sailing vessel. More particularly, the invention relates to a sail having improved aerodynamic characteristics, and a method of shaping a sail.
  • a conventional sail comprising a single membrane of sail material adopts, in use, a curved shape similar to the shape of an aerofoil.
  • the efficiency of such a sail is limited by the fact that it has no significant thickness and so does not correspond to a full aerofoil section.
  • a further known arrangement attempts to provide a sail having an approximate aerofoil cross section by using a wide mast and a single or double membrane sail. Although potentially aerodynamically efficient, such an arrangement involves the expense and weight of a special mast and is applicable only to sails supported up the luff by a mast.
  • British patent application No. 2231854A describes a baffled sail having a base sail and outer baffles connected to the base sail by cord limiters. In use, one of the baffles is pressed against the base sail and the other baffle extends outwardly therefrom.
  • a sail comprising an inner membrane and, on either side thereof, an outer membrane attached to the inner membrane, each said outer membrane forming with said inner membrane an inflatable pocket into and from which air may flow, characterised by the arrangement being such that, during use, the pressure difference across the sail causes said leeward pocket to be substantially inflated and said windward pocket to be substantially deflated, the camber of the inner membrane is less than that of the outer membranes whereby, during use, the inner membrane at least partially supports the windward outer membrane, and an inflatable compartment is provided adjacent the luff edge of the sail, said inflatable compartment being inflated during use, thereby increasing the thickness of the sail adjacent the luff edge.
  • camber of a membrane as referred to herein is defined as the greatest perpendicular distance from the chord to the membrane, where the chord is the imaginary straight line extending from the luff edge of the sail to the leach when the membrane is at full extension.
  • the sail adopts an aerofoil cross section with the camber of the leeward surface being greater than the camber of the windward surface.
  • the curvature of the leeward surface is greater than the curvature of the windward surface, so producing an aerofoil having a significant thickness.
  • the aerodynamic performance of the sail is thereby considerably improved.
  • the inflatable compartment increases the thickness of the sail adjacent its luff edge, so improving the aerodynamic efficiency of the sail.
  • An inflatable compartment may be located between the inner membrane and each of the outer membranes.
  • the inflatable compartment may include a sealable vent means. This allows the amount of air in the compartment to be adjusted.
  • the inflatable compartment may comprise a pocket containing an inflatable tube.
  • the width of the inflatable pocket may be approximately 30% of the chord of the sail.
  • the inflatable pocket may be arranged to increase the thickness of the sail on the windward side, to modify the shape of the leeward pocket and/or to increase the effective length of the windward side of the sail.
  • the inner membrane is substantially impermeable to air and each pocket includes a vent arranged to permit the flow of air into and out of the pocket.
  • the pockets may thus be inflated or deflated as appropriate during use, or deflated for convenient storage of the sail.
  • Each vent preferably comprises a hole in one of the outer membranes of the sail and means connecting the hole with the pocket formed by the inner membrane and the other outer membrane of the sail.
  • the connecting means extends between the hole in the outer membrane and a corresponding hole in the inner membrane.
  • the connecting means may comprise a collapsible tube. When a pocket is flattened by wind incident on the sail, the tube passing through the pocket also collapses.
  • vents are preferably offset from one another. As a result, the pockets are isolated from one another and air cannot flow from one pocket into the other pocket.
  • Each vent is preferably situated approximately one third of the width of the sail from the luff edge of the sail. Because the pressure difference created across the sail during use is greatest in this region, the respective pockets are filled and evacuated quickly and efficiently.
  • each hole in the outer membranes There may be associated with each hole in the outer membranes means for preventing water from entering the pockets. Spray and rain is thereby prevented from entering the sail and reducing its performance by increasing the sail's weight and distorting its shape.
  • the draining means may comprise a drain hole situated at the leach edge of the sail. Any water that does enter the sail is thus quickly removed. Positioning the drain hole at the leach edge ensures that the draining water is blown clear of the sail.
  • the outer membranes are substantially impermeable to air and the inner membrane is adapted to allow air to flow through it from one pocket to the other.
  • Such an arrangement does not require any exterior vents and it is therefore suitable for use on sailboards and in other situations where the sail is likely to be immersed in the water.
  • the inner membrane may be made of an air permeable material, or may comprise a net or mesh, or may include one or more air vents.
  • the sail may include a sealable vent for adjusting the quantity of air in the sail. When wind is incident on the sail, the windward pocket is flattened and the air in the sail passes through the inner membrane into the leeward pocket. The sail thus adopts an aerofoil cross section without the need for external air vents.
  • the sail may include one or more flexible ribs that extend between the inner membrane and each outer membrane.
  • the ribs may be shaped to hold the sail in a desired shape.
  • the ribs preferably have the shape of an aerofoil.
  • the ribs may be impermeable and divide the pockets into a plurality of compartments, each compartment including an air vent.
  • the ribs may divide the pockets into a plurality of compartments, the ribs being adapted to allow air to flow from one compartment to the next.
  • Each rib may include one or more air vents or be made of an air permeable material, or a mesh or net-like material.
  • the ribs may extend diagonally downwards from the luff edge to the leach edge of the sail and a drain hole may be provided at the lowermost corner of each associated compartment. Water will tend to flow downwards to that corner, and drainage will thus be improved.
  • the outer membranes are preferably made of a lighter weight material than the inner membrane.
  • the outer membrane will thus lift easily away from the inner membrane and the sail will adopt readily a shape having a significant thickness.
  • the sail may further include means for stiffening the sail.
  • the stiffening means may be provided in the inner membrane.
  • the present invention further provides a method of shaping a sail comprising an inner membrane and, on each side thereof, an outer membrane attached the inner membrane, each outer membrane forming, with the inner membrane, an inflatable pocket, the sail further including an inflatable compartment adjacent the luff edge, the method comprising inflating the compartment before use to increase the thickness of the sail adjacent the luff edge and inflating the pocket on the leeward side of the sail to increase the thickness of the sail.
  • each pocket includes an air vent, and the leeward pocket is inflated by air flowing into the pocket through the air vent owing to the pressure difference created during use across the sail.
  • the outer membranes of the sail are substantially impermeable to air and the inner membrane is adapted to allow air to flow through it from one pocket to the other, the sail being inflated before use and air being transferred during use from the windward pocket to the leeward pocket owing to the pressure difference created across the sail.
  • Figs. 1 to 3b and 8a to 8c illustrate examples of earlier sails invented by the present inventor. Those figures, which do not illustrate embodiments of the invention, are included to provide a full understanding of the invention. Where the earlier sails illustrated in Figs. 1 to 3b and 8a to 8c share similar features with the sails embodying the invention and shown in Figs. 13 to 17, like reference numerals have been used.
  • the earlier sail shown in Figs. 1a and 1b comprises a inner membrane 1, a starboard outer membrane 2 and a port outer membrane 3.
  • the outer membranes 2,3 are attached to the inner membrane 1 substantially around their peripheries to form pockets 4,5 on either side of the inner membrane 1.
  • the inner membrane 1 provides most of the strength of the sail and may be made of a standard sail material.
  • the outer membranes 2,3 may be made of lighter weight material.
  • each of the outer membranes 2,3 from the luff attachment point to the leach attachment point is greater at any height of the sail than the width of the inner membrane 1 between those attachment points. This allows the outer membranes 2,3 to be spaced from the inner membrane 1, thereby increasing the thickness of the sail.
  • the sail includes a bolt rope 12 at its luff edge for attachment in a conventional manner to a mast.
  • An air vent 6 in the port outer membrane 3 is connected to the starboard pocket 5 by means of a collapsible tube 7 of sail material which extends through the port pocket 5 to a hole 8 in the inner membrane 1.
  • an air vent 9 in the starboard outer membrane 2 is connected to the port pocket 4 by a collapsible tube 10 which extends through the starboard pocket 5 to a second hole 11 in the inner membrane.
  • the air vents 6,9 are situated approximately one third of the distance from the luff edge to the leach edge of the sail, where the difference in air pressure across the sail is greatest during use.
  • the holes 8,11 in the inner membrane 1 are offset vertically from one another and the port and starboard pockets are thus isolated from one another, which prevents air flowing through the sail from one side to the other.
  • the collapsible tubes 7,10 may have concertina folds (not shown) and, as shown in Fig. 1c, are larger in cross section than the associated vents 6,9. The tubes 7,10 are thus able to collapse without obstructing the associated air vents.
  • the air vents 6,9 may be elongated, as shown in Fig. 1c, and may be provided with cowls of fabric or a rigid material, to prevent spray or rain from entering.
  • Figs. 2a and 2b show an earlier mainsail having, on each side, a single pocket which extends over a substantial area of the sail.
  • a single air vent 6,9 is provided on each side of the sail. The vents 6,9 are vertically offset from one another and the pockets are thus isolated from one another.
  • the inner membrane of the sail is attached to the mast 12a in a conventional manner by a bolt rope or slides.
  • a drain hole 13 is provided at a lower corner of each pocket to allow drainage of any water (for example, rain or spray) that has entered the pocket through the air vents 6,9.
  • the halyard 14, outhaul 15 and tack tackle 16 are attached to the inner membrane of the sail in a conventional manner.
  • Fig. 3a the boat is on the port tack with the wind blowing in the direction indicated by arrow A.
  • the starboard outer membrane 2 is thus located on the leeward (low pressure) side of the sail and the port outer membrane 3 is located on the windward (high pressure) side of the sail.
  • the pressure difference across the sail causes air to flow through the port air vent 6 and the associated tube 7 and hole 8 into the starboard pocket 5.
  • the starboard pocket 5 is thus filled with air.
  • the flow of air into the starboard pocket 5 is indicated by the arrow X.
  • air is evacuated from the port pocket 4 through the starboard air vent 9 and the tube 10 and hole 11, as indicated by the arrow Y.
  • the port outer membrane 3 thus lies in folds against the inner membrane 1, the concertina folds allowing the tube 7 to collapse and lie flat against the inner membrane 1 without obstructing the vent 6.
  • the width of the outer membranes 2,3 as measured from the luff attachment point to the leach attachment point is greater at any height of the sail than the width of the inner membrane 1 between those points, when the leeward pocket is filled with air, the camber of the leeward outer membrane 2 is greater than the camber of the inner membrane 1.
  • the leeward outer membrane 2 has a greater curvature (i.e., a smaller radius of curvature) than the inner membrane 1.
  • the windward outer membrane 3, on the other hand is pressed against the inner membrane 1, the windward pocket 4 having been evacuated.
  • the sail adopts a thick aerofoil cross section with a concave windward surface defined by the shape of the inner membrane 1 and a convex leeward surface defined by the shape of the leeward outer membrane 2.
  • Fig. 3b shows the reverse situation in which the vessel is on the starboard tack with the wind blowing in the direction shown by arrow B.
  • the port pocket 4 is now to leeward and is filled with air and the starboard pocket 5 is evacuated.
  • the convex leeward surface is thus defined by the shape of the port outer membrane 3 and the concave windward surface is defined by the shape of the inner membrane 1.
  • the sail is thus able to adopt a thick asymmetric aerofoil cross section on either tack.
  • each of the membranes 1,2,3 during use is determined by its material and cut (for example the panel shapes, seam locations and so forth), and by the positioning within the membrane of battens and other stiffening devices.
  • the shape of the concave windward side of the sail is determined by the shape of the inner membrane 1, as the windward outer membrane is pressed against the inner membrane.
  • the shape of the convex leeward side of the sail is determined by the cut of the leeward outer membrane, which forms the other side of the air filled pocket.
  • the inner membrane and the leeward outer membrane adopt their full extension giving the sail an aerofoil cross section of significant thickness.
  • the aerodynamic performance of the sail is thereby considerably improved.
  • the sail adopts an aerofoil cross section regardless of the wind direction relative to the sail and without the need for complex articulation.
  • the sail can also be folded for easy storage and can be attached to a conventional mast.
  • Figs. 8a, 8b and 8c show a further examples of an earlier sail, in which the sail comprises two air impermeable outer membranes 2,3 (only the port outer membrane 3 being shown) and an inner membrane 1, which may include a vent or be made of a mesh or net-like material.
  • the width of the outer membranes 2,3 as measured from the luff edge of the sail to the leach edge is greater at any height than the width of the inner membrane 1.
  • the sail is depicted in a form designed for use with a sailboard 26: it may, of course, be adapted for use with other sailing vessels.
  • the outer membranes 2,3 do not have any open external air vents and thus form a sealed envelope in which a quantity of air is trapped.
  • the amount of air trapped in the sail may be adjusted by means of sealable air inlet 27, comprising an inlet tube having a valve or closure. The trapped air is able to flow relatively freely from one pocket to the other through the permeable inner membrane.
  • the sail is divided into a number of compartments by ribs 17, which connect the inner membrane to the two outer membranes and extend from the luff edge of the sail to the leach edge.
  • the ribs are made of a permeable or net-like material or include one or more holes to allow air to flow from one compartment to the next. Alternatively, the ribs are impermeable and separate sealable air inlets are provided for each compartment.
  • the sail is inflated, before use, through the inlet 27 and the inlet is then sealed.
  • the amount of air let into the sail depends on the sailing conditions and the desired characteristics of the sail, but generally will be approximately half the quantity needed to fill the sail.
  • the sail operates as shown in Figs. 8b and 8c.
  • the pressure difference across the sail causes the air trapped within the sail to flow through the permeable inner membrane 1 from the windward port pocket 4 to the leeward starboard pocket 5.
  • the port outer membrane 3 thus collapses against the inner membrane 1 and the starboard pocket 5 expands to adopt an aerofoil cross section.
  • the shape of the aerofoil cross section is thus determined by the inner membrane 1, which defines the shape of the concave windward side of the sail, and the starboard outer membrane 2, which defines the shape of the convex leeward side of the sail.
  • the shape of the aerofoil cross section is controlled additionally by the ribs. Battens or other stiffening devices may also be provided.
  • the shape of the sail may be varied in use by adjusting the amount of air trapped in the sail. As a result, the sail may be tuned for optimum performance in different weather conditions.
  • Figs. 8a to 8c Because the arrangement shown in Figs. 8a to 8c is completely sealed and does not have any open external vents through which water can enter the sail, it is particularly suitable for sailboard sails, which are frequently immersed in the water.
  • the sail might also be used on small dinghies, which are liable to capsize, or in conditions of heavy rain or spray.
  • the sealed construction obviates the need for drain holes.
  • the outer membranes may extend over only part of the surface area of the inner membrane, such as the forward part of the sail, where the increased thickness has the most effect, or only the lower part of the sail.
  • the outer membranes will always, however, have a greater camber than the inner membrane, so that the sail adopts, in use, a thick aerofoil cross section.
  • FIG. 13 to 16 An embodiment of the invention is shown in Figs. 13 to 16.
  • ribs are not provided and reliance is placed on the cut of the inner and outer membranes for the shape of the aerofoil section.
  • the inner and outer membranes 1,2,3 are connected to one another around periphery of the sail 23.
  • the port and starboard pockets 4,5 extend over the entire height of the sail.
  • Three vents 6,7 are provided for each pocket, these being located at approximately 1 ⁇ 4, 1 ⁇ 2 and 3 ⁇ 4 sail height. In practice, only one vent may be required for each pocket.
  • the inner membrane is fully battened, six battens 19 being provided in this case. Vents 40 are provided along the leach edge of the sail at each batten position, to allow air to exhaust from the windward pocket.
  • the halyard 14, outhaul 15 and tack tackle 16 are attached to the inner membrane.
  • the shape of the sail can be altered in conventional fashion by adjusting the tensions of the luff and the clew outhaul.
  • a pocket hereinafter referred to as a luff pocket 41, is provided on each side of the sail, adjacent the luff edge.
  • the luff pockets 41 are made of lightweight sail material and are attached to the inner membrane 1 along the luff edge 23a and along a seam 42 that extends over the entire height of the sail 23.
  • the luff pockets 41 are located between the inner membrane 1 and the outer membranes 2,3.
  • Each luff pocket 41 is open at the head and the foot of the sail, forming upper and lower apertures 43,44.
  • the luff pockets 41 are designed to hold inflatable luff tubes 45.
  • the luff tubes 45 are made of an impervious material (e.g., polythene sheet) and include sealable vents 46 through which they may be inflated.
  • the luff tubes 45 are inserted into the luff pockets 41 and inflated, thereby producing rounded bulges on either side of the inner membrane, as shown in Figs. 14a and 14b.
  • the luff pockets 41 have a uniform width of approximately 30% of the maximum sail chord from the clew height up to approximately half the height of the sail. Thereafter, the luff pockets taper uniformly towards the head of the sail. The lower ends of the luff pockets 41 taper towards the foot of the sail.
  • the purpose of the luff pockets is to increase the thickness of the sail adjacent its luff edge on the windward side, so improving the aerodynamic efficiency of the sail.
  • the size and radius of the luff tubes are so designed that the effective length of the windward surface is equal to or very slightly greater than the effective length of the leeward surface at every section up the height of the sail. This ensures that any slack in the windward outer membrane is taken up, thereby reducing drag.
  • Figs. 14a, b and c show a section through the sail at the height of the clew 47.
  • the inner membrane 1 has 4% camber at 50% chord and the outer membrane 2 has 10% camber at 40% chord.
  • the camber of both surfaces increases as the clew outhaul 15 is eased, allowing the mast to straighten.
  • the luff pockets 41 have a width equal to 0.3C 1 and a radius of curvature of 0.2C 1 , where C 1 is the length of the chord at clew height.
  • Figs. 15a, b and c show a section through the sail at mid height, as measured from the clew to the head.
  • the inner membrane 1 has 6% camber at 50% chord and the outer membrane 2 has 14% camber at 45% chord.
  • the camber of both surfaces increases slightly as the clew outhaul is eased, but not by as much as at clew height.
  • the width and the radius of the luff pockets are the same as at clew height.
  • Figs. 16a, b and c show sections at approximately 85% of the sail height, as measured from the clew 47.
  • the inner membrane 1 has 8% camber and the outer membrane 2 has 16% camber, both at 50% chord.
  • the luff pockets 41 have a width of 0.33C 6 and a radius of 0.22C 6 , where C 6 is the length of the chord at that height.
  • the luff tubes 45 are inserted into the luff pockets 41 and inflated before use.
  • the pocket 5 formed by the inner membrane 1 and the leeward outer membrane 2 becomes filled with air owing to the pressure difference across the sail, as shown in Fig. 14a.
  • the windward pocket 4 collapses and the outer membrane 3 is pressed against the inner membrane 1 and the windward luff pocket 41.
  • the configuration is, of course, reversed when the vessel goes onto the other tack.
  • the windward side of the sail thus adopts a shape having a convex forward part and a concave rear part, whilst the leeward side is completely convex.
  • the leeward luff pocket improves the shape of the leeward membrane by causing the position of maximum camber to form forward of the 50% chord position where it would otherwise naturally occur.
  • the combined effects of the luff pockets provide a very efficient aerofoil shape.
  • FIG. 17 A second embodiment of the invention is shown in Fig. 17.
  • the inner membrane 1 is made double thickness over approximately the leading third of the chord to form a single, central luff pocket 41.
  • An inflatable luff tube 45 of an impervious material is inserted into the luff pocket 41 and inflated to produce a rounded bulge adjacent the leading edge of the sail.
  • the purpose of the luff tube is to increase the thickness of the sail adjacent its luff edge, so improving the aerodynamic efficiency of the sail.
  • the size and radius of the luff tube 41 is so designed that the effective length of the windward surface is equal to or very slightly greater than that of the leeward surface, thus ensuring that there is no slack in the windward outer member.
  • the luff pockets 41 may be attached at their forward edges directly to the outer membranes.
  • the outer membranes 2,3 may be attached directly to the pockets. Both of these methods reduce the total amount of material in the sail.
  • the luff pockets 41 may themselves be made of impermeable material and provided with sealable air vents, thereby obviating the need for separate luff tubes.
  • a luff tube or tubes substantially as described above with reference to Figs. 13 to 17 may be incorporated into any of the earlier sails shown in Figs. 1 to 3b and 8a to 8c, and such sails are intended to be within the scope of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Ocean & Marine Engineering (AREA)
  • Tents Or Canopies (AREA)
  • Adhesives Or Adhesive Processes (AREA)

Claims (13)

  1. Segel mit einer inneren Membran (1) und auf jeder Seite davon einer äußeren Membran (2, 3), die mit der inneren Membran (1) verbunden ist, wobei jede äußere Membran (2, 3) mit der inneren Membran (1) eine aufblasbare Tasche (4, 5) bildet, in welche und aus welcher Luft fließen kann, gekennzeichnet durch eine Anordnung derart, daß der Druckunterschied über das Segel die leeseitige Tasche (5) dazu veranlaßt, im wesentlichen aufgeblasen zu sein und die luvseitige Tasche (4) dazu veranlaßt wird, im wesentlichen abgeblasen zu sein, wobei die Wölbung der inneren Membran (1) geringer als die der äußeren Membranen (2, 3) ist, wodurch während des Gebrauches die innere Membran (1) zumindest teilweise die luvseitige äußere Membran (3) stützt und ein aufblasbarer Zwischenraum (41) benachbart zu dem Luvseitenrand des Segels angeordnet ist, wobei der aufblasbare Zwischenraum (41) während des Gebrauches aufgeblasen ist, wodurch die Dicke des Segels benachbart zu den Luvseitenrand (23a) erhöht wird.
  2. Segel nach Anspruch 1, dadurch gekennzeichnet, daß ein aufblasbarer Zwischenraum (41) aufjeder Seite der inneren Membran (1) vorgesehen ist.
  3. Segel nach Anspruch 1 oder Anspruch 2, in welchem der aufblasbare Zwischenraum (41) eine Tasche (41) umfaßt, die einen aufblasbaren Schlauch (45) enthält.
  4. Segel nach einem der Ansprüche 1-3, in welchem die Breite des aufblasbaren Zwischenraums (41) ungefähr 30% der Profilsehne des Segels ist.
  5. Segel nach einem der Ansprüche 1-4, in welchem der aufblasbare Zwischenraum (41) angeordnet ist, um die Dicke des Segels auf der luvseitigen Seite zu erhöhen.
  6. Segel nach einem der Ansprüche 1-5, in welchem der aufblasbare Zwischenraum (41) angeordnet ist, um die Form der leeseitigen Tasche (4) zu modifizieren.
  7. Segel nach einem der Ansprüche 1-6, in welchem der aufblasbare Zwischenraum (41) angeordnet ist, um die effektive Länge der lufseitigen Seite des Segels zu erhöhen.
  8. Segel nach einem der Ansprüche 1-7, in welchem der aufblasbare Zwischenraum (41) eine abdichtbare Lüftungslocheinrichtung beinhaltet.
  9. Segel nach einem der Ansprüche 1-8, in welchem die innere Membran (1) im wesentlichen für Luft undurchlässig ist und jede Tasche (4, 5) ein Lüftungsloch (6, 9) beinhaltet, das angeordnet ist, um den Fluß der Luft in und aus der Tasche zu ermöglichen.
  10. Segel der Ansprüche 1-8, in welchem die äußeren Membranen (2, 3) im wesentlichen undurchlässig für Luft sind und die innere Membran (1) dazu geeignet ist, der Luft zu ermöglichen, durch sie aus einer Tasche (4, 5) zu der anderen zu fließen.
  11. Verfahren zur Bildung eines Segels mit einer inneren Membran (1) und auf jeder Seite davon einer äußeren Membran (2, 3), die mit der inneren Membran (1) verbunden sind, wobei jede äußere Membran (2, 3) mit der inneren Membran (1) eine aufblasbare Tasche (4, 5) bildet, wobei das Segel weiterhin einen aufblasbaren Zwischenraum (41) benachbart zu dem luvseitigen Rand (23A) beinhaltet, wobei das Verfahren das Aufblasen des aufblasbaren Zwischenraumes (41) vor dem Gebrauch umfaßt, um die Dicke des Segels benachbart zu dem luvseitigen Rand (23A) zu erhöhen und das Aufblasen der Tasche (5) auf der leeseitigen Seite des Segels mit Hilfe der Druckdifferenz quer zu dem Segel umfaßt, um die Dicke des Segels zu erhöhen.
  12. Verfahren nach Anspruch 11, in welchem jede Tasche (4, 5) ein Luft - Lüftungsloch (6, 9) beinhaltet, wobei die leeseitige Tasche (5) durch Luft aufgeblasen wird, die in die Tasche über das Luft - Lüftungsloch (6) wegen der Druckdifferenz, die während des Gebrauches quer zu dem Segel erzeugt wird fließt.
  13. Verfahren nach Anspruch 11, in welchem die äußeren Membranen (2, 3) des Segels im wesentlichen undurchlässig für Luft sind und die innere Membran (1) dazu geeignet ist, der Luft zu ermöglichen, durch sie von einer Tasche (4, 5) zu der anderen zu fließen, wobei das Segel vor Gebrauch aufgeblasen wird und die Luft während des Gebrauches von der luvseitigen Tasche (4) zu der leeseitigen Tasche (5) wegen der Druckdifferenz, der quer zu dem Segel erzeugt wird, übertragen wird.
EP95935520A 1994-12-17 1995-11-01 Segel Expired - Lifetime EP0807054B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
GB9425517 1994-12-17
GB9425517A GB2295998B (en) 1994-12-17 1994-12-17 A sail
PCT/GB1995/002554 WO1996018536A1 (en) 1994-12-17 1995-11-01 A sail

Publications (2)

Publication Number Publication Date
EP0807054A1 EP0807054A1 (de) 1997-11-19
EP0807054B1 true EP0807054B1 (de) 1998-07-29

Family

ID=10766120

Family Applications (1)

Application Number Title Priority Date Filing Date
EP95935520A Expired - Lifetime EP0807054B1 (de) 1994-12-17 1995-11-01 Segel

Country Status (7)

Country Link
EP (1) EP0807054B1 (de)
AU (1) AU689965B2 (de)
DE (1) DE69503809T2 (de)
DK (1) DK0807054T3 (de)
GB (1) GB2295998B (de)
NZ (1) NZ294656A (de)
WO (1) WO1996018536A1 (de)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NO306104B1 (no) * 1996-12-16 1999-09-20 Tore Lyngholm Vingeprofilseil
GB2342907B (en) * 1998-10-19 2002-07-17 John Robert Panton Inflatable sail stiffeners
GB2354218A (en) * 1999-09-14 2001-03-21 John Robert Panton Inflatable stiffener for sails

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2410599A2 (fr) * 1977-10-10 1979-06-29 Vicard Pierre G Perfectionnements aux engins a voile
FR2457802A1 (fr) * 1979-05-28 1980-12-26 Hennebutte Georges Perfectionnement aux voiles d'embarcation
NZ214082A (en) * 1985-11-05 1989-04-26 Terrence Richard Duke Flexible sheet aerofoil sail with internal baffle towards front
US4879961A (en) * 1988-08-03 1989-11-14 Aguilera Angel R Sail airfoil device
GB2231854A (en) * 1989-05-18 1990-11-28 Anthony Charles Strickland Baffled sail or sail portion
GB2285027B (en) * 1993-12-21 1997-10-22 Robert Charles Finch Hill A sail

Also Published As

Publication number Publication date
EP0807054A1 (de) 1997-11-19
GB2295998A (en) 1996-06-19
GB9425517D0 (en) 1995-02-15
DE69503809T2 (de) 1999-03-04
GB2295998B (en) 1998-05-20
NZ294656A (en) 1997-09-22
AU689965B2 (en) 1998-04-09
DK0807054T3 (da) 1999-05-03
DE69503809D1 (de) 1998-09-03
WO1996018536A1 (en) 1996-06-20
AU3751395A (en) 1996-07-03

Similar Documents

Publication Publication Date Title
US4624203A (en) Batten structure for a wing sail
US6837463B2 (en) Ram air inflated wing
US3391668A (en) Sail
US5931109A (en) Sail
US5775249A (en) Adjustable camber inflatable sail
US20020100406A1 (en) Chambered structure for wing sail
US4753186A (en) Inflatable sail for sailing craft
US4766831A (en) Rigging for a wind propelled craft
US4432298A (en) Hydrofoil sailing craft
US4856448A (en) Harmonica sail
US6141809A (en) Wing profile sail
EP0807054B1 (de) Segel
EP0016770A1 (de) Segelboot
EP0208742B1 (de) Vorrichtung und verfahren zum herstellen eines aerodynamischen mastprofils
US5671690A (en) Variable camber inflatable airfoil
AU617370B2 (en) Sail
GB2231854A (en) Baffled sail or sail portion
WO1998026982A9 (en) Wing profile sail
US6892659B2 (en) Multi-section boat sail
GB2285027A (en) A sail
US5189976A (en) Sail shaping arrangement for sailboards
US5095837A (en) Ram-air inflatable beam for use with a spinnaker
AU585930B2 (en) Rigging for a wind propelled craft
US20060118021A1 (en) Fluid-dynamic device
GB2194499A (en) Sail with elastic luff tube

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19970704

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): CH DE DK ES FR GR IE IT LI NL SE

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

17Q First examination report despatched

Effective date: 19971222

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE DK ES FR GR IE IT LI NL SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19980729

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRE;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.SCRIBED TIME-LIMIT

Effective date: 19980729

Ref country code: GR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980729

Ref country code: ES

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 19980729

Ref country code: CH

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19980729

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 69503809

Country of ref document: DE

Date of ref document: 19980903

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

ET Fr: translation filed
REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19991102

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19991104

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DK

Payment date: 19991111

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IE

Payment date: 19991126

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19991130

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20001101

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20001101

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20001110

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 20001129

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010601

EUG Se: european patent has lapsed

Ref document number: 95935520.7

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20010601

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010801

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020730

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST