EP0804982A2 - Verfahren zur Herstellung von Formteilen aus Metallschaum - Google Patents

Verfahren zur Herstellung von Formteilen aus Metallschaum Download PDF

Info

Publication number
EP0804982A2
EP0804982A2 EP97890073A EP97890073A EP0804982A2 EP 0804982 A2 EP0804982 A2 EP 0804982A2 EP 97890073 A EP97890073 A EP 97890073A EP 97890073 A EP97890073 A EP 97890073A EP 0804982 A2 EP0804982 A2 EP 0804982A2
Authority
EP
European Patent Office
Prior art keywords
mold
chamber
foam
metal foam
semi
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP97890073A
Other languages
English (en)
French (fr)
Other versions
EP0804982B1 (de
EP0804982A3 (de
Inventor
Frantisek Dr.-Ing. Simancik
Franz Dipl.-Ing. Schörghuber
Erich Ing. Hartl
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
USTAV MATERIAELOV A MECHANIKY STROJOV SLOVENSKEJ A
Original Assignee
Leichtmetallguss-Kokillenbau-Werk Illichmann GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Leichtmetallguss-Kokillenbau-Werk Illichmann GmbH filed Critical Leichtmetallguss-Kokillenbau-Werk Illichmann GmbH
Priority to NO972810A priority Critical patent/NO972810L/no
Publication of EP0804982A2 publication Critical patent/EP0804982A2/de
Publication of EP0804982A3 publication Critical patent/EP0804982A3/de
Application granted granted Critical
Publication of EP0804982B1 publication Critical patent/EP0804982B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/11Making porous workpieces or articles
    • B22F3/1121Making porous workpieces or articles by using decomposable, meltable or sublimatable fillers
    • B22F3/1125Making porous workpieces or articles by using decomposable, meltable or sublimatable fillers involving a foaming process
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy

Definitions

  • the invention relates to a process for the production of molded parts made of metal foam, for example aluminum foam, which is formed by powder metallurgy by foaming a mixture of gas-releasing propellant with metal powder as the starting material under heat, in particular compacted into a semi-finished product such as rods, pipes or granules. Furthermore, the invention also relates to a device for performing the method.
  • metal foam for example aluminum foam
  • the invention also relates to a device for performing the method.
  • Light metal fittings can be designed as a solid casting, as a hollow body or as a metal foam body. While in the first-mentioned category the same and thin wall thicknesses and the avoidance of local accumulation of material have to be ensured, hollow bodies usually required expensive casting cores, which complicate the production. A modern alternative is achieved using metal foam casting.
  • the cast skin forms a smooth outer surface of the cast product, the inside of which is loosely filled by a pore structure.
  • Metal foam casting is suitable for many areas of application, which leads to a particularly light end product that offers good sound insulation and low thermal conductivity. The strength properties are surprisingly high. However, not every machine part can be manufactured using this casting technique.
  • DE 43 26 982 C1 describes a typical method and an apparatus for producing molded parts from metal foam formed by melt metallurgy.
  • a melt e.g. an aluminum melt is kept liquid in two communicating containers and in one of the two containers the metal melt is foamed by an agitator. The finished foam is pressed up into a mold by raising the level of the liquid aluminum in the latter container.
  • Powder-metallurgical metal foam is produced, for example, according to DE 41 01630 C2 from metal powder and a gas-releasing blowing agent.
  • the material is hot compacted and subjected to a change in shape.
  • the semifinished product is foamed, for example in a heated steel mold, by the action of temperature, the metal foam gradually filling the mold.
  • the disadvantage here is that the contour of the semi-finished product must correspond to the contour of the mold cavity, since otherwise there is no uniform foaming. If rod-shaped primary material is used, it must be cut to length and placed in the form. Cold welds can also form between the foamed rods.
  • the invention aims to provide a method which enables the production of contoured, three-dimensional molded parts of high quality. Uniform pores and a uniform, homogeneous surface as well as the possibility of influencing the pore size and the pore density as well as the surface and its layer thickness are desired parameters in the manufacturing process.
  • This goal is achieved in a method of the type described in the introduction in that the powder metallurgical starting material is heated Chamber foams outside the mold, that the volume of the powder metallurgical starting material introduced into the heatable chamber, in particular semi-finished product, corresponds essentially to the volume of a filling of the mold in its phase foamed with the total foaming capacity, and that the entire contents of the chamber as metal foam in the mold is pressed, in which foaming preferably continues with the remaining foaming capacity until the mold is completely filled.
  • metal foam is produced outside the mold by thermal foaming of the quantity of the semi-finished product predetermined for the mold. Unlike a melt metallurgical process, this metal foam can be pressed into the mold during its formation. The final phase of foam formation then takes place there. This means that even remote areas or difficult-to-reach contours or undercuts are reliably filled. An early collapse of the pores is avoided.
  • the density of the molded part can be adjusted via the degree of filling of the gas-heated chamber, for example, with semi-finished or starting material or via the chamber volume.
  • the time at which the metal foam is transferred from the chamber into the mold is also a further criterion. This preselects the residual foam capacity that will take effect in the mold.
  • foam formation in the mold can be dispensed with at most.
  • the chamber with the foam-forming starting material is rotated with respect to the casting mold in the manner of a rotary drum furnace and, if necessary, tilted into the casting mold for emptying.
  • the mold is filled by the inherent pressure of the foam material.
  • the metal foam in the chamber is pressed into the mold by a piston. The piston speed and the pressure form further criteria for the appearance of the molded part, both with regard to its surface and the pore shape and density.
  • the resulting metal foam can also be introduced by the metal foam being melted by a non-metal foam
  • a non-metal foam For example, a molten salt, to which a pressure is exerted and on which the powder-metallurgical metal foam floats, is lifted and pressed into the mold.
  • the non-metallic melt is introduced into the chamber or pressed into it. This lifts the metal foam directly into the casting mold, either directly or via a floating piston plate. It is advantageous if the melt carrying the metal foam is specifically heavier than the mother metal of the foam and the melting point is lower (eg zinc or tin and aluminum).
  • the inductive heating in conjunction with a tubular semi-finished product leads to the best foam quality.
  • An independent transfer of the foam from the chamber into the mold is achieved at the right time in that the semi-finished tube is pressed against the nozzle plate with a defined and adjustable force at least in the final phase of the heating process by the piston, so that the injection process is initiated in the mold as soon as the semi-finished product reaches the melting point and thus foams.
  • the heating or preheating of the semi-finished product is carried out under protective gas and preferably if the chamber is flushed with protective gas.
  • the mass of the metal foam produced in the chamber and available for a molded part is limited.
  • the powder-metallurgical foam of several chambers, which are connected in parallel is pressed into the cavity of one or more molds at the same time or by means of a control over several gates.
  • a series of casting modules are thus combined in one system, which fill the shape of the foam part to be cast over several cuts.
  • the modules are generally controlled synchronously so that they feed into the mold at the same time.
  • a device for performing the method is characterized in that the chamber is surrounded by a jacket for externally heated, non-metallic foam melt for heating the chamber.
  • the melt used to heat the chamber is heated in a separate furnace. In this way, a large temperature volume can be fed uniformly to the chamber for the powder metallurgical semi-finished product.
  • the device can be automated in that one or more chambers are arranged on a slide or carousel and can be moved or rotated from a loading or cleaning position into the heating position for the loaded semifinished product with respect to a connection to a mold.
  • FIG. 1 shows an oven with a chamber and a mold before the start of foaming
  • FIG. 2 shows the arrangement according to FIG. 1 after transfer of the metal foam into the casting mold
  • FIG. 3 shows an alternative embodiment of the arrangement
  • FIG. 4 shows another alternative analogous to FIG. 1.
  • FIG. 5 shows another embodiment
  • Fig. 6 is a multiple execution.
  • 7 shows an embodiment with a heating variant
  • FIG. 8 shows an embodiment with displaceable chambers.
  • a chamber 2 for receiving a powder metallurgical starting material 3. It is a compacted semi-finished product, for example wire pieces or pipe pieces made of metal powder and a propellant, which, when exposed to the appropriate temperature, form a metal foam form.
  • a mold 4 With the chamber 2 is a mold 4 via a nozzle 5 in the manner of a perforated diaphragm for gate adjustment for the casting in connection.
  • a piston 6 is guided in the chamber 2.
  • an aluminum foam is formed in chamber 2 from the semifinished product, for example aluminum wire pieces, produced for example according to EP 460 392 A1, which is completely and completely transferred into casting mold 4 with the aid of piston 6 will (Fig. 2).
  • the chamber 2 is emptied and can then be filled again with semifinished product as the starting material for the foam formation, the filling being precisely matched to the volume of the cast body.
  • the foam formation continues with the aid of the piston in the mold 4.
  • the mold is removed from the oven 1 for cooling. This prevents the foam pores from collapsing as a result of excessive heat input.
  • the casting 9 can be demolded and the chamber 2 in furnace 1 with a new shape.
  • a steel mold can also be used repeatedly after a cleaning cycle.
  • FIG. 4. 4 shows a chamber 2 which has an inductive heating 7.
  • a furnace 1, which accommodates the entire arrangement, is not available here.
  • the mold 8 is unheated.
  • a sand mold is advantageously used.
  • the foaming takes place in FIG. 4 in the chamber 2 analogously to FIG. 1.
  • the foam is pressed by the piston 6 into the casting mold 8 (sand mold).
  • the casting mold 8 sand mold
  • the metal foam retains its viscosity and reaches the last corners of the mold.
  • the continued foam formation in the mold supports this effect. In this way, very complicated castings with narrow ribs, undercuts or the like can also be produced.
  • the steel molds normally used in metal foam casting technology lead to a sudden heat removal as soon as the metal foam gets into the casting mold, which leads to an at least superficial loss of viscosity and thus to a much poorer distribution behavior of the metal foam in the casting mold.
  • the steel molds therefore had to be additionally heated in certain critical areas in order to maintain the viscosity of the casting mass locally. This resulted in internal stress states, different pore structures and collapse of the structure at temperatures that were not precisely matched.
  • the unheated sand mold 8 shown in FIG. 4 solves the problems. Any non-metallic form, including a ceramic or plaster form, can be used with the advantages mentioned.
  • FIG. 3 shows an alternative to FIGS. 1 and 2.
  • the nozzle 10 and the mold 11 is rotatably arranged over one or two separate heating devices 12, 13 which are separately adjustable or can be switched on and off.
  • a drive 14 with a bearing 15 faces the piston rod 16, which is designed as a bearing on the other side.
  • the process proceeds as described for FIGS. 1 and 2.
  • the rotation homogenizes the powder-metallurgical foam formation in the chamber 2 and also in the casting mold 11.
  • the latter can remain unheated in the sense of the explanations for FIG. 4 as a non-metallic casting mold. It is also possible to arrange only the chamber 2 or only the mold 11 in a rotatable manner.
  • a tubular semi-finished product 3 ' is provided in the chamber 2 as powder metallurgical starting material on a cutting disc 20, for example made of titanium or ceramic.
  • the tubular semifinished product 3 ' is heated uniformly by inductive heating 21, so that the foam is also formed very uniformly and homogeneously.
  • the foam as the content of the chamber 2 floats according to FIG. 5 - with the interposition of the cutting disc 20 on a "liquid piston", which is formed by a zinc, tin or lead melt.
  • the tub 22 is kept at the melting temperature (heating not shown).
  • a piston 23 presses the melt down, as a result of which the cutting disc 20 is raised and the foam content of the chamber 2 is pressed into the mold 8. As mentioned, depending on the time of transfer, the residual foam formation can take place there.
  • the high heating-up speed and the heating in the semi-finished product itself which can be attributed to inductive heating, contribute to the reduction of oxide formation. 5 with the melt in the tub 22, oxide residues on the wall of the chamber 2 are removed.
  • FIG. 6 shows a multiple application of modules according to FIG. 4 or 5.
  • the individual chambers 2 ' can be inductively heated and feed the metal foam formed into the mold or molds synchronously or with a time delay via a control.
  • the foam formation in the chamber or chambers according to FIGS. 1 to 6 can also take place according to FIG. 7 in that the chambers 2 or the chambers are or are surrounded by a jacket made of metal foam-foreign melt 26 for heating.
  • the melt 26 is heated in an oven 27. It follows due to the large heat potential of the melt, the powder metallurgical semi-finished product is in an ideal heating state, which has a positive influence on the evenness of the foaming and the foaming time. In order to be able to heat the primary material (semi-finished product) as quickly as possible at the lowest possible temperatures, the shape of the semi-finished product is particularly important.
  • the device according to FIG. 7 can of course also be equipped with a floating piston according to FIG. 5.
  • Another variant of the invention consists in pressing the semi-finished tube 3 ′ inserted into the chamber 2 against the nozzle plate 5 with a defined force by the piston 6.
  • the piston 6 can press the prepared foam into the mold. It can be expedient to change the force on the piston and thus the speed at which the foam shoots into the mold 8 as soon as the piston 6 starts to move. This measure results in a very simple control of the system, which is able to compensate for any variations, for example in the preheating temperature of the semi-finished product, in its heating-up speed or in the melting point of the semi-finished alloy, since only a corresponding viscosity of the foam is reached at the time of injection.
  • FIG. 8 shows a further alternative with a plurality of chambers 2 ′, 2 ′′, which here have electrical heaters 27 ′, 27 ′′, for example corresponding to FIG. 7, and from a melt 26 ', 26 "are encased for heat transfer.
  • the chambers 2, 2' are together with their heaters 27 ', 27" in the device according to FIG. 8 about a central axis 28 from a cleaning and optionally loading position for the tubular semi-finished product 3 "into one
  • the rotatable part also moves in the axial direction, so that the chamber 2 "directly adjoins the (divided) mold 4.
  • a piston 6 ' presses the metal foam into the interior of the mold 4.
  • the horizontal arrangement of the chambers 2 ', 2 " is advantageous because the piston 6' does not have to stay in the heated area during the foaming and is therefore subject to only a low temperature load.
  • the device can have one, two or more chambers 2 ', 2" which occupy two or more positions (e.g. separate cleaning, loading with semi-finished products, heating and injecting).
  • a turret or carousel construction with several stations, but also a linear displacement back and forth by means of a slide construction can be provided.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Powder Metallurgy (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Cell Electrode Carriers And Collectors (AREA)

Abstract

Ein Verfahren zur Herstellung von Formteilen aus pulvermetallurgisch hergestelltem Metallschaum, beispielsweise Aluminiumschaum, umfaßt das Aufschäumen eines kompaktierten Gemisches aus Metallpulver und gasabspaltendem Treibmittel als Ausgangsmaterial (Halbzeug) in einer beheizbaren Kammer (2). Die Menge des Ausgangsmaterials wird auf die Füllung in der Gußform (8) bzw. eines Gießvorganges abgestimmt. Der Inhalt der Kammer wird nach dem Aufschäumen in die Gußform gedrückt. Dabei kann ein Zeitpunkt gewählt werden, ab dem sich die Schaumbildung in der Gußform infolge restlicher Schäumkapazität fortsetzt. Dabei verhindert der Überdruck in den Poren des entstehenden Schaumes dessen Zusammendrücken. Die Gußform (8) kann eine unbeheizte nicht metallische Form, beispielsweise eine Sandform sein (Fig. 4). <IMAGE>

Description

  • Die Erfindung betrifft ein Verfahren zur Herstellung von Formteilen aus Metallschaum, beispielsweise Aluminiumschaum, der auf pulvermetallurgischem Wege durch Aufschäumen eines insbesondere zu einen Halbzeug, wie Stangen, Rohre oder zu Granulat kompaktierten Gemisches aus gasabspaltendem Treibmittel mit Metallpulver als Ausgangsmaterial unter Hitzeeinwirkung gebildet wird. Ferner betrifft die Erfindung auch eine Vorrichtung zur Durchführung des Verfahrens.
  • Leichtmetallformstücke können als Vollgußkörper, als Hohlkörper oder auch als Metallschaumkörper ausgebildet sein. Während bei der erstgenannten Kategorie auf möglichst gleiche und dünne Wandstärken und die Vermeidung von örtlichen Materialansammlungen zu achten ist, erforderten Hohlkörper meist teure Gußkerne, die die Herstellung verkomplizieren. Eine moderne Alternative wird durch Metallschaumguß erreicht. Die Gußhaut bildet eine glatte Außenfläche des Gußerzeugnisses, dessen Inneres durch eine Porenstruktur locker ausgefüllt ist. Für sehr viele Anwendungsbereiche eignet sich der Metallschaumguß, der zu einem besonders leichten Endprodukt führt, das einen guten Schallschutz sowie geringe Wärmeleitfähigkeit bietet. Überraschend hoch sind die Festigkeitseigenschaften. Dennoch kann nicht jeder Maschinenteil in dieser Gußtechnik hergestellt werden.
  • Man unterscheidet zwei grundsätzlich verschiedene Verfahren zur Bildung von Metallschaum, nämlich das schmelzmetallurgische und das pulvermetallurgische. In der DE 43 26 982 C1 wird ein typisches Verfahren sowie eine Vorrichtung zur Herstellung von Formteilen aus schmelzmetallurgisch gebildetem Metallschaum beschrieben. Eine Schmelze, z.B. eine Aluminiumschmelze, wird in zwei kommunizierenden Behältern flüssig gehalten und in einem der beiden Behälter wird die Metallschmelze durch ein Rührwerk zum Schäumen gebracht. Der fertige Schaum wird durch Anheben des Niveaus des flüssigen Aluminiums in dem letztgenannten Behälter nach oben in eine Gußform gedrückt.
  • Pulvermetallurgischer Metallschaum entsteht beispielsweise gemäß der DE 41 01630 C2 aus Metallpulver und einem gasabspaltenden Treibmittel. Das Material wird heißkompaktiert und einer Formänderung unterworfen. Dadurch entsteht ein Halbzeug aus fest miteinander verbundenen Metallteilchen, die die Treibmittelteilchen gasdicht einschließen. Das Halbzeug wird z.B. in einer beheizten Stahlform durch die Temperatureinwirkung zum Aufschäumen gebracht, wobei der Metallschaum die Form nach und nach ausfüllt. Nachteilig ist dabei, daß die Kontur des Halbzeugs der Kontur des Formhohlraumes entsprechen muß, da sonst kein gleichmäßiges Aufschäumen erfolgt. Benutzt man stabförmiges Vormaterial, dann muß dieses exakt abgelängt und in der Form plaziert werden. Es können sich ferner Kaltschweißstellen zwischen den aufgeschäumten Stäben bilden.
  • Ein schmelzmetallurgisch hergestellter Schaum geht bereits in den Zustand des Kollabierens der Poren über, wenn er nach seiner Herstellung in die Form gepreßt wird. Es werden oft beheizte Formen eingesetzt, deren Temperatur jedoch nicht zu hoch sein dürfen, da der Metallschaum sonst in verstärktem Maße kollabiert. Die Poren fallen bei der Schaumherstellung ferner unkontrollierbar und in unterschiedlicher Größe an. Im allgemeinen erlaubt dieses Verfahren nur die Herstellung von einfachen Gußformteilen. Ferner wird beim schmelzmetallurgischen Verfahren ein Rührwerk benötigt, wobei die Positionierung des Rührers in der Schmelze äußerst problematisch ist. Durch das Rührwerk entsteht der Schaum nur im Bereich des Rührers, sodaß der bereits erzeugte Schaum während der Produktion des noch benötigten Schaumes noch während der Rührzeit kollabiert. Zudem ist die benötigte Schaummenge nicht exakt einstellbar, sodaß gleiche Teile kein übereinstimmendes Gewicht haben. Die erzeugten Poren haben keinen Innen-Überdruck, sodaß sie beim Eindrücken in die Form zusammengedrückt werden. Dadurch ergibt sich eine uneinheitliche Struktur.
  • Die Erfindung zielt darauf ab, ein Verfahren anzugeben, das die Herstellung auch konturreicher, dreidimensionaler Formteile von hoher Qualität ermöglicht. Gleichmäßige Poren und eine einheitliche homogene Oberfläche sowie die Möglichkeit der Beeinflussung der Porengröße und der Porendichte sowie der Oberfläche und deren Schichtstärke sind erwünschte Parameter bei dem Herstellungsvorgang. Dieses Ziel wird bei einem Verfahren der eingangs beschriebenen Art dadurch erreicht, daß das pulvermetallurgische Ausgangsmaterial in einer beheizbaren Kammer außerhalb der Gußform aufschäumt, daß das Volumen des in die beheizbare Kammer eingebrachten pulvermetallurigschen Ausgangsmaterials, insbesondere Halbzeuges, in seiner mit der gesamten Schäumkapazität aufgeschäumten Phase dem Volumen einer Füllung der Gußform im wesentlichen entspricht und daß der gesamte Inhalt der Kammer als Metallschaum in die Gußform gedrückt wird, in der vorzugsweise ein Aufschäumen mit der restlichen Schäumkapazität fortgesetzt bis zum vollständigen Ausfüllen der Gußform erfolgt.
  • Im Gegensatz zu bekannten pulvermetallurgischen Verfahren wird Metallschaum außerhalb der Gußform durch thermisches Aufschäumen der für die Gußform vorbestimmten Menge des Halbzeuges hergestellt. Dieser Metallschaum kann - anders als bei einem schmelzmetallurgischen Verfahren - während seiner Bildung in die Gußform gedrückt werden. Dort findet dann die Endphase der Schaumbildung statt. Dies führt dazu, daß auch entlegene Bereiche bzw. schwer erreichbare Konturen oder Hinterschneidungen zuverlässig ausgefüllt werden. Ein frühzeitiges Kollabieren der Poren wird vermieden. Dabei ist die Dichte des Formteiles über den Befüllungsgrad der z.B. gasbeheizten Kammer mit Halbzeug bzw. Ausgangsmaterial respektive über das Kammervolumen einstellbar. Ebenso bildet der Zeitpunkt des Überführens des Metallschaumes aus der Kammer in die Gußform ein weiteres Kriterium. Dadurch wird die in der Gußform zur Wirkung kommende Restschäumkapazität vorgewählt. Bei einfachen Formen kann allenfalls auf eine Schaumbildung in der Gußform verzichtet werden. Es ist gemäß einer Weiterbildung des Verfahrens vorteilhaft, wenn die Kammer mit dem schaumbildenden Ausgangsmaterial gegenüber der Gußform in der Art eines Drehtrommelofens gedreht und gegebenenfalls zur Entleerung in die Gußform gekippt wird. Dadurch wird die Gußform durch den Eigendruck des Schaummaterials gefüllt. Besonders vorteilhaft ist es, wenn der Metallschaum in der Kammer von einem Kolben in die Gußform gedrückt wird. Die Kolbengeschwindigkeit und der Druck bilden weitere Kriterien für das Erscheinungsbild des Formteiles, sowohl hinsichtlich seiner Oberfläche als auch der Porenform und Dichte. Das Einbringen des entstehenden Metallschaumes kann auch dadurch erfolgen, daß der Metallschaum durch eine metallschaumfremde Schmelze z.B. eine Salzschmelze, auf die ein Druck ausgeübt wird und auf der der pulvermetallurgisch entstehende Metallschaum schwimmt, angehoben und in die Gußform gedrückt wird. Dazu wird die metallschaumfremde Schmelze in die Kammer eingeleitet bzw. hineingedrückt. Diese hebt den Metallschaum direkt oder über ein schwimmendes Kolbenplättchen restlos in die Gußform. Es ist vorteilhaft, wenn die den Metallschaum tragende Schmelze spezifisch schwerer als das Muttermetall des Schaumes und der Schmelzpunkt niedriger ist (z.B. Zink oder Zinn und Aluminium). Im Gegensatz zu den bisher vorliegenden Erkenntnissen bei Metallschaumgußverfahren wurde erkannt, daß hervorragende Ergebnisse erzielt werden, wenn der pulvermetallurgisch gebildete Metallschaum in eine nichtmetallische Gußform, z.B. eine Sandform gedrückt wird. Die unbeheizte Sandform führt im Gegensatz zu einer Stahl form die Wärme des eingebrachten Metallschaumes beim Füllvorgang nicht sofort ab, sodaß die Schaumphase erhalten bleibt, bis auch die entlegenen Formteile ausgefüllt sind. Dazu kommt noch der unterstützende Effekt durch die in der Form auftretende Restschaumbildung. Der Schaum gelangt somit noch in seiner aktiven Phase in die Form und trägt zur wesentlichen Qualitätsverbesserung bei.
  • Um eine gleichmäßige Poren- bzw. Zellstruktur des pulvermetallurgisch gebildeten Metallschaumes zu gewährleisten, ist ein gleichmäßiges Erhitzen des pulvermetallurgischen Ausgangsmaterials, also des Halbzeuges, erforderlich. Es sollen große Temperaturgradienten in der Kammer vermieden werden und die Schaumbildung soll durch rasches Aufheizen der Kammer im Randbereich der Kammer wie auch im Inneren möglichst gleichzeitig erfolgen. Dies wird dadurch erreicht, daß ein rohrför- miges bzw. rohrstutzenförmiges Halbzeug in die Kammer eingebracht wird. Es ist zweckmäßig, wenn dieses mit möglichst geringem Spiel zur Kammerinnenwand, also in thermischer Verbindung zur Wand in der Kammer vorgesehen ist. Die Heizung kann elektrisch, beispielsweise induktiv erfolgen. Wirbelströme und Skineffekt der induktiven Heizung sind zu berücksichtigen. Die induktive Heizung führt in Verbindung mit einem rohrförmigen Halbzeug zur besten Schaumqualität. Ein selbständiges Überführen des Schaumes aus der Kammer in die Form wird zum richtigen Zeitpunkt dadurch erreicht, daß das Halbzeugrohr zumindest in der Endphase des Aufheizvorganges durch den Kolben mit einer definierten und einstellbaren Kraft gegen die Düsenplatte gepreßt wird, sodaß der Einspritzvorgang in die Form eingeleitet wird, sobald das Halbzeug den Schmelzpunkt erreicht und damit aufschäumt. Zur Reduktion von Oxidschichten ist es zweckmäßig, wenn das Aufheizen bzw. eine Vorwärmung des Halbzeuges unter Schutzgas durchgeführt wird und vorzugsweise wenn die Kammer mit Schutzgas gespült wird.
  • Die Masse des in der Kammer erzeugten und für einen Formteil zur Verfügung stehenden Metallschaumes ist begrenzt. Um auch große und räumlich ausgedehnte Metallschaumteile fertigen zu können, ist es vorteilhaft, wenn der pulvermetallurgische Schaum mehrerer Kammern, die parallelgeschaltet sind, gleichzeitig oder über eine Steuerung zeitversetzt über mehrere Anschnitte in den Hohlraum einer oder mehrerer Formen gedrückt wird. Es werden somit eine Reihe von Gießmoduln in einer Anlage kombiniert, die die Form des zu gießenden Schaumteiles über mehrere Anschnitte füllen. Dabei werden die Module im allgemeinen synchron gesteuert, sodaß sie gleichzeitig in die Form einspeisen. In Abhängigkeit von der Form kann es aber auch vorteilhaft sein, die einzelnen Module zeitgestaffelt anzusteuern, sodaß etwa der Dichteverlauf im Schaumteil beeinflußt werden kann. Eine Vorrichtung zur Durchführung des Verfahrens ist dadurch gekennzeichnet, daß die Kammer von einem Mantel für fremdbeheizte, metallschaumfremde Schmelze zur Beheizung der Kammer umgeben ist. Die zum Heizen der Kammer verwendete Schmelze wird in einem separaten Ofen erhitzt. Auf diese Weise kann der Kammer für das pulvermetallurgische Halbzeug ein großes Temperaturvolumen gleichmäßig zugeführt werden. Die Vorrichtung läßt sich dadurch automatisieren, daß eine oder mehrere Kammern auf einem Schlitten oder Karussell angeordnet und aus einer Lade- bzw. Reinigungsposition in die Aufheizposition für das geladene Halbzeug gegenüber einem Anschluß an eine Form verschiebbar oder drehbar sind.
  • Das erfindungsgemäße Verfahren wird nachfolgend anhand von Ausführungsbeispielen in Prinzipdarstellungen erläutert.
    Fig. 1 zeigt einen Ofen mit einer Kammer und einer Gußform vor Beginn eines Aufschäumens, Fig. 2 die Anordnung nach Fig. 1 nach Überführung des Metallschaumes in die Gußform, Fig. 3 eine alternative Ausführungsform der Anordnung, Fig. 4 eine weitere Alternative analog zu Fig. 1. Fig. 5 eine weitere Ausführungsform, Fig. 6 eine Mehrfachausführung. Fig. 7 eine Ausführung mit einer Beheizungsvariante und Fig. 8 eine Ausführung mit verschiebbaren Kammern.
  • In einem Ofen 1 bzw. einer Heizeinrichtung mit Gasbefeuerung oder induktiver Erwärmung befindet sich eine Kammer 2 zur Aufnahme eines pulvermetallurgischen Ausgangsmaterials 3. Dabei handelt es sich um kompaktiertes Halbzeug, beispielsweise um Drahtstücke oder Rohrstücke aus Metallpulver und einen Treibmittel, die bei entsprechender Temperatureinwirkung einen Metallschaum bilden. Mit der Kammer 2 steht eine Gußform 4 über eine Düse 5 in der Art einer Lochblende zur Anschnitteinstellung für das Gußstück in Verbindung. Ein Kolben 6 ist in der Kammer 2 geführt.
  • Durch Temperaturerhöhung in Ofen 1 auf etwa 500 bis 600 °C entsteht in der Kammer 2 aus dem beispielsweise nach der EP 460 392 A1 hergestellten Halbzeug, beispielsweise Aluminium Drahtstücken, ein Aluminiumschaum, der mit Hilfe des Kolbens 6 vollständig und restlos in die Gußform 4 übergeführt wird (Fig. 2). Die Kammer 2 ist geleert und kann sodann neu mit Halbzeug als Ausgangsmaterial für die Schaumbildung gefüllt werden, wobei die Füllung auf das Volumen des Gußkörpers genau abgestimmt ist.
  • Die Schaumbildung setzt sich je nach dem gewählten Zeitpunkt der Überleitung aus der Kammer 2 mit Hilfe des Kolbens in der Gußform 4 noch fort. Der Zeitpunkt der Druckeinwirkung auf den entstehenden Schaum bzw. das Ausmaß der noch in der Gußform vorhandenen Schäumkapazität ist zusammen mit dem Volumen des eingesetzten Halbzeugs, dessen Konsistenz und dem Temperaturverlauf bei der Schaumbildung sowie der Abkühlung ein wesentlicher Parameter für die Struktur des Schaumteiles. Sobald die Schäumkapazität erschöpft ist und die Schaumbildung in der Form abgeschlossen ist, wird die Form zur Abkühlung aus dem Ofen 1 genommen. Dadurch wird ein Kollabieren der Schaumporen infolge zu langer Wärmezufuhr verhindert. Der Gußteil 9 kann entformt und die Kammer 2 in Ofen 1 mit einer neuen Form bestückt werden. Es kann nach einem Reinigungszyklus auch eine Stahlform wiederholt eingesetzt werden. In diesem Zusammenhang wird auf Fig. 4 hingewiesen. In Fig. 4 ist eine Kammer 2 dargestellt, die über eine induktive Heizung 7 verfügt. Ein Ofen 1, der die gesamte Anordnung aufnimmt, ist hier nicht vorhanden. Die Gußform 8 ist unbeheizt. Es wird in vorteilhafter Weise eine Sandform eingesetzt.
  • Die Schaumbildung erfolgt bei Fig. 4 in der Kammer 2 analog zu Fig. 1. Der Schaum wird durch den Kolben 6 in die Gußform 8 (Sandform) gedrückt. In dieser erfolgt im Kontakt zwischen Metallschaum und der Wand der Gußform, nämlich dem Sand, nur ein geringer Wärmeentzug, sodaß der Metallschaum seine Viskosität behält und bis in die letzten Winkel der Gußform gelangt. Die in der Gußform gezielt fortgesetzte Schaumbildung unterstützt diesen Effekt. Es können auf diese Weise auch sehr komplizierte Gußteile mit schmalen Rippen, Hinterschneidungen oder dergleichen hergestellt werden. Die in der Metallschaum - Gußtechnik sonst üblichen Stahl formen führen infolge der hervorragenden Wärmeleitung der Gußform zu einem schlagartigen Wärmeentzug, sobald der Metallschaum in die Gußform gelangt, was zu einem zumindest oberflächlichen Viskositätsverlust und damit zu einem wesentlich schlechteren Verteilungsverhalten des Metallschaumes in der Gußform führt. Es mußten daher die Stahlformen in gewissen kritischen Bereichen zusätzlich beheizt werden, um die Viskosität der Gußmasse lokal aufrecht zu erhalten. Innere Spannungszustände, unterschiedliche Porenstrukturen und Kollabieren der Struktur bei nicht exakt abgestimmten Temperaturen waren die Folge. Die in Fig. 4 dargestellte, unbeheizte Sandform 8 löst die Probleme. Es kann jede nichtmetallische Form, also auch eine Keramik oder Gipsform mit den genannten Vorteilen eingesetzt werden.
  • Fig. 3 zeigt eine Alternative zu den Fig. 1 und 2. Nahezu die gesamte Anordnung, bestehend aus der Kammer 2, der Düse 10 und der Gußform 11 ist drehbar über einer bzw. über zwei getrennten Heizeinrichtungen 12, 13 angeordnet die getrennt regulierbar bzw. ein- und ausschaltbar sind. Ein Antrieb 14 mit einer Lagerung 15 steht der Kolbenstange 16, die als Lager auf der anderen Seite ausgebildet ist, gegenüber. Das Verfahren läuft so ab, wie es zu Fig. 1 und 2 beschrieben ist. Die Rotation homogenisiert die pulvermetallurgische Schaumbildung in der Kammer 2 und auch in der Gußform 11. Letztere kann im Sinne der Ausführungen zu Fig. 4 als nichtmetallische Gußform unbeheizt bleiben. Es ist auch möglich, nur die Kammer 2 oder nur die Gußform 11 drehbar anzuordnen.
  • Gemäß Fig. 5, die eine Weiterbildung zur Ausführung nach Fig. 4 darstellt, ist in der Kammer 2 als pulvermetallurgisches Ausgangsmaterial ein rohrförmiges Halbzeug 3' auf einer Trennscheibe 20, beispielsweise aus Titan oder Keramik, vorgesehen. Das rohrförmige Halbzeug 3' wird durch induktive Heizung 21 gleichmäßig erwärmt, sodaß die Schaumbildung ebenfalls sehr gleichmäßig und homogen erfolgt. Der Schaum als Inhalt der Kammer 2 schwimmt gemäß Fig. 5 - unter Zwischenlage der Trennscheibe 20 auf einen "Flüssigkeitskolben", der durch eine Zink-, Zinn- oder Bleischmelze gebildet ist. Dazu wird die Wanne 22 auf Schmelztemperatur gehalten (Heizung nicht dargestellt). Ein Kolben 23 drückt die Schmelze nieder, wodurch die Trennscheibe 20 angehoben und der Schauminhalt der Kammer 2 in die Form 8 gedrückt wird. Wie erwähnt, - je nach Zeitpunkt der Überleitung - kann dort die Restschaumbildung erfolgen. Zur Reduktion der Oxidbildung trägt die hohe Aufheizgeschwindigkeit und die Erwärmung im Halbzeug selbst bei, die auf die induktive Heizung zurückzuführen sind. Durch den "Flüssigkeitskolben", also das Heberprinzip gemäß Fig. 5 mit der Schmelze in der Wanne 22 werden Oxidreste an der Wand der Kammer 2 beseitigt.
  • Fig. 6 zeigt eine Mehrfachanwendung von Moduln gemäß Fig. 4 oder 5. Es werden eine oder - wie in Fig. 6 dargestellt zwei Formen 24, 25 (allenfalls auch mehr) von einer Mehrzahl von beheizten Kammern 2' mit Metallschaum gespeist. Die einzelnen Kammern 2' können induktiv beheizt sein und den gebildeten Metallschaum synchron oder aber über eine Steuerung zeitversetzt in die Form bzw. Formen einspeisen.
  • Die Schaumbildung in der oder den Kammern gemäß Fig. 1 bis 6 kann auch gemäß Fig. 7 dadurch erfolgen, daß die Kammern 2 bzw. die Kammern von einem Mantel aus metallschaumfremder Schmelze 26 zur Beheizung umgeben ist bzw. sind. Die Schmelze 26 wird in einem Ofen 27 beheizt. Dabei ergibt sich durch das große Wärmepotential der Schmelze ein idealer Aufheizzustand des pulvermetallurgischen Halbzeuges, wodurch die Gleichmäßigkeit des Aufschäumens und die Aufschäumzeit positiv beeinflußt werden. Um das Vormaterial (Halbzeug) bei möglichst niedrigen Temperaturen so schnell wie möglich aufheizen zu können, ist die Form des Halbzeuges besonders wichtig. Insbesondere ist darauf zu achten, daß jedweder Luftspalt zwischen der Wandung der Kammer 2 und dem Halbzeug 3, 3' vermieden wird, da dieser die Wärmeübertragung durch Isolierwirkung der Luft verschlechtert und gleichzeitig einen Raum zur Schaumbildung darstellt, der sich ebenso nachteilig als Isolierschicht auswirken würde. Die Vorrichtung nach Fig. 7 kann natürlich auch mit schwimmendem Kolben nach Fig. 5 ausgestattet sein.
  • Eine weitere Variante der Erfindung besteht darin, das in die Kammer 2 eingelegte Halbzeugrohr 3' durch den Kolben 6 mit einer definierten Kraft gegen die Düsenplatte 5 zu pressen. Sobald das Halbzeug den Schmelzpunkt erreicht und damit aufzuschäumen beginnt, verliert es seine Festigkeit und der Kolben 6 kann den aufbereiteten Schaum in die Form drücken. Es kann zweckmäßig sein, die Kraft auf den Kolben und damit die Einschießgeschwindigkeit des Schaumes in die Form 8 zu verändern, sobald sich der Kolben 6 in Bewegung setzt. Diese Maßnahme ergibt eine sehr einfache Steuerung der Anlage, die in der Lage ist, allfällige Streuungen, etwa in der Vorwärmtemperatur des Halbzeuges, in seiner Aufheizgeschwindigkeit oder auch im Schmelzpunkt der Halbzeuglegierung auszugleichen, da für den Einspritzzeitpunkt ausschließlich das Erreichen einer entsprechenden Viskosität der Schaum-Schmelze maßgebend ist und alle anderen Parameter außer Betracht bleiben. Durch diese Maßnahme wird auf sehr einfache Weise eine sehr gleichmäßige Schaumbildung erzielt. Es ist auch wesentlich einfacher, die Anlage auf ein anderes SchaumGußteil umzustellen, da sich die sonst sehr aufwendige Optimierung der Produktionsparameter wesentlich vereinfacht und Umrüstzeiten damit drastisch reduziert werden können.
  • Fig. 8 zeigt eine weitere Alternative mit mehreren Kammern 2', 2", die hier beispielsweise entsprechend Fig. 7 elektrische Heizungen 27', 27" aufweisen und von einer Schmelze 26', 26" zur Wärmeübertragung ummantelt sind. Die Kammern 2, 2' sind zusammen mit ihren Heizungen 27', 27" in der Vorrichtung nach Fig. 8 um eine Mittelachse 28 aus einer Reinigungsund gegebenenfalls Ladestellung für das rohrförmige Halbzeug 3" in eine Aufheiz- und Speisestellung drehbar. Zur Injektion des pulvermetallurgisch gebildeten Schaumes bewegt sich der drehbare Teil zusätzlich in axialer Richtung, sodaß die Kammer 2" direkt an die (geteilte) Form 4 anschließt. Ein Kolben 6' drückt den Metallschaum in das Innere der Form 4.
  • Die horizontale Anordnung der Kammern 2', 2" ist vorteilhaft, weil der Kolben 6' während des Aufschäumens nicht im beheizten Bereich verweilen muß und somit einer nur geringen Temperaturbelastung unterliegt. Die Vorrichtung kann eine, zwei oder mehr Kammern 2', 2" aufweisen, die zwei oder mehr Positionen einnehmen (z.B. getrenntes Reinigen, Beschicken mit Halbzeug, Aufheizen und Injizieren). Es kann eine Revolver- oder Karussellkonstruktion mit mehreren Stationen aber auch eine lineare Verschiebung vor und zurück mittels einer Schlittenkonstruktion vorgesehen sein.

Claims (14)

  1. Verfahren zur Herstellung von Formteilen aus Metallschaum, beispielsweise Aluminiumschaum, der auf pulvermetallurgischem Wege durch Aufschäumen eines insbesondere zu einen Halbzeug, wie Stangen, Rohre oder zu Granulat kompaktierten Gemisches aus gasabspaltendem Treibmittel mit Metallpulver als Ausgangsmaterial unter Hitzeeinwirkung gebildet wird, dadurch gekennzeichnet, daß das Aufschäumen in einer beheizbaren Kammer außerhalb einer Gußform erfolgt, daß das Volumen des in die beheizbare Kammer eingebrachten pulvermetallurigschen Ausgangsmaterials, insbesondere Halbzeuges, in seiner mit der gesamten Schäumkapazität aufgeschäumten Phase dem Volumen einer Füllung der Gußform im wesentlichen entspricht und daß der gesamte Inhalt der Kammer als pulvermetallurgischer Metallschaum in die Gußform gedrückt wird, in der vorzugsweise ein Aufschäumen mit der restlichen Schäumkapazität fortgesetzt bis zum vollständigen Ausfüllen der Gußform erfolgt.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die Dichte des herzustellenden Gußformteils über den Befüllungsgrad der Kammer mit Ausgangsmaterial bzw. über das Kammervolumen einstellbar ist.
  3. Verfahren nach den Ansprüchen 1 oder 2, dadurch gekennzeichnet, daß die Kammer mit dem schaumbildenden Ausgangsmaterial gegenüber der Gußform in der Art eines Drehtrommelofens gedreht und zur Entleerung in die Gußform gedrückt, gegebenenfalls gekippt wird.
  4. Verfahren nach einen der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß der Metallschaum in der Kammer von einem Kolben in die Gußform gedrückt wird, wobei der Zeitpunkt innerhalb des Verfahrensverlaufs, das Ausmaß der restlichen Schäumkapazität und damit die Struktur des Gußstückes bestimmend, vorgewählt wird.
  5. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß der Metallschaum durch eine insbesondere metallschaumfremde Schmelze z.B. durch eine Salzschmelze, auf die ein Druck ausgeübt wird und auf der der pulvermetallurgisch entstehende Metallschaum, gegebenenfalls unter Zwischenlage eines Plättchens, schwimmt, angehoben und in die Gußform gedrückt wird.
  6. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß der Metallschaum in eine Gußform aus nichtmetallischem Material, beispielsweise in eine Sandform, Keramikform, Gipsform oder dergleichen gedrückt wird.
  7. Verfahren nach einen der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß der Metallschaum durch eine Düse zwischen Kammer und dem Hohlraum der Form gedrückt wird.
  8. Verfahren nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß ein rohrförmiges bzw. rohrstutzenförmiges Halbzeug in die Kammer eingebracht wird.
  9. Verfahren nach Anspruch 8, dadurch gekennzeichnet, daß das rohrförmige oder rohrstützenförmige Halbzeug mit möglichst geringem Spiel zur Kammerinnenwand in die Kammer eingebracht wird und die Beheizung der Kammer vorzugsweise elektrisch, insbesondere induktiv erfolgt.
  10. Verfahren nach einem der Ansprüche 8 oder 9, dadurch gekennzeichnet, daß das Halbzeugrohr zumindest in der Endphase des Aufheizvorganges durch den Kolben mit einer definierten und einstellbaren Kraft gegen die Düsenplatte gepreßt wird, sodaß der Einspritzvorgang in die Form eingeleitet wird, sobald das Halbzeug den Schmelzpunkt erreicht und damit aufschäumt.
  11. Verfahren nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, daß zur Reduktion von Oxidschichten das Aufheizen bzw. eine Vorwärmung des Halbzeuges unter Schutzgas durchgeführt wird und vorzugsweise daß die Kammer mit Schutzgas gespült wird.
  12. Verfahren nach einem der Ansprüche 1 bis 11, dadurch gekennzeichnet, daß der pulvermetallurgische Schaum mehrerer Kammern, die parallelgeschaltet sind, gleichzeitig oder über eine Steuerung zeitversetzt über mehrere Anschnitte in den Hohlraum einer oder mehrerer Formen gedrückt wird.
  13. Vorrichtung zur Durchführung des Verfahrens nach einem der Ansprüche 1 bis 12, dadurch gekennzeichnet, daß die Kammer (2, 2') von einem Mantel für fremdbeheizte, metallschaumfremde Schmelze (26) zur Beheizung der Kammer (2,2') umgeben ist. (Fig. 7)
  14. Vorrichtung zur Durchführung des Verfahrens nach einem der Ansprüche 1 bis 13 , dadurch gekennzeichnet, daß eine oder mehrere Kammern (2, 2') auf einem Schlitten oder Karussell angeordnet und aus einer Lade- bzw. Reinigungsposition in die Aufheizposition für das geladene Halbzeug gegenüber einem Anschluß an eine Form verschiebbar oder drehbar sind. (Fig. 8)
EP97890073A 1996-04-19 1997-04-18 Verfahren zur Herstellung von Formteilen aus Metallschaum Expired - Lifetime EP0804982B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
NO972810A NO972810L (no) 1997-04-18 1997-06-18 FremgangsmÕte for fremstilling av formdeler av metallskum

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
AT71996 1996-04-19
AT0071996A AT406027B (de) 1996-04-19 1996-04-19 Verfahren zur herstellung von formteilen aus metallschaum
AT719/96 1996-04-19

Publications (3)

Publication Number Publication Date
EP0804982A2 true EP0804982A2 (de) 1997-11-05
EP0804982A3 EP0804982A3 (de) 1997-11-12
EP0804982B1 EP0804982B1 (de) 2002-11-27

Family

ID=3498012

Family Applications (1)

Application Number Title Priority Date Filing Date
EP97890073A Expired - Lifetime EP0804982B1 (de) 1996-04-19 1997-04-18 Verfahren zur Herstellung von Formteilen aus Metallschaum

Country Status (5)

Country Link
US (1) US5865237A (de)
EP (1) EP0804982B1 (de)
JP (1) JPH1029052A (de)
AT (2) AT406027B (de)
DE (1) DE59708794D1 (de)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT408317B (de) * 1998-04-09 2001-10-25 Mepura Metallpulver Verfahren zur herstellung von schaummetall-formkörpern
DE10045494A1 (de) * 2000-09-13 2002-04-04 Neue Materialien Fuerth Gmbh Verfahren zum Herstellen eines Formkörpers aus Metallschaum
DE10104339A1 (de) * 2001-02-01 2002-08-08 Goldschmidt Ag Th Verfahren zur Herstellung von Metallschaum und danach hergestellter Metallkörper
DE10104340A1 (de) * 2001-02-01 2002-08-08 Goldschmidt Ag Th Verfahren zur Herstellung von Mettalschaum und danach hergestellter Metallkörper
EP1319453A1 (de) * 2001-12-14 2003-06-18 EADS Deutschland GmbH Vorrichtung und Verfahren zum in-situ Ausschäumen von Hohlprofilen mit Metallschaum
US6874562B2 (en) 2001-06-07 2005-04-05 Goldschmidt Ag Process for producing metal/metal foam composite components
US6915834B2 (en) 2001-02-01 2005-07-12 Goldschmidt Ag Process for producing metal foam and metal body produced using this process
WO2007014559A1 (de) * 2005-08-02 2007-02-08 Hahn-Meitner-Institut Berlin Gmbh Verfahren zur pulvermetallurgischen herstellung von metallschaumstoff und von teilen aus metallschaumstoff
DE102005047129A1 (de) * 2005-09-30 2007-04-05 Bayerische Motoren Werke Ag Verbindungsknoten zur Verbindung eines Knotenelementes mit mindestens einem Anschlussprofil, insbesondere für den Karosseriebau
DE102008000100A1 (de) 2008-01-18 2009-07-23 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Leichtgewichtiger Grün- und Formkörper aus einem keramischen und/oder pulvermetallurgischen Material und Verfahren zu seiner Herstellung
EP3135404A1 (de) * 2015-08-28 2017-03-01 Ustav materialov a mechaniky strojov SAV Verfahren zur herstellung eines bauteils aus metallschaum, damit hergestelltes bauteil und form zur durchführung des verfahrens
CN107442775A (zh) * 2017-07-14 2017-12-08 成都新柯力化工科技有限公司 一种石墨烯泡沫铝复合金属材料及制备方法

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6605368B2 (en) 1999-12-21 2003-08-12 Laura Lisa Smith Cookware vessel
NO311708B1 (no) 2000-02-25 2002-01-14 Cymat Corp Fremgangsmåte og utstyr for tildannelse av stöpte produkter
DE10042569C1 (de) * 2000-08-25 2002-04-04 Christian Steglich Verfahren und Einrichtung zur Herstellung von Verbundwerkstoffen mit einem Kern aus Metallschaum
DE10123899A1 (de) * 2001-05-16 2002-11-21 Goldschmidt Ag Th Verfahren zur Herstellung von Metallformteilen
ATE357304T1 (de) * 2001-05-19 2007-04-15 Goldschmidt Gmbh Herstellung von metallschäumen
US6660224B2 (en) 2001-08-16 2003-12-09 National Research Council Of Canada Method of making open cell material
MXPA04001490A (es) 2001-08-17 2004-12-06 Cymat Corp Metodo y aparato para colar espuma de aluminio a baja presion.
US7108828B2 (en) * 2001-08-27 2006-09-19 National Research Council Of Canada Method of making open cell material
CN1639364A (zh) * 2002-02-01 2005-07-13 赛麦特公司 浇铸金属泡沫的设备及方法
DE60305163T2 (de) * 2002-03-04 2007-02-22 Cymat Corp., Mississauga Abgedichteter propeller zum erzeugen von metallschaum und dazugehörendes system
EP1513637B1 (de) * 2002-05-20 2008-03-12 Liquidmetal Technologies Geschäumte strukturen von glasbildenden amorphen legierungen
JP2004058130A (ja) * 2002-07-31 2004-02-26 Kobe Steel Ltd 軽合金の射出発泡成形方法及び射出発泡成形装置
DE10253382B4 (de) * 2002-11-15 2006-03-09 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren und Vorrichtung zur Herstellung metallischer Schaumkörper sowie Schüttgut hierfür
WO2004076099A2 (en) 2003-01-17 2004-09-10 Liquidmetal Technologies Method of manufacturing amorphous metallic foam
JP4233018B2 (ja) * 2003-01-17 2009-03-04 本田技研工業株式会社 発泡体を充填した閉断面構造体の製造方法
US7588071B2 (en) * 2003-04-14 2009-09-15 Liquidmetal Technologies, Inc. Continuous casting of foamed bulk amorphous alloys
DE10325819B4 (de) * 2003-06-07 2005-06-23 Friedrich-Alexander-Universität Erlangen-Nürnberg Verfahren zur Herstellung eines Metallschaumkörpers
JP2006528515A (ja) * 2003-07-24 2006-12-21 テコメット・インコーポレーテッド 海綿状の構造体
WO2006021082A1 (en) * 2004-08-24 2006-03-02 Cymat Corp. Apparatus for metal foam casting and methods therefor
CN100509373C (zh) * 2005-03-17 2009-07-08 严培义 粉末成形机充填调节限位装置
CN100335198C (zh) * 2005-08-25 2007-09-05 上海交通大学 制备泡沫金属的含盐石膏模料
US7699092B2 (en) * 2007-06-18 2010-04-20 Husky Injection Molding Systems Ltd. Metal-molding system and process for making foamed alloy
DE102010040249A1 (de) 2010-09-03 2012-03-08 Man Diesel & Turbo Se Doppelwandiges Rohr
JP5617085B1 (ja) * 2014-01-10 2014-11-05 福井県 高圧鋳造方法および高圧鋳造装置
CN108405831A (zh) * 2018-03-20 2018-08-17 北京科技大学 通过压铸过程制备泡沫铝及铝合金异型件的方法
US11324585B2 (en) * 2018-10-12 2022-05-10 Biosense Webster (Israel) Ltd. Method for producing shell and foam filler for a breast implant

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0460392A1 (de) * 1990-06-08 1991-12-11 Fraunhofer-Gesellschaft Zur Förderung Der Angewandten Forschung E.V. Verfahren zur Herstellung aufschÀ¤umbarer Metallkörper
DE4424157A1 (de) * 1993-07-29 1995-02-02 Fraunhofer Ges Forschung Poröser metallischer Werkstoff mit anisotropen Eigenschaften
DE4326982C1 (de) * 1993-08-11 1995-02-09 Alcan Gmbh Verfahren und Vorrichtung zur Herstellung von Formteilen aus Metallschaum

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1164102B (de) * 1956-03-19 1964-02-27 Lor Corp Verfahren zur Herstellung von Metallschaumkoerpern
US3087807A (en) * 1959-12-04 1963-04-30 United Aircraft Corp Method of making foamed metal
DE4018360C1 (en) * 1990-06-08 1991-05-29 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung Ev, 8000 Muenchen, De Porous metal body prodn. - involves compaction at low temp. followed by heating to near melting point of metal
US5281251A (en) * 1992-11-04 1994-01-25 Alcan International Limited Process for shape casting of particle stabilized metal foam
DE4340791A1 (de) * 1993-11-23 1995-05-24 Admos Gleitlager Gmbh Berlin Verfahren zur Herstellung von porösen Metallkörpern

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0460392A1 (de) * 1990-06-08 1991-12-11 Fraunhofer-Gesellschaft Zur Förderung Der Angewandten Forschung E.V. Verfahren zur Herstellung aufschÀ¤umbarer Metallkörper
DE4424157A1 (de) * 1993-07-29 1995-02-02 Fraunhofer Ges Forschung Poröser metallischer Werkstoff mit anisotropen Eigenschaften
DE4326982C1 (de) * 1993-08-11 1995-02-09 Alcan Gmbh Verfahren und Vorrichtung zur Herstellung von Formteilen aus Metallschaum

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT408317B (de) * 1998-04-09 2001-10-25 Mepura Metallpulver Verfahren zur herstellung von schaummetall-formkörpern
DE10045494A1 (de) * 2000-09-13 2002-04-04 Neue Materialien Fuerth Gmbh Verfahren zum Herstellen eines Formkörpers aus Metallschaum
DE10045494C2 (de) * 2000-09-13 2002-07-18 Neue Materialien Fuerth Gmbh Verfahren zum Herstellen eines Formkörpers aus Metallschaum
US6915834B2 (en) 2001-02-01 2005-07-12 Goldschmidt Ag Process for producing metal foam and metal body produced using this process
DE10104340A1 (de) * 2001-02-01 2002-08-08 Goldschmidt Ag Th Verfahren zur Herstellung von Mettalschaum und danach hergestellter Metallkörper
DE10104339A1 (de) * 2001-02-01 2002-08-08 Goldschmidt Ag Th Verfahren zur Herstellung von Metallschaum und danach hergestellter Metallkörper
US6874562B2 (en) 2001-06-07 2005-04-05 Goldschmidt Ag Process for producing metal/metal foam composite components
EP1319453A1 (de) * 2001-12-14 2003-06-18 EADS Deutschland GmbH Vorrichtung und Verfahren zum in-situ Ausschäumen von Hohlprofilen mit Metallschaum
US6889744B2 (en) 2001-12-14 2005-05-10 Eads Deutschland Gmbh Device and method for the in-situ foaming of hollow profiles with metal foam
WO2007014559A1 (de) * 2005-08-02 2007-02-08 Hahn-Meitner-Institut Berlin Gmbh Verfahren zur pulvermetallurgischen herstellung von metallschaumstoff und von teilen aus metallschaumstoff
US8562904B2 (en) 2005-08-02 2013-10-22 Helmholtz-Zentrum Berlin Fuer Materialien Und Energie Gmbh Method for the powder-metallurgical production of metal foamed material and of parts made of metal foamed material
DE102005047129A1 (de) * 2005-09-30 2007-04-05 Bayerische Motoren Werke Ag Verbindungsknoten zur Verbindung eines Knotenelementes mit mindestens einem Anschlussprofil, insbesondere für den Karosseriebau
DE102008000100A1 (de) 2008-01-18 2009-07-23 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Leichtgewichtiger Grün- und Formkörper aus einem keramischen und/oder pulvermetallurgischen Material und Verfahren zu seiner Herstellung
EP3135404A1 (de) * 2015-08-28 2017-03-01 Ustav materialov a mechaniky strojov SAV Verfahren zur herstellung eines bauteils aus metallschaum, damit hergestelltes bauteil und form zur durchführung des verfahrens
WO2017037522A1 (en) * 2015-08-28 2017-03-09 Ústav Materiálov A Mechaniky Strojov Sav Method of production of component from metal foam, component produced by said method and mould for the realization of said method
CN107442775A (zh) * 2017-07-14 2017-12-08 成都新柯力化工科技有限公司 一种石墨烯泡沫铝复合金属材料及制备方法

Also Published As

Publication number Publication date
ATA71996A (de) 1999-06-15
EP0804982B1 (de) 2002-11-27
US5865237A (en) 1999-02-02
JPH1029052A (ja) 1998-02-03
AT406027B (de) 2000-01-25
ATE228411T1 (de) 2002-12-15
EP0804982A3 (de) 1997-11-12
DE59708794D1 (de) 2003-01-09

Similar Documents

Publication Publication Date Title
EP0804982B1 (de) Verfahren zur Herstellung von Formteilen aus Metallschaum
EP0502378B1 (de) Vorrichtung und Verfahren zum Herstellen von Formhäuten und -körpern aus Kunststoff
DE69806843T2 (de) Verfahren und Anlage zur Herstellung von Giesstücken aus amorpher Legierung durch Druckguss
DE1504672C3 (de) Verfahren zum Herstellen von Formkörpern aus zellfbrmigem PolystyroL
DE60111190T2 (de) Verfahren und vorrichtung zur herstellung von gegossenen schaumkörpern
EP1986967B1 (de) Verfahren zur herstellung technischer glasteile für optische anwendungen
DE1479542B2 (de) Verfahren und vorrichtung zum herstellen hohler gegenstaende aus thermoplastischem kunststoff durch blasen eines plastischen vorformlings
DE2410923C3 (de) Verfahren zur Herstellung eines Vorformlings und Form zur Durchführung des Verfahrens
DE2626342A1 (de) Verfahren zur herstellung eines gegenstandes aus kunststoff, vorrichtung zur durchfuehrung des verfahrens und nach dem verfahren hergestellter gegenstand
DE60301947T2 (de) Verwendung von Neuregulin-ß als Indikator und/oder Target
DE1152248B (de) Verfahren und Vorrichtung zum Herstellen von becherfoermigen Gegenstaenden aus schaeumbaren thermoplastischen Kunststoffen
DE19744300B4 (de) Verfahren zur Herstellung von Poren aufweisenden Formkörpern bzw. Werkstücken auf Basis von (Leicht-)Metallen, deren Herstellung und deren Verwendung
WO2002060621A2 (de) Verfahren zur herstellung von metallschaum und danach hergestellter metallkörper
DE112005002554T5 (de) Mikroformeinrichtung und Mikroformverfahren
DE10024224A1 (de) Verfahren und Vorrichtung zum Innenhochdruckumformen sowie Verwendung der Vorrichtung
EP0767760B2 (de) Verfahren zur herstellung von glasformlingen nach dem pressverfahren sowie zur anwendung des verfahrens besonders geeignete vorrichtung
EP0535421B1 (de) Verfahren und Vorrichtung zur Erzeugung von Bauteilen
DE2622903C2 (de) Verfahren zur Herstellung von Formkörpern aus Schaumstoff
DE2457423C2 (de) Verfahren und Vorrichtung zum Herstellen eines Stranges aus einer metallischen Schmelze
DE3429141C2 (de) Verfahren zur Herstellung eines Hohlkörpers
DE19734394C2 (de) Verfahren und Vorrichtung zur Herstellung von Metallschaum
DE3812740C2 (de)
EP0787111B1 (de) Verfahren zur herstellung von glasformlingen nach dem pressverfahren sowie zur anwendung des verfahrens besonders geeignete vorrichtung
AT405493B (de) Verfahren und vorrichtung zum herstellen von metallschaum-formkörpern
DE2847557C2 (de) Vorrichtung zur Fertigung von Formteilen aus Schaumkunststoff

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT DE FR GB IT SE

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT DE FR GB IT SE

17P Request for examination filed

Effective date: 19980123

17Q First examination report despatched

Effective date: 19991207

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: NEUMAN AG

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT DE FR GB IT SE

REF Corresponds to:

Ref document number: 228411

Country of ref document: AT

Date of ref document: 20021215

Kind code of ref document: T

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 59708794

Country of ref document: DE

Date of ref document: 20030109

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20030227

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20030304

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: USTAV MATERIAELOV A MECHANIKY STROJOV SLOVENSKEJ A

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20030828

REG Reference to a national code

Ref country code: GB

Ref legal event code: 711B

REG Reference to a national code

Ref country code: GB

Ref legal event code: 711G

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20110316

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20110324

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20110429

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20110421

Year of fee payment: 15

Ref country code: DE

Payment date: 20110520

Year of fee payment: 15

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 228411

Country of ref document: AT

Kind code of ref document: T

Effective date: 20120418

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20120418

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20121228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120418

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120418

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 59708794

Country of ref document: DE

Effective date: 20121101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120430

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120418

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121101