EP0805026A1 - Brazing process for a continuous ink jet printhead - Google Patents

Brazing process for a continuous ink jet printhead Download PDF

Info

Publication number
EP0805026A1
EP0805026A1 EP97302688A EP97302688A EP0805026A1 EP 0805026 A1 EP0805026 A1 EP 0805026A1 EP 97302688 A EP97302688 A EP 97302688A EP 97302688 A EP97302688 A EP 97302688A EP 0805026 A1 EP0805026 A1 EP 0805026A1
Authority
EP
European Patent Office
Prior art keywords
resonator
resonator body
ink jet
fluid
jet printhead
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP97302688A
Other languages
German (de)
French (fr)
Other versions
EP0805026B1 (en
Inventor
David A. Huliba
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kodak Versamark Inc
Original Assignee
Kodak Versamark Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kodak Versamark Inc filed Critical Kodak Versamark Inc
Publication of EP0805026A1 publication Critical patent/EP0805026A1/en
Application granted granted Critical
Publication of EP0805026B1 publication Critical patent/EP0805026B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/015Ink jet characterised by the jet generation process
    • B41J2/02Ink jet characterised by the jet generation process generating a continuous ink jet
    • B41J2/025Ink jet characterised by the jet generation process generating a continuous ink jet by vibration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2202/00Embodiments of or processes related to ink-jet or thermal heads
    • B41J2202/01Embodiments of or processes related to ink-jet heads
    • B41J2202/22Manufacturing print heads

Definitions

  • the present invention relates to continuous ink jet printers and, more particularly, to a brazing process for joining machined resonator portions to yield a single resonator body for a continuous ink jet printhead.
  • Ink jet printing systems are known in which a printhead defines one or more rows of orifices which receive an electrically conductive recording fluid from a pressurized fluid supply manifold and eject the fluid in rows of parallel streams.
  • Printers using such printheads accomplish graphic reproduction by selectively charging and deflecting the drops in each of the streams and depositing at least some of the drops on a print receiving medium, while others of the drops strike a drop catcher device.
  • Droplet generators are one of the major components in a continuous ink jet printhead. Droplet generators often use a nozzle plate attached to a resonant body to stimulate the jets. In a resonator body design where the inlet and outlet ports are not directly in line with the nozzle plate channel, machining from a solid metal block is essentially impossible.
  • the resonator body of a continuous ink jet printhead is fabricated from two precision machined halves which are brazed together in a process to yield an integral unit.
  • the integral unit comprises the inlet and outlet fluid ports as well as the fluid channel which directs the fluid into the bonded nozzle plate.
  • a brazing process for joining machined resonator portions to yield a single resonator body for a continuous ink jet printhead.
  • a first resonator body portion and a second resonator body portion are provided, each resonator portion having partial fluid ingress, fluid egress, and nozzle plate channel fluid cavities.
  • a braze preform is then insertable between the first and second resonator body portions to join the first and second resonator body portions.
  • Alignment pins secure and align the first resonator body portion to the second resonator body portion.
  • the present invention provides brazing process whereby two machined resonator halves are brazed together in a manner that yields a single resonator body for a continuous ink jet printhead.
  • a top feed droplet generator assembly is disclosed, which has an integral fluid cavity wherein fluid ingress and egress to and from the resonator body is on the side of the resonator body opposite the nozzle plate.
  • the brazing process according to the present invention is particularly useful when used to join two resonator halves into the top feed droplet generator described and claimed in co-pending, commonly assigned patent application Serial No. 08/640,180 (docket number SDP163PA).
  • Fig. 1A there is illustrated a partially cutaway view of two resonator halves joined to form a resonator body in accordance with the present invention
  • Fig. 1B there is illustrated a front section view of one of the resonator halves.
  • the resonator is a top feed resonator, wherein inlet and outlet ports are located at the top of the resonator body and communicate with a nozzle plate channel located at the bottom of the resonator body.
  • Resonator 1 comprises fluid ingress and egress on a surface 7 opposite nozzle plate 2.
  • a counterbore 3 feature permits an effective means to secure fittings 6 to the droplet generator 1.
  • a fluid passage 4 allows fluid to travel from an ingress point 8 down to the nozzle plate 2.
  • a narrow fluid trench 5 redirects fluid flow from the fluid passage 4 to an in-line direction with the nozzles (not shown) associated with nozzle plate 2. Since fluid passage 4 is not directly in line with the nozzle plate channel, machining from a solid metal block is impractical and, essentially, impossible.
  • the present invention proposes a two piece resonator design, wherein two pieces 1A and 1B are brazed together to form a single resonator.
  • Each symmetrically machined portion 1A and 1B preferably comprises half of inlet 8, outlet 9 and nozzle plate 2 channel fluid cavity.
  • the resonator body 1 is fabricated from the two precision machined portions 1A and 1B which are brazed together to yield an integral unit.
  • the integral unit comprises the inlet 8 and outlet 9 fluid ports and the fluid channel 4 which directs the fluid into the bonded nozzle plate 2. After brazing, a complete resonator body 1 with properly sized fluid channels is achieved.
  • the fluid channels can be machined in one portion of the resonator body, with the second resonator portion being a solid cover.
  • a rectangular braze foil material without fluid channel cutouts was placed between the two halves, with the fluid cavity half being placed on top to avoid flow of the braze foil into the fluid channels.
  • each resonator portion 1A and 1B comprises part of the inlet 8, the outlet 9 and the nozzle plate 2 channel fluid cavity.
  • Braze material in the fluid cavities is undesirable for several reasons.
  • braze material that has melted and solidified presents a rough, almost grit blasted appearance, which can be a source of fluid flow disturbances and can create sites for air bubble attachment. Either of these problems can severely affect the resonator body performance.
  • the added nonsymmetrical mass due to the excess braze foil in one of the portions 1A or 1B may be another source of poor resonator body performance.
  • a braze foil preform 10 is used.
  • the two portions 1A and 1B can be accurately aligned.
  • the pins 11 are machined from round stock and have break edges 14 at each end, to provide relief for ease of insertion into apertures 12.
  • one of the resonator sections 1A or 1B has alignment apertures designed for a press fit; while the other resonator portion 1B or 1A, has alignment apertures designed for a slip fit.
  • the braze preform 10 of the present invention comprises fluid channel cutout 13.
  • the preform shape allows for 5 to 15 mils of overhang into the fluid channels for tolerancing and to ensure adequate braze coverage at the melt temperature.
  • the resulting resonator body 1 minimizes braze material in the fluid channels as the preform melts when the braze temperature is applied. This reduces poor resonator performance attributed to the existence of braze material.
  • the pins 11 are of the same material as the resonator portions 1A and 1B, to eliminate differences in thermal expansion at the braze temperature. If thermal expansion rates differ between the pin 11 and the resonator portions 1A and 1B, the upper resonator portions would "hang" up, when the upper resonator portion is actually required to float during the brazing process to obtain perfect braze integrity.
  • the present invention is useful in the field of ink jet printing, and has the advantage of addressing packaging constraints of certain printheads.
  • the present invention provides the further advantage of providing an integral resonator body by brazing two separate resonator body portions.
  • the present invention provides the advantage of minimizing braze material in the fluid channels.

Abstract

A brazing process is provided for joining machined resonator portions (1A,1B) to yield a single resonator body (1) for a continuous ink jet printhead. A first resonator body portion (1A) and a second resonator body portion (1B) are provided, each resonator portion having partial fluid ingress (8), fluid egress (9), and nozzle plate (2) channel fluid cavities. A braze preform is then insertable between the first and second resonator body portions to join the first and second resonator body portions. Alignment pins secure and align the first resonator body portion (1A) to the second resonator body portion (1B).

Description

    Technical Field
  • The present invention relates to continuous ink jet printers and, more particularly, to a brazing process for joining machined resonator portions to yield a single resonator body for a continuous ink jet printhead.
  • Background Art
  • Ink jet printing systems are known in which a printhead defines one or more rows of orifices which receive an electrically conductive recording fluid from a pressurized fluid supply manifold and eject the fluid in rows of parallel streams. Printers using such printheads accomplish graphic reproduction by selectively charging and deflecting the drops in each of the streams and depositing at least some of the drops on a print receiving medium, while others of the drops strike a drop catcher device.
  • Droplet generators are one of the major components in a continuous ink jet printhead. Droplet generators often use a nozzle plate attached to a resonant body to stimulate the jets. In a resonator body design where the inlet and outlet ports are not directly in line with the nozzle plate channel, machining from a solid metal block is essentially impossible.
  • It is seen then that it would be desirable to eliminate the problems associated with the prior art resonator body design by providing a resonator body design which is particularly useful where the inlet and outlet ports are not directly in line with the nozzle plate channel.
  • Summary of the Invention
  • This need is met by the system according to the present invention, wherein the resonator body of a continuous ink jet printhead is fabricated from two precision machined halves which are brazed together in a process to yield an integral unit. The integral unit comprises the inlet and outlet fluid ports as well as the fluid channel which directs the fluid into the bonded nozzle plate.
  • In accordance with one aspect of the present invention, a brazing process is provided for joining machined resonator portions to yield a single resonator body for a continuous ink jet printhead. A first resonator body portion and a second resonator body portion are provided, each resonator portion having partial fluid ingress, fluid egress, and nozzle plate channel fluid cavities. A braze preform is then insertable between the first and second resonator body portions to join the first and second resonator body portions. Alignment pins secure and align the first resonator body portion to the second resonator body portion.
  • Accordingly, it is an object of the present invention to yield a single resonator body for a continuous ink jet printhead. It is a further object of the present invention to provide a resonator body design where the inlet and outlet ports are not directly in line with the nozzle plate channel. It is an advantage of the present invention that it provides a viable resonator body design which addresses the packaging constraints of some printheads.
  • Other objects and advantages of the invention will be apparent from the following description, the accompanying drawings and the appended claims.
  • Brief Description of the Drawings
    • Fig. 1A is a partially cutaway view illustrating two joined halves forming a resonator body in accordance with the present invention;
    • Fig. 1B is a view along section line B-B of Fig. 1A;
    • Fig. 2 illustrates a brazed foil-resonator preform used to braze the two resonator halves into the single resonator body of Fig. 1A; and
    • Fig. 3 is a side view of a brazing alignment pin used in the joining of the two resonator halves.
    Detailed Description of the Preferred Embodiments
  • The present invention provides brazing process whereby two machined resonator halves are brazed together in a manner that yields a single resonator body for a continuous ink jet printhead. In co-pending, commonly assigned patent application Serial No. 08/640,180 (docket number SDP163PA), totally incorporated herein by reference, a top feed droplet generator assembly is disclosed, which has an integral fluid cavity wherein fluid ingress and egress to and from the resonator body is on the side of the resonator body opposite the nozzle plate. The brazing process according to the present invention is particularly useful when used to join two resonator halves into the top feed droplet generator described and claimed in co-pending, commonly assigned patent application Serial No. 08/640,180 (docket number SDP163PA).
  • Referring now to the drawings, in Fig. 1A there is illustrated a partially cutaway view of two resonator halves joined to form a resonator body in accordance with the present invention; and in Fig. 1B there is illustrated a front section view of one of the resonator halves. The resonator is a top feed resonator, wherein inlet and outlet ports are located at the top of the resonator body and communicate with a nozzle plate channel located at the bottom of the resonator body.
  • Resonator 1 comprises fluid ingress and egress on a surface 7 opposite nozzle plate 2. A counterbore 3 feature permits an effective means to secure fittings 6 to the droplet generator 1. A fluid passage 4 allows fluid to travel from an ingress point 8 down to the nozzle plate 2. A narrow fluid trench 5 redirects fluid flow from the fluid passage 4 to an in-line direction with the nozzles (not shown) associated with nozzle plate 2. Since fluid passage 4 is not directly in line with the nozzle plate channel, machining from a solid metal block is impractical and, essentially, impossible.
  • To provide such a design using machining, the present invention proposes a two piece resonator design, wherein two pieces 1A and 1B are brazed together to form a single resonator. Each symmetrically machined portion 1A and 1B preferably comprises half of inlet 8, outlet 9 and nozzle plate 2 channel fluid cavity. For a continuous ink jet printhead design, the resonator body 1 is fabricated from the two precision machined portions 1A and 1B which are brazed together to yield an integral unit. The integral unit comprises the inlet 8 and outlet 9 fluid ports and the fluid channel 4 which directs the fluid into the bonded nozzle plate 2. After brazing, a complete resonator body 1 with properly sized fluid channels is achieved.
  • In the prior art, such as a one inch, 120 drops per inch ink jet printer resonator body, the fluid channels can be machined in one portion of the resonator body, with the second resonator portion being a solid cover. A rectangular braze foil material without fluid channel cutouts was placed between the two halves, with the fluid cavity half being placed on top to avoid flow of the braze foil into the fluid channels.
  • In a one inch, 240 drops per inch printing system, each resonator portion 1A and 1B comprises part of the inlet 8, the outlet 9 and the nozzle plate 2 channel fluid cavity. With two fluid channel symmetrical halves, there is a greater chance for thin, rectangular braze foil to flow into the fluid channels, especially if a solid braze foil, i.e., one without fluid channel cutouts, is used.
  • Braze material in the fluid cavities is undesirable for several reasons. One, braze material that has melted and solidified presents a rough, almost grit blasted appearance, which can be a source of fluid flow disturbances and can create sites for air bubble attachment. Either of these problems can severely affect the resonator body performance. Also, the added nonsymmetrical mass due to the excess braze foil in one of the portions 1A or 1B may be another source of poor resonator body performance.
  • In an effort to greatly reduce the amount of braze material which can flow into the fluid channels, a braze foil preform 10, as shown in Fig. 2, is used. By the proper, standard mechanical use of brazing alignment pins 11, as illustrated in Fig. 3, insertable into apertures 12 of Fig. 2, the two portions 1A and 1B can be accurately aligned. In a preferred embodiment of the present invention, the pins 11 are machined from round stock and have break edges 14 at each end, to provide relief for ease of insertion into apertures 12. Preferably, one of the resonator sections 1A or 1B, has alignment apertures designed for a press fit; while the other resonator portion 1B or 1A, has alignment apertures designed for a slip fit.
  • The braze preform 10 of the present invention comprises fluid channel cutout 13. The preform shape allows for 5 to 15 mils of overhang into the fluid channels for tolerancing and to ensure adequate braze coverage at the melt temperature. With the insertion of the braze preform 10, the resulting resonator body 1 minimizes braze material in the fluid channels as the preform melts when the braze temperature is applied. This reduces poor resonator performance attributed to the existence of braze material. In a preferred embodiment of the present invention, the pins 11 are of the same material as the resonator portions 1A and 1B, to eliminate differences in thermal expansion at the braze temperature. If thermal expansion rates differ between the pin 11 and the resonator portions 1A and 1B, the upper resonator portions would "hang" up, when the upper resonator portion is actually required to float during the brazing process to obtain perfect braze integrity.
  • Industrial Applicability and Advantages
  • The present invention is useful in the field of ink jet printing, and has the advantage of addressing packaging constraints of certain printheads. The present invention provides the further advantage of providing an integral resonator body by brazing two separate resonator body portions. Finally, the present invention provides the advantage of minimizing braze material in the fluid channels.
  • Having described the invention in detail and by reference to the preferred embodiment thereof, it will be apparent that other modifications and variations are possible without departing from the scope of the invention defined in the appended claims.

Claims (7)

  1. A resonator for an ink jet printhead of a continuous ink jet printer, the resonator comprising:
    a first resonator body portion and a second resonator body portion, the first and second resonator body portions each having partial fluid ingress, fluid egress, and nozzle plate channel fluid cavities;
    a braze preform insertable between the first and second resonator body portions to join the first and second resonator body portions; and
    at least one alignment pin for securably aligning the first resonator body portion to the second resonator body portion to form a single resonator body.
  2. A resonator for an ink jet printhead as claimed in claim 1 wherein the first and second resonator body portions each comprise one half of the single resonator body.
  3. A resonator for an ink jet printhead as claimed in claim 1 wherein the at least one alignment pin is machined from round stock.
  4. A resonator for an ink jet printhead as claimed in claim 1 wherein the at least one alignment pin has break edges at each end.
  5. A resonator for an ink jet printhead as claimed in claim 1 wherein the at least one alignment pin comprises a first alignment pin and a second alignment pin.
  6. A resonator for an ink jet printhead as claimed in claim 1 wherein the at least one alignment pin is comprised of a material identical in thermal expansion to that of the first and second resonator body portions.
  7. A resonator for an ink jet printhead as claimed in claim 1 wherein the braze preform comprises a fluid channel cutout section.
EP19970302688 1996-04-30 1997-04-21 Brazing process for a continuous ink jet printhead Expired - Lifetime EP0805026B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US64006496A 1996-04-30 1996-04-30
US640064 1996-04-30

Publications (2)

Publication Number Publication Date
EP0805026A1 true EP0805026A1 (en) 1997-11-05
EP0805026B1 EP0805026B1 (en) 2000-05-24

Family

ID=24566705

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19970302688 Expired - Lifetime EP0805026B1 (en) 1996-04-30 1997-04-21 Brazing process for a continuous ink jet printhead

Country Status (4)

Country Link
EP (1) EP0805026B1 (en)
JP (1) JPH1034937A (en)
CA (1) CA2203952A1 (en)
DE (1) DE69702090T2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4032928A (en) * 1976-08-12 1977-06-28 Recognition Equipment Incorporated Wideband ink jet modulator
US4135197A (en) * 1977-10-14 1979-01-16 The Mead Corporation Vibration damping means for ink jet printing device
EP0051132A1 (en) * 1980-11-03 1982-05-12 International Business Machines Corporation Liquid droplet generators
JPS59146860A (en) * 1983-02-10 1984-08-22 Matsushita Electric Ind Co Ltd Ink jet recording head
EP0624469A1 (en) * 1993-05-12 1994-11-17 SCITEX DIGITAL PRINTING, Inc. Improved drop generator utilizing damping for mode suppression

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4032928A (en) * 1976-08-12 1977-06-28 Recognition Equipment Incorporated Wideband ink jet modulator
US4135197A (en) * 1977-10-14 1979-01-16 The Mead Corporation Vibration damping means for ink jet printing device
EP0051132A1 (en) * 1980-11-03 1982-05-12 International Business Machines Corporation Liquid droplet generators
JPS59146860A (en) * 1983-02-10 1984-08-22 Matsushita Electric Ind Co Ltd Ink jet recording head
EP0624469A1 (en) * 1993-05-12 1994-11-17 SCITEX DIGITAL PRINTING, Inc. Improved drop generator utilizing damping for mode suppression

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 008, no. 276 (M - 346) 18 December 1984 (1984-12-18) *

Also Published As

Publication number Publication date
AU1993997A (en) 1997-11-06
CA2203952A1 (en) 1997-10-30
AU716068B2 (en) 2000-02-17
JPH1034937A (en) 1998-02-10
EP0805026B1 (en) 2000-05-24
DE69702090D1 (en) 2000-06-29
DE69702090T2 (en) 2000-12-21

Similar Documents

Publication Publication Date Title
EP0597557B1 (en) Ink jet array
EP0619781B1 (en) Method of forming tapered orifice arrays in fully assembled ink jet printheads
US5659346A (en) Simplified ink jet head
US5635966A (en) Edge feed ink delivery thermal inkjet printhead structure and method of fabrication
CA1155334A (en) Method for driving an ink jet printer
US5420627A (en) Inkjet printhead
US5953029A (en) Ink delivery system for an inkjet printhead
JP2752843B2 (en) Page width thermal inkjet print head
US4891654A (en) Ink jet array
US5450113A (en) Inkjet printhead with improved seal arrangement
EP0810095B1 (en) Inkjet print cartridge design to decrease deformation of the printhead when adhesively sealing the printhead to the print cartridge
EP0564080B1 (en) Aligning a substrate with orifices in an ink jet printhead
US4685185A (en) Method of manufacturing an ink jet head
CA1126085A (en) Ink jet print head
US4730196A (en) Ink-jet printer
CA1278949C (en) Thermal ink jet printhead assembly including common slotted ink feed through and method of manufacture
US7093926B2 (en) Printhead arrangement
EP0805026B1 (en) Brazing process for a continuous ink jet printhead
US6179414B1 (en) Ink delivery system for an inkjet printhead
JP2001519264A (en) Device for depositing droplets and method for producing the same
US6109744A (en) Asymmetric restrictor for ink jet printhead
EP0805036B1 (en) Top feed droplet generator
JP2000351217A5 (en)
JPH10166587A (en) Ink jet recording head
JPH07241991A (en) Ink jet recording head, and manufacture thereof

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB

17P Request for examination filed

Effective date: 19971208

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

17Q First examination report despatched

Effective date: 19990729

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB

REF Corresponds to:

Ref document number: 69702090

Country of ref document: DE

Date of ref document: 20000629

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20080317

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20080430

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20080403

Year of fee payment: 12

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20090421

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20091231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091103

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090421

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091222