EP0796158B1 - Method and device for the optimized production of helical springs on automatic spring-winding machines - Google Patents

Method and device for the optimized production of helical springs on automatic spring-winding machines Download PDF

Info

Publication number
EP0796158B1
EP0796158B1 EP95942014A EP95942014A EP0796158B1 EP 0796158 B1 EP0796158 B1 EP 0796158B1 EP 95942014 A EP95942014 A EP 95942014A EP 95942014 A EP95942014 A EP 95942014A EP 0796158 B1 EP0796158 B1 EP 0796158B1
Authority
EP
European Patent Office
Prior art keywords
wire
spring
diameter
uncoiling
loop
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP95942014A
Other languages
German (de)
French (fr)
Other versions
EP0796158A1 (en
Inventor
Uwe Otzen
Hans-Jürgen Schorcht
Mathias Weiss
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wafios Maschinenfabrik Wagner Ficker and Schmid
Wafios Maschinenfabrik GmbH and Co KG
Original Assignee
Wafios Maschinenfabrik Wagner Ficker and Schmid
Wafios Maschinenfabrik GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE19944443503 external-priority patent/DE4443503A1/en
Priority claimed from DE1995114486 external-priority patent/DE19514486A1/en
Application filed by Wafios Maschinenfabrik Wagner Ficker and Schmid, Wafios Maschinenfabrik GmbH and Co KG filed Critical Wafios Maschinenfabrik Wagner Ficker and Schmid
Publication of EP0796158A1 publication Critical patent/EP0796158A1/en
Application granted granted Critical
Publication of EP0796158B1 publication Critical patent/EP0796158B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21FWORKING OR PROCESSING OF METAL WIRE
    • B21F23/00Feeding wire in wire-working machines or apparatus
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C47/00Winding-up, coiling or winding-off metal wire, metal band or other flexible metal material characterised by features relevant to metal processing only
    • B21C47/16Unwinding or uncoiling
    • B21C47/18Unwinding or uncoiling from reels or drums
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21FWORKING OR PROCESSING OF METAL WIRE
    • B21F3/00Coiling wire into particular forms
    • B21F3/02Coiling wire into particular forms helically
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H51/00Forwarding filamentary material
    • B65H51/20Devices for temporarily storing filamentary material during forwarding, e.g. for buffer storage

Definitions

  • the invention relates to a method and a device for continuous checking and correction Error occurring with spring wires for the optimized production of coil springs Automatic spring coiling, taking a wire from one Unwinder in which a spool or a Coil is stored, unwound and by means of a separate feeding device of a forming device, which contains wind pins or rolls becomes.
  • Coil springs are used on the industrial side Users increasingly demanding accuracy requirements in terms of adherence to the constructive specified spring characteristics, especially the spring characteristic, posed.
  • the reasons for this are special the increasing demands on machines and devices, in which coil springs are used, as well as the growing level of automation in the Manufacture of machinery and equipment with a tendency to that only tightly tolerated components are processed can be.
  • the spring wire as the starting material is subject material-related, geometric and processing technology Fluctuations. You express yourself in deviations of the wire diameter, the strength values or material characteristics from their nominal values and in twists due to elastic Torsional stresses. There are also deviations an authoritative role arising from your plastic-elastic deformation behavior of the Spring wire result and mostly in upstream Manufacturing stages have their cause.
  • the fluctuations mentioned cause considerable deviations of the parameters of the cold-formed coil spring from the design-determined data, the effects of which can be determined in deviations of the spring characteristic from the target characteristic.
  • the fluctuating thickness of the wire diameter causes changes in the inclination of the spring characteristic, that is to say fluctuations in the spring rate, and different elastic torsional stresses in the wire coil cause length fluctuations in the spring produced and thereby parallel displacements of the spring characteristic.
  • rejects are inevitable in the manufacture of springs, the proportion of which can be considerable in the case of springs with small dimensions and high accuracy requirements. Since this committee can usually only be determined on the finished spring, there are considerable economic losses. In addition, the necessary additional expenses for materials and energy lead to additional environmental pollution.
  • the state of the art includes machines for spring production, the via feed rollers, mechanical or electrically controlled wind pins or rollers, Incline and form tools are known. Their development was primarily based on it directed to achieve the highest possible number of pieces and with reasonable effort also the conversion to Manufacture of springs with different dimensions and ensure shapes.
  • Machines with a monitoring and quality assurance system are also known in the prior art, where the spring length is mechanical, optical, capacitive or measured by changing the induction or is checked.
  • Systems are also known which can be used with the help of these measuring and testing options recognize and sort out as well as independent corrections at the control of the automatic spring coiler. This is usually done on the basis of methods for statistical process control. Other realized variants deliver existing ones Deviations in the manufactured springs via dialog systems corresponding error messages to the operator, which then corrected into the controller must intervene. Systems are also known which after a corresponding number of immediately successively manufactured committee springs the manufacturing process interrupt.
  • JP 55-153 633 an arrangement is known where the twist in a steel cable when unwinding from a spool by controlled rotation of the Unwinder should be prevented.
  • the rotation the unwind spool is used by a sensor detected the rotational movement of a fixed Roller, over which the rope is guided, controls.
  • This arrangement is for identification and Influencing of embossed in a rigid wire Torsional stresses not applicable.
  • DE 35 38 944 describes a machine for producing coil springs by winding, with which springs with a continuously variable pitch can be produced. Thereafter, it is provided that the spring manufacturing machine contains an electronic control circuit.
  • a data storage unit stores preselected data indicating spring parameters, such as pitch, length and diameter.
  • the corresponding preselected parameter of the spring is monitored and a signal indicating the monitored parameter is generated.
  • the electronically stored data and the monitoring signal are compared with one another.
  • the spring production can be changed in accordance with this comparison for the purpose of producing a spring with the preselected parameter.
  • This machine makes it possible to freely change the parameters of the coil springs to meet the preselected spring requirements.
  • the dimensions of the spring can be changed during the actual manufacture of the coil springs, so that springs with pitches can be produced which change continuously along the length of the spring.
  • the invention has for its object a method and a device of the aforementioned Specify type, which also with fluctuating values the wire parameters high accuracy in spring production guarantee and at the same time the Minimize scrap.
  • the inventive method and the inventive Device are characterized by a number from advantages.
  • the arrangement according to the invention and the inventive Methods enable the compensation of the elastic torsional stresses of the spring wire, which in particular for the processing of spring-drawn Wire types is important.
  • This torsional stress is not recognizable externally because the drawn wire according to this manufacturing process is wound into a coil under tension. The torsional stresses are released when you get this Force from the spring wire takes. You express yourself in spreading or turning over the wire loops and lead to fluctuations in the length of the spring produced and thus to the parallel shift mentioned above the spring characteristic.
  • the correction of the wire diameter fluctuations is particularly important for tempered spring wires. With these wires, the stresses generated during drawing are reduced due to the final hardening process carried out at over 860 ° C, but the wire stretching rejuvenates in the furnace section, even with the smallest obstructions in the wire run-off reel. Fluctuations in wire diameters are therefore much more pronounced here than with patented drawn and stainless steel wires.
  • force measuring devices it is possible to measure the forming forces in the spring winch and, by evaluating them, to draw conclusions about changes in the spring parameters and to include these changes in the machine control.
  • Another special embodiment provides that an E or G module measuring device is used.
  • This consists of rollers, which cause the wire to deform slightly by defined values and measure the required deformation forces. Since the initial state of the wire is determined before the forming process and is taken into account when controlling the wind tools, the rejects can be significantly reduced. In addition, the forming result can also be continuously monitored and the target-actual deviation can be traced back to the tool position using a controller. This leads to considerable reductions in wages, materials and energy costs, as well as a reduction in material recycling expenses and a reduction in additional environmental pollution.
  • the method according to the invention and the device according to the invention can advantageously be used in the production of new automatic spring manufacturing machines, the application not being restricted to automatic coil spring winders, but also being suitable for other machines for producing springs. It can also be retrofitted to existing NC-controlled automatic spring winders, so that the largest possible group of spring manufacturers can use the device according to the invention without major renewal of the machine park and with little financial outlay. It is also possible to sort the springs into different quality classes based on the measurement results obtained.
  • the Wire from a Coil C that is on a reel is withdrawn via the wire feed rollers R.
  • the reel is from a not shown here controlled drive actuated.
  • To unwind enable the reel with the coil C in the Bearings L1 and L2 stored.
  • the entire unwinder A is pivotally mounted in the bearing L3.
  • the axis of the bearing L3 coincides with that Direction of the drawn wire D together.
  • From the guide device Z is the wire over the Detection unit E of the wire feeder Machine fed.
  • the length of this loop S is caused by the movements of unwinding device A and guide device Z controlled so that they maintains an approximately constant diameter.
  • the Loop formation is supported by guide rollers FR. If the wire D has no torsional stress the wire loop S hangs vertically below. If the wire has torsional stress, the wire loop S deflected from the vertical position. The deflection is made by the detection unit E1 determines and leads over a separate control unit for a rotation of the Unwinder A in bearing L3 so that the torsional tension is eliminated and affect the following Operations cannot impact. There is another between the machine and the wire loop S. Detection unit E2 attached. This determined the current wire requirements for spring production and controls the drives of the guide rollers R and the bearing L1, L2 depending of the respective wire requirement. In the example shown the sag of the wire is determined.
  • FIG. 2 shows one possible embodiment for the arrangement of the sensors.
  • two sensor rollers SR are attached to the wire loop S and are attached to the frame via springs F1 and F2. If the wire D has a torsional tension, this causes a deflection of the wire loop S and thus also a deflection of the springs F1 and F2.
  • Strain gauges DMS are attached to the springs F1 and F2 and are used to determine the deflection. With the help of the strain gauges DMS, a value for the size of the deflection of the wire loop S can be determined and the required pivoting movement of the unwinding device A can be controlled.
  • various other sensors can also be used for the detection unit. The sensors can both determine the deformation of a plastic element, as shown in FIG. 2, and also detect the displacement of an element by means of a displacement measuring system. In the simplest case, a two-sided stop is sufficient, the contact of which is determined by making contact.
  • FIG. 3 shows a feed device with a rotatably mounted wire take-off guide DF.
  • the twisted wire is pulled off a reel H under tension.
  • the detection unit E1 the wire with torsion is guided in a wire loop acting as a torsion indicator around a rotatably mounted wheel.
  • the wheel is arranged in such a way that, in addition to its rotation about the wheel axis caused by the wire run-off movement, it can also perform a pivoting movement about an axis perpendicular thereto. This pivoting movement is dependent on the torsional stress connected in the wire being fed.
  • the recognition unit E1 is connected to a sensor SE, which indicates the deflection of the recognition unit E1.
  • Torsional stresses between the fixed stator L and the wire take-off guide DF therefore lead to a deflection of the detection unit E1 and are displayed by the sensor.
  • the reel pot When unwinding tension-free wire, the reel pot has to make a 360 ° turn to unwind a full wire loop.
  • the torsional stresses are eliminated by initiating a defined relative movement between the reel and the controllably rotatable wire run guide DF, so that twist-free wire is fed to the winding machine. It is particularly advantageous that the arrangement enables the controllable additional movement of the wire take-off guide DF to be carried out quickly and precisely. This is achieved in particular in that the movement of the wire take-off guide DF, which has only a very small mass, is separated from the movement of the reel H.
  • the reel H which has a large mass, must also perform an additional movement to ensure a continuous wire run.
  • the additionally mounted wire take-off guide DF enables these two movements to be separated, so that it is not necessary to accelerate the reel H quickly with high expenditure of force and correspondingly high loads on the moving parts.
  • the inlet guide EF With the inlet guide EF, the wire D of the forming device fed into a defined arc.
  • This inlet guide EF is curved Wire is effective and ensures defined wind conditions.
  • the inlet guide EF can consist of an arcuate Pipe exist or from a roller assemblies be formed.
  • the wind pins are from the forming device in FIG 3.1 and 3.2 are shown electrically are adjustable. By another actuator becomes the adjustment of the gradient wedge enables so that all geometric parameters of the to be manufactured spring can be influenced.
  • On the wind pins 3.1 and 3.2 are force sensors attached with which the wind forces N4 and N5 be continuously determined. With that, too Changes in wire forming properties are recorded and fed to the evaluation of the process control.
  • Figures 5 and 6 show an arrangement with which the spring outer diameter D a and the pitch P can be determined after winding.
  • Various solutions are possible as a measuring device.
  • the spring diameter on the spring 5 is determined using a CCD matrix 6.
  • the tongue 5 lies against the V-groove 7 in a defined manner. Fluctuations in the spring diameter can also be detected in a known manner using the silhouette method or the scanning principle with optical measuring devices.
  • Figure 7 shows a schematic representation of the links between the individual modules.
  • the necessary positioning movements are controlled by a machine computer, which is connected to the individual measuring stations of the machine via signal processing.
  • the wire is pulled from the wire feeder into the device. It first passes through the wire diameter measuring device DDME.
  • the wire feed is connected in a manner known per se to a path measuring device, from which a signal is obtained over the length of the wire to be processed. This measuring device is not shown here.
  • An E or G module measuring device E / G-ME with a force measuring device KME and a displacement measuring device WME, with which the deformation of the wire and the associated force are determined, is also connected upstream of the wire feed.
  • the current values for the elastic modulus of the wire can be determined from the determined force and deformation values.
  • the G-module can be determined from the E-module.
  • the wire After the wire has passed through the measuring device, it is fed to the drawing-in device and thus to the forming device which contains the wind pins 3 and the gradient wedge. Winding pins 3 and gradient wedge are each connected to linear drives with which the currently required position of these elements is positioned.
  • the wind pins 3 are also connected to a force measuring device KME, which transfers information about the measured forming forces to the signal processing unit for evaluation.
  • the wire After passing through the forming device, the wire is shaped into a spring body. The dimensions of the spring body are determined by the outside diameter measuring device ADME and the pitch measuring device SME. The spring body is cut to the required length using a cutting knife controlled by the signal processing system.
  • the resulting spring is evaluated with a length measuring device LME and a force measuring device KME in such a way that the characteristic curve of the spring is determined.
  • the current data obtained in this way are also fed to the signal processing device.
  • the measuring of the spring length by means of the length measuring device LME as well as the spring forces by means of the force measuring device KME and the determination of the spring characteristic which is possible with it can also be carried out before the spring is cut off.
  • the arrangement allows spring wire diameter deviations to record as well as corresponding compensations and their effects on the slope the spring characteristics by changing others in a controlled manner
  • Spring parameters preferably the spring diameter, to realize. Since the actual value of the Sliding module is detected, can be a number further correction information for compliance with the Spring characteristic curve obtained and during the actuating movements be taken into account.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Wire Processing (AREA)

Description

Die Erfindung betrifft ein Verfahren und eine Vorrichtung zum kontinuierlichen Überprüfen und Korrigieren auftretender Fehler bei Federdrähten für die optimierte Herstellung von Schraubenfedern auf Federwindeautomaten, wobei ein Draht von einer Abwickeleinrichtung, in der eine Spule oder ein Coil gelagert ist, abgewickelt und mittels einer gesonderten Zuführeinrichtung einer Umformeinrichtung, welche Windestifte oder -rollen enthält, zugeführt wird.The invention relates to a method and a device for continuous checking and correction Error occurring with spring wires for the optimized production of coil springs Automatic spring coiling, taking a wire from one Unwinder in which a spool or a Coil is stored, unwound and by means of a separate feeding device of a forming device, which contains wind pins or rolls becomes.

An Schraubenfedern werden von seiten der industriellen Anwender zunehmend erhöhte Genauigkeitsanforderungen hinsichtlich Einhaltung der konstruktiv festgelegten Federkennwerte, speziell der Federkennlinie, gestellt. Gründe dafür sind insbesondere die steigenden Anforderungen an Maschinen und Geräte, in denen Schraubenfedern eingesetzt werden, sowie der wachsende Automatisierungsgrad in der Fertigung von Maschinen und Geräten mit der Tendenz, daß nur eng tolerierte Bauteile verarbeitet werden können. Coil springs are used on the industrial side Users increasingly demanding accuracy requirements in terms of adherence to the constructive specified spring characteristics, especially the spring characteristic, posed. The reasons for this are special the increasing demands on machines and devices, in which coil springs are used, as well as the growing level of automation in the Manufacture of machinery and equipment with a tendency to that only tightly tolerated components are processed can be.

Der Federdraht als Ausgangsmaterial unterliegt werkstoffbedingten, geometrischen und verarbeitungstechnischen Schwankungen. Sie äußern sich in Abweichungen des Drahtdurchmessers, der Festigkeitswerte bzw. Werkstoffkennwerte von ihren Nennwerten und in Verdrillungen infolge elastischer Torsionsspannungen. Außerdem spielen auch Abweichungen eine maßgebliche Rolle, die sich aus dein plastisch-elastischen Verformungsverhalten des Federdrahtes ergeben und meist in vorgelagerten Fertigungsstufen ihre Ursache haben.The spring wire as the starting material is subject material-related, geometric and processing technology Fluctuations. You express yourself in deviations of the wire diameter, the strength values or material characteristics from their nominal values and in twists due to elastic Torsional stresses. There are also deviations an authoritative role arising from your plastic-elastic deformation behavior of the Spring wire result and mostly in upstream Manufacturing stages have their cause.

Die genannten Schwankungen verursachen erhebliche Abweichungen der Parameter der kaltgeformten Schraubenfeder von den konstruktiv festgelegten Daten, deren Auswirkungen in Abweichungen der Federkennlinie von der Sollkennlinie feststellbar sind.
Insbesondere werden durch die schwankende Dicke des Drahtdurchmessers Neigungsänderungen der Federkennlinie, also Schwankungen der Federrate, und durch unterschiedliche elastische Torsionsspannungen in der Drahtspule Längenschwankungen der produzierten Feder und dadurch Parallelverschiebungen der Federkennlinie verursacht.
In der Folge entsteht bei der Federherstellung zwangsläufig Ausschuß, dessen Anteil bei Federn mit kleinen Abmessungen und hohen Genauigkeitsforderungen beträchtlich sein kann. Da dieser Ausschuß meist erst an der endbearbeiteten Feder feststellbar ist, ergeben sich erhebliche volkswirtschaftliche Verluste. Außerdem führen die notwendigen Mehraufwendungen für Material und Energie zu zusätzlichen Umweltbelastungen.
The fluctuations mentioned cause considerable deviations of the parameters of the cold-formed coil spring from the design-determined data, the effects of which can be determined in deviations of the spring characteristic from the target characteristic.
In particular, the fluctuating thickness of the wire diameter causes changes in the inclination of the spring characteristic, that is to say fluctuations in the spring rate, and different elastic torsional stresses in the wire coil cause length fluctuations in the spring produced and thereby parallel displacements of the spring characteristic.
As a result, rejects are inevitable in the manufacture of springs, the proportion of which can be considerable in the case of springs with small dimensions and high accuracy requirements. Since this committee can usually only be determined on the finished spring, there are considerable economic losses. In addition, the necessary additional expenses for materials and energy lead to additional environmental pollution.

Im Stand der Technik sind Maschinen zur Federherstellung, die über Einzugsrollen, mechanisch oder elektrisch gesteuerte Windestifte oder -rollen, Steigungs- und Formwerkzeuge verfügen, bekannt. Ihre Entwicklung war zunächst hauptsächlich darauf gerichtet, möglichst hohe Stückzahlen zu erreichen und bei vertretbarem Aufwand auch die Umrüstung zur Fertigung von Federn mit unterschiedlichen Abmessungen und Formen zu gewährleisten.The state of the art includes machines for spring production, the via feed rollers, mechanical or electrically controlled wind pins or rollers, Incline and form tools are known. Their development was primarily based on it directed to achieve the highest possible number of pieces and with reasonable effort also the conversion to Manufacture of springs with different dimensions and ensure shapes.

Im Stand der Technik sind auch Maschinen mit Überwachungs- und Qualitätssicherungssystem bekannt, bei denen die Federlänge mechanisch, optisch, kapazitiv oder auch durch Induktionsänderung gemessen oder geprüft wird.Machines with a monitoring and quality assurance system are also known in the prior art, where the spring length is mechanical, optical, capacitive or measured by changing the induction or is checked.

Es sind weiterhin Systeme bekannt, die mit Hilfe dieser Meß- bzw. Prüfmöglichkeiten Ausschußfedern erkennen und aussortieren sowie selbständig Korrekturen an der Steuerung des Federwindeautomaten vor-nehmen. Dies geschieht in der Regel auf der Grund-lage von Methoden zur statistischen Prozeßregelung. Andere realisierte Varianten liefern bei vorhandenen Abweichungen der gefertigten Federn über Dialogsysteme entsprechende Fehlermeldungen an den Bediener, der dann in die Steuerung korrigierend eingreifen muß. Weiterhin sind Systeme bekannt, die nach einer entsprechenden Anzahl von unmittelbar hintereinander gefertigten Ausschußfedern den Herstellungsprozeß unterbrechen. Systems are also known which can be used with the help of these measuring and testing options recognize and sort out as well as independent corrections at the control of the automatic spring coiler. This is usually done on the basis of methods for statistical process control. Other realized variants deliver existing ones Deviations in the manufactured springs via dialog systems corresponding error messages to the operator, which then corrected into the controller must intervene. Systems are also known which after a corresponding number of immediately successively manufactured committee springs the manufacturing process interrupt.

Nach JP 55-153 633 (A) ist eine Anordnung bekannt, bei der der Drall in einem Stahlseil beim Abwickeln von einer Spule durch eine gesteuerte Drehung der Abwickelspule verhindert werden soll. Die Drehung der Abwickelspule wird dabei von einem Sensor erfaßt, der eine Drehbewegung einer feststehenden Ablaufrolle, über die das Seil geführt wird, steuert. Diese Anordnung ist zur Ermittlung und Beeinflussung von in einem starren Draht eingeprägten Torsionsspannungen nicht anwendbar.According to JP 55-153 633 (A) an arrangement is known where the twist in a steel cable when unwinding from a spool by controlled rotation of the Unwinder should be prevented. The rotation the unwind spool is used by a sensor detected the rotational movement of a fixed Roller, over which the rope is guided, controls. This arrangement is for identification and Influencing of embossed in a rigid wire Torsional stresses not applicable.

DE 35 38 944 beschreibt eine Maschine zur Herstellung von Schraubenfedern durch Wickeln, mit welcher Federn mit einer stetig veränderlichen Steigung herstellbar sind.
Danach ist vorgesehen, daß die Federherstellungsmaschine eine elektronische Steuerschaltung enthält. Eine Datenspeichereinheit speichert vorgewählte Federpararmeter anzeigende Daten, wie zum Beispiel Steigung, Länge und Durchmesser. Beim Ausbilden einer Feder wird der entsprechende vorgewählte Parameter der Feder überwacht, und ein Signal, das den überwachten Parameter anzeigt, wird erzeugt. Die elektronisch gespeicherten Daten und das Überwachungssignal werden miteinander verglichen. Die Federherstellung kann nach Maßgabe dieses Vergleichs zwecks Herstellung einer Feder mit dem vorgewählten Parameter geändert werden.
Diese Maschine ermöglicht es, die Parameter der Schraubenfedern zum Erfüllen der vorgewählten Federforderungen frei zu ändern. Die Abmessungen der Feder können während der tatsächlichen Herstellung der Schraubenfedern geändert werden, so daß sich Federn mit Steigungen herstellen lassen, die sich kontinuierlich über der Länge der Feder verändern.
DE 35 38 944 describes a machine for producing coil springs by winding, with which springs with a continuously variable pitch can be produced.
Thereafter, it is provided that the spring manufacturing machine contains an electronic control circuit. A data storage unit stores preselected data indicating spring parameters, such as pitch, length and diameter. When a spring is formed, the corresponding preselected parameter of the spring is monitored and a signal indicating the monitored parameter is generated. The electronically stored data and the monitoring signal are compared with one another. The spring production can be changed in accordance with this comparison for the purpose of producing a spring with the preselected parameter.
This machine makes it possible to freely change the parameters of the coil springs to meet the preselected spring requirements. The dimensions of the spring can be changed during the actual manufacture of the coil springs, so that springs with pitches can be produced which change continuously along the length of the spring.

Dabei handelt es sich um ein Herstellungsverfahren, bei dem die Federn durch einen Wickelvorgang um einen Dorn erzeugt werden. Diese Herstellungsart läßt eine Veränderung des Wickeldurchmessers nicht zu. Außerdem werden hierbei Drahtstäbe endlicher Länge einzeln zugeführt, so daß eine kontinuierliche Beeinflussung der Drahtparameter nicht möglich ist.
Damit können zwar die Federwickelparameter ermittelt und verändert werden, der Ausgleich von Toleranzen der Federmaterialparameter beim kontinuierlichen Ablauf einer automatisierten Herstellung durch Federwinden ist damit jedoch nicht möglich.
This is a manufacturing process in which the springs are produced by winding around a mandrel. This type of production does not allow a change in the winding diameter. In addition, wire rods of finite length are fed individually, so that continuous influencing of the wire parameters is not possible.
Although the spring winding parameters can be determined and changed in this way, it is not possible to compensate for tolerances in the spring material parameters during the continuous process of automated manufacture by spring winches.

Bei den bekannten Maschinen und Verfahren zum Federwinden ist nachteilig, daß sie die Schwankungen der Parameter des Ausgangsmaterials Federdraht erst nach der Fertigung erfassen.In the known machines and processes for Spring winches are disadvantageous in that they fluctuate the parameter of the starting material spring wire only record after production.

Der Erfindung liegt die Aufgabe zugrunde, ein Verfahren und eine Vorrichtung der eingangs genannten Art anzugeben, welche auch bei schwankenden Werten der Drahtparameter hohe Genauigkeiten bei der Federherstellung gewährleisten und gleichzeitig den Ausschuß minimieren. The invention has for its object a method and a device of the aforementioned Specify type, which also with fluctuating values the wire parameters high accuracy in spring production guarantee and at the same time the Minimize scrap.

Erfindungsgemäß gelingt die Lösung der Aufgabe durch ein Verfahren und eine Anordnung mit den in den Ansprüchen 1 und 5 angegebenen Merkmalen. Vorteilhafte Ausgestaltungen sind in den Unteransprüchen angegeben.According to the invention the problem is solved by a method and an arrangement with the in the claims 1 and 5 specified features. Advantageous embodiments are in the subclaims specified.

Das erfindungsgemäße Verfahren und die erfindungsgemäße Vorrichtung zeichnen sich durch eine Reihe von Vorteilen aus.The inventive method and the inventive Device are characterized by a number from advantages.

Die erfindungsgemäße Anordnung und das erfindungsgemäße Verfahren ermöglichen die Kompensation der elastischen Torsionsspannungen des Federdrahtes, was insbesondere für die Verarbeitung von federhartgezogenen Drahtsorten wichtig ist. Diese Torsionsspannung ist äußerlich nicht erkennbar, weil der gezogene Draht nach diesem Fertigungsverfahren unter Zug zu einem Coil aufgewickelt wird. Die Torsionsspannungen werden freigegeben, wenn man diesen Zwang vom Federdraht nimmt. Sie äußern sich im Aufspreizen bzw. Umschlagen der Drahtschlaufen und führen zu Längenschwankungen der produzierten Feder und damit zur oben erwähnten parallelverschiebung der Federkennlinie.The arrangement according to the invention and the inventive Methods enable the compensation of the elastic torsional stresses of the spring wire, which in particular for the processing of spring-drawn Wire types is important. This torsional stress is not recognizable externally because the drawn wire according to this manufacturing process is wound into a coil under tension. The torsional stresses are released when you get this Force from the spring wire takes. You express yourself in spreading or turning over the wire loops and lead to fluctuations in the length of the spring produced and thus to the parallel shift mentioned above the spring characteristic.

Zum Erfassen des Federdrahtdurchmessers in einer oder in zwei Ebenen sind mehrere Verfahren möglich. Die Erfassung in zwei Ebenen ermöglicht es, Abweichungen des Drahtquerschnittes zu kennen und der prozeßregelung zuzuführen. Vorteilhaft sind neben taktil oder berührungslos messenden elektrischen Sensoren auch optische Sensoren, die die Änderung lichttechnischer Größen auswerten. To measure the spring wire diameter in one or two methods are possible on two levels. The detection in two levels enables deviations to know the wire cross section and the process control. Besides are advantageous tactile or non-contact electrical Sensors also optical sensors that change Evaluate lighting parameters.

Die Korrektur der Drahtdurchmesserschwankungen ist besonders für vergütete Federdrähte wichtig. Bei diesen Drähten bauen sich zwar die beim Ziehen entstandenen Spannungen aufgrund des abschließenden bei über 860°C durchgeführten Härteprozesses ab, dafür kommt es in der Ofenstrecke aber selbst bei kleinsten Behinderungen des Drahtablaufhaspels zur verjüngenden Streckung des Drahtes. Drahtdurchmesserschwankungen sind hier deshalb wesentlich ausgeprägter als bei patentiert gezogenen und bei nichtrostenden Drähten.
Durch Kombination der Windewerkzeuge mit Kraftmeßeinrichtungen wird es möglich, die Umformkräfte beim Federwinden zu messen und durch deren Auswertung Rückschlüsse auf Veränderungen der Federparameter zu ziehen und diese Änderungen in die Maschinensteuerung einzubeziehen.
Eine weitere spezielle Ausführung sieht vor, daß eine E- bzw. G-Modul-Meßeinrichtung verwendet wird. Diese besteht aus Rollen, welche ein geringfügiges elastisches Verformen des Drahtes um definierte Werte bewirken und dabei die erforderlichen Verformungskräfte messen.
Da der Drahtausgangszustand bereits vor dem Umformprozeß ermittelt und beim Steuern der Windewerkzeuge berücksichtigt wird, kann der Ausschuß wesentlich reduziert werden.
Außerdem kann auch das Umformergebnis stetig überwacht sowie die Soll-Ist-Abweichung über einen Regler auf die Werkzeugstellung rückgeführt werden. Dies führt zu beträchtlichen Lohn-, Material- und Energiekostenreduzierungen sowie zur Verringerung der Aufwendungen für das Werkstoffrecycling und zur Reduzierung zusätzlicher Umweltbelastungen.
The correction of the wire diameter fluctuations is particularly important for tempered spring wires. With these wires, the stresses generated during drawing are reduced due to the final hardening process carried out at over 860 ° C, but the wire stretching rejuvenates in the furnace section, even with the smallest obstructions in the wire run-off reel. Fluctuations in wire diameters are therefore much more pronounced here than with patented drawn and stainless steel wires.
By combining the winch tools with force measuring devices, it is possible to measure the forming forces in the spring winch and, by evaluating them, to draw conclusions about changes in the spring parameters and to include these changes in the machine control.
Another special embodiment provides that an E or G module measuring device is used. This consists of rollers, which cause the wire to deform slightly by defined values and measure the required deformation forces.
Since the initial state of the wire is determined before the forming process and is taken into account when controlling the wind tools, the rejects can be significantly reduced.
In addition, the forming result can also be continuously monitored and the target-actual deviation can be traced back to the tool position using a controller. This leads to considerable reductions in wages, materials and energy costs, as well as a reduction in material recycling expenses and a reduction in additional environmental pollution.

Das erfindungsgemäße Verfahren und die erfindungsgemäße Vorrichtung können vorteilhaft bei der Herstellung neuer Federfertigungsautomaten angewendet werden, wobei die Anwendung nicht auf Schraubenfederwindeautomaten beschränkt bleibt, sondern auch für andere Maschinen zur Federherstellung geeignet ist. Sie kann auch an bereits vorhandenen NC-gesteuerten Federwindeautomaten nachgerüstet werden, so daß ein möglichst großer Kreis von Federherstellern ohne grundlegende Erneuerung des Maschinenparks und mit geringem finanziellen Aufwand die erfindungsgemäße Vorrichtung nutzen kann.
Es ist ferner möglich, die Federn aufgrund der gewonnenen Meßergebnisse in verschiedene Qualitätsklassen zu sortieren.
The method according to the invention and the device according to the invention can advantageously be used in the production of new automatic spring manufacturing machines, the application not being restricted to automatic coil spring winders, but also being suitable for other machines for producing springs. It can also be retrofitted to existing NC-controlled automatic spring winders, so that the largest possible group of spring manufacturers can use the device according to the invention without major renewal of the machine park and with little financial outlay.
It is also possible to sort the springs into different quality classes based on the measurement results obtained.

Die Erfindung wird im folgenden anhand eines Ausführungsbeispieles näher erläutert. In der zugehörigen Zeichnung zeigen:

  • Figur 1 eine schematische Darstellung einer Zuführeinrichtung mit loser Schlaufe;
  • Figur 2 eine Ausführungsform, gemäß Figur 1, bei der Dehnmeßstreifen als Sensoren verwendet werden;
  • Figur 3 eine Zuführeinrichtung mit drehbarer Drahtabzugsführung;
  • Figur 4 eine schematische Darstellung der erfindungsgemäßen Vorrichtung;
  • die Figuren 5 und 6 die Anordnung zur Ermittlung des Federdurchmessers und
  • Figur 7 die Verknüpfungen der einzelnen Bau-gruppen in Form eines Blockschaltbildes.
  • The invention is explained in more detail below using an exemplary embodiment. In the accompanying drawing:
  • Figure 1 is a schematic representation of a feed device with a loose loop;
  • Figure 2 shows an embodiment, according to Figure 1, in which strain gauges are used as sensors;
  • FIG. 3 shows a feed device with a rotatable wire take-off guide;
  • Figure 4 is a schematic representation of the device according to the invention;
  • Figures 5 and 6, the arrangement for determining the spring diameter and
  • Figure 7 shows the links of the individual modules in the form of a block diagram.
  • Bei der in Figur 1 dargestellten Anordnung wird der Draht von einem Coil C, das sich auf einer Haspel befindet, über die Drahtvorschubroilen R abgezogen. Die Haspel wird von einem hier nicht dargestellten gesteuerten Antrieb betätigt. Um das Abwickeln zu ermöglichen, ist die Haspel mit dem Coil C in den Lagern L1 und L2 gelagert. Die gesamte Abwickeleinrichtung A ist in dem Lager L3 schwenkbar angeordnet. Die Achse des Lagers L3 fällt dabei mit der Richtung des abgezogenen Drahtes D zusammen. Von der Führungseinrichtung Z wird der Draht über die Erkennungseinheit E der Drahtzuführeinrichtung der Maschine zugeführt. Zwischen der Führungseinrichtung Z und der Abwickeleinrichtung A bildet sich der Draht durch die Wirkung der Schwerkraft zu einer Schlaufe S aus. Die Länge dieser Schlaufe S wird durch die Bewegungen von Abwickeleinrichtung A und Führungseinrichtung Z so gesteuert, daß sie einen annähernd konstanten Durchmesser einhält. Die Schlaufenbildung wird durch Führungsrollen FR unterstützt. Wenn der Draht D keine Torsionsspannung aufweist, hängt die Drahtschlaufe S senkrecht nach unten. Weist der Draht Torsionsspannung auf, wird die Drahtschlaufe S aus der senkrechten Lage ausgelenkt. Die Auslenkung wird durch die Erkennungseinheit E1 ermittelt und führt über eine gesonderte Steuereinheit zu einer Drehung der Abwickeleinrichtung A im Lager L3, so daß die Torsionsspannung eliminiert wird und sich auf die folgenden Arbeitsvorgänge nicht auswirken kann. Zwischen Maschine und Drahtschlaufe S ist eine weitere Erkennungseinheit E2 angebracht. Diese ermittelt den aktuellen Drahtbedarf für die Federherstellung und steuert die Antriebe der Führungsrollen R und der Lager L1, L2 in Abhängigkeit vom jeweiligen Drahtbedarf. Im dargestellten Beispiel wird hierzu der Durchhang des Drahtes ermittelt.In the arrangement shown in Figure 1, the Wire from a Coil C that is on a reel is withdrawn via the wire feed rollers R. The reel is from a not shown here controlled drive actuated. To unwind enable, the reel with the coil C in the Bearings L1 and L2 stored. The entire unwinder A is pivotally mounted in the bearing L3. The axis of the bearing L3 coincides with that Direction of the drawn wire D together. From the guide device Z is the wire over the Detection unit E of the wire feeder Machine fed. Between the management facility Z and the unwinder A forms the wire becomes one by the action of gravity Loop S. The length of this loop S is caused by the movements of unwinding device A and guide device Z controlled so that they maintains an approximately constant diameter. The Loop formation is supported by guide rollers FR. If the wire D has no torsional stress the wire loop S hangs vertically below. If the wire has torsional stress, the wire loop S deflected from the vertical position. The deflection is made by the detection unit E1 determines and leads over a separate control unit for a rotation of the Unwinder A in bearing L3 so that the torsional tension is eliminated and affect the following Operations cannot impact. There is another between the machine and the wire loop S. Detection unit E2 attached. This determined the current wire requirements for spring production and controls the drives of the guide rollers R and the bearing L1, L2 depending of the respective wire requirement. In the example shown the sag of the wire is determined.

    In Figur 2 ist eine Ausführungsmöglichkeit für die Anordnung der Sensoren dargestellt. In diesem Fall sind an der Drahtschlaufe S zwei Sensorrollen SR angebracht, die über Federn F1 und F2 am Gestell befestigt sind. Weist der Draht D eine Torsionsspannung auf, so bewirkt diese eine Auslenkung der Drahtschlaufe S und damit auch eine Auslenkung der Federn F1 und F2. An den Federn F1 und F2 sind Dehnmeßstreifen DMS angebracht, mit denen die Auslenkung festgestellt wird. Mit Hilfe der Dehnmeßstreifen DMS kann ein Wert für die Größe der Auslenkung des Drahtschlaufe S ermittelt und die erforderliche Schwenkbewegung der Abwickeleinrichtung A gesteuert werden.
    Für die Erkennungseinheit können neben der Anbringung von Dehnmeßstreifen auch vielfältige andere Sensoren eingesetzt werden. Die Sensoren können sowohl die Verformung eines plastischen Elementes, wie in Figur 2 dargestellt, ermitteln als auch die Verschiebung eines Elementes durch ein Wegmeßsystem erfassen. Im einfachsten Fall genügt ein zweiseitiger Anschlag, dessen Berührung durch Kontaktgabe festgestellt wird.
    FIG. 2 shows one possible embodiment for the arrangement of the sensors. In this case, two sensor rollers SR are attached to the wire loop S and are attached to the frame via springs F1 and F2. If the wire D has a torsional tension, this causes a deflection of the wire loop S and thus also a deflection of the springs F1 and F2. Strain gauges DMS are attached to the springs F1 and F2 and are used to determine the deflection. With the help of the strain gauges DMS, a value for the size of the deflection of the wire loop S can be determined and the required pivoting movement of the unwinding device A can be controlled.
    In addition to the attachment of strain gauges, various other sensors can also be used for the detection unit. The sensors can both determine the deformation of a plastic element, as shown in FIG. 2, and also detect the displacement of an element by means of a displacement measuring system. In the simplest case, a two-sided stop is sufficient, the contact of which is determined by making contact.

    In Figur 3 ist eine Zuführeinrichtung mit drehbar gelagerter Drahtabzugsführung DF dargestellt. Dabei wird der torsionsbehaftete Draht unter Zug von einer Haspel H abgezogen. In der Erkennungseinheit E1 wird der torsionsbehaftete Draht in einer als Torsionsindikator wirkenden Drahtschlaufe um ein drehbar gelagertes Rad geführt. Hierzu ist das Rad so angeordnet, daß es zusätzlich zu seiner von der Drahtablaufbewegung verursachten Drehung um die Radachse eine Schwenkbewegung um eine hierzu senkrechte Achse ausführen kann. Diese Schwenkbewegung ist abhängig von der im zugeführten Draht verbundenen Torsionsspannung. Die Erkennungseinheit E1 ist mit einein Sensor SE verbunden, der das Aus-lenken der Erkennungseinheit E1 anzeigt. Torsionsspannungen zwischen dem festen Leitrad L und der Drahtabzugsführung DF führen deshalb zu einem Auslenken der Erkennungseinheit E1 und werden vom Sensor angezeigt. Beim Abwickeln von torsionsspannungsfreiem Draht hat der Haspeltopf zum Abwickeln einer vollen Drahtschlaufe eine 360°-Drehung zu vollführen. Die Torsionsspannungen werden durch Einleiten einer definierten Relativbewegung zwischen der Haspel und der steuerbar drehbaren Drahtablaufführung DF eliminiert, so daß der Windemaschine verdrillungsfreier Draht zugeführt wird.
    Besonders vorteilhaft ist dabei, das es die Anordnung ermöglicht, die steuerbare Zusatzbewegung der Drahtabzugsführung DF schnell und präzise auszuführen. Dies gelingt insbesondere dadurch, daß die Bewegung der Drahtabzugsführung DF, die nur eine sehr geringe Masse aufweist, von der Bewegung der Haspel H getrennt wird. Die Haspel H, die eine große Masse aufweist, muß zwar ebenfalls eine Zusatzbewegung ausführen um einen kontinuierlichen Drahtablauf zu gewährleisten. Die zusätzlich gelagerte Drahtabzugsführung DF ermöglicht eine Trennung dieser beiden Bewegungen, so daß es nicht erforderlich ist, die Haspel H mit hohen Kraftaufwendungen und entsprechend hohen Beanspruchungen der bewegten Teile schnell zu beschleunigen.
    FIG. 3 shows a feed device with a rotatably mounted wire take-off guide DF. The twisted wire is pulled off a reel H under tension. In the detection unit E1, the wire with torsion is guided in a wire loop acting as a torsion indicator around a rotatably mounted wheel. For this purpose, the wheel is arranged in such a way that, in addition to its rotation about the wheel axis caused by the wire run-off movement, it can also perform a pivoting movement about an axis perpendicular thereto. This pivoting movement is dependent on the torsional stress connected in the wire being fed. The recognition unit E1 is connected to a sensor SE, which indicates the deflection of the recognition unit E1. Torsional stresses between the fixed stator L and the wire take-off guide DF therefore lead to a deflection of the detection unit E1 and are displayed by the sensor. When unwinding tension-free wire, the reel pot has to make a 360 ° turn to unwind a full wire loop. The torsional stresses are eliminated by initiating a defined relative movement between the reel and the controllably rotatable wire run guide DF, so that twist-free wire is fed to the winding machine.
    It is particularly advantageous that the arrangement enables the controllable additional movement of the wire take-off guide DF to be carried out quickly and precisely. This is achieved in particular in that the movement of the wire take-off guide DF, which has only a very small mass, is separated from the movement of the reel H. The reel H, which has a large mass, must also perform an additional movement to ensure a continuous wire run. The additionally mounted wire take-off guide DF enables these two movements to be separated, so that it is not necessary to accelerate the reel H quickly with high expenditure of force and correspondingly high loads on the moving parts.

    In Figur 4 ist die erfindungsgemäße Vorrichtung schematisch dargestellt. Zum Anfertigen einer Schraubenfeder wird der Draht zunächst an einer Drahtdurchmessermeßeinrichtung 1 vorbeigeführt, an der der aktuelle Durchmesser des Federdrahtes ermittelt wird. Anschließend gelangt der Draht in die Meßeinrichtung zur Ermittlung des E- bzw. G-Moduls. Die Meßeinrichtung besteht aus Rollen 2, von denen mindestens die Rolle 2.3 senkrecht zur Rollenachse verstellbar ist, das Rollenpaar 2.2 angetrieben wird und das Rollenpaar 2.1 frei mitläuft. Bei dieser Verstellung wird ein elastisches Verformen des Drahtes um definierte Werte bewirkt. Mit den Rollen sind Sensoren verbunden, mit denen die Lagerkräfte N1, N2, und N3 kontinuierlich gemessen werden. Diese Lagerkräfte sind von den Materialeigenschaften des Federdrahtes abhängig und gestatten die Ermittlung des E-Moduls. Damit wird es möglich, den G-Modul für den jeweils aktuellen Zustand zu bestimmen. Um die Messung unabhängig von Einflüssen der Maschinenfunktion durchzuführen, sind die Schlaufen 4.1 und 4.2 angeordnet. Die Verformungseigenschaften des zu verarbeitenden Drahtes können erkannt und entsprechende Reaktionen eingeleitet werden. Solche Reaktionen können z.B. ein Warnsignal oder das Auslösen entsprechender Verstellbewegungen der Formwerkzeuge sein. Nachdem der Draht diese Einrichtung passiert hat, gelangt er über die Einlaufführung EF in die Zuführeinrichtung Z und anschließend in die Umformeinrichtung.
    Die Verstellung der Windestifte zur drahtdickenabhängigen Steuerung des Federdurchmessers erfolgt dabei nach der Beziehung: Dmk = Dmo·3 dist do 4 wobei

    Dmk =
    mittlerer Federdurchmesser nach der Korrektur
    Dmo =
    Sollwert des mittleren Federdurchmessers
    dist =
    ermittelter Istwert des Drahtdurchmessers
    do =
    Sollwert(Normwert)
    ist.The device according to the invention is shown schematically in FIG. To manufacture a helical spring, the wire is first guided past a wire diameter measuring device 1, at which the current diameter of the spring wire is determined. The wire then enters the measuring device for determining the E or G module. The measuring device consists of rollers 2, of which at least the roller 2.3 is adjustable perpendicular to the roller axis, the pair of rollers 2.2 is driven and the pair of rollers 2.1 runs freely. With this adjustment, the wire is elastically deformed by defined values. Sensors are connected to the rollers, with which the bearing forces N1, N2, and N3 are continuously measured. These bearing forces depend on the material properties of the spring wire and allow the elastic modulus to be determined. This makes it possible to determine the G-module for the current status. In order to carry out the measurement independently of influences of the machine function, the loops 4.1 and 4.2 are arranged. The deformation properties of the wire to be processed can be recognized and appropriate reactions initiated. Such reactions can be, for example, a warning signal or the triggering of corresponding adjustment movements of the molding tools. After the wire has passed through this device, it arrives via the inlet guide EF into the feed device Z and then into the forming device.
    The adjustment of the wind pins for wire thickness-dependent control of the spring diameter takes place according to the relationship: D mk = D mo · 3rd d is d O 4th in which
    D mk =
    average spring diameter after correction
    D mo =
    Setpoint of the mean spring diameter
    d is =
    determined actual value of the wire diameter
    d o =
    Setpoint (standard value)
    is.

    Mit der Einlaufführung EF wird der Draht D der Umformeinrichtung in einen definierten Bogen zugeführt. Diese Einlaufführung EF ist bei gekrümmten Draht wirksam und sichert definierte Windeverhältnisse. Die Einlaufführung EF kann aus einem bogenförmigen Rohr bestehen oder von einer Rollenanordnungen gebildet werden. With the inlet guide EF, the wire D of the forming device fed into a defined arc. This inlet guide EF is curved Wire is effective and ensures defined wind conditions. The inlet guide EF can consist of an arcuate Pipe exist or from a roller assemblies be formed.

    Von der Umformeinrichtung sind in Figur 4 die Windestifte 3.1 und 3.2 dargestellt, die elektrisch verstellbar sind. Durch eine weitere Stelleinrichtung wird die Verstellung des Steigungskeils ermöglicht, so daß alle geometrischen Parameter der herzustellenden Feder beeinflußt werden können. An den Windestiften 3.1 und 3.2 sind Kraftsensoren angebracht, mit denen die Windekräfte N4 und N5 kontinuierlich ermittelt werden. Damit werden auch Änderungen der Drahtumformeigenschaften erfaßt und zur Auswertung der Prozeßregelung zugeführt.The wind pins are from the forming device in FIG 3.1 and 3.2 are shown electrically are adjustable. By another actuator becomes the adjustment of the gradient wedge enables so that all geometric parameters of the to be manufactured spring can be influenced. On the wind pins 3.1 and 3.2 are force sensors attached with which the wind forces N4 and N5 be continuously determined. With that, too Changes in wire forming properties are recorded and fed to the evaluation of the process control.

    Die Figuren 5 und 6 zeigen eine Anordnung, mit der der Federaußendurchmesser Da und die Steigung P nach dem Winden ermittelt werden können. Als Meßeinrichtung sind hierzu verschiedene Lösungen möglich. Im dargestellten Beispiel wird der Federdurchmesser an der Feder 5 mit Hilfe einer CCD-Matrix 6 ermittelt. Die Feder 5 liegt dabei definiert an der V-Nut 7 an. Schwankungen des Federdurchmessers sind auch in bekannter Weise nach dem Schattenbildverfahren oder dem Scanningprinzip mit optischen Meßeinrichtungen erfaßbar.Figures 5 and 6 show an arrangement with which the spring outer diameter D a and the pitch P can be determined after winding. Various solutions are possible as a measuring device. In the example shown, the spring diameter on the spring 5 is determined using a CCD matrix 6. The tongue 5 lies against the V-groove 7 in a defined manner. Fluctuations in the spring diameter can also be detected in a known manner using the silhouette method or the scanning principle with optical measuring devices.

    Figur 7 zeigt in schematischer Darstellung die Verknüpfungen der einzelnen Baugruppen. Die erforderlichen Stellbewegungen werden durch einen Maschinenrechner, der über eine Signalaufbereitung mit den einzelnen Meßstationen der Maschine verbunden ist, angesteuert.
    Der Draht wird dabei vom Drahteinzug in die Vorrichtung gezogen. Er durchläuft zuvor die Drahtdurchmessermeßeinrichtung DDME. Der Drahteinzug ist in an sich bekannter Weise mit einer Wegmeßeinrichtung verbunden, von der ein Signal über die Länge des zu verarbeitenden Drahtes gewonnen wird. Diese Meßeinrichtung ist hier nicht mit dargestellt. Dem Drahteinzug vorgeschaltet ist außerdem erfindungsgemäß eine E- bzw. G-Modulmeßeinrichtung E/G-ME mit einer Kraftmeßeinrichtung KME und einer Wegmeßeinrichtung WME, mit der die Verformung des Drahtes und die dazugehörige Kraft ermittelt werden. Aus den ermittelten Kraft- und Verformungswerten können die aktuellen Werte für den E-Modul des Drahtes bestimmt werden. Aus dem E-Modul läßt sich der G-Modul ermitteln. Nachdem der Draht die Meßeinrichtung durchlaufen hat, wird er der Einzugeinrichtung und damit der Umformeinrichtung zugeführt, die die Windestifte 3 und den Steigungskeil enthält. Windestifte 3 und Steigungskeil sind jeweils mit Linearantrieben verbunden, mit denen die aktuell erforderliche Stellung dieser Elemente positioniert wird. Die Windestifte 3 sind außerdem mit einer Kraftmeßeinrichtung KME verbunden, die Aussagen über die gemessenen Umformkräfte zur Auswertung an die Signalaufbereitung übergibt. Nach dem Durchlaufen der Umformeinrichtung ist der Draht zu einem Federkörper geformt. Die Abmessungen des Federkörpers werden von der Außendurchmesser-Meßeinrichtung ADME und der Steigungsmeßeinrichtung SME ermittelt. Der Federkörper wird mit Hilfe eines von der Signalaufbereitung angesteuerten Trennmessers in der jeweils erforderlichen Länge abgeschnitten. Die dadurch entstandene Feder wird mit einer Längenmeßeinrichtung LME und einer Kraftmeßeinrichtung KME so ausgewertet, daß die Kennlinie der Feder bestimmt ist. Die so gewonnenen aktuellen Daten werden ebenfalls der Signalaufbereitungseinrichtung zugeführt. Das Messen der Federlänge mittels Längenmeßeinrichtung LME sowie der Federkräfte mittels der Kraftmeßeinrichtung KME und die damit mögliche Bestimmung der Federkennlinie kann auch vor dem Abschneiden der Feder durchgeführt werden.
    Figure 7 shows a schematic representation of the links between the individual modules. The necessary positioning movements are controlled by a machine computer, which is connected to the individual measuring stations of the machine via signal processing.
    The wire is pulled from the wire feeder into the device. It first passes through the wire diameter measuring device DDME. The wire feed is connected in a manner known per se to a path measuring device, from which a signal is obtained over the length of the wire to be processed. This measuring device is not shown here. An E or G module measuring device E / G-ME with a force measuring device KME and a displacement measuring device WME, with which the deformation of the wire and the associated force are determined, is also connected upstream of the wire feed. The current values for the elastic modulus of the wire can be determined from the determined force and deformation values. The G-module can be determined from the E-module. After the wire has passed through the measuring device, it is fed to the drawing-in device and thus to the forming device which contains the wind pins 3 and the gradient wedge. Winding pins 3 and gradient wedge are each connected to linear drives with which the currently required position of these elements is positioned. The wind pins 3 are also connected to a force measuring device KME, which transfers information about the measured forming forces to the signal processing unit for evaluation. After passing through the forming device, the wire is shaped into a spring body. The dimensions of the spring body are determined by the outside diameter measuring device ADME and the pitch measuring device SME. The spring body is cut to the required length using a cutting knife controlled by the signal processing system. The resulting spring is evaluated with a length measuring device LME and a force measuring device KME in such a way that the characteristic curve of the spring is determined. The current data obtained in this way are also fed to the signal processing device. The measuring of the spring length by means of the length measuring device LME as well as the spring forces by means of the force measuring device KME and the determination of the spring characteristic which is possible with it can also be carried out before the spring is cut off.

    Die Anordnung ermöglicht es, Federdrahtdurchmesserabweichungen zu erfassen sowie entsprechende Kompensationen und deren Auswirkungen auf die Steigung der Federkennlinien durch geregelte Änderung anderer Federparameter, vorzugsweise des Federdurchmessers, zu realisieren. Da außerdem der Istwert des Gleitmoduls erfaßt wird, können daraus eine Reihe weiterer Korrekturinformationen zur Einhaltung der Federkennlinie gewonnen und bei den Stellbewegungen berücksichtigt werden. The arrangement allows spring wire diameter deviations to record as well as corresponding compensations and their effects on the slope the spring characteristics by changing others in a controlled manner Spring parameters, preferably the spring diameter, to realize. Since the actual value of the Sliding module is detected, can be a number further correction information for compliance with the Spring characteristic curve obtained and during the actuating movements be taken into account.

    BEZUGSZEICHENLISTEREFERENCE SIGN LIST

    11
    DrahtdurchmesserineßeinrichtungWire diameter measuring device
    22nd
    Rollenroll
    33rd
    WindestifteWind pens
    44th
    DrahtschlaufenWire loops
    55
    Federfeather
    66
    CCD-MatrixCCD matrix
    77
    V-NutV-groove
    N1,N2,N3N1, N2, N3
    ReaktionskräfteReaction forces
    N4,N5N4, N5
    WindekräfteWind forces
    FF
    Federfeather
    PP
    Steigungpitch
    DD
    a Federaußendurchmesser a outer spring diameter
    MSMS
    DehnmeßstreifenStrain gauges
    DDMEDDME
    Drahtdurchmesser-MeßeinrichtungWire diameter measuring device
    ADMEADME
    Außendurchmesser-MeßeinrichtungOutside diameter measuring device
    SMESME
    SteigungsmeßeinrichtungIncline measuring device
    LMELME
    LängenineßeinrichtungLength measuring device
    KMEKME
    KraftmeßeinrichtungForce measuring device
    WMEWME
    WinkelmeßeinrichtungAngle measuring device
    E/G-MEE / G-ME
    E bzw. G-Modul-MeßeinrichtungE or G module measuring device
    ZZ.
    ZuführeinrichtungFeeding device
    LL
    LeitradDiffuser
    HH
    Haspelreel
    SS
    DrahtschlaufeWire loop
    DFDF
    DrahtabzugsführungWire take-off guide
    EFEF
    EinlaufführungInlet guide
    CC.
    CoilCoil
    SPSP
    SpuleKitchen sink
    DD
    Drahtwire
    AA
    AbwickeleinheitUnwinding unit
    RR
    Rollenroll
    L1,L2,L3L1, L2, L3
    Lagercamp
    FRFR
    FührungsrollenLeadership roles
    SRSR
    SensorrollenSensor roles

    Claims (13)

    1. A procedure for winding coil springs out of wire (D) which is uncoiled by an uncoiling device (A) and fed by means of a separate guiding assembly (Z) to a forming device (3.1; 3.2) for winding the wire in helical shape characterized in that prior to the winding at least one wire parameter, in particular the wire diameter, is determined and the measuring results are directly used for controlling the forming device (3.1; 3.2).
    2. A procedure according to claim 1 characterized in that based on the deviation of the wire diameter from its desired value, determined prior to winding, the forming device (3.1; 3.2) is controlled in such a way that the spring diameter is Dmk = Dmo x 3 dist do 4 whereby
      Dmk
      signifies mean spring diameter after the correction
      Do
      signifies desired value of the mean spring diameter
      dist
      signifies mean actual value of the wire diameter and
      do
      signifies desired value (standard value) of the wire diameter.
    3. Procedure according to claim 1, wherein as a wire parameter the modulus of elasticity (E) and/or transverse elasticity (G) of the wire to be wound (D) is determined.
    4. Procedure according to one of claims 1 to 3 in case the uncoiled wire (D) has elastic torsional stresses before winding, wherein the wire (D) between the uncoiling device (A) and the guiding assembly (Z) is guided in a loop (S) whereby any lateral deflection of the wire loop (S) is measured by a recognition unit (E1); and wherein the uncoiling device (A = H + DF) in addition to the rotation movement for uncoiling the wire (D) makes another move-ment the extent and the direction of which are controlled by the recognition unit (E1) in such a way that the torsional stresses are compensated.
    5. An apparatus for carrying out the procedure according to claim 4 with an uncoiling device (A) for uncoiling the wire (D) from a spool (Sp) or a coil (C) and with a guiding assembly (Z) for feeding the wire (D) towards a forming device (3.1; 3.2) for the winding of said wire, characterized by the formation of a loop (S) of the wire (D) between the uncoiling device (A) and the guiding assembly (Z), further by a recognition unit (E1) located next to said loop for measuring the lateral deflection of the wire loop (S), and by a wire pull-off guide (DF) of the uncoiling device (A = H + DF) arranged rotatably around the spool or coil axis and controlled by the recognition unit (E1) to carry out the additional movement.
    6. Apparatus according to claim 5 wherein the recognition unit (E1) comprises a roller (SR) which takes up the wire loop (S) and which is additionally rotatable around an axis parallel to the wire guiding direction, as well as a sensor (DMS) which produces a signal depending on the lateral deflection of the wire loop (S).
    7. Apparatus according to claim 5 wherein the recognition unit (E1) comprises two sensors (SR, DMS) located on both sides of the wire loop (S) the signals of which are controlling a swivel movement of the rotatable uncoiling device (A) around an axis (L3) parallel to the wire pull-off direction.
    8. Apparatus according to claim 5 for carrying out the procedure according to claims 1 or 2, wherein a wire diameter measuring device (DDME) is provided between the uncoiling device (A) and the guiding assembly (Z).
    9. Apparatus according to claim 5 for carrying out the procedure according to claim 3, wherein a measuring device (G/E-ME) for the determination of the E module or G module is provided between the uncoiling device (A) and the guiding assembly (Z).
    10. Apparatus according to claim 9 wherein the E module or G module measuring device (G/E-ME) has rollers (2) which cause an elastic deformation of the wire (D) by defined values whereby it measures the deformation forces and the deformation paths.
    11. Apparatus according to claim 5 wherein force sensors (N4, N5) for the determination of the deformation forces are provided at the winding pins (3.1; 3.2) or rollers.
    12. Apparatus according to claim 5 wherein the forming device (3.1; 3.2) has one measuring device each (ADME and SME) for measuring the outside diameter of the spring respectively the pitch of the wound spring.
    13. Apparatus according to claim 5 wherein an intake guide (EF) is provided between the uncoiling device (A) and the guiding assembly (Z) and the wire (D) is guided by said intake guide in a defined bow towards the forming device (3.1; 3.2).
    EP95942014A 1994-12-07 1995-12-06 Method and device for the optimized production of helical springs on automatic spring-winding machines Expired - Lifetime EP0796158B1 (en)

    Applications Claiming Priority (5)

    Application Number Priority Date Filing Date Title
    DE4443503 1994-12-07
    DE19944443503 DE4443503A1 (en) 1994-12-07 1994-12-07 Mfr. of helical springs by automatic spring winding machine
    DE1995114486 DE19514486A1 (en) 1995-04-19 1995-04-19 Mfr. of helical springs by automatic spring winding machine
    DE19514486 1995-04-19
    PCT/DE1995/001733 WO1996017701A1 (en) 1994-12-07 1995-12-06 Method and device for the optimized production of helical springs on automatic spring-winding machines

    Publications (2)

    Publication Number Publication Date
    EP0796158A1 EP0796158A1 (en) 1997-09-24
    EP0796158B1 true EP0796158B1 (en) 1998-05-27

    Family

    ID=25942637

    Family Applications (1)

    Application Number Title Priority Date Filing Date
    EP95942014A Expired - Lifetime EP0796158B1 (en) 1994-12-07 1995-12-06 Method and device for the optimized production of helical springs on automatic spring-winding machines

    Country Status (6)

    Country Link
    US (1) US5865051A (en)
    EP (1) EP0796158B1 (en)
    JP (1) JPH10511311A (en)
    DE (1) DE59502367D1 (en)
    ES (1) ES2119507T3 (en)
    WO (1) WO1996017701A1 (en)

    Cited By (1)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    DE102005059427B3 (en) * 2005-12-13 2007-05-31 Technische Universität Ilmenau Arrangement for feeding screw-like wires to wire winding or bending tools comprises a wire drawing roller pair and a wire feeding parts arranged on a arc having a curve which is the same or more than the pre-curve of the wire

    Families Citing this family (34)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    USRE40351E1 (en) * 1996-07-24 2008-06-03 Lincoln Global, Inc. Mechanism for braking the unwinding of a bundle of metallic wire housed in a drum
    DE59906102D1 (en) 1998-04-14 2003-07-31 Siemens Ag METHOD AND DEVICE FOR UNWINDING A LONG-STRETCHED GOOD
    US6584677B2 (en) * 2001-02-13 2003-07-01 Medallion Technology, Llc High-speed, high-capacity twist pin connector fabricating machine and method
    US6530511B2 (en) 2001-02-13 2003-03-11 Medallion Technology, Llc Wire feed mechanism and method used for fabricating electrical connectors
    US6729026B2 (en) 2001-02-13 2004-05-04 Medallion Technology, Llc Rotational grip twist machine and method for fabricating bulges of twisted wire electrical connectors
    CN100372625C (en) * 2003-05-13 2008-03-05 施普尔股份公司圣加伦 Spring winding machine and method for controlling a spring winding machine
    US8006529B2 (en) * 2003-09-12 2011-08-30 Dreamwell, Ltd. Methods for manufacturing coil springs
    DK2288469T3 (en) 2008-05-27 2013-07-08 Awds Technologies Srl Wiring System
    EP2174741B1 (en) * 2008-10-07 2012-06-20 SIDERGAS SpA Cover for welding wire container
    US7938352B2 (en) * 2009-03-10 2011-05-10 Lincoln Global, Inc. Wire dispensing apparatus for packaged wire
    CA2767884A1 (en) 2009-07-20 2011-01-27 Awds Technologies Srl A wire guiding liner, an particular a welding wire liner, with biasing means between articulated guiding bodies
    US8393467B2 (en) * 2009-08-21 2013-03-12 Sidergas Spa Retainer for welding wire container, having fingers and half-moon shaped holding tabs
    US8235211B2 (en) * 2009-08-21 2012-08-07 Sidergas Spa Retainer for welding wire container, having fingers and half-moon shaped holding tabs
    DE102010010895B3 (en) * 2010-03-03 2011-10-06 Wafios Ag Method for producing coil springs by spring winches, and spring coiling machine
    US8389901B1 (en) 2010-05-27 2013-03-05 Awds Technologies Srl Welding wire guiding liner
    DE102010047531B4 (en) 2010-10-05 2012-07-05 Wafios Ag Device for feeding wire to wire processing machines
    DE102011007183A1 (en) * 2011-04-12 2012-10-18 Wafios Ag Method and system for programming the control of a multi-axis forming machine and forming machine
    GB2495499B (en) 2011-10-11 2019-02-06 Hs Products Ltd Hybrid spring
    US8882018B2 (en) 2011-12-19 2014-11-11 Sidergas Spa Retainer for welding wire container and welding wire container with retainer
    GB2506104B (en) 2012-08-10 2018-12-12 Hs Products Ltd Resilient unit with different major surfaces
    US10294065B2 (en) 2013-06-06 2019-05-21 Sidergas Spa Retainer for a welding wire container and welding wire container
    GB201401597D0 (en) * 2014-01-30 2014-03-19 Harrison Spinks Components Ltd Coiling apparatus and method
    US10343231B2 (en) 2014-05-28 2019-07-09 Awds Technologies Srl Wire feeding system
    US10010962B1 (en) 2014-09-09 2018-07-03 Awds Technologies Srl Module and system for controlling and recording welding data, and welding wire feeder
    DE102014113159A1 (en) * 2014-09-12 2016-03-17 Scherdel Innotec Forschungs- Und Entwicklungs-Gmbh Apparatus and method for producing a spring wire, apparatus and method for marking a spring wire, apparatus and method for producing springs from a spring wire and spring wire
    US10350696B2 (en) 2015-04-06 2019-07-16 Awds Technologies Srl Wire feed system and method of controlling feed of welding wire
    US9975728B2 (en) 2015-09-10 2018-05-22 Sidergas Spa Wire container lid, wire container and wire feeding system
    US9950857B1 (en) 2016-10-17 2018-04-24 Sidergas Spa Welding wire container
    GB201708635D0 (en) 2017-05-31 2017-07-12 Hs Products Ltd Pocketed spring unit and method manufacture
    GB201708639D0 (en) 2017-05-31 2017-07-12 Hs Products Ltd Transportation Apparatus and method
    US10696512B2 (en) * 2018-06-29 2020-06-30 Arevo, Inc. Filament accumulator or tensioning assembly
    CN109985927A (en) * 2019-04-28 2019-07-09 浙江华剑智能装备有限公司 Steel wire unwinding device
    US11174121B2 (en) 2020-01-20 2021-11-16 Awds Technologies Srl Device for imparting a torsional force onto a wire
    US11278981B2 (en) 2020-01-20 2022-03-22 Awds Technologies Srl Device for imparting a torsional force onto a wire

    Family Cites Families (17)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    DE84166C (en) *
    DE1815640C3 (en) * 1968-12-19 1979-08-09 Nhk Spring Co. Ltd., Yokohama (Japan) Device for manufacturing coil springs
    DE2126695C3 (en) * 1971-05-28 1974-12-12 Bielomatik Leuze & Co, 7442 Neuffen Device for eliminating torsional stresses in wires
    JPS55153633A (en) * 1979-05-18 1980-11-29 Tokyo Seikou Kk Detecting and correcting method for rotating property of steel cord
    JPS5645240A (en) * 1979-09-19 1981-04-24 Keihin Hatsujo Kk Torsion spring manufacturing machine
    US4491003A (en) * 1981-06-23 1985-01-01 Maryland Wire Belts, Inc. Fabrication of helically-wound spirals for metal wire belts
    US4422583A (en) * 1981-12-14 1983-12-27 Usm Corporation Wire feeder
    JPS6021136A (en) * 1983-07-15 1985-02-02 Matsuoka Eng Kk Production of coil spring
    US4672549A (en) * 1984-11-01 1987-06-09 Saxton Richard E Coil spring forming machine
    JPS61137636A (en) * 1984-12-11 1986-06-25 Itaya Seisakusho:Kk Apparatus for manufacturing torsional spring
    DE3505739A1 (en) * 1985-02-20 1986-08-21 Th. Kieserling & Albrecht Gmbh & Co, 5650 Solingen DEVICE FOR BENDING CONICAL WIRE
    AT386364B (en) * 1986-07-28 1988-08-10 Evg Entwicklung Verwert Ges DEVICE FOR STRAIGHTING AND FEEDING A NATURAL HARDENER, HOT-ROLLED WIRE TO A CONSUMER
    FR2655888A1 (en) * 1989-12-20 1991-06-21 Prosys WIRE TENSION REGULATOR FOR POWERING A WINDING MACHINE FROM A NOURISHMENT.
    JP3172221B2 (en) * 1991-11-18 2001-06-04 株式会社東京コイリングマシン製作所 Manufacturing method of coil spring
    US5477715A (en) * 1992-04-08 1995-12-26 Reell Precision Manufacturing Corporation Adaptive spring winding device and method
    DE4324412C2 (en) * 1993-07-21 1998-03-19 Mayer Textilmaschf Device for adjusting the thread tension
    US5392977A (en) * 1993-11-09 1995-02-28 Sankyo Seisakusho Co. Coil material supply apparatus for an intermittent feed device

    Cited By (1)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    DE102005059427B3 (en) * 2005-12-13 2007-05-31 Technische Universität Ilmenau Arrangement for feeding screw-like wires to wire winding or bending tools comprises a wire drawing roller pair and a wire feeding parts arranged on a arc having a curve which is the same or more than the pre-curve of the wire

    Also Published As

    Publication number Publication date
    DE59502367D1 (en) 1998-07-02
    EP0796158A1 (en) 1997-09-24
    US5865051A (en) 1999-02-02
    WO1996017701A1 (en) 1996-06-13
    JPH10511311A (en) 1998-11-04
    ES2119507T3 (en) 1998-10-01

    Similar Documents

    Publication Publication Date Title
    EP0796158B1 (en) Method and device for the optimized production of helical springs on automatic spring-winding machines
    EP1847498B1 (en) Method and device for laying extended coil windings
    DE102010014386B4 (en) Method for producing coil springs by spring winches, and spring coiling machine
    EP2697008B1 (en) Process and device for the manufacture of springs
    EP2828017B1 (en) Method and device for producing helical springs by spring winding
    EP3210681B1 (en) Device and method for rolling a strip of material with variable thickness
    DE102014206603B3 (en) Method and spring coiling machine for producing coil springs by spring winds
    EP0233278B1 (en) Roller entry guide
    WO2006133662A1 (en) Method and device for regulating the tension of a coil winding wire
    EP0215006B1 (en) Device for bending conical wires
    EP0946312B1 (en) Method for automatic conducting of a straightening process
    DE102018125620A1 (en) Method and device for cutting a sheet metal blank from a continuously conveyed sheet metal strip
    WO2020224977A1 (en) Method and device for feeding an elongate workpiece to a forming machine
    DE102016214787A1 (en) Winding device and method for producing flat coils
    DE3804913C2 (en)
    EP3873687A1 (en) Aligning device for a wire processing machine and method for operating an aligning system
    DE102017200365A1 (en) Method and device for straightening a metal strip
    DE19534189A1 (en) Spring winding device with reproducible parameters and narrow tolerances
    DE4104354C2 (en) Positioning device for moving a trolley relative to a material support surface
    DE102018102914A1 (en) Device and method for feeding wire into a production plant for machine elements of electrical machines
    DE4443503A1 (en) Mfr. of helical springs by automatic spring winding machine
    DE102014206251B3 (en) Winding device and method for its operation
    DE102019206556A1 (en) Method and device for feeding an elongated workpiece to a forming machine
    DE19514486A1 (en) Mfr. of helical springs by automatic spring winding machine
    EP0938103B1 (en) Device to manufacture flexible electrical cables

    Legal Events

    Date Code Title Description
    PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

    Free format text: ORIGINAL CODE: 0009012

    17P Request for examination filed

    Effective date: 19970604

    AK Designated contracting states

    Kind code of ref document: A1

    Designated state(s): CH DE ES FR GB IT LI SE

    GRAG Despatch of communication of intention to grant

    Free format text: ORIGINAL CODE: EPIDOS AGRA

    GRAG Despatch of communication of intention to grant

    Free format text: ORIGINAL CODE: EPIDOS AGRA

    GRAG Despatch of communication of intention to grant

    Free format text: ORIGINAL CODE: EPIDOS AGRA

    GRAH Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOS IGRA

    17Q First examination report despatched

    Effective date: 19971127

    GRAH Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOS IGRA

    GRAA (expected) grant

    Free format text: ORIGINAL CODE: 0009210

    AK Designated contracting states

    Kind code of ref document: B1

    Designated state(s): CH DE ES FR GB IT LI SE

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: EP

    GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

    Effective date: 19980609

    REF Corresponds to:

    Ref document number: 59502367

    Country of ref document: DE

    Date of ref document: 19980702

    ITF It: translation for a ep patent filed

    Owner name: BARZANO' E ZANARDO MILANO S.P.A.

    ET Fr: translation filed
    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: NV

    Representative=s name: ISLER & PEDRAZZINI AG

    REG Reference to a national code

    Ref country code: ES

    Ref legal event code: FG2A

    Ref document number: 2119507

    Country of ref document: ES

    Kind code of ref document: T3

    PLBE No opposition filed within time limit

    Free format text: ORIGINAL CODE: 0009261

    STAA Information on the status of an ep patent application or granted ep patent

    Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

    26N No opposition filed
    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: SE

    Payment date: 20001212

    Year of fee payment: 6

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: SE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20011207

    REG Reference to a national code

    Ref country code: GB

    Ref legal event code: IF02

    EUG Se: european patent has lapsed

    Ref document number: 95942014.2

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: GB

    Payment date: 20021210

    Year of fee payment: 8

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: ES

    Payment date: 20021213

    Year of fee payment: 8

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: FR

    Payment date: 20021217

    Year of fee payment: 8

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: PUE

    Owner name: SPUEHL AG

    Free format text: WAFIOS MASCHINENFABRIK GMBH & CO. KOMMANDITGESELLSCHAFT#SILBERBURGSTRASSE 5#72764 REUTLINGEN (DE) -TRANSFER TO- SPUEHL AG#GRUENTALSTRASSE 23#9303 WITTENBACH (CH)

    Ref country code: CH

    Ref legal event code: NV

    Representative=s name: ARNOLD & SIEDSMA AG

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: GB

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20031206

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: ES

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20031209

    GBPC Gb: european patent ceased through non-payment of renewal fee

    Effective date: 20031206

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: FR

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20040831

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: ST

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: DE

    Payment date: 20041125

    Year of fee payment: 10

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: CH

    Payment date: 20041210

    Year of fee payment: 10

    REG Reference to a national code

    Ref country code: ES

    Ref legal event code: FD2A

    Effective date: 20031209

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: IT

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

    Effective date: 20051206

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: LI

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20051231

    Ref country code: CH

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20051231

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: DE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20060701

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: PL