EP0804528A4 - Machine dishwashing compositions containing an oxygen bleach and a bismuth salt to reduce silver tarnishing - Google Patents
Machine dishwashing compositions containing an oxygen bleach and a bismuth salt to reduce silver tarnishingInfo
- Publication number
- EP0804528A4 EP0804528A4 EP96902627A EP96902627A EP0804528A4 EP 0804528 A4 EP0804528 A4 EP 0804528A4 EP 96902627 A EP96902627 A EP 96902627A EP 96902627 A EP96902627 A EP 96902627A EP 0804528 A4 EP0804528 A4 EP 0804528A4
- Authority
- EP
- European Patent Office
- Prior art keywords
- acid
- composition
- water
- soluble
- compositions
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D3/00—Other compounding ingredients of detergent compositions covered in group C11D1/00
- C11D3/02—Inorganic compounds ; Elemental compounds
- C11D3/04—Water-soluble compounds
- C11D3/046—Salts
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D3/00—Other compounding ingredients of detergent compositions covered in group C11D1/00
- C11D3/0005—Other compounding ingredients characterised by their effect
- C11D3/0073—Anticorrosion compositions
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D3/00—Other compounding ingredients of detergent compositions covered in group C11D1/00
- C11D3/02—Inorganic compounds ; Elemental compounds
- C11D3/04—Water-soluble compounds
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D3/00—Other compounding ingredients of detergent compositions covered in group C11D1/00
- C11D3/16—Organic compounds
- C11D3/20—Organic compounds containing oxygen
- C11D3/2075—Carboxylic acids-salts thereof
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D3/00—Other compounding ingredients of detergent compositions covered in group C11D1/00
- C11D3/39—Organic or inorganic per-compounds
- C11D3/3942—Inorganic per-compounds
Definitions
- the present invention relates to oxygen-bleach containing compositions, adapted for use in machine dishwashing, exhibiting good bleachable stain removal and reduced silver-tarnishing properties.
- compositions designed for use in automatic dishwasher machines are well known, and a consistent effort has been made by detergent manufacturers to improve the cleaning and/or rinsing efficiency of said compositions on china ware, glassware and silverware, as reflected by numerous patent publications.
- a problem encountered with the use of oxygen bleaches is the tarnishing of any silverware components of the washload. Chlorine bleaches can under certain circumstances give rise to silver tarnishing, but the problem is significantly less pronounced than that arising from the use of oxygen bleaches.
- the level of tarnishing observed with oxygen bleaches can range from slight discolouration of the silverware to the formation of a dense black coating on the surface of the silverware.
- the formulator thus faces the dual challenge of formulating an oxygen bleach containing product which maximises bleachable soil cleaning but minimises the occurrence of tarnishing of silverware components of the washload. It has been surprisingly found that reduced silver tarnishing as well as good cleaning performance can be achieved through the inclusion in an oxygen bleach containing formulation of a water-soluble bismuth compound.
- the rate of release of the oxygen bleach is preferably also controlled.
- the rate of release of oxygen bleach is preferably rapid enough to provide satisfactory cleaning, but not so rapid that tarnishing is enabled.
- compositions having low alkalinity and in particular those having alkalinity systems including a minor proportion of a metasilicate component are preferred, as are compositions having a pH which is not unduly high.
- UK Patent Specification No. 1,586,067 in the name of the Procter and Gamble Company discloses automatic dishwashing compositions containing bismuth salts to provide protection to china overglaze without any negative glassware irridescence effects. It is taught therein that chlorine bleaching agents are preferable components of these compositions and specific examples of chlorine containing compositions are given. The use of oxygen bleaches in such compositions is not disclosed. The problem of silver tarnishing is not addressed by this document, nor is any teaching provided of the use of bismuth salts as silver tarnish inhibition agents.
- treatment of silverware with a composition containing bismuth prior to washing in a machine dishwashing method using an oxygen bleach-containing detergent can also reduce the tendency of that silverware to tarnish during the wash.
- a means of delivering bismuth to a machine silverware washing/bleaching solution separate from the bleaching/detergent composition employed therein can also lead to a reduction in the tendency for tarnishing to occur.
- Said means may comprise some kind of a bismuth ion delivery system placed inside a dishwasher machine which is designed to allow release of bismuth ions during the course of the washing process.
- compositions suitable for use in machine dishwashing methods, having reduced silver-tarnishing properties, as well as good cleaning performance, particularly bleachable soil removal performance.
- composition adapted for use in a machine dishwashing method, containing
- composition also contains a water-soluble sulphate salt.
- composition containing a water-soluble bismuth compound for the pretreatment of silverware prior to submitting it to a machine dishwashing method employing an oxygen bleach-containing composition.
- compositions contain as essential components an oxygen- releasing bleach and a water soluble bismuth salt.
- Machine dishwashing compositions contain as essential components an oxygen- releasing bleach and a water soluble bismuth salt.
- compositions herein are adapted for use in a machine dishwashing method. Such compositions are formulated to enable the removal of, typically food based, soils and stains from soiled tableware under the conditions present in a machine dishwasher. Typically the compositions are low foaming, preferably containing only low levels of low-foaming surfactants.
- the first essential feature of the compositions of the invention is an oxygen-releasing bleaching system.
- the bleaching system contains a hydrogen peroxide source and an organic peroxyacid bleach precursor compound.
- the production of the organic peroxyacid occurs by an in situ reaction of the precursor with a source of hydrogen peroxide.
- Preferred sources of hydrogen peroxide include inorganic perhydrate bleaches.
- a preformed organic peroxyacid is incorporated directly into the composition.
- Compositions containing mixtures of a hydrogen peroxide source and organic peroxyacid precursor in combination with a preformed organic peroxyacid are also envisaged.
- compositions in accord with the invention preferably include a hydrogen peroxide source, as an oxygen-releasing bleach.
- Suitable hydrogen peroxide sources include the inorganic perhydrate salts.
- the inorganic perhydrate salts are normally incorporated in the form of the sodium salt at a level of from 1 % to 40% by weight, more preferably from 2% to 30% by weight and most preferably from 5% to 25% by weight of the compositions.
- inorganic perhydrate salts include perborate, percarbonate, perphosphate, persulfate and persilicate salts.
- the inorganic perhydrate salts are normally the alkali metal salts.
- the inorganic perhydrate salt may be included as the crystalline solid without additional protection.
- the preferred executions of such granular compositions utilize a coated form of the material which provides better storage stability for the perhydrate salt in the granular product.
- Sodium perborate can be in the form of the monohydrate of nominal formula NaB ⁇ 2H2 ⁇ 2 or the tetrahydrate NaB ⁇ 2H2 ⁇ 2.3H2 ⁇ .
- Alkali metal percarbonates, particularly sodium percarbonate are preferred perhydrates for inclusion in compositions in accordance with the invention.
- Sodium percarbonate is an addition compound having a formula corresponding to 2Na2C ⁇ 3.3H2 ⁇ 2, and is available commercially as a crystalline solid.
- Sodium percarbonate, being a hydrogen peroxide addition compound tends on dissolution to release the hydrogen peroxide quite rapidly which can increase the tendency for localised high bleach concentrations to arise.
- the percarbonate is most preferably incorporated into such compositions in a coated form which provides in product stability.
- a suitable coating material providing in product stability comprises mixed salt of a water soluble alkali metal sulphate and carbonate.
- the weight ratio of the mixed salt coating material to percarbonate lies in the range from 1 : 200 to 1 : 4, more preferably from 1 : 99 to 1 : 9, and most preferably from 1 : 49 to 1 : 19.
- the mixed salt is of sodium sulphate and sodium carbonate which has the general formula Na2S ⁇ 4.n.Na2C ⁇ 3 wherein n is from 0.1 to 3, preferably n is from 0.3 to 1.0 and most preferably n is from 0.2 to 0.5.
- Peroxyacid bleach precursors are compounds which react with hydrogen peroxide in a perhydrolysis reaction to produce a peroxyacid.
- peroxyacid bleach precursors may be represented as
- L is a leaving group and X is essentially any functionality, such that on perhydroloysis the structure of the peroxyacid produced is
- Peroxyacid bleach precursor compounds are preferably incorporated at a level of from 0.5% to 20% by weight, more preferably from 1 % to 10% by weight, most preferably from 1.5% to 5% by weight of the compositions.
- Suitable peroxyacid bleach precursor compounds typically contain one or more N- or O-acyl groups, which precursors can be selected from a wide range of classes.
- Suitable classes include anhydrides, esters, imides, lactams and acylated derivatives of imidazoles and oximes. Examples of useful materials within these classes are disclosed in GB-A-1586789.
- Suitable esters are disclosed in GB-A-836988, 864798, 1147871, 2143231 and EP-A-0170386.
- L group The leaving group, hereinafter L group, must be sufficiently reactive for the perhydrolysis reaction to occur within the optimum time frame (e.g., a wash cycle). However, if L is too reactive, this activator will be difficult to stabilize for use in a bleaching composition.
- Preferred L groups are selected from the group consisting of:
- R is an alkyl, aryl, or alkaryl group containing from 1 to 14 carbon atoms
- R is an alkyl chain containing from 1 to 8 carbon atoms
- R is H or R
- Y is H or a solubilizing group.
- Any of R , R and R may be substituted by essentially any functional group including, for example alkyl, hydroxy, alkoxy, halogen, a mine, nitrosyl, amide and ammonium or alkyl ammmonium groups
- the preferred solubilizing groups are -S ⁇ 3 ⁇ M , -C ⁇ 2 ⁇ M , -S ⁇ 4 ⁇ M , -N + (R 3 ) 4 X " and 0 ⁇ N(R 3 ) 3 and most preferably -S0 3 ' M + and -CO2 M wherein R J is an alkyl chain containing from 1 to 4 carbon atoms, M is a cation which provides solubility to the bleach activator and X is an anion which provides solubility to the bleach activator.
- M is an alkali metal, ammonium or substituted ammonium cation, with sodium and potassium being most preferred, and X is a halide, hydroxide, methylsulfate or acetate anion.
- Perbenzoic acid precursor compounds provide perbenzoic acid on perhydrolysis.
- Suitable O-acylated perbenzoic acid precursor compounds include the substituted and unsubstituted benzoyl oxybenzene sulfonates, including for example benzoyl oxybenzene sulfonate:
- benzoylation products of sorbitol, glucose, and all saccharides with benzoylating agents including for example:
- Perbenzoic acid precursor compounds of the imide type include N- benzoyl succinimide, tetrabenzoyl ethylene diamine and the N-benzoyl substituted ureas.
- Suitable imidazole type perbenzoic acid precursors include N-benzoyl imidazole and N-benzoyl benzimidazole and other useful N-acyl group-containing perbenzoic acid precursors include N- benzoyl pyrrolidone, dibenzoyl taurine and benzoyl pyroglutamic acid.
- perbenzoic acid precursors include the benzoyl diacyl peroxides, the benzoyl tetraacyl peroxides, and the compound having the formula:
- Phthalic anhydride is another suitable perbenzoic acid precursor compound herein:
- Suitable N-acylated lactam perbenzoic acid precursors have the formula:
- n is from 0 to 8, preferably from 0 to 2
- R is a benzoyl group.
- Perbenzoic acid derivative precursors provide substituted perbenzoic acids on perhydrolysis.
- Suitable substituted perbenzoic acid derivative precursors include any of the herein disclosed perbenzoic precursors in which the benzoyl group is substituted by essentially any non-positively charged (ie; non-cationic) functional group including, for example alkyl, hydroxy, alkoxy, halogen, amine, nitrosyl and amide groups.
- a preferred class of substituted perbenzoic acid precursor compounds are the amide substituted compounds of the following general formulae:
- Rl is an aryl or alkaryl group with from 1 to 14 carbon atoms
- R 2 is an arylene, or alkarylene group containing from 1 to 14 carbon atoms
- R ⁇ is H or an alkyl, aryl, or alkaryl group containing 1 to 10 carbon atoms and L can be essentially any leaving group.
- Rl preferably contains from 6 to 12 carbon atoms.
- R 2 preferably contains from 4 to 8 carbon atoms.
- R 1 may be aryl, substituted aryl or alkylaryl containing branching, substitution, or both and may be sourced from either synthetic sources or natural sources including for example, tallow fat. Analogous structural variations are permissible for R 2 .
- substitution can include alkyl, aryl, halogen, nitrogen, sulphur and other typical substituent groups or organic compounds.
- R ⁇ is preferably H or methyl.
- Rl and R ⁇ should not contain more than 18 carbon atoms in total.
- Amide substituted bleach activator compounds of this type are described in EP-A-0170386.
- Cationic peroxyacid precursor compounds produce cationic peroxyacids on perhydrolysis.
- cationic peroxyacid precursors are formed by substituting the peroxyacid part of a suitable peroxyacid precursor compound with a positively charged functional group, such as an ammonium or alkyl ammmonium group, preferably an ethyl or methyl ammonium group.
- Cationic peroxyacid precursors are typically present in the compositions as a salt with a suitable anion, such as for example a halide ion or a methylsulfate ion.
- the peroxyacid precursor compound to be so cationically substituted may be a perbenzoic acid, or substituted derivative thereof, precursor compound as described hereinbefore.
- the peroxyacid precursor compound may be an alkyl percarboxylic acid precursor compound or an amide substituted alkyl peroxyacid precursor as described hereinafter
- Cationic peroxyacid precursors are described in U.S. Patents 4,904,406; 4,751,015; 4,988,451; 4,397,757; 5,269,962; 5,127,852; 5,093,022; 5,106,528; U.K. 1,382,594; EP 475,512, 458,396 and 284,292; and in JP 87-318,332.
- Suitable cationic peroxyacid precursors include any of the ammonium or alkyl ammonium substituted alkyl or benzoyl oxybenzene sulfonates, N- acylated caprolactams, and monobenzoyltetraacetyl glucose benzoyl peroxides.
- a preferred cationically substituted benzoyl oxybenzene sulfonate is the 4- (trimethyl ammonium) methyl derivative of benzoyl oxybenzene sulfonate:
- a preferred cationically substituted alkyl oxybenzene sulfonate has the formula:
- Preferred cationic peroxyacid precursors of the N-acylated caprolactam class include the trialkyl ammonium methylene benzoyl caprolactams, particularly trimethyl ammonium methylene benzoyl caprolactam:
- N-acylated caprolactam class examples include the trialkyl ammonium methylene alkyl caprolactams:
- n is from 0 to 12, particularly from 1 to 5.
- Another preferred cationic peroxyacid precursor is 2-(N,N,N-trimethyl ammonium) ethyl sodium 4-sulphophenyl carbonate chloride.
- Alkyl percarboxylic acid bleach precursors form percarboxvlic acids on perhydrolysis.
- Preferred precursors of this type provide peracetic acid on perhydrolysis.
- Preferred alkyl percarboxylic precursor compounds of the imide type include the N-,N,N ⁇ N ⁇ tetra acetylated alkylene diamines wherein the alkylene group contains from 1 to 6 carbon atoms, particularly those compounds in which the alkylene group contains 1, 2 and 6 carbon atoms. Tetraacetyl ethylene diamine (TAED) is particularly preferred.
- TAED Tetraacetyl ethylene diamine
- alkyl percarboxylic acid precursors include sodium 3,5,5- tri-methyl hexanoyloxybenzene sulfonate (iso-NOBS), sodium nonanoyloxybenzene sulfonate (NOBS), sodium acetoxybenzene sulfonate (ABS) and pentaacetyl glucose.
- iso-NOBS sodium 3,5,5- tri-methyl hexanoyloxybenzene sulfonate
- NOBS nonanoyloxybenzene sulfonate
- ABS sodium acetoxybenzene sulfonate
- pentaacetyl glucose pentaacetyl glucose
- Amide substituted alkyl peroxyacid precursor compounds are also suitable, including those of the following general formulae:
- Rl is an alkyl group with from 1 to 14 carbon atoms
- R 2 is an alkylene group containing from 1 to 14 carbon atoms
- R ⁇ is H or an alkyl group containing 1 to 10 carbon atoms and L can be essentially any leaving group.
- R* preferably contains from 6 to 12 carbon atoms.
- R 2 preferably contains from 4 to 8 carbon atoms.
- Rl may be straight chain or branched alkyl containing branching, substitution, or both and may be sourced from either synthetic sources or natural sources including for example, tallow fat. Analogous structural variations are permissible for R 2 .
- the substitution can include alkyl, halogen, nitrogen, sulphur and other typical substituent groups or organic compounds.
- R ⁇ is preferably H or methyl.
- Rl and R ⁇ should not contain more than 18 carbon atoms in total. Amide substituted bleach activator compounds of this type are described in EP-A-0170386.
- precursor compounds of the benzoxazin- type as disclosed for example in EP-A-332,294 and EP-A-482,807, particularly those having the formula:
- R j is H, alkyl, alkaryl, aryl, arylalkyl, and wherein R2, R3, R4, and R5 may be the same or different substituents selected from H, halogen, alkyl, alkenyl, aryl, hydroxyl, alkoxy 1, amino, alkyl amino, COOR ⁇ (wherein R ⁇ is H or an alkyl group) and carbonyl functions.
- An especially preferred precursor of the benzoxazin-type is:
- the organic peroxyacid bleaching system may contain, in addition to, or as an alternative to, an organic peroxyacid bleach precursor compound, a preformed orgamc peroxyacid , typically at a level of from 0.5% to 25% by weight, more preferably from 1 % to 10% by weight of the composition.
- a preferred class of organic peroxyacid compounds are the amide substituted compounds of the following general formulae:
- Rl is an alkyl, aryl or alkaryl group with from 1 to 14 carbon atoms
- R 2 is an alkylene, arylene, and alkarylene group containing from 1 to 14 carbon atoms
- R ⁇ is H or an alkyl, aryl, or alkaryl group containing 1 to 10 carbon atoms.
- Rl preferably contains from 6 to 12 carbon atoms.
- R 2 preferably contains from 4 to 8 carbon atoms.
- Rl may be straight chain or branched alkyl, substituted aryl or alkylaryl containing branching, substitution, or both and may be sourced from either synthetic sources or natural sources including for example, tallow fat. Analogous structural variations are permissible for R 2 .
- substitution can include alkyl, aryl, halogen, nitrogen, sulphur and other typical substituent groups or organic compounds.
- R ⁇ is preferably H or methyl.
- Rl and R5 should not contain more than 18 carbon atoms in total. Amide substituted organic peroxyacid compounds of this type are described in EP-A-0170386.
- organic peroxyacids include diacyl and tetraacylperoxides, especially diperoxydodecanedioc acid, diperoxytetradecanedioc acid, and diperoxyhexadecanedioc acid.
- Dibenzoyl peroxide is a preferred organic peroxyacid herein.
- Mono- and diperazelaic acid, mono- and diperbrassylic acid, and N-phthaloylaminoperoxicaproic acid are also suitable herein.
- compositions contain as an essential component a water-soluble bismuth compound, preferably present at a level of from 0.005% to 20%, more preferably from 0.01 % to 5%, most preferably from 0.1 % to 1 % by weight of the compositions.
- the water-soluble bismuth compound may be essentially any salt or complex of bismuth with essentially any inorganic or organic counter anion.
- Preferred inorganic bismuth salts are selected from the bismuth trihalides, bismuth nitrate and bismuth carbonate.
- the water-soluble bismuth compound may be a salt or complex of an organic fatty acid such as bismuth acetate or bismuth stearate.
- the water-soluble bismuth compound comprises a salt or a complex with a chelating organic ligand, that is to say of an organic compound which chelates or binds metal ions in solution.
- the binding constant for bismuth of the organic ligand is preferably high enough to ensure the stability of the salt or complex 'in product', but weak enough such that on introduction of the product to a wash solution the bismuth ions are readily released from the salt or complex to the wash solution.
- the organic ligand is a heavy metal ion sequestrant, particularly selected from those heavy metal ion sequestrants described hereinafter, most preferably an organo amino phosphonate.
- the organic ligand is a water-soluble builder compound, particularly selected from those water-soluble builder described compounds hereinafter, such as a phosphate builder or preferably a polycarboxylate builder, most prefereably citrate.
- compositions contain a water-soluble sulfate salt, preferably present at a level of from 0.1 % to 40%, more preferably from 1 % to 30%, most preferably from 5% to 25% by weight of the compositions.
- the water-soluble sulfate salt may be essentially any salt of sulfate with any counter cation.
- Preferred salts are selected from the sulfates of the alkali and alkaline earth metals, particularly sodium sulfate.
- compositions may contain additional corrosion inhibitors preferably selected from organic silver coating agents, particularly paraffin, nitrogen-containing corrosion inhibitor compounds and Mn( ⁇ ) compounds, particularly Mn( ⁇ ) salts of organic ligands.
- additional corrosion inhibitors preferably selected from organic silver coating agents, particularly paraffin, nitrogen-containing corrosion inhibitor compounds and Mn( ⁇ ) compounds, particularly Mn( ⁇ ) salts of organic ligands.
- Organic silver coating agents are described in PCT Publication No. WO94/16047 (attorney's docket no. CM497M) and copending UK Application No. UK 9413729.6 (attorney's docket no. CM750F).
- Nitrogen-containing corrosion inhibitor compounds are disclosed in copending European Application no. EP 93202095.1 (attorney's docket no. CM571F).
- Mn(II) compounds for use in corrosion inhibition are described in copending UK Application No. 9418567.5 (attorney's docket no. CM719FM).
- Organic silver coating agent may be incorporated at a level of from 0.05% to 10%, preferably from 0.1 % to 5% by weight of the total composition.
- the functional role of the silver coating agent is to form 'in use' a protective coating layer on any silverware components of the washload to which the compositions of the invention are being applied.
- the silver coating agent should hence have a high affinity for attachment to solid silver surfaces, particularly when present in as a component of an aqueous washing and bleaching solution with which the solid silver surfaces are being treated.
- Suitable organic silver coating agents herein include fatty esters of mono- or polyhydric alcohols having from 1 to about 40 carbon atoms in the hydrocarbon chain.
- the fatty acid portion of the fatty ester can be obtained from mono- or poly-carboxylic acids having from 1 to about 40 carbon atoms in the hydrocarbon chain.
- monocarboxylic fatty acids include behenic acid, stearic acid, oleic acid, palmitic acid, myristic acid, lauric acid, acetic acid, propionic acid, butyric acid, isobutyric acid, valeric acid, lactic acid, glycolic acid and ⁇ , ⁇ '- dihydroxyisobutyric acid.
- suitable polycarboxylic acids include: n-butyl-malonic acid, isocitric acid, citric acid, maleic acid, malic acid and succinic acid.
- the fatty alcohol radical in the fatty ester can be represented by mono- or polyhydric alcohols having from 1 to 40 carbon atoms in the hydrocarbon chain.
- suitable fatty alcohols include; behenyl, arachidyl, cocoyl, oleyl and lauryl alcohol, ethylene glycol, glycerol, ethanol, isopropanol, vinyl alcohol, diglycerol, xylitol, sucrose, erythritol, pentaerythritol, sorbitol or sorbitan.
- the fatty acid and/or fatty alcohol group of the fatty ester adjunct material have from 1 to 24 carbon atoms in the alkyl chain.
- Preferred fatty esters herein are ethylene glycol, glycerol and sorbitan esters wherein the fatty acid portion of the ester normally comprises a species selected from behenic acid, stearic acid, oleic acid, palmitic acid or myristic acid.
- glycerol esters are also highly preferred. These are the mono-, di- or tri-esters of glycerol and the fatty acids as defmed above.
- fatty alcohol esters for use herein include: stearyl acetate, palmityl di-lactate, cocoyl isobutyrate, oleyl maleate, oleyl dimaleate , and tallowyl proprionate.
- Fatty acid esters useful herein include: xylitol monopalmitate, pentaerythritol monostearate, sucrose monostearate, glycerol monostearate, ethylene glycol monostearate, sorbitan esters.
- Suitable sorbitan esters include sorbitan monostearate, sorbitan palmitate, sorbitan monolaurate, sorbitan monomyristate, sorbitan monobehenate, sorbitan mono-oleate, sorbitan dilaurate, sorbitan distearate, sorbitan dibehenate, sorbitan dioleate, and also mixed tallowalkyl sorbitan mono- and di-esters.
- Glycerol monostearate glycerol mono-oleate, glycerol monopalmitate, glycerol monobehenate, and glycerol distearate are preferred glycerol esters herein.
- Suitable organic silver coating agents include triglycerides, mono or diglycerides, and wholly or partially hydrogenated derivatives thereof, and any mixtures thereof.
- Suitable sources of fatty acid esters include vegetable and fish oils and animal fats.
- Suitable vegetable oils include soy bean oil, cotton seed oil, castor oil, olive oil, peanut oil, safflower oil, sunflower oil, rapeseed oil, grapeseed oil, palm oil and corn oil.
- Waxes including microcrystalline waxes are suitable organic silver coating agents herein.
- Preferred waxes have a melting point in the range from about 35 °C to about 110°C and comprise generally from 12 to 70 carbon atoms.
- Preferred are petroleum waxes of the paraffin and microcrystalline type which are composed of long-chain saturated hydrocarbon compounds.
- Alginates and gelatin are suitable organic silver coating agents herein.
- Dialkyl amine oxides such as C12-C20 niethylamine oxide, and dialkyl quaternary ammonium compounds and salts, such as the C12-C20 methylammonium halides are also suitable.
- suitable organic silver coating agents include certain polymeric materials.
- perfume materials particularly those demonstrating a high substantivity for metallic surfaces, are also useful as the organic silver coating agents herein.
- Suitable polymeric soil release agents include those soil release agents having: (a) one or more nonionic hydrophile components consisting essentially of (i) polyoxyethylene segments with a degree of polymerization of at least 2, or (ii) oxypropylene or polyoxypropylene segments with a degree of polymerization of from 2 to 10, wherein said hydrophile segment does not encompass any oxypropylene unit unless it is bonded to adjacent moieties at each end by ether linkages, or (iii) a mixture of oxyalkylene units comprising oxyethylene and from 1 to about 30 oxypropylene units, said hydrophile segments preferably comprising at least about 25% oxyethylene units and more preferably, especially for such components having about 20 to 30 oxypropylene units, at least about 50% oxyethylene units; or (b) one or more hydrophobe components comprising (i) C3 oxyalkylene terephthalate segments, wherein, if said hydrophobe components also comprise oxyethylene terephthalate, the ratio of
- the polyoxyethylene segments of (a)(i) will have a degree of polymerization of from about 200, although higher levels can be used, preferably from 3 to about 150, more preferably from 6 to about 100.
- Suitable oxy C4-C6 alkylene hydrophobe segments include, but are not limited to, end-caps of polymeric soil release agents such as M ⁇ 3S(CH2)nOCH2CH2 ⁇ -, where M is sodium and n is an integer from 4-6, as disclosed in U.S. Patent 4,721,580, issued January 26, 1988 to Gosselink.
- Polymeric soil release agents useful herein also include cellulosic derivatives such as hydroxyether cellulosic polymers, copolymeric blocks of ethylene terephthalate or propylene terephthalate with polyethylene oxide or polypropylene oxide terephthalate, and the like. Such agents are commercially available and include hydroxyethers of cellulose such as METHOCEL (Dow). Cellulosic soil release agents for use herein also include those selected from the group consisting of C1-C4 alkyl and C4 hydroxyalkyl cellulose; see U.S. Patent 4,000,093, issued December 28, 1976 to Nicol, et al.
- Soil release agents characterized by poly(vinyl ester) hydrophobe segments include graft copolymers of poly(vinyl ester), e.g., Ci-Cg vinyl esters, preferably poly(vinyl acetate) grafted onto polyalkylene oxide backbones, such as polyethylene oxide backbones.
- poly(vinyl ester) e.g., Ci-Cg vinyl esters
- poly(vinyl acetate) grafted onto polyalkylene oxide backbones such as polyethylene oxide backbones.
- Another suitable soil release agent is a copolymer having random blocks of ethylene terephthalate and polyethylene oxide (PEO) terephthalate.
- the molecular weight of this polymeric soil release agent is in the range of from about 25,000 to about 55,000. See U.S. Patent 3,959,230 to Hays, issued May 25, 1976 and U.S. Patent 3,893,929 to Basadur issued July 8, 1975.
- Another suitable polymeric soil release agent is a polyester with repeat units of ethylene terephthalate units contains 10-15% by weight of ethylene terephthalate units together with 90-80% by weight of polyoxyethylene terephthalate units, derived from a poly oxyethylene glycol of average molecular weight 300-5,000.
- Another suitable polymeric soil release agent is a sulfonated product of a substantially linear ester oligomer comprised of an oligomeric ester backbone of terephthaloyl and oxyalkyleneoxy repeat units and terminal moieties covalently attached to the backbone.
- These soil release agents are described fully in U.S. Patent 4,968,451, issued November 6, 1990 to J.J. Scheibel and E.P. Gosselink.
- Other suitable polymeric soil release agents include the terephthalate polyesters of U.S. Patent 4,711,730, issued December 8, 1987 to Gosselink et al, the anionic end-capped oligomeric esters of U.S.
- Patent 4,721,580 issued January 26, 1988 to Gosselink
- block polyester oligomeric compounds of U.S. Patent 4,702,857 issued October 27, 1987 to Gosselink.
- Other polymeric soil release agents also include the soil release agents of U.S. Patent 4,877,896, issued October 31, 1989 to Maldonado et al, which discloses anionic, especially sulfoarolyl, end-capped terephthalate esters.
- Another soil release agent is an oligomer with repeat units of terephthaloyl units, sulfoisoterephthaloyl units, oxyethyleneoxy and oxy- 1,2-propylene units.
- the repeat units form the backbone of the oligomer and are preferably terminated with modified isethionate end-caps.
- a particularly preferred soil release agent of this type comprises about one sulfoisophthaloyl unit, 5 terephthaloyl units, oxyethyleneoxy and oxy- 1,2- propyleneoxy units in a ratio of from about 1.7 to about 1.8, and two end- cap units of sodium 2-(2-hydroxyethoxy)-ethanesulfonate.
- a preferred organic silver coating agent is a paraffin oil, typically a predominantly branched aliphatic hydrocarbon having a number of carbon atoms in the range of from 20 to 50; preferred paraffin oil selected from predominantly branched C25-45 species with a ratio of cyclic to noncyclic hydrocarbons of from 1:10 to 2:1, preferably from 1:5 to 1:1.
- Suitable nitrogen-containing corrosion inhibitor compounds include imidazole and derivatives thereof such as benzimidazole, 2- heptadecyl imidazole and those imidazole derivatives described in Czech Patent No. 139, 279 and British Patent GB-A-1, 137,741, which also discloses a method for making imidazole compounds.
- nitrogen-containing corrosion inhibitor compounds are pyrazole compounds and their derivatives, particularly those where the pyrazole is substituted in any of the 1 , 3, 4 or 5 positions by substituents Rj, R3, R4 and R5 where Ri is any of H, CH2OH, CONH3, or COCH3, R3 and R5 are any of C1-C20 alkyl or hydroxyl, and R4 is any of H, NH2 or NO2.
- nitrogen-containing corrosion inhibitor compounds include benzotriazole, 2-mercaptobenzothiazole, l-phenyl-5- mercapto-l,2,3,4-tetrazole, thionalide, morpholine, melamine, distearylamine, stearoyl stearamide, cyanuric acid, aminotriazole, aminotetrazole and indazole.
- Nitrogen-containing compounds such as amines, especially distearylamine and ammonium compounds such as ammonium chloride, ammonium bromide, ammonium sulphate or diammonium hydrogen citrate are also suitable.
- the compositions may contain an Mn(II) corrosion inhibitor compound.
- the Mn( ⁇ ) compound is preferably incorporated at a level of from 0.005% to 5% by weight, more preferably from 0.01 % to 1 %, most preferably from 0.02% to 0.4% by weight of the compositions.
- the Mn( ⁇ ) compound is incorporated at a level to provide from 0.1 ppm to 250 ppm, more preferably from 0.5 ppm to 50 ppm, most preferably from 1 ppm to 20 ppm by weight of Mn(II) ions in any bleaching solution.
- the Mn (II) compound may be an inorganic salt in anhydrous, or any hydrated forms. Suitable salts include manganese sulphate, manganese carbonate, manganese phosphate, manganese nitrate, manganese acetate and manganese chloride.
- the Mn( ⁇ ) compound may be a salt or complex of an organic fatty acid such as manganese acetate or manganese stearate.
- the Mn(II) compound may be a salt or complex of an organic ligand.
- the organic ligand is a heavy metal ion sequestrant.
- the organic ligand is a crystal growth inhibitor.
- additional corrosion inhibitor compounds include, mercaptans and diols, especially mercaptans with 4 to 20 carbon atoms including lauryl mercaptan, thiophenol, thionapthol, thionalide and thioanthranol. Also suitable are saturated or unsaturated C10-C20 f attv acids, or their salts, especially aluminium tristearate. The C12-C20 hydroxy fatty acids, or their salts, are also suitable. Phosphonated octa- decane and other anti-oxidants such as betahydroxytoluene (BHT) are also suitable.
- BHT betahydroxytoluene
- Copolymers of butadiene and maleic acid particularly those supplied under the trade reference no. 07787 by Polysciences Inc have been found to be of particular utility as corrosion inhibitor compounds.
- the level of available oxygen in the present compositions is preferably controlled; the level of available oxygen should hence preferably be in the range from 0.3% to 2.5%, preferably from 0.5% to 1.7% , more preferably from 0.6% to 1.5%, most preferably from 0.7% to 1.2%, measured according to the method described hereunder.
- the rate of release of available oxygen is preferably also controlled; the rate of release of available oxygen from the compositions herein preferably should be such that, when using the method described hereinafter, the available oxygen is not completely released from the composition until after 3.5 minutes, preferably the available oxygen is released in a time interval of from 3.5 minutes to 10.0 minutes, more preferably from 4.0 minutes to 9.0 minutes, most preferably from 5.0 minutes to 8.5 minutes.
- a beaker of water (typically 2L) is placed on a stirrer Hotplate, and the stirrer speed is selected to ensure that the product is evenly dispersed through the solution.
- the detergent composition typically 8g of product which has been sampled down from a bulk supply using a Pascal sampler
- the detergent composition is added and simultaneously a stop clock is started.
- the temperature control should be adjusted so as to maintain a constant temperature of 20 °C throughout the experiment.
- Samples are taken from the detergent solution at 2 minute time intervals for 20 minutes, starting after 1 minute, and are titrated by the "titration procedure" described below to determine the level of available oxygen at each point.
- the level of AvO, measured in units of % available oxygen by weight, for the sample at each time interval corresponds to the amount of titre according to the following equation
- AvO level is plotted versus time to determine the maximum level of AvO, and the rate of release of AvO
- Controlled rate of release - means
- a means may be provided for controlling the rate of release of oxygen bleach to the wash solution.
- Means for controlling the rate of release of the bleach may provide for controlled release of peroxide species to the wash solution.
- Such means could, for example, include controlling the release of any inorganic perhydrate salt, acting as a hydrogen peroxide source, to the wash solution.
- Suitable controlled release means can include coating any suitable component with a coating designed to provide the controlled release.
- the coating may therefore, for example, comprise a poorly water soluble material, or be a coating of sufficient thickness that the kinetics of dissolution of the thick coating provide the controlled rate of release.
- the coating material may be applied using various methods. Any coating material is typically present at a weight ratio of coating material to bleach of from 1:99 to 1:2, preferably from 1:49 to 1:9. Suitable coating materials include triglycerides (e.g. partially) hydrogenated vegetable oil, soy bean oil, cotton seed oil) mono or diglycerides, microcrystalline waxes, gelatin, cellulose, fatty acids and any mixtures thereof.
- triglycerides e.g. partially hydrogenated vegetable oil, soy bean oil, cotton seed oil
- suitable coating materials can comprise the alkali and alkaline earth metal sulphates, silicates and carbonates, including calcium carbonate and silicas.
- a preferred coating material particularly for an inorganic perhydrate salt bleach source, comprises sodium silicate of Si ⁇ 2 : Na2 ⁇ ratio from 1.8 : 1 to 3.0 : 1 , preferably 1.8:1 to 2.4:1 , and/or sodium metasilicate, preferably applied at a level of from 2% to 10% , (normally from 3% to 5%) of Si ⁇ 2 by weight of the inorganic perhydrate salt.
- Magnesium silicate can also be included in the coating.
- Suitable binders include the C10-C20 alcohol ethoxylates containing from 5 - 100 moles of ethylene oxide per mole of alcohol and more preferably the C15-C20 primary alcohol ethoxylates containing from 20 - 100 moles of ethylene oxide per mole of alcohol.
- binders include certain polymeric materials.
- Polyvinylpyrrolidones with an average molecular weight of from 12,000 to 700,000 and polyethylene glycols (PEG) with an average molecular weight of from 600 to 5 x 10 6 preferably 1000 to 400,000 most preferably 1000 to 10,000 are examples of such polymeric materials.
- Copolymers of maleic anhydride with ethylene, methyl vinyl ether or methacrylic acid, the maleic anhydride constituting at least 20 mole percent of the polymer are further examples of polymeric materials useful as binder agents.
- binders include the C ⁇ o- C20 mono- and diglycerol ethers and also the C10-C20 fatty acids.
- Cellulose derivatives such as methylcellulose, carboxymethylcellulose and hydroxyethylcellulose, and homo- or co-polymeric polycarboxylic acids or their salts are other examples of binders suitable for use herein.
- One method for applying the coating material involves agglomeration.
- Preferred agglomeration processes include the use of any of the organic binder materials described hereinabove. Any conventional agglomerator/mixer may be used including, but not limited to pan, rotary drum and vertical blender types. Molten coating compositions may also be applied either by being poured onto, or spray atomized onto a moving bed of bleaching agent.
- Suitable means of providing the required controlled release include mechanical means for altering the physical characteristics of the bleach to control its solubility and rate of release. Suitable protocols could include compaction, mechanical injection, manual injection, and adjustment of the solubility of the bleach compound by selection of particle size of any paniculate component.
- particle size Whilst the choice of particle size will depend both on the composition of the paniculate component, and the desire to meet the desired controlled release kinetics, it is desirable that the particle size should be more than 500 micrometers, preferably having an average particle diameter of from 800 to 1200 micrometers.
- Additional protocols for providing the means of controlled release include the suitable choice of any other components of the detergent composition matrix such that when the composition is introduced to the wash solution the ionic strength environment therein provided enables the required controlled release kinetics to be achieved.
- compositions of the invention may be formulated to comprise detergent ingredients, preferably selected from builder compounds, sources of alkalinity, surfactants, heavy metal ion sequestrants, crystal growth inhibitors, enzymes, organic polymeric compounds, and suds suppressors.
- detergent ingredients preferably selected from builder compounds, sources of alkalinity, surfactants, heavy metal ion sequestrants, crystal growth inhibitors, enzymes, organic polymeric compounds, and suds suppressors.
- compositions of the present invention may contain as a highly preferred component a water-soluble builder compound, typically present at a level of from 1% to 80% by weight, preferably from 10% to 70% by weight, most preferably from 20% to 60% by weight of the composition.
- Suitable water-soluble builder compounds include the water soluble monomeric polycarboxylates, or their acid forms, homo or copolymeric polycarboxylic acids or their salts in which the polycarboxylic acid comprises at least two carboxylic radicals separated from each other by not more that two carbon atoms, carbonates, bicarbonates, borates, phosphates, and mixtures of any of the foregoing.
- the carboxylate or polycarboxylate builder can be monomeric or oligomeric in type although monomeric polycarboxylates are generally preferred for reasons of cost and performance.
- Suitable carboxylates containing one carboxy group include the water soluble salts of lactic acid, glycolic acid and ether derivatives thereof.
- Polycarboxylates containing two carboxy groups include the water-soluble salts of succinic acid, malonic acid, (ethylenedioxy) diacetic acid, maleic acid, diglycolic acid, tartaric acid, tartronic acid and fumaric acid, as well as the ether carboxylates and the sulflnyl carboxylates.
- Polycarboxylates containing three carboxy groups include, in particular, water-soluble citrates, aconitrates and citraconates as well as succinate derivatives such as the carboxy methyloxysuccinates described in British Patent No.
- Polycarboxylates containing four carboxy groups include oxydisuccinates disclosed in British Patent No. 1,261 ,829, 1 ,1 ,2,2-ethane tetracarboxylates, 1 ,1,3,3-propane tetracarboxylates and 1 ,1,2,3-propane tetracarboxylates.
- Polycarboxylates containing sulfo substituents include the sulfosuccinate derivatives disclosed in British Patent Nos. 1,398,421 and 1,398,422 and in U.S. Patent No. 3,936,448, and the sulfonated pyrolysed citrates described in British Patent No. 1,439,000.
- Alicyclic and heterocyclic polycarboxylates include cyclopentane- cis,cis,cis-tetracarboxylates, cyclopentadienide pentacarboxylates, 2,3,4,5-tetrahydrofuran - cis, cis, cis-tetracarboxylates, 2,5- tetrahydrofuran - cis - dicarboxylates, 2,2,5 ,5-tetrahydrofuran - tetracarboxylates, 1,2,3,4,5,6-hexane - hexacarboxylates and carboxymethyl derivatives of polyhydric alcohols such as sorbitol, mannitol and xylitol.
- Aromatic polycarboxylates include mellitic acid, pyromellitic acid and the phthalic acid derivatives disclosed in British Patent No. 1,425,343.
- the preferred polycarboxylates are hydroxycarboxylates containing up to three carboxy groups per molecule, more particularly citrates.
- the parent acids of the monomeric or oligomeric polycarboxylate chelating agents or mixtures thereof with their salts e.g. citric acid or citrate/citric acid mixtures are also contemplated as useful builder components.
- Borate builders, as well as builders containing borate-forming materials that can produce borate under detergent storage or wash conditions can also be used but are not preferred at wash conditions less that about 50°C, especially less than about 40 °C.
- carbonate builders are the alkaline earth and alkali metal carbonates, including sodium carbonate and sesqui-carbonate and mixtures thereof with ultra-fine calcium carbonate as disclosed in German Patent Application No. 2,321,001 published on November 15, 1973.
- water-soluble phosphate builders are the alkali metal tripolyphosphates, sodium, potassium and ammonium pyrophosphate, sodium and potassium and ammonium pyrophosphate, sodium and potassium orthophosphate, sodium polymeta/phosphate in which the degree of polymerization ranges from about 6 to 21, and salts of phytic acid.
- Partially soluble or insoluble builder compound Partially soluble or insoluble builder compound
- compositions of the present invention may less preferably contain a partially soluble or insoluble builder compound.
- partially water soluble builders include the crystalline layered silicates as disclosed for example, in EP-A-0164514, DE-A-3417649 and DE-A-3742043.
- largely water insoluble builders include the sodium aluminosilicates, including Zeolite A, Zeolite B, Zeolite P, Zeolite X, Zeolite MAP, Zeolite HS and mixtures thereof.
- compositions preferably contain an alkalinity system containing sodium silicate having an Si ⁇ 2 : Na2 ⁇ ratio of from 1.8 to 3.0, preferably from 1.8 to 2.4, most preferably 2.0, present preferably at a level of less than 20%, preferably from 1 % to 15%, most preferably from 3% to 12% by weight of Si ⁇ 2.
- the alkali metal silicate may be in the form of either the anhydrous salt or a hydrated salt.
- the alkalinity system also preferably contains sodium metasilicate, present at a level of at least 0.4% Si ⁇ 2 by weight.
- Sodium metasilicate has a nominal Si ⁇ 2 : Na2 ⁇ ratio of 1.0.
- the weight ratio of said sodium silicate to said sodium metasilicate, measured as Si ⁇ 2, is preferably from 50:1 to 5:4, more preferably from 15:1 to 2:1 , most preferably from 10:1 to 5:2.
- a highly preferred component of the compositions of the invention is a surfactant system comprising surfactant selected from anionic, cationic, nonionic ampholytic and zwitterionic surfactants and mixtures thereof.
- Automatic dishwashing machine products should be low foaming in character and thus the foaming of the surfactant system must be suppressed or more preferably be low foaming, typically nonionic in character.
- the surfactant system is typically present at a level of from 0.2% to 30% by weight, more preferably from 0.5% to 10% by weight, most preferably from 1 % to 5% by weight of the compositions.
- nonionic surfactants useful for detersive purposes can be included in the compositions.
- Preferred, non-limiting classes of useful nonionic surfactants are listed below.
- alkyl ethoxylate condensation products of aliphatic alcohols with from about 1 to about 25 moles of ethylene oxide are suitable for use herein.
- the alkyl chain of the aliphatic alcohol can either be straight or branched, primary or secondary, and generally contains from 6 to 22 carbon atoms.
- Particularly preferred are the condensation products of alcohols having an alkyl group containing from 8 to 20 carbon atoms with from about 2 to about 10 moles of ethylene oxide per mole of alcohol.
- the ethoxylated C ⁇ -Ci ⁇ fatty alcohols and C ⁇ -Cig mixed ethoxylated/propoxylated fatty alcohols are suitable surfactants for use herein, particularly where water soluble.
- the ethoxylated fatty alcohols are the CiQ-Cig ethoxylated fatty alcohols with a degree of ethoxylation of from 3 to 50, most preferably these are the Ci2 _ Cl8 ethoxylated fatty alcohols with a degree of ethoxylation from 3 to 40.
- the mixed ethoxylated/propoxylated fatty alcohols have an alkyl chain length of from 10 to 18 carbon atoms, a degree of ethoxylation of from 3 to 30 and a degree of propoxylation of from 1 to 10.
- the condensation products of ethylene oxide with a hydrophobic base formed by the condensation of propylene oxide with propylene glycol are suitable for use herein.
- the hydrophobic portion of these compounds preferably has a molecular weight of from about 1500 to about 1800 and exhibits water insolubility.
- Examples of compounds of this type include certain of the commercially-available PluronicTM surfactants, marketed by BASF.
- condensation products of ethylene oxide with the product resulting from the reaction of propylene oxide and ethy lenediamine are suitable for use herein.
- the hydrophobic moiety of these products consists of the reaction product of ethylenediamine and excess propylene oxide, and generally has a molecular weight of from about 2500 to about 3000.
- this type of nonionic surfactant include certain of the commercially available TetronfcTM compounds, marketed by BASF.
- the detergent compositions of the invention preferably contain as an optional component a heavy metal ion sequestrant.
- heavy metal ion sequestrant it is meant herein components which act to sequester (chelate) heavy metal ions. These components may also have calcium and magnesium chelation capacity, but preferentially they show selectivity to binding heavy metal ions such as iron, manganese and copper.
- Heavy metal ion sequestrants are generally present at a level of from 0.005% to 20% , preferably from 0.1 % to 10%, more preferably from 0.25% to 7.5% and most preferably from 0.5% to 5% by weight of the compositions.
- Heavy metal ion sequestrants which are acidic in nature, having for example phosphonic acid or carboxy lie acid functionalities, may be present either in their acid form or as a complex/salt with a suitable counter cation such as an alkali or alkaline metal ion, ammonium, or substituted ammonium ion, or any mixtures thereof.
- a suitable counter cation such as an alkali or alkaline metal ion, ammonium, or substituted ammonium ion, or any mixtures thereof.
- any salts/complexes are water soluble.
- the molar ratio of said counter cation to the heavy metal ion sequestrant is preferably at least 1:1.
- Suitable heavy metal ion sequestrants for use herein include organo amino phosphonates, such as the amino alkylene poly (alkylene phosphonates) and nitrilo trimethylene phosphonates.
- organo amino phosphonates such as the amino alkylene poly (alkylene phosphonates) and nitrilo trimethylene phosphonates.
- Preferred among the above species are diethylene triamine penta (methylene phosphonate), ethylene diamine tri (methylene phosphonate), and hexamethylene diamine tetra (methylene phosphonate).
- Suitable heavy metal ion sequestrant for use herein include nitrilotriacetic acid and polyaminocarboxylic acids such as ethylenediaminotetracetic acid, ethylenetriamine pentacetic acid, ethylenediamine disuccinic acid, ethylenediamine diglutaric acid, 2- hydroxypropylenediamine disuccinic acid or any salts thereof.
- EDDS ethylenediamine-N,N'-disuccinic acid
- alkali metal, alkaline earth metal, ammonium, or substituted ammonium salts thereof, or mixtures thereof Especially preferred is ethylenediamine-N,N'-disuccinic acid (EDDS) or the alkali metal, alkaline earth metal, ammonium, or substituted ammonium salts thereof, or mixtures thereof.
- Preferred EDDS compounds are the free acid form and the sodium or magnesium salt or complex thereof.
- the detergent compositions preferably contain a crystal growth inhibitor component, preferably an organodiphosphonic acid component, incorporated preferably at a level of from 0.01 % to 5%, more preferably from 0.1 % to 2% by weight of the compositions.
- a crystal growth inhibitor component preferably an organodiphosphonic acid component
- organo diphosphonic acid it is meant herein an organo diphosphonic acid which does not contain nitrogen as part of its chemical structure. This definition therefore excludes the organo aminophosphonates, which however may be included in compositions of the invention as heavy metal ion sequestrant components.
- the organo diphosphonic acid is preferably a C1-C4 diphosphonic acid, more preferably a C2 diphosphonic acid, such as ethylene diphosphonic acid, or most preferably ethane 1 -hydroxy- 1,1 -diphosphonic acid (HEDP) and may be present in partially or fully ionized form, particularly as a salt or complex.
- HEDP ethane 1 -hydroxy- 1,1 -diphosphonic acid
- Another optional ingredient useful in the compositions is one or more enzymes.
- Preferred enzymatic materials include the commercially available lipases, amylases, neutral and alkaline proteases, esterases, cellulases, pectinases, lactases and peroxidases conventionally incorporated into detergent compositions. Suitable enzymes are discussed in US Patents 3,519,570 and 3,533,139.
- protease enzymes include those sold under the tradenames Alcalase, Savinase, Primase, Durazym, and Esperase by Novo Industries A/S (Denmark), those sold under the tradename Maxatase, Maxacal and Maxapem by Gist-Brocades, those sold by Genencor International, and those sold under the tradename Opticlean and Optimase by Solvay Enzymes.
- Protease enzyme may be incorporated into the compositions in accordance with the invention at a level of from 0.0001 % to 4% active enzyme by weight of the composition.
- Preferred amylases include, for example, ⁇ -amylases obtained from a special strain of B licheniformis, described in more detail in GB- 1,269,839 (Novo).
- Preferred commercially available amylases include for example, those sold under the tradename Rapidase by Gist-Brocades, and those sold under the tradename Termamyl and BAN by Novo Industries A/S.
- Amylase enzyme may be incorporated into the composition in accordance with the invention at a level of from 0.0001 % to 2% active enzyme by weight of the composition.
- Lipolytic enzyme may be present at levels of active lipolytic enzyme of from 0.0001 % to 2% by weight, preferably 0.001 % to 1 % by weight, most preferably from 0.001 % to 0.5% by weight of the compositions.
- the lipase may be fungal or bacterial in origin. Lipase from chemically or genetically modified mutants of these strains are also useful herein. A preferred lipase is described in Granted European Patent, EP-B-0218272.
- An especially preferred lipase herein is obtained by cloning the gene from Humicola lanuginosa and expressing the gene in Aspergillus oryza. as host, as described in European Patent Application, EP-A-0258 068, which is commercially available from Novo Industri A/S, Bagsvaerd, Denmark, under the trade name Lipolase. This lipase is also described in U.S. Patent 4,810,414, Huge-Jensen et al, issued March 7, 1989.
- Preferred enzyme-containing compositions herein may comprise from about 0.001 % to about 10%, preferably from about 0.005% to about 8%, most preferably from about 0.01 % to about 6% , by weight of an enzyme stabilizing system.
- the enzyme stabilizing system can be any stabilizing system which is compatible with the detersive enzyme.
- Such stabilizing systems can comprise calcium ion, boric acid, propylene glycol, short chain carboxylic acid, boronic acid, chlorine bleach scavengers and mixtures thereof.
- Such stabilizing systems can also comprise reversible enzyme inhibitors, such as reversible protease inhibitors.
- Organic polymeric compounds may be added as preferred components of the compositions in accord with the invention.
- organic polymeric compound it is meant essentially any polymeric organic compound commonly used as dispersants, and anti-redeposition and soil suspension agents in detergent compositions.
- Organic polymeric compound is typically incorporated in the detergent compositions of the invention at a level of from 0.1 % to 30%, preferably from 0.5% to 15% , most preferably from 1 % to 10% by weight of the compositions.
- organic polymeric compounds include the water soluble organic homo- or co-polymeric polycarboxylic acids or their salts in which the polycarboxylic acid comprises at least two carboxyl radicals separated from each other by not more than two carbon atoms.
- Polymers of the latter type are disclosed in GB- A- 1,596,756.
- Examples of such salts are poly aery lates of molecular weight 2000-10000 and their copolymers with any suitable other monomer units including modified acrylic, fumaric, maleic, itaconic, aconitic, mesaconic, citraconic and methylenemalonic acid or their salts, maleic anhydride, acrylamide, alkylene, vinylmethyl ether, styrene and any mixtures thereof.
- Preferred are the copolymers of acrylic acid and maleic anhydride having a molecular weight of from 20,000 to 100,000.
- Preferred commercially available acrylic acid containing polymers having a molecular weight below 15,000 include those sold under the tradename Sokalan PA30, PA20, PA15, PA10 and Sokalan CP10 by BASF GmbH, and those sold under the tradename Acusol 45N by Rohm and Haas.
- Preferred acrylic acid containing copolymers include those which contain as monomer units: a) from 90% to 10%, preferably from 80% to 20% by weight acrylic acid or its salts and b) from 10% to 90%, preferably from 20% to 80% by weight of a substituted acrylic monomer or its salts having the general formula -[CR2-CR ⁇ (CO-0-R3)]- wherein at least one of the substituents Rl, R2 or R3, preferably Rl or R2 is a 1 to 4 carbon alkyl or hydroxyalkyl group, Rl or R2 can be a hydrogen and R3 can be a hydrogen or alkali metal salt.
- Rl is methyl
- R2 is hydrogen (i.e. a methacrylic acid monomer).
- the most preferred copolymer of this type has a molecular weight of 3500 and contains 60% to 80% by weight of acrylic acid and 40% to 20% by weight of methacrylic acid.
- polyamino compounds are useful herein including those derived from aspartic acid such as those disclosed in EP-A-305282, EP-A-305283 and EP-A-351629.
- compositions of the invention may contain a lime soap dispersant compound, preferably present at a level of from 0.1 % to 40% by weight, more preferably 1 % to 20% by weight, most preferably from 2% to 10% by weight of the compositions.
- a lime soap dispersant is a material that prevents the precipitation of alkali metal, ammonium or amine salts of fatty acids by calcium or magnesium ions.
- Preferred lime soap disperant compounds are disclosed in PCT Application No. WO93/08877 (attorney's docket no. CM466M).
- compositions of the invention when formulated for use in machine washing compositions, preferably comprise a suds suppressing system present at a level of from 0.01 % to 15%, preferably from 0.05% to 10%, most preferably from 0.1 % to 5% by weight of the composition.
- Suitable suds suppressing systems for use herein may comprise essentially any known antifoam compound, including, for example silicone antifoam compounds, 2-alkyl and alcanol antifoam compounds.
- Preferred suds suppressing systems and antifoam compounds are disclosed in PCT Application No. WO93/08876 (attorney's docket no. CM465M) and copending European Application No. 93870132.3 (attorney's docket no. CM562F).
- compositions herein may also comprise from 0.01 % to 10 %, preferably from 0.05% to 0.5% by weight of polymeric dye transfer inhibiting agents.
- the polymeric dye transfer inhibiting agents are preferably selected from polyamine N-oxide polymers, copolymers of N-vinylpyrrolidone and N- vinylimidazole, polyvinylpyrrolidonepolymers or combinations thereof.
- compositions are preferably not formulated to have an unduly high pH, in preference having a pH measured as a 1 % solution in distilled water of from 8.0 to 12.0, more preferably from 9.0 to 11.8, most preferably from 9.5 to 11.5.
- compositions of the invention can be formulated in any desirable form such as powders, granulates, pastes, liquids, gels and tablets, granular forms being preferred.
- the bulk density of the granular detergent compositions in accordance with the present invention is typically of at least 650 g/litre, more usually at least 700 g/litre and more preferably from 800 g/litre to 1200 g/litre.
- the particle size of the components of granular compositions in accordance with the invention should preferably be such that no more that 5% of particles are greater than 1.4mm in diameter and not more than 5% of particles are less than 0.15mm in diameter.
- the liquid should be thixotropic (ie; exhibit high viscosity when subjected to low stress and lower viscosity when subjected to high stress), or at least have very high viscosity, for example, of from 1,000 to 10,000,000 centipoise.
- Machine dishwashing method Any suitable methods for machine washing or cleaning soiled tableware, particularly soiled silverware are envisaged.
- a preferred machine dishwashing method comprises treating soiled articles selected from crockery, glassware, hollow ware, silverware and cutlery and mixtures thereof, with an aqueous liquid having dissolved or dispensed therein an effective amount of a machine dishwashing composition in accord with the invention.
- an effective amount of the machine dishwashing composition it is meant from 8g to 60g of product dissolved or dispersed in a wash solution of volume from 3 to 10 litres, as are typical product dosages and wash solution volumes commonly employed in conventional machine dishwashing methods.
- treatment of silverware with a composition containing a water-soluble bismuth compound prior to washing in a conventional machine dishwashing method employing an oxygen bleach-containing product can also reduce the tendency of that silverware to tarnish during the wash.
- such treatment of the silverware can also reduce atmospheric tarnishing of the silverware.
- Said treatment may for example, take the form of soaking the silverware in a solution containing a water-soluble bismuth salt or alternatively it may be achieved by applying a silver treatment composition containing a water-soluble bismuth salt to the silverware.
- a silver treatment composition containing a water-soluble bismuth salt may for example be achieved by use of an applicator means such as a brush, spray, or cloth, which may be followed for example, by manual rubbing or polishing steps.
- the silver treatment composition may be formulated to contain detergent components such as surfactants and builders, including any of those described hereinbefore. It may also comprise additional corrosion inhibitor compounds.
- Pasty silver treatment compositions can be formulated to include insoluble inorganic compounds such as diatomite, siliceous chalk or Vienna lime in combination with thiourea, organic acids and suspension agents. Other suitable components include any of those disclosed in German Patent Application No. DE-A-2539956.
- Said means can include some kind of a bismuth ion delivery system placed inside a dishwasher machine which is designed to allow release of bismuth ions during the course of the washing process.
- the delivery system could for example, be a mechanical delivery system.
- it might take the form of a block of poorly water-soluble material impregnated with a water-soluble bismuth salt, which is suspended in the interior of the dishwasher machine. Materials similar to those used in the formation of commonly known 'toilet blocks' could find utility in this execution.
- Nonionic C13-C15 mixed ethoxylated/propoxylated fatty alcohol with an average degree of ethoxylation of 3.8 and an average degree of propoxylation of 4.5 sold under the tradename Plurafac LF404 by BASF Gmbh (low foaming)
- Cationic precursor Cationic peroxyacid bleach precursor salt of trialkyl ammonium methylene C5-alkyl caprolactam with tosylate
- DETPMP Diethylene triamine penta (methylene phosphonic acid), marketed by Monsanto under the tradename Dequest 2060
- Bismuth nitrate Bismuth nitrate salt
- Paraffin Paraffin oil sold under the tradename Winog 70 by Wintershall. BD/MA Copolymer of butadiene/maleic acid as sold by Polysciences inc under the tradename reference no. 07787
- Protease Proteolytic enzyme sold under the tradename Savinase by Novo Industries A/S (approx 2% enzyme activity).
- Amylase Amylolytic enzyme sold under the tradename Termamyl 60T by Novo Industries A/S (approx 0.9% enzyme activity)
- compositions A is a comparative composition
- compositions B to G are in accord with the invention.
- compositions B to F were compared to that of comparative Composition A using the following twenty cycle test procedure.
- a set of three silver spoons were placed in the cutlery basket of each of four Phillips (tradename) machine dishwashers.
- a spike comprising 10 cm3 of 0.262% by weight CaC .
- 6H2O solution was added by pipette to the bottom of each dishwasher.
- the 65 °C wash setting was selected, the wash process comprising main wash and rinse cycles. 20 grams of each composition was employed for each complete wash process.
- the feed water hardness was 8° Clark Hardness (114.3 ppm CaC03 equivalent). Each set of three spoons was washed five times in each of the four machines (ie: 20 complete wash + rinse cycles).
- the spoons were removed and then graded for silver tarnishing.
- the grading was performed by 4 expert graders and the results averaged for each of the four sets of three spoons. Grading was through visual inspection according to the following scale :
- Results were as follows : (average of the 4 gradings from the panellists)
- composition A B C D E F Composition A B C D E F
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Wood Science & Technology (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Emergency Medicine (AREA)
- Detergent Compositions (AREA)
Abstract
Description
Claims
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
GB9501156 | 1995-01-20 | ||
GB9501156A GB2297096A (en) | 1995-01-20 | 1995-01-20 | Bleaching composition. |
PCT/US1996/000262 WO1996022348A1 (en) | 1995-01-20 | 1996-01-05 | Machine dishwashing compositions containing an oxygen bleach and a bismuth salt to reduce silver tarnishing |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0804528A1 EP0804528A1 (en) | 1997-11-05 |
EP0804528A4 true EP0804528A4 (en) | 1999-10-06 |
Family
ID=10768334
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP96902627A Ceased EP0804528A4 (en) | 1995-01-20 | 1996-01-05 | Machine dishwashing compositions containing an oxygen bleach and a bismuth salt to reduce silver tarnishing |
Country Status (4)
Country | Link |
---|---|
EP (1) | EP0804528A4 (en) |
CA (1) | CA2210260A1 (en) |
GB (1) | GB2297096A (en) |
WO (1) | WO1996022348A1 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5526320A (en) | 1994-12-23 | 1996-06-11 | Micron Technology Inc. | Burst EDO memory device |
GB2309032A (en) * | 1996-01-11 | 1997-07-16 | Procter & Gamble | Bismuth salts and complexes with nitrogen-free organic diphosphonic acids |
US5981456A (en) | 1997-07-23 | 1999-11-09 | Lever Brothers Company | Automatic dishwashing compositions containing water soluble cationic or amphoteric polymers |
DE102011076417A1 (en) * | 2011-05-24 | 2012-11-29 | Henkel Ag & Co. Kgaa | Activator systems for peroxygen compounds |
EP3623456A1 (en) | 2018-09-12 | 2020-03-18 | CLARO Products GmbH | Silver protection agent |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB1110557A (en) * | 1964-11-13 | 1968-04-18 | Fmc Corp | Production of lather |
US3398096A (en) * | 1964-07-24 | 1968-08-20 | Lever Brothers Ltd | Low temperature bleaching composition |
US3990983A (en) * | 1973-12-03 | 1976-11-09 | Lever Brothers Company | Builder compositions |
WO1995028468A1 (en) * | 1994-04-13 | 1995-10-26 | The Procter & Gamble Company | Detergent compositions |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB1586067A (en) * | 1976-10-28 | 1981-03-18 | Procter & Gamble | Detergent composition |
CA1120819A (en) * | 1977-06-01 | 1982-03-30 | Jurgen W.K. Gromer | Detergent tablet |
ATE16403T1 (en) * | 1981-07-17 | 1985-11-15 | Procter & Gamble | WASHING AID COMPOSITION. |
GB8321923D0 (en) * | 1983-08-15 | 1983-09-14 | Unilever Plc | Machine-dishwashing compositions |
US5374369A (en) * | 1993-10-14 | 1994-12-20 | Lever Brothers Company, Division Of Conopco, Inc. | Silver anti-tarnishing detergent composition |
-
1995
- 1995-01-20 GB GB9501156A patent/GB2297096A/en not_active Withdrawn
-
1996
- 1996-01-05 WO PCT/US1996/000262 patent/WO1996022348A1/en not_active Application Discontinuation
- 1996-01-05 CA CA 2210260 patent/CA2210260A1/en not_active Abandoned
- 1996-01-05 EP EP96902627A patent/EP0804528A4/en not_active Ceased
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3398096A (en) * | 1964-07-24 | 1968-08-20 | Lever Brothers Ltd | Low temperature bleaching composition |
GB1110557A (en) * | 1964-11-13 | 1968-04-18 | Fmc Corp | Production of lather |
US3990983A (en) * | 1973-12-03 | 1976-11-09 | Lever Brothers Company | Builder compositions |
WO1995028468A1 (en) * | 1994-04-13 | 1995-10-26 | The Procter & Gamble Company | Detergent compositions |
Non-Patent Citations (1)
Title |
---|
See also references of WO9622348A1 * |
Also Published As
Publication number | Publication date |
---|---|
WO1996022348A1 (en) | 1996-07-25 |
EP0804528A1 (en) | 1997-11-05 |
GB9501156D0 (en) | 1995-03-08 |
GB2297096A (en) | 1996-07-24 |
CA2210260A1 (en) | 1996-07-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5827808A (en) | Dishwashing method | |
US6162259A (en) | Machine dishwashing and laundry compositions | |
GB2294268A (en) | Bleaching composition for dishwasher use | |
US6165970A (en) | Detergent composition comprising acrylic acid-based polymer and amino tricarboxylic acid-based compound | |
US6221430B1 (en) | Process for making a detergent particle | |
GB2311536A (en) | Dishwashing and laundry detergents | |
EP0904340A2 (en) | Machine dishwashing composition | |
US5843877A (en) | Machine dishwashing compositions containing an oxygen bleach and a bismuth salt to reduce silver tarnishing | |
GB2320255A (en) | Process for making tabletted detergent compositions | |
WO1996022348A1 (en) | Machine dishwashing compositions containing an oxygen bleach and a bismuth salt to reduce silver tarnishing | |
WO1998051769A1 (en) | Process for removing tarnish from tarnished silverware | |
EP0948593A1 (en) | Machine dishwashing compositions | |
WO1997036990A1 (en) | Machine dishwashing composition | |
GB2309974A (en) | Use of cellulose ethers for soil removal | |
GB2309975A (en) | Use of cellulose ethers in dishwashing | |
EP0795004A1 (en) | Machine dishwashing detergent compositions containing silicate mixtures | |
WO1996017046A1 (en) | Non-tarnishing machine dishwashing detergent containing oxygen bleach, metasilicate and higher silica ratio silicate | |
CA2151659C (en) | Detergent compositions | |
EP0944711A1 (en) | Process for making tabletted detergent compositions | |
GB2307696A (en) | Machine dishwashing compositions |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 19970701 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LI LU NL PT SE |
|
A4 | Supplementary search report drawn up and despatched |
Effective date: 19990820 |
|
AK | Designated contracting states |
Kind code of ref document: A4 Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LI LU NL PT SE |
|
RIC1 | Information provided on ipc code assigned before grant |
Free format text: 6C 11D 3/04 A, 6C 11D 3/39 B, 6C 11D 7/10 B, 6C 11D 7/18 B, 6C 11D 7/38 B, 6C 11D 7/54 B |
|
17Q | First examination report despatched |
Effective date: 20001102 |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION HAS BEEN REFUSED |
|
18R | Application refused |
Effective date: 20020802 |