EP0797239A2 - Plaquette d'amorçage pour utilisation dans une lampe à décharge au mercure et lampe utilisant une telle plaquette - Google Patents

Plaquette d'amorçage pour utilisation dans une lampe à décharge au mercure et lampe utilisant une telle plaquette Download PDF

Info

Publication number
EP0797239A2
EP0797239A2 EP97103849A EP97103849A EP0797239A2 EP 0797239 A2 EP0797239 A2 EP 0797239A2 EP 97103849 A EP97103849 A EP 97103849A EP 97103849 A EP97103849 A EP 97103849A EP 0797239 A2 EP0797239 A2 EP 0797239A2
Authority
EP
European Patent Office
Prior art keywords
lamp
starting flag
accordance
flag
mercury
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP97103849A
Other languages
German (de)
English (en)
Other versions
EP0797239B1 (fr
EP0797239A3 (fr
Inventor
John W. Schaffer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osram Sylvania Inc
Original Assignee
Osram Sylvania Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osram Sylvania Inc filed Critical Osram Sylvania Inc
Publication of EP0797239A2 publication Critical patent/EP0797239A2/fr
Publication of EP0797239A3 publication Critical patent/EP0797239A3/fr
Application granted granted Critical
Publication of EP0797239B1 publication Critical patent/EP0797239B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/02Details
    • H01J61/04Electrodes; Screens; Shields
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/02Details
    • H01J61/54Igniting arrangements, e.g. promoting ionisation for starting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/02Details
    • H01J61/24Means for obtaining or maintaining the desired pressure within the vessel

Definitions

  • This invention relates to low-pressure mercury discharge lamps and is directed more particularly to a starting flag for use in such lamps, and to a lamp having such a starting flag.
  • prior art low-pressure mercury discharge (fluorescent) lamps 4 intended for use at elevated ambient temperatures often contain an amalgam 1, such as bismuth/indium/mercury, to control the mercury vapor pressure within the lamp 4, and thereby increase the lumen output when the lamp is used under such conditions.
  • the amalgams 1 absorb mercury and reduce the mercury vapor pressure at elevated temperatures, as compared to pure mercury.
  • the mercury vapor pressure controlling amalgam is often located within the lamp base.
  • lumen output may be increased by 25 percent or more relative to a similar but non-amalgam lamp under the same conditions.
  • amalgams in fluorescent lamps are very difficult at lower temperatures, such as room temperature.
  • the mercury vapor pressure within the lamp before turn-on may be reduced by the amalgam below levels that permit quick and reliable starting. If the amalgam lamp is to be started under even colder conditions, this problem becomes severe and either the lamp will not start at all or lamp life can be considerably shortened because of a prolonged glow period during each start cycle.
  • This problem has long been recognized and is generally solved by the provision of a starting or auxiliary amalgam 2 that is located so that it can release mercury into the lamp upon heating of the adjacent lamp electrode.
  • the mercury released by the auxiliary amalgam 2 or "starting flag," permits normal lamp starting and operation until the lamp and main amalgam 1 have warmed up to normal operating temperatures.
  • the mercury released by the starting flag 2 is gradually absorbed into the main amalgam 1 during lamp operation so that the main amalgam 1 is the mercury vapor pressure controlling element within the lamp.
  • the starting flag, or auxiliary amalgam 2 cools and gradually absorbs mercury vapor released by the main amalgam 1. It is desirable that the material in the starting flag 2 have an equilibrium mercury vapor pressure lower than that of the main amalgam 1 at any given temperature.
  • mercury is gradually transported as vapor from the main amalgam 1 to the starting flag 2 while the lamp 4 is turned off.
  • the mercury vapor pressure of the flag is then in equilibrium with that of the main amalgam 1 at that lamp temperature. The starting flag is then ready to again perform its function when the lamp is turned back on.
  • a typical starting flag 2 as used in a compact fluorescent lamp 4 includes a piece of expanded stainless steel foil 6 coated with a layer of indium metal 8, and attached to a wire 10 of a mount structure 12, and located at a controlled spacing S, from an associated coil 14. At the time of lamp turn-on, radiant heat from the coil 14 raises the temperature of the starting flag 2 and the indium coating 8 releases much of its quantity of absorbed mercury which helps to promote initiation of the arc discharge within the lamp.
  • Another problem with the present standard flag is that during lamp processing the indium tends to become oxidized during the heat of lamp sealing.
  • Indium oxide does not perform the mercury absorption and release function that is needed.
  • a third problem has to do with the volatilization of the indium if any arcing to the flag occurs during cathode coating activation, or during lamp life if the flag for any reason becomes excessively hot. Evaporation of indium can result in deposition of indium over the phosphor coating 18 on the inside surface of the envelope 16 and a loss of lumen output and lumen maintenance during lamp life.
  • Yet another problem associated with the indium coated starting flags is that in order to prevent or retard indium migration from the flag 2 onto the lead wire 10, the wire is typically provided with a heavy oxide film, as for example, by heating the wires 10, 20 with a flame during processing.
  • Such oxidation of the lead wires 10, 20 increases contact resistance between the wires 10, 20 and the coil 14, and expands the range of resistance that is presented to the external contacts 22, 24.
  • High resistance lamps do not achieve proper filament temperature for lamp starting on some fluorescent lamp circuits, such as the common "rapid start circuit", which provides a low heating voltage across the coils.
  • amalgam fluorescent lamps may be found in U.S. Patent No. 4,093,889, issued June 6, 1978, to J. Bloem, et al; U.S. Patent No. 4,105,910, issued August 8, 1978, to G. S. Evans; U.S. Patent No. 4,157,485, issued June 5, 1979, to G. A. Wesselink, et al; U.S. Patent No. 4,972,118, issued November 20, 1990, to T. Yorifugi, et al; and U.S. Patent No. 5,204,584, issued April 20, 1993, to T. Ikeda.
  • An object of the invention is therefore, to provide a starting flag for use in a mercury discharge lamp, which starting flag includes a coating which does not migrate to the lead wire or glass, does not oxidize, does not evaporate under high temperature operating conditions, and does not require that the lead wire be oxidized.
  • a feature of the present invention is the provision of a starting flag for use in a low-pressure mercury discharge lamp.
  • the starting flag comprises a metal foil and a layer of bonded molecular sieve particles adhered to the metal foil.
  • a low-pressure mercury discharge lamp comprising a sealed envelope defining a discharge space, and a thermally emitting electrode disposed at one end of the envelope.
  • An inert gas and a quantity of mercury is sealed in the discharge space and a starting flag is disposed in the discharge space.
  • the starting flag comprises a layer of bonded molecular sieve particles adhered to a metal foil.
  • the illustrative starting flag 32 is similar to the starting flag 2 shown in FIG. 2, except in place of the layer 8 of indium metal, shown in FIG. 2, there is provided a layer 38 of bonded molecular sieve particles.
  • a suitable molecular sieve has been found in Molsiv Adsorbent 5A powder, available from UOP Corporation, 25 E. Algonquin Road, Des Plaines, IL, 60017.
  • the molecular sieve particles may be mixed with a sufficient quantity of an inorganic binder, such as a colloidal alumina sol, to form an adherent paint-like film when applied to the steel foil 36 of the starting flag 32.
  • an appropriate colloidal alumina sol is Nyacol AL-20, available from PQ Corporation, Ashland, MA 01721.
  • the metal foil 36 which preferably is expanded stainless steel, preferably is pre-oxidized by heating in air so as to remove any oil film and to promote better adhesion of the layer 38 of molecular sieve particles.
  • the lamp structure of the improved lamp 34 utilizing the above described starting flag 32 is similar to that shown in FIG. 1. Differences are that the lead wire 40 on which the amalgam 32 is mounted is a standard unoxidized lead wire, and the starting flag 32 may beneficially be disposed a relatively smaller distance from the coil 44 than in the case with the standard starting flag 2 (FIG. 1), permitting higher flag operating temperatures, and therefore, more prompt release of mercury.
  • molecular sieve refers to dehydrated crystalline zeolites having the ability to selectively separate molecules on the basis of critical diameter.
  • a zeolite is a group of molecules characterized by the presence of structural SiO, and Al 3 O 4 groups, cation(s) to balance the negative charge of the aluminosilicate structure, and water of hydration. They may be crystalline or amorphous. The former types are of particular interest as the molecular sieves referred to herein.
  • the cation(s) commonly found are sodium and calcium with barium, potassium, magnesium, strontium, and iron also possible.
  • the natural zeolites are about 40 in number, the more familiar being chabazite, grnelinite, levynite, faujasite, analcime, crionite and mordenite.
  • the molecular sieves designated as "Type 5A” have what is termed the "A" crystal structure which is cubic, characterized by a three-dimensional network which has cavities 11.4 A in diameter separated by circular openings 4.2 A in diameter. This latter figure is the so-called pore diameter.
  • the removal of water of crystallization leaves an "active" crystalline zeolite that has a void volume of 45 vol %. Adsorption of mercury in the instant starting flag coating occurs in these intracrystalline voids.
  • zeolites as a class, are characterized by the ability to adsorb molecules that have critical dimensions less than the effective pore size of the zeolite.
  • the adsorbed chemical may be released by heating.
  • a starting flag having a coating which does not migrate to the lead wire on which it is mounted.
  • the sieve material remains securely adhered to the stainless steel.
  • a coating in which oxidation thereof during lamp sealing does not occur, in which the evaporation of amalgam components in high temperature operation does not occur, and which does not require oxidation of the lead wires.

Landscapes

  • Vessels And Coating Films For Discharge Lamps (AREA)
  • Discharge Lamp (AREA)
EP97103849A 1996-03-22 1997-03-07 Lampe à décharge au mercure avec plaquette d'amorçage Expired - Lifetime EP0797239B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US661231 1996-03-22
US08/661,231 US5698943A (en) 1996-03-22 1996-03-22 Starting flag for use in mercury discharge lamp and lamp employing same

Publications (3)

Publication Number Publication Date
EP0797239A2 true EP0797239A2 (fr) 1997-09-24
EP0797239A3 EP0797239A3 (fr) 1997-12-29
EP0797239B1 EP0797239B1 (fr) 2002-10-16

Family

ID=24652723

Family Applications (1)

Application Number Title Priority Date Filing Date
EP97103849A Expired - Lifetime EP0797239B1 (fr) 1996-03-22 1997-03-07 Lampe à décharge au mercure avec plaquette d'amorçage

Country Status (7)

Country Link
US (1) US5698943A (fr)
EP (1) EP0797239B1 (fr)
JP (1) JP3902690B2 (fr)
KR (1) KR100444493B1 (fr)
CN (1) CN1106678C (fr)
CA (1) CA2200510C (fr)
DE (1) DE69716322T2 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999062102A1 (fr) * 1998-05-22 1999-12-02 Koninklijke Philips Electronics N.V. Lampe a vapeur de mercure basse pression

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10529551B2 (en) * 2012-11-26 2020-01-07 Lucidity Lights, Inc. Fast start fluorescent light bulb
US20150357177A1 (en) * 2014-06-04 2015-12-10 General Electric Company Run-up time in amalgam dosed compact fluorescent lamps

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3725302A (en) * 1969-06-17 1973-04-03 Texaco Inc Silanized crystalline alumino-silicate
FR2350681A1 (fr) * 1976-05-05 1977-12-02 Philips Nv Dispositif electrique muni d'un commutateur realise sous forme de tube a decharge
US4157485A (en) * 1975-06-20 1979-06-05 U.S. Philips Corporation Low-pressure mercury vapor discharge lamp with indium-bismuth-mercury amalgam
JPS59101755A (ja) * 1982-12-03 1984-06-12 Toshiba Corp メタルハライドランプ
DE3417626C1 (de) * 1984-05-12 1985-08-22 Degussa Ag, 6000 Frankfurt Leuchtstoffe auf der Basis von mit Mangan aktiviertem Kadmiumborat und Verfahren zu ihrer Herstellung
EP0158782A2 (fr) * 1984-04-14 1985-10-23 Degussa Aktiengesellschaft Matières luminescentes à base de silicate de zinc activé au manganèse et procédé pour leur fabrication
JPS61243646A (ja) * 1985-04-19 1986-10-29 Futaba Corp 螢光表示管
US4632911A (en) * 1982-04-15 1986-12-30 Mobil Oil Corporation Shape-selective photoassisted heterogenous catalyst compositions
EP0327346A2 (fr) * 1988-02-02 1989-08-09 Kabushiki Kaisha Toshiba Amalgame pour utiliser dans une lampe à décharge à mercure à basse pression
EP0372939A1 (fr) * 1988-12-07 1990-06-13 Exxon Research And Engineering Company Procédé de séparation de n-oléfines et n-paraffines à partir de mélanges d'hydrocarbures
JPH05109385A (ja) * 1991-10-11 1993-04-30 Ushio Inc 蛍光ランプ
WO1996002936A1 (fr) * 1994-07-15 1996-02-01 Philips Electronics N.V. Lampe a vapeur de mercure basse pression
WO1996041832A1 (fr) * 1995-06-08 1996-12-27 Brandt M Karl Composition d'agent porogene et procede de fabrication d'un agent porogene

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3548241A (en) * 1968-05-06 1970-12-15 Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh Method of incorporating an amalgam or an amalgam-forming metal in a lowpressure mercury discharge lamp,and lamp produced by such method
DE2510379A1 (de) * 1975-03-10 1976-09-30 Patra Patent Treuhand Quecksilberdampfniederdruckentladungslampe mit amalgam
JPS51132074A (en) * 1975-04-02 1976-11-16 Toshiba Corp Mercury emitting mechanism
NL177163C (nl) * 1976-03-04 1985-08-01 Philips Nv Lagedrukkwikdampontladingslamp.
US4105910A (en) * 1976-04-23 1978-08-08 Westinghouse Electric Corp. Fluorescent lamp with an integral fail-safe and auxiliary-amalgam component
NL8105464A (nl) * 1981-12-04 1983-07-01 Philips Nv Werkwijze voor het vervaardigen van een lagedrukkwikdampontladingslamp.
US5204584A (en) * 1990-09-28 1993-04-20 Toshiba Lighting & Technology Corporation Low pressure mercury vapor discharge lamp

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3725302A (en) * 1969-06-17 1973-04-03 Texaco Inc Silanized crystalline alumino-silicate
US4157485A (en) * 1975-06-20 1979-06-05 U.S. Philips Corporation Low-pressure mercury vapor discharge lamp with indium-bismuth-mercury amalgam
FR2350681A1 (fr) * 1976-05-05 1977-12-02 Philips Nv Dispositif electrique muni d'un commutateur realise sous forme de tube a decharge
US4632911A (en) * 1982-04-15 1986-12-30 Mobil Oil Corporation Shape-selective photoassisted heterogenous catalyst compositions
JPS59101755A (ja) * 1982-12-03 1984-06-12 Toshiba Corp メタルハライドランプ
EP0158782A2 (fr) * 1984-04-14 1985-10-23 Degussa Aktiengesellschaft Matières luminescentes à base de silicate de zinc activé au manganèse et procédé pour leur fabrication
DE3417626C1 (de) * 1984-05-12 1985-08-22 Degussa Ag, 6000 Frankfurt Leuchtstoffe auf der Basis von mit Mangan aktiviertem Kadmiumborat und Verfahren zu ihrer Herstellung
JPS61243646A (ja) * 1985-04-19 1986-10-29 Futaba Corp 螢光表示管
EP0327346A2 (fr) * 1988-02-02 1989-08-09 Kabushiki Kaisha Toshiba Amalgame pour utiliser dans une lampe à décharge à mercure à basse pression
EP0372939A1 (fr) * 1988-12-07 1990-06-13 Exxon Research And Engineering Company Procédé de séparation de n-oléfines et n-paraffines à partir de mélanges d'hydrocarbures
JPH05109385A (ja) * 1991-10-11 1993-04-30 Ushio Inc 蛍光ランプ
WO1996002936A1 (fr) * 1994-07-15 1996-02-01 Philips Electronics N.V. Lampe a vapeur de mercure basse pression
WO1996041832A1 (fr) * 1995-06-08 1996-12-27 Brandt M Karl Composition d'agent porogene et procede de fabrication d'un agent porogene

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 008, no. 217 (E-270), 4 October 1984 & JP 59 101755 A (TOSHIBA KK), 12 June 1984, *
PATENT ABSTRACTS OF JAPAN vol. 011, no. 092 (E-491), 24 March 1987 & JP 61 243646 A (FUTABA CORP), 29 October 1986, *
PATENT ABSTRACTS OF JAPAN vol. 017, no. 460 (E-1419), 23 August 1993 & JP 05 109385 A (USHIO INC), 30 April 1993, *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999062102A1 (fr) * 1998-05-22 1999-12-02 Koninklijke Philips Electronics N.V. Lampe a vapeur de mercure basse pression
US6304030B1 (en) 1998-05-22 2001-10-16 U.S. Philips Corporation Low-pressure mercury vapor discharge lamp

Also Published As

Publication number Publication date
DE69716322D1 (de) 2002-11-21
EP0797239B1 (fr) 2002-10-16
EP0797239A3 (fr) 1997-12-29
CA2200510C (fr) 2006-05-16
JP3902690B2 (ja) 2007-04-11
US5698943A (en) 1997-12-16
DE69716322T2 (de) 2003-03-13
CA2200510A1 (fr) 1997-09-22
CN1106678C (zh) 2003-04-23
KR100444493B1 (ko) 2004-11-06
KR970067531A (ko) 1997-10-13
JPH1027572A (ja) 1998-01-27
CN1165397A (zh) 1997-11-19

Similar Documents

Publication Publication Date Title
JPS6221223B2 (fr)
US4262231A (en) Helical wire coil in solenoidal lamp tip-off region wetted by alloy forming an amalgam with mercury
CA2177108C (fr) Lampe a decharge a vapeur de mercure basse pression
US5801482A (en) Low-pressure mercury vapor discharge lamp
US5698943A (en) Starting flag for use in mercury discharge lamp and lamp employing same
US6049164A (en) Low-pressure mercury lamp with specific electrode screens
US4430537A (en) Getter and electrical switching system using such getter
US4950953A (en) High pressure sodium lamp with sodium amalgam of controlled amount sealed therein
JP3399103B2 (ja) 不飽和蒸気圧形高圧ナトリウムランプ
JP3298319B2 (ja) 不飽和蒸気圧形高圧ナトリウムランプ
US5355052A (en) High pressure discharge lamp with getter
JP2006086129A (ja) 蛍光ランプおよび聡明装置
RU2079183C1 (ru) Газоразрядная лампа высокого давления
JPH11233028A (ja) プラズマディスプレイパネル及びプラズマディスプレイ装置
JPH065255A (ja) 水銀蒸気放電灯
JPH034438A (ja) 高圧ナトリウムランプ及びその製造方法
JP2001283774A (ja) 蛍光ランプ
JPH06260136A (ja) 放電ランプ用電極
JPS6293849A (ja) 低圧水銀蒸気放電灯
JPH0719561B2 (ja) 低圧水銀蒸気放電灯
JPH05283041A (ja) 高圧ナトリウムランプ
JPH1074487A (ja) 放電ランプおよび放電ランプ装置
JP2001283773A (ja) 蛍光ランプ
WO1998044537A1 (fr) Lampe a mercure a basse pression
JPH0434832A (ja) 金属蒸気放電灯

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): BE DE FR GB IT NL

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): BE DE FR GB IT NL

RIN1 Information on inventor provided before grant (corrected)

Inventor name: SHAFFER, JOHN W.

17P Request for examination filed

Effective date: 19980121

17Q First examination report despatched

Effective date: 19991102

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

RTI1 Title (correction)

Free format text: MERCURY DISCHARGE LAMP WITH STARTING FLAG

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE DE FR GB IT NL

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REF Corresponds to:

Ref document number: 69716322

Country of ref document: DE

Date of ref document: 20021121

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20030717

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20060308

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20060314

Year of fee payment: 10

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20071001

BERE Be: lapsed

Owner name: *OSRAM SYLVANIA INC.

Effective date: 20070331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20071001

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20100617 AND 20100623

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20110321

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20110310

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20110330

Year of fee payment: 15

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 69716322

Country of ref document: DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 69716322

Country of ref document: DE

Owner name: OSRAM AG, DE

Free format text: FORMER OWNER: OSRAM GESELLSCHAFT MIT BESCHRAENKTER HAFTUNG, 81543 MUENCHEN, DE

Effective date: 20111130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111001

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20110520

Year of fee payment: 15

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20120307

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20121130

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 69716322

Country of ref document: DE

Effective date: 20121002

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120307

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120402

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120307