EP0797069B1 - Apparatus for scanning a visual field - Google Patents

Apparatus for scanning a visual field Download PDF

Info

Publication number
EP0797069B1
EP0797069B1 EP97103934A EP97103934A EP0797069B1 EP 0797069 B1 EP0797069 B1 EP 0797069B1 EP 97103934 A EP97103934 A EP 97103934A EP 97103934 A EP97103934 A EP 97103934A EP 0797069 B1 EP0797069 B1 EP 0797069B1
Authority
EP
European Patent Office
Prior art keywords
scanning
sensors
imaging beam
laser
beam paths
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP97103934A
Other languages
German (de)
French (fr)
Other versions
EP0797069A2 (en
EP0797069A3 (en
Inventor
Frank Freysoldt
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Diehl BGT Defence GmbH and Co KG
Original Assignee
Diehl BGT Defence GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Diehl BGT Defence GmbH and Co KG filed Critical Diehl BGT Defence GmbH and Co KG
Publication of EP0797069A2 publication Critical patent/EP0797069A2/en
Publication of EP0797069A3 publication Critical patent/EP0797069A3/en
Application granted granted Critical
Publication of EP0797069B1 publication Critical patent/EP0797069B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F41WEAPONS
    • F41GWEAPON SIGHTS; AIMING
    • F41G7/00Direction control systems for self-propelled missiles
    • F41G7/34Direction control systems for self-propelled missiles based on predetermined target position data
    • F41G7/343Direction control systems for self-propelled missiles based on predetermined target position data comparing observed and stored data of target position or of distinctive marks along the path towards the target

Definitions

  • the invention relates to a device for scanning a visual field by means of a Plurality of electromagnetic radiation responsive sensors with imaging optical means through which overlapping areas of the visual field in imaging beam paths on the different sensors and a common optical deflection system (22; 40) for periodic imaging Distraction of all imaging beam paths
  • US-PS-5 332 176 describes an apparatus for detecting an object. To for this purpose, a detector assembly is reciprocated by a motor, that a certain field of view is detected. In this way, the position of the Object detected.
  • U.S. Patent No. 3,822,098 discloses an apparatus for detecting and identifying Objects.
  • a laser beam is detected by means of a scanning mirror on an object to be detected directed and reflected from the object radiation is from a Multispectral sensor detected.
  • the multispectral sensor consists of an optical system and a plurality of detectors disposed behind the optical system.
  • the optical System contains lenses and a Nicols prism.
  • the detectors are filters upstream, whereby the detectors respond to light of different frequencies.
  • an optical scanning system for use in a Laser printer known.
  • the light of a laser passes through an optical system and is noticeable a polygon mirror which reflects the laser beam onto a scanning surface.
  • the scanning is scanned line by line.
  • the Scanning surface is at a predetermined speed perpendicular to the Scanning movement of the laser beam moves.
  • an electric supplied to the laser Signal the shape and size of the laser beam spot can be changed.
  • DE-C-3 615 374 a device for pivotable blasting of Laser energy known.
  • a laser beam from a fixed laser is transmitted through a rotating deflecting mirror emitted in different directions.
  • the deflection mirror is adjusted by several servomotors.
  • the servomotors and the deflection mirror are stored in a radiation-permeable material existing hollow body, so that the laser beam can be directed in any direction. This will be constructive conditional shadowing of the laser beam in individual directions avoided.
  • image drones are often with one on infrared Radiation responsive, image-resolving sensor and an image processing system provided to recognize targets even at night or poor visibility can.
  • the invention has for its object to provide a device which the Scanning of a terrain, by various independent Image beam paths with clear spatial allocation by each Imaging beam path detected areas of the field of view or terrain allowed.
  • Imaging beam paths are by a common deflection in the same Way distracted. This ensures that the different An imaging beam paths associated areas of the visual field or terrain have defined position to each other, usually coincide substantially. It can then be sensitive by different, in different spectral ranges Sensors are observed one and the same point of the terrain. From the Information supplied by the various sensors can provide conclusions be drawn to the nature of an object located at this point. It is also possible, in an imaging beam path to a terrain by means of a laser illuminate, with the laser only one light spot stroking the terrain generated. The light spot illuminated in each case becomes in another Imaging beam path by a responsive to the wavelength of the laser Sensor observed.
  • the common deflection system ensures a clear Assignment of the observed points to each other and also ensures that the sensor always accurately observed the light spot generated by the laser.
  • the transmission power of the Lasers can be kept low.
  • Embodiments of the invention are the subject of the dependent claims.
  • Fig.1 and 2 is an embodiment of a scanning device, for use in a Pictured drone.
  • the first sensor is designated 10.
  • the first Sensor 10 is associated with a first optical imaging system 12.
  • Transverse to the direction of flight seen is next to the first sensor 10 responsive to visible light, second Sensor 14 is arranged.
  • the second sensor 14 is a second optical imaging System 16 assigned. Both the working in the infrared region sensor 10 and the in the visible range working sensor 14 are shown in the Embodiments designed as line detectors, wherein the sensor 14 is an RGB line detector (Red-green-blue) can be.
  • RGB line detector Red-green-blue
  • a laser 18 is arranged as a light source.
  • the laser 18 a third optical system 20 is assigned.
  • the Laser 18, a laser diode array and the laser associated with the optical system 20th contains a cylindrical lens for widening the beam path.
  • a polygon mirror is designated 22.
  • the polygon mirror 22 is one Longitudinal axis 24 rotatably and mounted on a shaft 26.
  • the polygon mirror 22 has 12 pages, one of which is labeled 28.
  • the number of pages of the However, polygon mirror can be arbitrary, generally N. In the illustrated Embodiment illustrate the pages 28 plane mirror surfaces.
  • Fig.1 are the sensors 10 and 14 and the laser 18 and the optical imaging Systems 12, 16 and 20 in a row, so that they partially hidden in the illustration are.
  • the optically imaging systems 12, 16 of the sensors 10 and 14 are shown in FIG a convex lens 30, a concave lens 32, a fixed deflecting mirror 34 and a convex lens 36 shown representatively, wherein the deflection mirror 34 for Reduction of the overall length is used.
  • a pivotable about an axis 42 deflecting mirror is designated 44.
  • the Extension of the polygon mirror 22, the scanning mirror 40 and the deflection mirror 44th in the direction of the longitudinal axis 24 or in the direction transverse to the direction of flight is chosen such that that the radiation assigned to the intended sensors and the intended lasers is detected.
  • the sensors 10 and 14 are responsive to electromagnetic radiation emitted by the under the drone located terrain comes.
  • the ray path of this Electromagnetic radiation is shown in FIGS. 1 and 3 by arrows.
  • the radiation initially falls on the pivotable deflection mirror 44.
  • the deflection mirror 44 directs the Radiation on the polygon mirror 22 ( Figure 1) or on the pivotable mirror 40th (Fig.3). From there, the radiation passes through the optically imaging systems 12 and 16 to the sensors 10 and 14.
  • the laser light emitted by the laser 18 initially extends in the direction of the corner through the optical imaging system 20 then hits the polygon mirror 22 (FIG. or on the Abtastapt 40 ( Figure 3) and is about the deflection mirror 44 to the terrain directed.
  • the laser light serves to illuminate the terrain. This is it necessary that the illuminated area and the fields of view of the sensors 10 and 14th overlap at least partially and are ideally identical.
  • the image excerpts The individual sensors 10 and 14 and the laser 18 initially differ by the spatial distance of the sensors 10 and 14 and the laser 18. This spatial Distances and possible installation and adjustment errors remain after the construction of such Scanning device, however, constant, and therefore can be corrected.
  • the working in the visible range sensor 14 also be used at night, taking in at least one of the three RGB channels is illuminated.
  • the illumination in the red channel above ⁇ 780 nm, since the laser light in this spectral range is not visible to the naked eye is visible.
  • the sampling of the Terrain by rotation of the polygon mirror 22 The size of the scanning angle across the Direction of flight depends on the number of sides 28 of the polygonal ball 22. With For a polygon mirror with N sides, the scan angle is 720 / N. The scan always takes place in one direction only ("forward scan"). If indeed one Area (e.g., 28) of the polygon mirror 22 in the field of view of the sensors 10 and 14 or enters the beam path of the laser 18, the scanning process starts again from a Starting position on.
  • Area e.g., 28
  • the sampling of the terrain takes place by pivoting the scanning mirror 40 in the by a double arrow 46th indicated directions.
  • the size of the scanning angle depends on the direction of flight It depends on the swing amplitude of the scanning mirror 40 and is finally by the Size of the scanning mirror 40 limited. Because the deflecting mirror 40 pivots back and forth Weden, it is possible in this embodiment, the sampling in two Directions ("forward and backward scanning").
  • the deflection mirror 44 By pivoting the deflecting mirror 44 about the axis 42, the field of view of the Scanning device can be changed as desired.
  • the deflection mirror 44 thus serves not scanning the terrain, but sets the area that scanned shall be.
  • the deflection mirror 44 can also be equipped with a controller (not shown) be provided, through which the deflection mirror 44 is pivoted to changes the rollage of the drone (or any other manned or unmanned Aircraft).
  • the scanning takes place exclusively transversely to Flight direction.
  • the scanning of the terrain in the direction of flight is performed by the Forward movement of the image drone itself. This is shown in Figures 4 to 6.
  • the image drone 48 is a scanning device of the type described.
  • Fig.4 the picture drone is shown once in the direction of flight.
  • 5 shows the image drone across the Flight direction.
  • the scanning angle ⁇ transverse to the direction depends, as explained above, from the conditions of the polygon mirror 22 (FIG. 1) or of the scanning mirror 40 (FIG. 3). At a certain altitude then you get a certain scan length B across to Flight direction.
  • the scanning angle ⁇ in the direction of flight depends on the size of the Field of view of the sensors 10 and 14 and the expansion of the beam of the laser 18th from. At a certain altitude, one then obtains a certain scanning depth A in Flight direction.
  • FIG. 6 shows the image drone 48 from above.
  • the Scanning speed must be changed by the joint deflection of the the radiation associated with the sensors and the laser ensures that this change for all sensors and lasers in the same way.
  • the scanning device is described here in connection with a picture drone. It should be noted, however, that the principle of such a sampling system is not limited to Drones or other aircraft is used, but in all other Devices with which a scan is made.
  • the scanner has more than two sensors and more than can contain a laser. Depending on your requirements, sensors for a wide variety of Spectral ranges are used. It can also, for example, multiple lasers be provided, which emits light of different wavelengths. It continues possible to integrate radar systems in the same way.

Description

Die Erfindung betrifft eine Vorrichtung zur Abtastung eines Gesichtsfeldes mittels einer Mehrzahl von auf elektromagnetische Strahlung ansprechender Sensoren mit abbildenden optischen Mitteln, durch welche überlappende Bereiche des Gesichtsfeldes in Abbildungsstrahlengängen auf den verschiedenen Sensoren abbildbar sind, und ein gemeinsames optisches Ablenksystem (22;40) zur periodischen Ablenkung aller AbbildungsstrahlengängeThe invention relates to a device for scanning a visual field by means of a Plurality of electromagnetic radiation responsive sensors with imaging optical means through which overlapping areas of the visual field in imaging beam paths on the different sensors and a common optical deflection system (22; 40) for periodic imaging Distraction of all imaging beam paths

Es ist bekannt, vorgegebene Bereiche bzw. Gesichtsfelder durch Sensoren abzutasten. Die US-PS-5 332 176 beschreibt eine Vorrichtung zum Erfassen von einem Objekt. Zu diesem Zweck wird eine Detektoranordnung durch einen Motor so hin- und herbewegt, daß ein bestimmtes Gesichtsfeld erfaßt wird. In dieser Weise wird die Position des Objekts festgestellt.It is known to scan predetermined areas or fields of view by sensors. US-PS-5 332 176 describes an apparatus for detecting an object. To for this purpose, a detector assembly is reciprocated by a motor, that a certain field of view is detected. In this way, the position of the Object detected.

US-PS-3 822 098 beschreibt eine Vorrichtung zum Erfassen und Identifizieren von Objekten. Ein Laserstrahl wird mittels eines Abtastspiegels auf ein zu erfassendes Objekt gerichtet und die von dem Objekt reflektierte Strahlung wird von einem Multispektralsensor erfaßt. Der Multispektralsensor besteht aus einem optischen System und einer Mehrzahl hinter dem optischen System angeordneter Detektoren. Das optische System enthält Linsen und ein Nicolsches Prisma. Den Detektoren sind Filter vorgeschaltet, wodurch die Detektoren auf Licht unterschiedlicher Frequenz ansprechen. Mit dieser Multispektral-Vorrichtung ist es möglich, nicht nur das an der Oberfläche des Objekts gestreute Licht, sondern auch im Volumen des Objekts gestreutes Licht zu erfassen und so weitere Informationen wie Materialzusammensetzung, Farbe, Dichte etc. über das Objekt zu erhalten.U.S. Patent No. 3,822,098 discloses an apparatus for detecting and identifying Objects. A laser beam is detected by means of a scanning mirror on an object to be detected directed and reflected from the object radiation is from a Multispectral sensor detected. The multispectral sensor consists of an optical system and a plurality of detectors disposed behind the optical system. The optical System contains lenses and a Nicols prism. The detectors are filters upstream, whereby the detectors respond to light of different frequencies. With this multi-spectral device it is possible, not only on the surface of the Object scattered light, but also in the volume of the object scattered light capture more information such as material composition, color, density, etc. to get over the object.

Durch die DE-A1-4 433 705 ist ein optisches Abrastersystem zur Verwendung in einem Laserdrucker bekannt. Das Licht eines Lasers durchläuft ein optisches System und fällt auf einen Polygonspiegel, welcher den Laserstrahl auf eine Abrasterfläche reflektiert. Durch Rotation des Polygonspiegels wird die Abrasterfläche zeilenweise abgetastet. Die Abrasterfläche wird mit vorgegebener Geschwindigkeit rechtwinklig zu der Abtastbewegung des Laserstrahls bewegt. Durch ein dem Laser zugeführtes, elektrisches Signal kann die Form und Größe des Laserstrahlsflecks verändert werden.From DE-A1-4 433 705 an optical scanning system for use in a Laser printer known. The light of a laser passes through an optical system and is noticeable a polygon mirror which reflects the laser beam onto a scanning surface. By Rotation of the polygon mirror, the scanning is scanned line by line. The Scanning surface is at a predetermined speed perpendicular to the Scanning movement of the laser beam moves. By an electric supplied to the laser Signal, the shape and size of the laser beam spot can be changed.

Durch die DE-C-3 615 374 ist eine Einrichtung zum verschwenkbaren Abstrahlen von Laserenergie bekannt. Ein Laserstrahl von einem feststehenden Laser wird durch einen drehbaren Umlenkspiegel in verschiedenen Richtungen ausgestrahlt. Der Umlenkspiegel wird von mehreren Stellmotoren verstellt. Die Stellmotoren und der Umlenkspiegel sind in einem aus strahlungsdurchlässigem Material bestehenden Hohlkörper gelagert, so daß der Laserstrahl in beliebiger Richtung gelenkt werden kann. Dadurch werden konstruktiv bedingte Abschattungen des Laserstrahls in einzelnen Richtungen vermieden.By DE-C-3 615 374 a device for pivotable blasting of Laser energy known. A laser beam from a fixed laser is transmitted through a rotating deflecting mirror emitted in different directions. The deflection mirror is adjusted by several servomotors. The servomotors and the deflection mirror are stored in a radiation-permeable material existing hollow body, so that the laser beam can be directed in any direction. This will be constructive conditional shadowing of the laser beam in individual directions avoided.

In dem Buch von Gordon Walker "Astronomical Observations, An Optical Perspective" Cambridge University Press 1989ISBN 0 521 32587 0 ist ein astronomisches Satelliten-Teleskop mit einer Cassegrain-Optik beschrieben, bei welchem Messungen mit unterschiedlichen Sensoren in verschiedenen Wellenlängenbereichen durchgeführt werden. Das Satelliten-Teleskop kann mit der Orientierung des Satelliten zum Durchmustern des Himmels verschwenkt werden. An dem Satelliten ist ein Horizontsensor mit einer gesonderten Optik angeordnet.In Gordon Walker's book "Astronomical Observations, An Optical Perspective" Cambridge University Press 1989 ISBN 0 521 32587 0 is an astronomical satellite telescope described with a Cassegrain optics, in which measurements with performed different sensors in different wavelength ranges become. The satellite telescope can with the orientation of the satellite to Scanning the sky can be pivoted. At the satellite is a Horizon sensor arranged with a separate optics.

Es ist weiterhin bekannt, zur Luftaufklärung unbemannte Luftfahrzeuge als "Bilddrohnen" einzusetzen. Solche Bilddrohnen sind häufig mit einem auf infrarote Strahlung ansprechenden, bildauflösenden Sensor und einem Bildverarbeitungs-System versehen, um Ziele auch bei Nacht oder schlechten Sichtverhältnissen erkennen zu können.It is also known for aerial reconnaissance unmanned aerial vehicles Use "image drones". Such image drones are often with one on infrared Radiation responsive, image-resolving sensor and an image processing system provided to recognize targets even at night or poor visibility can.

Die Aufgabenstellungen an abtastenden Sensoreinheiten werden immer komplexer. Es besteht oft der Wunsch, möglichst viele Informationen über Objekte oder Geländestrukturen gleichzeitig zu erfassen. Dies gilt insbesondere für Sensoreinheiten in autonom fliegenden Luftfahrzeuge zur Luftaufklärung, wobei in zunehmendem Maße eine hochauflösende, abbildende Mulitmode-Sensorik benötigt wird. Unter hochauflösend versteht man hierbei eine räumliche Auflösung von von 1 bis 10 cm. The tasks on scanning sensor units are becoming increasingly complex. It There is often a desire to get as much information about objects as possible Capture terrain structures simultaneously. This applies in particular to sensor units in autonomously flying aerial reconnaissance aircraft, and increasingly a high-resolution, imaging multi-mode sensor system is needed. Under High-resolution means a spatial resolution of 1 to 10 cm.

Der Erfindung liegt die Aufgabe zugrunde, eine Vorrichtung zu schaffen, welche die Abtastung eines Geländes, durch verschiedene voneinander unabhängige Abbildungsstrahlengänge bei eindeutiger räumlicher Zuordnung der durch jeden Abbildungsstrahlengang erfaßten Bereiche des Gesichtsfeldes oder Geländes gestattet.The invention has for its object to provide a device which the Scanning of a terrain, by various independent Image beam paths with clear spatial allocation by each Imaging beam path detected areas of the field of view or terrain allowed.

Erfindungsgemäß wird diese Aufgabe dadurch gelöst, daß

  • (a) die abbildenden optischen Mittel für jeden der Sensoren ein eigenes optisches System (12,16,20) mit einem getrennten Abbildungsstrahlengang aufweisen und
  • (b) zur Erzeugung einer Abtastbewegung die Abbildungsstrahlengänge nebeneinander über ein gemeinsames optisches Ablenksystem (22;40) zur periodischen Ablenkung aller Abbildungsstrahlengänge geführt sind.
  • According to the invention, this object is achieved in that
  • (A) the imaging optical means for each of the sensors have a separate optical system (12,16,20) with a separate imaging beam path and
  • (b) for generating a scanning movement, the imaging beam paths are guided side by side via a common optical deflection system (22, 40) for the periodic deflection of all imaging beam paths.
  • Nach der Erfindung werden somit mehrere voneinander unabhängige Abtaststrahlengänge durch je ein optisches System erzeugt. Diese Abbildungsstrahlengänge werden durch ein gemeinsames Ablenksystem in gleicher Weise abgelenkt. Dadurch wird sichergestellt, daß die den verschiedenen Abbildungsstrahlengängen zugeordneten Bereiche des Gesichtsfeldes bzw. Geländes eine definierte Lage zueinander besitzen, üblicherweise im wesentlichen zusammenfallen. Es kann dann durch verschiedene, in unterschiedlichen Spektralbereichen empfindliche Sensoren jeweils ein und dieselbe Stelle des Geländes beobachtet werden. Aus den Informationen, die von den verschiedenen Sensoren geliefert werden, können Schlüsse auf die Natur eines an dieser Stelle befindlichen Objektes gezogen werden. Es ist auch möglich, in einem Abbildungsstrahlengang ein Gelände mittels eines Lasers zu beleuchten, wobei der Laser jeweils nur einen über das Gelände streichenden Lichtfleck erzeugt. Der jeweils beleuchtete Lichtfleck wird in einem anderen Abbildungsstrahlengang durch einen auf die Wellenlänge des Lasers ansprechenden Sensor beobachtet. Das gemeinsame Ablenksystem gewährleistet eine eindeutige Zuordnung der beobachteten Stellen zueinander und stellt auch sicher, daß der Sensor stets genau den von dem Laser erzeugten Lichtfleck beobachtet. Die Sendeleistung des Lasers kann dabei gering gehalten werden.According to the invention thus several independent Scanned beam paths generated by a respective optical system. These Imaging beam paths are by a common deflection in the same Way distracted. This ensures that the different An imaging beam paths associated areas of the visual field or terrain have defined position to each other, usually coincide substantially. It can then be sensitive by different, in different spectral ranges Sensors are observed one and the same point of the terrain. From the Information supplied by the various sensors can provide conclusions be drawn to the nature of an object located at this point. It is also possible, in an imaging beam path to a terrain by means of a laser illuminate, with the laser only one light spot stroking the terrain generated. The light spot illuminated in each case becomes in another Imaging beam path by a responsive to the wavelength of the laser Sensor observed. The common deflection system ensures a clear Assignment of the observed points to each other and also ensures that the sensor always accurately observed the light spot generated by the laser. The transmission power of the Lasers can be kept low.

    Ausgestaltungen der Erfindung sind Gegenstand der Unteransprüche.Embodiments of the invention are the subject of the dependent claims.

    Ausführungsbeispiele der Erfindung sind nachstehend unter Bezugnahme auf die zugehörigen Zeichnungen näher erläutert.Embodiments of the invention are described below with reference to FIGS associated drawings explained.

    Kurze Beschreibung der ZeichnungenBrief description of the drawings

    Fig.1Fig.1
    ist eine schematische Darstellung und zeigt ein ersten Ausführungsbeispiels einer in eine Bilddrohne eingebauten Vorrichtung zum Abtasten eines Gesichtsfeldes durch mehrere Abbildungsstrahlengänge, und zwar in Flugrichtung der Bilddrohne gesehen.is a schematic representation and shows a first embodiment a built-in image drone device for scanning a Field of view through several imaging beam paths, in Flight direction of the drone seen.
    Fig.2Fig.2
    zeigt die erfindungswesentlichen Teile der Vorrichtung von Fig.1 quer zur Flugrichtung gesehen.shows the invention essential parts of the device of Figure 1 transverse to Seen direction of flight.
    Fig.3Figure 3
    ist eine schematische Darstellung ähnlich Fig.1 und zeigt die erfindungswesentlichen Teile eines zweiten Ausführungsbeispiels einer solchen Abtastvorrichtung. is a schematic representation similar to Figure 1 and shows the Essential to the invention parts of a second embodiment of a such scanning device.
    Fig.4Figure 4
    ist eine schematische Darstellung und zeigt eine in Flugrichtung der Bilddrohne gesehen die Möglichkeit des Abtastens eines Geländes mittels einer in die Bilddrohne eingebauten Abtastvorrichtung.is a schematic representation and shows an in the direction of the Image drone saw the possibility of scanning a terrain by means of a built in the image drone scanning device.
    Fig.5Figure 5
    zeigt schematisch die Abtastung des Geländes durch die Abtastvorrichtung quer zur Flugrichtung der Bilddrohne gesehen.schematically shows the scanning of the terrain by the scanning device Seen transversely to the direction of flight of the drone.
    Fig.6Figure 6
    ist eine Draufsicht auf die Bilddrohne und veranschaulicht die Lage der durch die Abtastvorrichtung abgetasteten Geländestreifen.is a top view of the drone and illustrates the location of the scanned terrain scans by the scanning device.
    Fig.7Figure 7
    veranschaulicht die Abtastung eines Geländestreifens mittels eines als Zeilendetektor ausgebildeten Sensors.illustrates the scanning of a terrain strip by means of a Row detector trained sensor.
    Bevorzugte Ausführung der ErfindungPreferred embodiment of the invention

    In Fig.1 und 2 ist eine Ausführung einer Abtastvorrichtung, zum Einsatz in einer Bilddrohne dargestellt.In Fig.1 and 2 is an embodiment of a scanning device, for use in a Pictured drone.

    Ein auf infrarotes Licht ansprechender, erster Sensor ist mit 10 bezeichnet. Dem ersten Sensor 10 ist ein erstes optisch abbildendes System 12 zugeordnet. Quer zur Flugrichtung gesehen ist neben dem ersten Sensor 10 ein auf sichtbares Licht ansprechender, zweiter Sensor 14 angeordnet. Dem zweiten Sensor 14 ist ein zweites optisch abbildendes System 16 zugeordnet. Sowohl der im Infrarot-Bereich arbeitende Sensor 10 als auch der im sichtbaren Bereich arbeitende Sensor 14 sind in den dargestellten Ausführungsbeispielen als Zeilendetektoren ausgebildet, wobei der Sensor 14 ein RGB-Zeilendetektor (Rot-Grün-Blau) sein kann.A responsive to infrared light, the first sensor is designated 10. The first Sensor 10 is associated with a first optical imaging system 12. Transverse to the direction of flight seen is next to the first sensor 10 responsive to visible light, second Sensor 14 is arranged. The second sensor 14 is a second optical imaging System 16 assigned. Both the working in the infrared region sensor 10 and the in the visible range working sensor 14 are shown in the Embodiments designed as line detectors, wherein the sensor 14 is an RGB line detector (Red-green-blue) can be.

    Neben den Sensoren 10 und 14 ist ein Laser 18 als Lichtquelle angeordnet. Dem Laser 18 ist ein drittes optisches System 20 zugeordnet. In den Ausführungsbeispielen ist der Laser 18 ein Laserdiodenarray und das dem Laser zugeordnete, optische System 20 enthält eine Zylinderlinse zur Aufweitung des Strahlengangs. In addition to the sensors 10 and 14, a laser 18 is arranged as a light source. The laser 18 a third optical system 20 is assigned. In the embodiments, the Laser 18, a laser diode array and the laser associated with the optical system 20th contains a cylindrical lens for widening the beam path.

    In Fig.1 ist ein Polygonspiegel mit 22 bezeichnet. Der Polygonspiegel 22 ist um eine Längsachse 24 drehbar und auf einer Welle 26 gelagert. Der Polygonspiegel 22 besitzt 12 Seiten, von welchen eine mit 28 bezeichnet ist. Die Anzahl der Seiten des Polygonspiegels kann jedoch beliebig sein, allgemein N. In dem dargestellten Ausführungsbeispiel stellen die Seiten 28 plane Spiegelflächen dar.1, a polygon mirror is designated 22. The polygon mirror 22 is one Longitudinal axis 24 rotatably and mounted on a shaft 26. The polygon mirror 22 has 12 pages, one of which is labeled 28. The number of pages of the However, polygon mirror can be arbitrary, generally N. In the illustrated Embodiment illustrate the pages 28 plane mirror surfaces.

    In Fig.1 liegen die Sensoren 10 und 14 und der Laser 18 sowie die optisch abbildenden Systeme 12, 16 und 20 hintereinander, so daß sie in der Darstellung teilweise verdeckt sind. Die optisch abbildenden Systeme 12, 16 der Sensoren 10 bzw. 14 sind in Fig.1 durch eine Konvexlinse 30, eine Konkavlinse 32, einen feststehenden Umlenkspiegel 34 und eine Konvexlinse 36 representativ dargestellt, wobei der Umlenkspiegel 34 zur Reduzierung der Baulänge dient.In Fig.1 are the sensors 10 and 14 and the laser 18 and the optical imaging Systems 12, 16 and 20 in a row, so that they partially hidden in the illustration are. The optically imaging systems 12, 16 of the sensors 10 and 14 are shown in FIG a convex lens 30, a concave lens 32, a fixed deflecting mirror 34 and a convex lens 36 shown representatively, wherein the deflection mirror 34 for Reduction of the overall length is used.

    In Fig.3 ist ein auf einer Welle 38 gelagerter, schwenkbarer Abtastspiegel mit 40 bezeichnet. Wie später noch beschrieben wird, entspricht die Funktion des Abtastspiegels 40 der Funktion des Polygonspiegels 22 in Fig.1.In Figure 3 is mounted on a shaft 38, pivotable scanning mirror with 40th designated. As will be described later, the function of the scanning mirror 40 of the function of the polygon mirror 22 in Fig.1.

    Ein um eine Achse 42 schwenkbaren Umlenkspiegel ist mit 44 bezeichnet. Die Ausdehnung des Polygonspiegels 22, des Abtastspiegels 40 und des Umlenkspiegels 44 in Richtung der Längsachse 24 bzw. in Richtung quer zur Flugrichtung ist so gewählt, daß die den vorgesehenen Sensoren und den vorgesehenen Lasern zugeordnete Strahlung erfaßt wird.A pivotable about an axis 42 deflecting mirror is designated 44. The Extension of the polygon mirror 22, the scanning mirror 40 and the deflection mirror 44th in the direction of the longitudinal axis 24 or in the direction transverse to the direction of flight is chosen such that that the radiation assigned to the intended sensors and the intended lasers is detected.

    Die Sensoren 10 und 14 sprechen auf elektromagnetische Strahlung an, welche von dem unter der Bilddrohne befindlichen Gelände stammt. Der Strahlengang dieser elektromagnetischen Strahlung ist in Fig.1 und 3 durch Pfeile dargestellt. Die Strahlung fällt zunächst auf dem schwenkbaren Umlenkspiegel 44. Der Umlenkspiegel 44 lenkt die Strahlung auf den Polygonspiegel 22 (Fig.1) bzw. auf den schwenkbaren Spiegel 40 (Fig.3). Von dort gelangt die Strahlung durch die optisch abbildenden Systeme 12 und 16 zu den Sensoren 10 und 14.The sensors 10 and 14 are responsive to electromagnetic radiation emitted by the under the drone located terrain comes. The ray path of this Electromagnetic radiation is shown in FIGS. 1 and 3 by arrows. The radiation initially falls on the pivotable deflection mirror 44. The deflection mirror 44 directs the Radiation on the polygon mirror 22 (Figure 1) or on the pivotable mirror 40th (Fig.3). From there, the radiation passes through the optically imaging systems 12 and 16 to the sensors 10 and 14.

    Das von dem Laser 18 ausgestrahlte Laserlicht verläuft in umgekerter Richtung zunächst durch das optisch abbildenden System 20, trifft dann auf den Polygonspiegel 22 (Fig.1) bzw. auf den Abtastspiegel 40 (Fig.3) und wird über den Umlenkspiegel 44 zum Gelände geleitet. Dabei dient das Laserlicht zur Beleuchtung des Geländes. Hierfür ist es notwendig, daß die beleuchtete Fläche und die Gesichtsfelder der Sensoren 10 und 14 sich zumindest teilweise überlappen und im Idealfall identisch sind. Die Bildausschnitte der einzelnen Sensoren 10 und 14 und des Lasers 18 differieren zunächst um den räumlichen Abstand der Sensoren 10 und 14 und des Lasers 18. Diese räumlichen Abstände sowie mögliche Einbau- und Justagefehler bleiben nach dem Bau einer solchen Abtastvorrichtung jedoch konstant, und können daher korrigiert werden.The laser light emitted by the laser 18 initially extends in the direction of the corner through the optical imaging system 20 then hits the polygon mirror 22 (FIG. or on the Abtastspiegel 40 (Figure 3) and is about the deflection mirror 44 to the terrain directed. The laser light serves to illuminate the terrain. This is it necessary that the illuminated area and the fields of view of the sensors 10 and 14th overlap at least partially and are ideally identical. The image excerpts The individual sensors 10 and 14 and the laser 18 initially differ by the spatial distance of the sensors 10 and 14 and the laser 18. This spatial Distances and possible installation and adjustment errors remain after the construction of such Scanning device, however, constant, and therefore can be corrected.

    Durch Einsatz des Lasers 20 kann der im sichtbaren Bereich arbeitende Sensor 14 auch bei Nacht verwendet werden, wobei in mindestens einem der drei RGB-Kanäle beleuchtet wird. Vorteilhafterweise kann die Beleuchtung im Rot-Kanal oberhalb von λ = 780 nm erfolgen, da das Laserlicht in diesem Spektralbereich mit bloßem Auge nicht sichtbar ist.By using the laser 20, the working in the visible range sensor 14 also be used at night, taking in at least one of the three RGB channels is illuminated. Advantageously, the illumination in the red channel above λ = 780 nm, since the laser light in this spectral range is not visible to the naked eye is visible.

    In dem in Fig.1 und 2 dargestellten Ausführungsbeispiel erfolgt die Abtastung des Geländes durch Rotation des Polygonspiegels 22. Die Größe des Abtastwinkels quer zur Flugrichtung hängt dabei von der Anzahl der Seiten 28 des Polygonspielgels 22 ab. Mit einem Polygonspiegel mit N Seiten ist der Abtastwinkel dabei 720/N. Die Abtastung erfolgt dabei immer nur in einer Richtung ("Vorwärtsabtastung"). Wenn nämlich eine Fläche (z.B. 28) des Polygonspiegels 22 in dem Gesichtsfeld der Sensoren 10 und 14 bzw. in dem Strahlengang des Lasers 18 eintritt, fängt der Abtastvorgang erneut aus einer Ausgangsposition an.In the embodiment shown in Figures 1 and 2, the sampling of the Terrain by rotation of the polygon mirror 22. The size of the scanning angle across the Direction of flight depends on the number of sides 28 of the polygonal ball 22. With For a polygon mirror with N sides, the scan angle is 720 / N. The scan always takes place in one direction only ("forward scan"). If indeed one Area (e.g., 28) of the polygon mirror 22 in the field of view of the sensors 10 and 14 or enters the beam path of the laser 18, the scanning process starts again from a Starting position on.

    In dem in Fig.3 dargestellten Ausführungsbeispiel erfolgt die Abtastung des Geländes durch Verschwenkung des Abtastspiegels 40 in den durch einen Doppelpfeil 46 angegebenen Richtungen. Die Größe des Abtastwinkels quer zur Flugrichtung hängt dabei von der Schwenkamplitude des Abtastspiegels 40 ab und ist schließlich durch die Größe des Abtastspiegels 40 begrenzt. Da der Ablenkspiegel 40 hin- und herverschwenkt weden kann, ist es in diesem Ausführungsbeispiel möglich, die Abtastung in zwei Richtungen vorzunehmen ("Vor- und Rückabtastung"). In the embodiment shown in Figure 3, the sampling of the terrain takes place by pivoting the scanning mirror 40 in the by a double arrow 46th indicated directions. The size of the scanning angle depends on the direction of flight It depends on the swing amplitude of the scanning mirror 40 and is finally by the Size of the scanning mirror 40 limited. Because the deflecting mirror 40 pivots back and forth Weden, it is possible in this embodiment, the sampling in two Directions ("forward and backward scanning").

    Durch Verschwenken des Umlenkspiegels 44 um die Achse 42 kann das Gesichtsfeld der Abtastvorrichtung je nach Wunsch verändert werden. Der Umlenkspiegel 44 dient also nicht der Abtastung des Geländes, sondern legt den Bereich fest, welcher abgetastet werden soll. Der Umlenkspiegel 44 kann auch mit einer (nicht dargestellten) Steuerung versehen werden, durch welche der Umlenkspiegel 44 verschwenkt wird, um Änderungen der Rollage der Bilddrohne (oder eines sonstigen bemannten oder unbemannten Luftfahrzeuges) auszugleichen.By pivoting the deflecting mirror 44 about the axis 42, the field of view of the Scanning device can be changed as desired. The deflection mirror 44 thus serves not scanning the terrain, but sets the area that scanned shall be. The deflection mirror 44 can also be equipped with a controller (not shown) be provided, through which the deflection mirror 44 is pivoted to changes the rollage of the drone (or any other manned or unmanned Aircraft).

    Durch die beschriebene Ablenksysteme erfolgt die Abtastung ausschließlich quer zur Flugrichtung. Die Abtastung des Geländes in Flugrichtung erfolgt durch die Vorwärtsbewegung der Bilddrohne selbst. Dies ist in den Figuren 4 bis 6 dargestellt. In der Bilddrohne 48 befindet sich eine Abtastvorrichtung der beschriebenen Art. In Fig.4 ist die Bilddrohne einmal in Flugrichtung dargestellt. Fig.5 zeigt die Bilddrohne quer zur Flugrichtung. Der Abtastwinkel α quer zur Flugrichtung hängt, wie oben erläutert, von den Gegebenheiten des Polygonspiegels 22 (Fig. 1) bzw. des Abtastspiegels 40 (Fig.3) ab. Bei einer bestimmten Flughöhe erhält man dann eine bestimmte Abtastlänge B quer zur Flugrichtung. Der Abtastwinkel β in Flugrichtung hängt von der Größe des Gesichtsfeldes der Sensoren 10 und 14 bzw. der Aufweitung des Strahls des Lasers 18 ab. Bei einer bestimmten Flughöhe erhält man dann eine bestimmte Abtasttiefe A in Flugrichtung.By means of the deflection systems described, the scanning takes place exclusively transversely to Flight direction. The scanning of the terrain in the direction of flight is performed by the Forward movement of the image drone itself. This is shown in Figures 4 to 6. In The image drone 48 is a scanning device of the type described. In Fig.4 the picture drone is shown once in the direction of flight. 5 shows the image drone across the Flight direction. The scanning angle α transverse to the direction depends, as explained above, from the conditions of the polygon mirror 22 (FIG. 1) or of the scanning mirror 40 (FIG. 3). At a certain altitude then you get a certain scan length B across to Flight direction. The scanning angle β in the direction of flight depends on the size of the Field of view of the sensors 10 and 14 and the expansion of the beam of the laser 18th from. At a certain altitude, one then obtains a certain scanning depth A in Flight direction.

    In Fig.6 ist die Bilddrohne 48 von oben dargestellt. Man erkennt die durch die Abtastwinkel α und β sowie die Flughöhe bestimmte Abtastmuster des Geländes. Um eine optimale Abtastung eines Geländes zu erhalten, wird für das Abtastverfahren der Zusammenhang zwischen den Flugparametern Höhe und Geschwindigkeit und den Sensorparametern Gesichtsfeld, Auflösung, Brennweite und Bildrate ermittelt. Dies liegt im Rahmen des Könnens eines Fachmanns und wird hier nicht näher beschrieben. Es ist dann möglich, daß Gelände nahezu nahtlos abzutasten, wie es in Fig.6 angedeutet ist.FIG. 6 shows the image drone 48 from above. One recognizes the by the Sense angle α and β as well as the flight altitude certain scanning patterns of the terrain. Around To obtain an optimal scan of a terrain, is for the sampling of the Relationship between the flight parameters altitude and speed and the Sensor parameters field of view, resolution, focal length and frame rate determined. This is within the skill of a person skilled in the art and will not be described here. It is then possible to scan the terrain almost seamlessly, as indicated in FIG.

    Wenn infolge einer Geschwindigkeitsänderung der Bilddrohne die Abtastgeschwindigkeit verändert werden muß, ist durch die gemeinsame Ablenkung der den Sensoren und dem Laser zugeordenten Strahlung sichergestellt, daß diese Änderung für alle Sensoren und Laser in gleicher Weise erfolgt. If due to a change in speed of the image drone the Scanning speed must be changed by the joint deflection of the the radiation associated with the sensors and the laser ensures that this change for all sensors and lasers in the same way.

    Die Abtastvorrichtung ist hier im Zusammenhang mit einer Bilddrohne beschrieben. Es sei jedoch bemerkt, daß das Prinzip eines solchen Abtastsystems nicht nur in Bilddrohnen oder sonstigen Luftfahrzeugen Verwendung findet, sondern in allen sonstigen Vorrichtungen, mit welchen eine Abtastung vorgenommen wird.The scanning device is described here in connection with a picture drone. It It should be noted, however, that the principle of such a sampling system is not limited to Drones or other aircraft is used, but in all other Devices with which a scan is made.

    Weiterhin sei bemerkt, daß die Abtastvorrichtung mehr als zwei Sensoren und mehr als einen Laser enthalten kann. Je nach Wunsch können Sensoren für die unterschiedlichsten Spektralbereiche eingesetzt werden. Es können auch beispielsweise mehrere Laser vorgesehen sein, welche Licht verschiedener Wellenlänge aussendet. Weiterhin ist es möglich, Radarsysteme in der gleichen Weise zu integrieren.It should also be noted that the scanner has more than two sensors and more than can contain a laser. Depending on your requirements, sensors for a wide variety of Spectral ranges are used. It can also, for example, multiple lasers be provided, which emits light of different wavelengths. It continues possible to integrate radar systems in the same way.

    Claims (11)

    1. A device for scanning a field of view by means of a plurality of sensors, which respond to electromagnetic radiation, with image-forming optical means, by which overlapping areas of the field of view can be imaged in imaging beam paths on the various sensors; and a shared optical deflection system (22; 40) for the periodic deflection of all the imaging beam paths
      characterized in that
      (a) the image-forming optical means for each of the sensors have their own optical system (12,16,20) with a separate imaging beam path and
      (b) for generating a scanning motion, the imaging beam paths are guided side by side via a shared optical deflection system (22;40) for the periodic deflection of all the imaging beam paths.
    2. A device according to Claim 1, characterized in that the sensors (10,14) are sensitive in different spectral regions.
    3. A device according to Claim 2, characterized in that
      (a) in at least one of the imaging beam paths, an area of the field of view to be scanned can be illuminated by means of a light source (18) at the device end and
      (b) in another imaging beam path through the optical system (16), at least one part of the area thus illuminated can be imaged on a sensor (14) which is sensitive to the radiation of the light source (18).
    4. A device according to one of Claims 1 to 3, characterized in that the deflection system includes a swivelling scanning mirror (40).
    5. A device according to one of Claims 1 to 3, characterized in that the deflection system includes a rotating polygonal mirror (22).
    6. A device according to one of Claims 1 to 5, characterized in that at least one of the sensors (10) responds to infrared radiation.
    7. A device according to one of Claims 1 to 6, characterized in that at least one of the sensors (14) responds to visible light.
    8. A device according to Claim 3, characterized in that
      (a) the light source is a laser (18) and
      (b) the sensor (10 or 14) responds to light of the wavelength range of the laser light.
    9. A device according to Claim 8, characterized in that the laser (18) emits infrared light.
    10. A device according to one of Claims 1 to 9, characterized by a deflecting mirror (44) for influencing the area to be scanned by the deflection system (22;40).
    11. A device according to one of Claims 1 to 10, characterized in that
      (a) the device is disposed in an aircraft (48) and
      (b) the deflection system (22;40) deflects the imaging beam paths only in directions perpendicular to the direction of flight of the aircraft (48).
    EP97103934A 1996-03-23 1997-03-10 Apparatus for scanning a visual field Expired - Lifetime EP0797069B1 (en)

    Applications Claiming Priority (2)

    Application Number Priority Date Filing Date Title
    DE19611609 1996-03-23
    DE19611609A DE19611609A1 (en) 1996-03-23 1996-03-23 Device for scanning a visual field

    Publications (3)

    Publication Number Publication Date
    EP0797069A2 EP0797069A2 (en) 1997-09-24
    EP0797069A3 EP0797069A3 (en) 1999-12-29
    EP0797069B1 true EP0797069B1 (en) 2005-06-08

    Family

    ID=7789258

    Family Applications (1)

    Application Number Title Priority Date Filing Date
    EP97103934A Expired - Lifetime EP0797069B1 (en) 1996-03-23 1997-03-10 Apparatus for scanning a visual field

    Country Status (2)

    Country Link
    EP (1) EP0797069B1 (en)
    DE (2) DE19611609A1 (en)

    Families Citing this family (2)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    CN104020474B (en) * 2014-05-06 2016-08-24 南京大学 A kind of laser three-dimensional imaging optical transmitting and receiving system
    DE102015105560A1 (en) * 2015-04-13 2016-10-13 Hamburg Innovation Gmbh Sensor device with optoelectronic sensor and measuring range extension

    Family Cites Families (3)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    US3822098A (en) * 1973-05-02 1974-07-02 Mc Donnell Douglas Corp Multispectral sensor means measuring depolarized radiation
    FR2536851B1 (en) * 1982-11-30 1985-06-14 Aerospatiale RECOGNITION SYSTEM COMPRISING AN AIR VEHICLE TURNING AROUND ITS LONGITUDINAL AXIS
    DE3570529D1 (en) * 1984-03-05 1989-06-29 Siemens Ag Optical system for the simultaneous reception of thermal and laser radiation

    Non-Patent Citations (1)

    * Cited by examiner, † Cited by third party
    Title
    WALKER; GORDON: "Astronomical Observations", 1987, CAMBRIDGE UNIVERSITY PRESS, CAMBRIDGE, NY, USA *

    Also Published As

    Publication number Publication date
    EP0797069A2 (en) 1997-09-24
    EP0797069A3 (en) 1999-12-29
    DE19611609A1 (en) 1997-09-25
    DE59712336D1 (en) 2005-07-14

    Similar Documents

    Publication Publication Date Title
    EP3350615B1 (en) Lidar sensor
    EP0578129B1 (en) Imaging sensor unit
    EP2533003B1 (en) Optical device for guiding radiation of an object scene to a detector
    EP1022600B1 (en) Stabilized camera
    DE102004014041B4 (en) Air and ground vehicle obstruction detection system has multiple channel range measurement system in rotating head with colour and contrast measurement
    EP2202533A1 (en) Logging device
    DE69732878T2 (en) Image sensor with multiple field of view, which uses only reflective optics
    EP3182153B1 (en) Optoelectronic sensor and method for detecting an object
    CH700023B1 (en) Scanning device.
    DE2544975A1 (en) FIRE CONTROL SYSTEM
    EP3640667B1 (en) Optoelectronic sensor and method for detecting objects
    EP2761343B1 (en) Tracking device for a light beam
    DE69727060T2 (en) OBSERVATION AND TARGET SYSTEM
    DE3007893C2 (en) Thermal imaging device
    DE10146692A1 (en) Hybrid distance image sensor uses rotation of polygonal deflection rod for simultaneous deflection of transmission and reception surfaces for electromagnetic waves
    CH697595B1 (en) Device for recording an object space.
    EP1248120B1 (en) Dual mode seeker
    DE3614159C2 (en)
    DE2800473C2 (en) Optical scanning device
    EP0797069B1 (en) Apparatus for scanning a visual field
    EP2354806A1 (en) Optoelectronic sensor
    DE102019125684B4 (en) Photoelectric sensor and method for detecting objects
    DE3812174A1 (en) Combat vehicle dual viewing system
    DE202011052106U1 (en) Distance measuring optoelectronic sensor
    EP0533036B1 (en) Seeker

    Legal Events

    Date Code Title Description
    PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

    Free format text: ORIGINAL CODE: 0009012

    AK Designated contracting states

    Kind code of ref document: A2

    Designated state(s): DE FR GB SE

    PUAL Search report despatched

    Free format text: ORIGINAL CODE: 0009013

    AK Designated contracting states

    Kind code of ref document: A3

    Designated state(s): DE FR GB SE

    17P Request for examination filed

    Effective date: 19991125

    17Q First examination report despatched

    Effective date: 20020507

    GRAP Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOSNIGR1

    GRAS Grant fee paid

    Free format text: ORIGINAL CODE: EPIDOSNIGR3

    RAP1 Party data changed (applicant data changed or rights of an application transferred)

    Owner name: DIEHL BGT DEFENCE GMBH & CO.KG

    GRAA (expected) grant

    Free format text: ORIGINAL CODE: 0009210

    AK Designated contracting states

    Kind code of ref document: B1

    Designated state(s): DE FR GB SE

    REG Reference to a national code

    Ref country code: GB

    Ref legal event code: FG4D

    Free format text: NOT ENGLISH

    REF Corresponds to:

    Ref document number: 59712336

    Country of ref document: DE

    Date of ref document: 20050714

    Kind code of ref document: P

    REG Reference to a national code

    Ref country code: SE

    Ref legal event code: TRGR

    GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

    Effective date: 20050919

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: GB

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20060310

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: SE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20060311

    ET Fr: translation filed
    PLBE No opposition filed within time limit

    Free format text: ORIGINAL CODE: 0009261

    STAA Information on the status of an ep patent application or granted ep patent

    Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: DE

    Payment date: 20060516

    Year of fee payment: 10

    26N No opposition filed

    Effective date: 20060309

    EUG Se: european patent has lapsed
    GBPC Gb: european patent ceased through non-payment of renewal fee

    Effective date: 20060310

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: ST

    Effective date: 20061130

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: FR

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20060331

    Ref country code: DE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20071002