EP0792999B1 - Means for transmitting informations inside the drilling string of a drilling apparatus - Google Patents

Means for transmitting informations inside the drilling string of a drilling apparatus Download PDF

Info

Publication number
EP0792999B1
EP0792999B1 EP97103081A EP97103081A EP0792999B1 EP 0792999 B1 EP0792999 B1 EP 0792999B1 EP 97103081 A EP97103081 A EP 97103081A EP 97103081 A EP97103081 A EP 97103081A EP 0792999 B1 EP0792999 B1 EP 0792999B1
Authority
EP
European Patent Office
Prior art keywords
flow
resistance body
fluid
hollow
membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP97103081A
Other languages
German (de)
French (fr)
Other versions
EP0792999A3 (en
EP0792999A2 (en
Inventor
Werner Vorhoff
Dieter Wrobel
Dagobert Feld
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Deustch Montan Technologie GmbH
Welldone Engineering GmbH
Original Assignee
Welldone Engineering GmbH
Deutsche Montan Technologie GmbH
Welldone Engineering GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Welldone Engineering GmbH, Deutsche Montan Technologie GmbH, Welldone Engineering GmbH filed Critical Welldone Engineering GmbH
Publication of EP0792999A2 publication Critical patent/EP0792999A2/en
Publication of EP0792999A3 publication Critical patent/EP0792999A3/en
Application granted granted Critical
Publication of EP0792999B1 publication Critical patent/EP0792999B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B47/00Survey of boreholes or wells
    • E21B47/12Means for transmitting measuring-signals or control signals from the well to the surface, or from the surface to the well, e.g. for logging while drilling
    • E21B47/14Means for transmitting measuring-signals or control signals from the well to the surface, or from the surface to the well, e.g. for logging while drilling using acoustic waves
    • E21B47/18Means for transmitting measuring-signals or control signals from the well to the surface, or from the surface to the well, e.g. for logging while drilling using acoustic waves through the well fluid, e.g. mud pressure pulse telemetry
    • E21B47/24Means for transmitting measuring-signals or control signals from the well to the surface, or from the surface to the well, e.g. for logging while drilling using acoustic waves through the well fluid, e.g. mud pressure pulse telemetry by positive mud pulses using a flow restricting valve within the drill pipe

Definitions

  • the invention relates to a device according to the Preamble of claim 1.
  • pressure pulses in flowing liquids Transfer information. Such an approach has proven to be particularly advantageous in drilling technology proved.
  • the pressure impulses are regularly generated by the Drilling fluid within the drill string of a drilling device transfer. Consequently, the drilling fluid used as a data carrier. In this way it succeeds, for example Data from the drill head or drill bit at the end of the To transmit the drill pipe string to the surface.
  • a pressure sensor to be provided, which in connection with an evaluation device can decode the received pressure pulses.
  • the pressure pulses can provide information about the respective Deliver the operating condition of the drill head or drill bit.
  • different methods of transmission are used and receiving pressure pulses. So you can the information, for example based on the pulse train or transmitted by varying the pulse strength.
  • a device of the embodiment described in the introduction is known from EP-A-0 290 939.
  • the pressure pulses essentially by a valve in the drilling fluid trained transmission device generated.
  • the valve has a main valve body, which in a stroke-free, just by balance the operational end position determined by the forces acting on it can be adjusted.
  • the well-known pressure pulse generation has proven itself to be successful but ultimately through a relative movement of rigid parts against each other.
  • DE-PS 41 34 609 a device for production of pressure pulses in flowing media for transmission of information, especially when drilling holes in underground mining and tunneling through the flushing channel of the Drill pipe known.
  • an impeller arranged which is in generator or motor operation switchable and alternating accordingly is operable.
  • This pressure pulse generating device has also works well, but is in terms of simplification the structure could be improved.
  • the invention has for its object a device to create the embodiment described above, which is characterized by a compact and cost-saving design, low-wear and low-energy works, an easy exchange of the moving parts and still allows the information transmits flawlessly.
  • the invention proposes that the elastic flow resistance body made of rubber or an elastic plastic, e.g. an elastomer specified Shore hardness is made.
  • the flow resistance body with regard to its Consistency and compliance to the flowing fluid to adjust.
  • This also allows the elasticity of the flow resistance body and thus ultimately the pressure pulse shape to adjust.
  • the change in the flow cross section takes place thereby as part of a control or regulation.
  • a flow resistance body with a variable flow cross-section By change the flow cross section of this flow resistance body are in the direction of flow in the area of the flow resistance body and behind it generates pressure pulses, which are in the direction of flow of the liquid flow or Propagate drilling fluid flow.
  • pressure fluctuations or pressure impulses can be attributed to the fact that with a reduced flow cross-section and the same liquid flow the flow velocity around the flow resistance body is increased around, consequently the fluid pressure partially decreases. A reduction in the flow cross-section consequently leads to a partial increase in pressure in the liquid flow.
  • the elastic Flow resistance body as a hollow body, e.g. Hollow sphere, Torus or hollow cylinder with biconcave constrictions is. This makes it easy and quick to define Adjust changes to the flow cross-section.
  • the elastic flow resistance body can also be made of be composed of several hollow bodies. This hollow body can be individually, jointly or alternately by the actuator be controllable. That way the shape of the pressure pulse, e.g. the width, affect. So a pressure pulse with double pulse width are simply created by the fact that two in one Elastic hollow spheres arranged in the flow cross-sectional plane are provided as flow resistance bodies.
  • the adjusting device is preferably mechanical, pneumatic or hydraulically operated.
  • a pneumatic one Actuation of the flow resistance body can be carried out in this way be that this flow resistance body, for example with Compressed air is applied and consequently its flow cross-section changed.
  • the elastic flow resistance body formed as a membrane attached in the drill string is, whose top in the direction of flow of the liquid flow is arranged on the periphery of the liquid flow, acted upon by the actuating device during the underside thereof is.
  • the Actuating device as a servomotor directly to the bottom of the Membrane connected.
  • the top of the membrane now protrudes - influenced by the actuator - more or less in the liquid flow in and thus reduces the Flow cross section.
  • instead of one electric actuator at the bottom of the membrane too corresponding hydraulic drives or mechanical actuators possible.
  • the adjusting device as closable by means of a control valve to which Bottom of the membrane connected bypass line for the Fluid flow is formed.
  • the control valve As long as the control valve is open, the fluid flow can consequently be unimpeded through the bypass line connected to the underside of the membrane flow through.
  • the control valve if the control valve is closed, the pressure in the bypass line increases and leads to a deformation of the membrane in such a way that the flow cross section of the liquid flow is reduced becomes.
  • the two bypass lines can each have separate control valves, so that - as in the case of several hollow bodies - for example one Doubling the width of the pressure pulse can be achieved can. However, it is preferably provided in this case that the two membranes with the two bypass lines from one common control valve can be acted upon.
  • This is best based on the schematic overview in Fig. 1 can be seen.
  • a pump P is shown, which the drilling fluid F pumps into the drill pipe string 1 so that the drilling fluid F the drill pipe string 1 in the direction indicated by arrows Flow direction.
  • these values are total in the Information generation device 3 determined and to the connected transmission device 4 passed on.
  • This Transmission device 4 now generates the pressure pulses in the Drilling fluid F.
  • the pressure impulses plant on it in the direction of flow of the drilling fluid indicated by arrows F continues to the surface.
  • the receiving device 5 is provided, which in the exemplary embodiment from a pressure sensor 5a and a heating device 5b exists.
  • the pressure pulses transmitting information is recorded and decoded.
  • the transmission device 4 has an elastic flow resistance body 6 in the liquid flow and an actuator 7 to control the flow cross section Q of the Flow resistance body 6 in time with the to be generated Pressure impulses.
  • the flow cross section Q can also be changed in the course of a regulation.
  • Fig. 2 are several embodiments of this flow resistance body 6 shown. So is in the example on the left above the elastic flow resistance body 6 as a hollow ball educated. In the figure below is a torus Flow resistance body 6 to see.
  • the image top right shows one of several hollow spheres or hollow bodies composite flow resistance body 6 can the hollow body or flow resistance body 6 individually, together or alternately from the actuating device 7 can be controlled.
  • the flow resistance body 6 is made made of an elastic plastic, in the embodiment an elastomer of specified Shore hardness.
  • the actuator 7 can be operated mechanically, pneumatically or hydraulically his. 3 and 4 is in the embodiment a hydraulic actuation of the actuating device 7 is shown.
  • a Flow resistance body 6 can be seen, which as a hollow body, in the exemplary embodiment as a cylindrical hollow body formed with cross-section variable over the length is.
  • Fig. 2 are also the respective flow cross sections Q indicated.
  • FIG. 3 shows a further embodiment of the flow resistance body 6.
  • the flow resistance body 6 designed as a membrane 8 fastened in the drill string 1, the top of which in the direction of flow indicated by arrows Liquid flow of drilling fluid F at the periphery 9 of the liquid flow is arranged during which The bottom of the actuator 7 can be acted upon.
  • the adjusting device 7 as means a control valve 10 closable to the bottom of the Membrane 8 connected bypass line 11 for the liquid flow the drilling fluid F is formed.
  • FIG. 3 are two opposite one another Membranes 8a, 8b on the respective periphery 9 the liquid flow of drilling fluid F with respective Bypass lines 11a, 11b realized.
  • This narrowing of the fluid flow can be determined by changing the flow cross-section Recognize Q
  • the im left part of Fig. 3 reached flow cross section in the right part of Fig. 3 dashed when generating the pressure pulses indicated.
  • This reduction in the flow cross-section Q now causes the flow velocity to change the drilling fluid F in the area of the two membranes 8a, 8b increases, which is simultaneous with a partial Decrease in pressure is connected, so that a total of a pressure pulse is generated, which is in the direction of flow of the liquid stream unhindered to the receiving device 5 or to Pressure sensor 5a can spread.
  • Fig. 4 shows another embodiment of the Flow resistance body 6, which here as a cylindrical Hollow body or hollow cylinder with biconcave constrictions is executed.
  • the size of this elastic hollow body leaves similar to the embodiment according to FIG. 3 vary in that the hollow body by means of the control valve 10 more or less "inflated” with drilling fluid F becomes. This changes the flow cross section Q in a manner comparable to that in the exemplary embodiment shown in FIG. 3.

Abstract

The appts. comprises an information generator, connected to a transmitter unit (4) producing the pressure impulses. At the surface, a receiver intercepts and evaluates the signals. In the novel transmitter unit, within the flow, is an elastic flow resistance body (6). An actuator causes variation in the cross section (Q) available for flow. These variations correspond to the required signal pressure impulses.

Description

Die Erfindung betrifft eine Vorrichtung gemäß dem Oberbegriff des Anspruchs 1.The invention relates to a device according to the Preamble of claim 1.

Es ist bekannt, mittels Druckimpulsen in strömenden Flüssigkeiten Informationen zu übertragen. Eine derartige Vorgehensweise hat sich insbesondere in der Bohrtechnik als vorteilhaft erwiesen. Dabei werden die Druckimpulse regelmäßig durch die Böhrspülflüssigkeit innerhalb des Bohrrohrstranges einer Bohrvorrichtung übertragen. Folglich wird die Bohrspülflüssigkeit als Datenträger eingesetzt. Auf diese Weise gelingt es, beispielsweise Daten vom Bohrkopf bzw. Bohrmeißel am Ende des Bohrrohrsstranges bis zur Oberfläche zu übermitteln. Es ist lediglich erforderlich, als Empfangseinrichtung einen Drucksensor vorzusehen, welcher in Verbindung mit einer Auswertevorrichtung die empfangenen Druckimpulse dekodieren kann. Dabei können die Druckimpulse Informationen über den jeweiligen Betriebszustand des Bohrkopfes bzw. Bohrmeißels liefern. In der Bohrtechnik wird mit verschiedenen Methoden des Sendens und Empfangens von Druckimpulsen gearbeitet. So lassen sich die Informationen beispielsweise anhand der Impulsfolge oder durch Variation der Impulsstärke übertragen. Weiter kennt man die sogenannte positive oder negative Druckimpulstechnik, je nach dem ob eine Druckerhöhung oder Druckminderung in der strömenden Bohrspülflüssigkeit erzeugt wird.It is known to use pressure pulses in flowing liquids Transfer information. Such an approach has proven to be particularly advantageous in drilling technology proved. The pressure impulses are regularly generated by the Drilling fluid within the drill string of a drilling device transfer. Consequently, the drilling fluid used as a data carrier. In this way it succeeds, for example Data from the drill head or drill bit at the end of the To transmit the drill pipe string to the surface. It is only required as a receiving device a pressure sensor to be provided, which in connection with an evaluation device can decode the received pressure pulses. The pressure pulses can provide information about the respective Deliver the operating condition of the drill head or drill bit. In drilling technology, different methods of transmission are used and receiving pressure pulses. So you can the information, for example based on the pulse train or transmitted by varying the pulse strength. One knows further the so-called positive or negative pressure pulse technique, each after whether a pressure increase or pressure decrease in the flowing drilling fluid is generated.

Eine Vorrichtung der eingangs beschriebenen Ausführungsform ist aus der EP-A-0 290 939 bekannt. Hier werden die Druckimpulse im wesentlichen durch eine als Ventil in der Bohrspülflüssigkeit ausgebildete Übertragungseinrichtung erzeugt. Zu diesem Zweck weist das Ventil einen Hauptventilkörper auf, welcher in eine anschlagfreie, lediglich durch das Gleichgewicht der auf ihn einwirkenden Kräfte bestimmte Betriebsendstellung verstellt werden kann. Zusätzlich ist ein Hilfsventil vorgesehen, welches mittels der Informationserzeugungseinrichtung angesteuert wird und über hydraulische Kräfte auf den Hauptventilkörper einwirkt und diesen verstellt. Dadurch soll im großen und ganzen ein stoßfreier Betrieb des Ventils erreicht werden und mechanischer Verschleiß vermieden werden. - Die bekannte Druckimpulserzeugung hat sich bewährt, erfolgt aber letztlich durch eine Relativbewegung starrer Teile gegeneinander.A device of the embodiment described in the introduction is known from EP-A-0 290 939. Here are the pressure pulses essentially by a valve in the drilling fluid trained transmission device generated. To for this purpose the valve has a main valve body, which in a stroke-free, just by balance the operational end position determined by the forces acting on it can be adjusted. There is also an auxiliary valve provided which by means of the information generating device is controlled and hydraulic forces on the Main valve body acts and adjusts it. This is supposed to on the whole achieved smooth operation of the valve and mechanical wear can be avoided. - The well-known pressure pulse generation has proven itself to be successful but ultimately through a relative movement of rigid parts against each other.

Aufgrund dieser Relativbewegungen ist es regelmäßig erforderlich, verschleißhemmende Maßnahmen zwischen den sich gegeneinander bewegenden Teilen vorzusehen. Dies ist aufwendig und teuer. Darüber hinaus sind die bekannten Vorrichtungen schwierig zu fertigen, bauen relativ groß und benötigen folglich zur Erzeugung der Druckimpulse relativ viel Energie.Because of these relative movements, it is regularly necessary anti-wear measures between those against each other to provide moving parts. This is expensive and expensive. In addition, the known devices are difficult to manufacture, build relatively large and consequently need to Generating the pressure pulses relatively much energy.

Endlich ist aus der DE-PS 41 34 609 eine Vorrichtung zur Erzeugung von Druckimpulsen in strömenden Medien zur Übertragung von Informationen, insbesondere beim Herstellen von Bohrungen im untertägigen Berg- und Tunnelbau durch den Spülkanal des Bohrrohres bekannt. Hierbei ist im Spülkanal des Bohrrohres ein Laufrad angeordnet, welches in Generator- oder Motorbetrieb umschaltbar ausgebildet und entsprechend abwechselnd betreibbar ist. Diese Druckimpulserzeugungsvorrichtung hat sich ebenfalls bewährt, ist jedoch in bezug auf eine Vereinfachung des Aufbaus verbesserungsfähig.Finally, from DE-PS 41 34 609 a device for production of pressure pulses in flowing media for transmission of information, especially when drilling holes in underground mining and tunneling through the flushing channel of the Drill pipe known. Here is in the irrigation channel of the drill pipe an impeller arranged, which is in generator or motor operation switchable and alternating accordingly is operable. This pressure pulse generating device has also works well, but is in terms of simplification the structure could be improved.

Der Erfindung liegt die Aufgabe zugrunde, eine Vorrichtung der eingangs beschriebenen Ausführungsform zu schaffen, welche sich durch kompakte und kostensparende Bauweise auszeichnet, verschleiß- und energiearm arbeitet, einen leichten Austausch der beweglichen Teile ermöglicht und dennoch die Informationen einwandfrei überträgt.The invention has for its object a device to create the embodiment described above, which is characterized by a compact and cost-saving design, low-wear and low-energy works, an easy exchange of the moving parts and still allows the information transmits flawlessly.

Zur Lösung dieser Aufgabe schlägt die Erfindung vor, daß der elastische Strömungswiderstandskörper aus Gummi oder einem elastischen Kunststoff, z.B.einem Elastomer vorgegebener Shore-Härte gefertigt ist. Auf diese Weise läßt sich der Strömungswiderstandskörper hinsichtlich seiner Konsistenz und Nachgiebigkeit an die jeweils strömende Flüssigkeit anpassen. Außerdem läßt sich hierdurch die Elastizität des Strömungswiderstandskörpers und damit letztlich die Druckimpulsform einstellen.To achieve this object, the invention proposes that the elastic flow resistance body made of rubber or an elastic plastic, e.g. an elastomer specified Shore hardness is made. In this way can the flow resistance body with regard to its Consistency and compliance to the flowing fluid to adjust. This also allows the elasticity of the flow resistance body and thus ultimately the pressure pulse shape to adjust.

Die Veränderung des Strömungsquerschnittes erfolgt dabei im Rahmen einer Steuerung oder Regelung. Im folgenden sei auf eine Steuerung abgestellt. - Durch diese Maßnahmen wird zunächst einmal erreicht, daß sich im Flüssigkeitsstrom bzw. Bohrspülflüssigkeitsstrom ein Strömungswiderstandskörper mit veränderlichem Strömungsquerschnitt befindet. Durch Veränderung des Strömungsquerschnittes dieses Strömungswiderstandskörpers werden in Fließrichtung im Bereich des Strömungswiderstandskörpers und dahinter Druckimpulse erzeugt, welche sich in Fließrichtung des Flüssigkeitsstromes bzw. Bohrspülflüssigkeitsstromes fortpflanzen. Diese Druckschwankungen bzw. Druckimpulse lassen sich darauf zurückführen, daß bei verringertem Strömungsquerschnitt und gleichem Flüssigkeitsstrom die Strömungsgeschwindigkeit um den Strömungswiderstandskörper herum erhöht ist, folglich der Flüssigkeitsdruck partiell sinkt. Eine Verkleinerung des Strömungsquerschnittes führt demzufolge zu einer partiellen Druckerhöhung im Flüssigkeitsstrom. Jedenfalls lassen sich auf diese Weise gezielt Druckschwankungen bzw. Druckimpulse im Flüssigkeitsstrom erzeugen. Dies gelingt aufgrund der Elastizität des Strömungswiderstandskörpers in reproduzierbarer Weise, wobei der vorbeschriebene Vorgang beliebig oft und nahezu verschleißfrei wiederholt werden kann. Außerdem sind die Raktionszeiten des elastischen Strömungswiderstandskörpers gering, so daß einwandfreie Anstiegs- und Abfallflanken der Druckimpulse erzeugt werden können. Auf diese Weise ist eine ungestörte Informationsübermittlung nach wie vor möglich, da die erzeugten Druckimpulse eine ausreichende Flankensteilheit aufweisen, um anschließende (digitale) Auswertevorrichtungen ansteuern zu können. Hinzu kommt, daß die erfindungsgemäße Vorrichtung insgesamt kompakt und äußerst kostensparend aufgebaut ist. Denn es wird auf die komplizierte mechanische Bearbeitung von Teilen eines Ventilkörpers verzichtet. Schlußendlich lassen sich die beweglichen Teile, d.h. der elastische Strömungswiderstandskörper, leicht austauschen sowie energiearm hinsichtlich des gewünschten Strömungsquerschnittes ansteuern.The change in the flow cross section takes place thereby as part of a control or regulation. Hereinafter be based on a controller. - Through these measures is first achieved in the liquid flow or drilling fluid flow a flow resistance body with a variable flow cross-section. By change the flow cross section of this flow resistance body are in the direction of flow in the area of the flow resistance body and behind it generates pressure pulses, which are in the direction of flow of the liquid flow or Propagate drilling fluid flow. These pressure fluctuations or pressure impulses can be attributed to the fact that with a reduced flow cross-section and the same liquid flow the flow velocity around the flow resistance body is increased around, consequently the fluid pressure partially decreases. A reduction in the flow cross-section consequently leads to a partial increase in pressure in the liquid flow. Anyway, you can rely on this Targeted pressure fluctuations or pressure pulses in the liquid flow produce. This is possible due to the elasticity of the Flow resistance body in a reproducible manner, wherein the process described above as often and almost free of wear can be repeated. In addition, the raction times of the elastic flow resistance body low, so that perfect rising and falling edges of the Pressure pulses can be generated. That way is one undisturbed transmission of information is still possible because the pressure pulses generated have a sufficient slope have subsequent (digital) evaluation devices to be able to control. In addition, the invention Device overall compact and extremely cost-effective is. Because it gets complicated on the mechanical No parts of a valve body are machined. Finally can the moving parts, i.e. the elastic Flow resistance body, easy to replace and low energy control with regard to the desired flow cross-section.

Weitere erfindungswesentliche Merkmale sind im folgenden aufgeführt. So ist vorzugsweise vorgesehen, daß der elastische Strömungswiderstandskörper als Hohlkörper, z.B. Hohlkugel, Torus oder Hohlzylinder mit bikonkaven Einschnürungen ausgebildet ist. Hierdurch lassen sich einfach und schnell definierte Änderungen des Strömungsquerschnittes einstellen. Weiter kann der elastische Strömungswiderstandskörper aus mehreren Hohlkörpern zusammengesetzt sein. Diese Hohlkörper können einzeln, gemeinsam oder abwechselnd von der Stellvorrichtung ansteuerbar ausgebildet sein. Auf diese Weise läßt sich die Form des Druckimpulses, z.B. die Breite, beeinflussen. So kann ein Druckimpuls mit doppelter Impulsbreite schlicht und einfach dadurch erzeugt werden, daß zwei in einer Strömungsquerschnittsebene angeordnete elastische Hohlkugeln als Strömungswiderstandskörper vorgesehen sind. Diese beiden Hohlkugeln können nun so angesteuert werden, daß zunächst der Strömungsquerschnitt der einen Hohlkugel und anschließend der Strömungsquerschnitt der anderen Hohlkugel variiert wird. Auf diese Weise ist es möglich, einen definierten Druckimpuls mit beispielsweise doppelter Breite im Vergleich zur gleichzeitigen Ansteuerung der beiden Hohlkugeln zu erzeugen.Further features essential to the invention are listed below. It is preferably provided that the elastic Flow resistance body as a hollow body, e.g. Hollow sphere, Torus or hollow cylinder with biconcave constrictions is. This makes it easy and quick to define Adjust changes to the flow cross-section. The elastic flow resistance body can also be made of be composed of several hollow bodies. This hollow body can be individually, jointly or alternately by the actuator be controllable. That way the shape of the pressure pulse, e.g. the width, affect. So a pressure pulse with double pulse width are simply created by the fact that two in one Elastic hollow spheres arranged in the flow cross-sectional plane are provided as flow resistance bodies. These two Hollow balls can now be controlled so that the first Flow cross section of a hollow sphere and then the Flow cross section of the other hollow sphere is varied. On this way it is possible to have a defined pressure pulse for example twice the width compared to the simultaneous Generate control of the two hollow spheres.

Die Stellvorrichtung ist vorzugsweise mechanisch, pneumatisch oder hydraulisch betätigbar. Es können mechanische Stelltriebe zur Veränderung des Strömungsquerschnittes eingesetzt werden, und zwar in der Weise, daß diese mechanischen Stelltriebe außen am Strömungswiderstandskörper angreifen und diesen Körper zusammendrücken oder auseinanderziehen. Eine pneumatische Betätigung des Strömungswiderstandskörpers kann so ausgeführt sein, daß dieser Strömungswiderstandskörper beispielsweise mit Druckluft beaufschlagt wird und infolgedessen seinen Strömungsquerschnitt verändert. In gleicher Weise ist auch eine hydraulische Betätigung denkbar, in dem beispielsweise der als Hohlkörper ausgeführte Strömungswiderstandskörper mit einer Hydraulikflüssigkeit entsprechend beaufschlagt wird. Weiter ist bevorzugt vorgesehen, daß der elastische Strömungswiderstandskörper als im Bohrstrang befestigte Membran ausgebildet ist, deren Oberseite in Fließrichtung des Flüssigkeitsstromes an der Peripherie des Flüssigkeitsstromes angeordnet ist, während deren Unterseite von der Stellvorrichtung beaufschlagbar ist. Hierdurch läßt sich eine einfache Variation des Strömungsquerschnittes erreichen. So kann beispielsweise die Stellvorrichtung als Stellmotor direkt an die Unterseite der Membran angeschlossen sein. Die Oberseite der Membran ragt nun - beeinflußt von der Stellvorrichtung - mehr oder minder in den Flüssigkeitsstrom hinein und reduziert solchermaßen den Strömungsquerschnitt. Selbstverständlich sind anstelle eines elektrischen Stellmotores an der Unterseite der Membran auch entsprechende Hydrauliktriebe oder mechanische Stelltriebe möglich. Jedenfalls gelingt immer eine direkte und verzögerungsfreie definierte Beaufschlagung der Membran und damit die Erzeugung von Druckimpulsen einwandfreier Charakteristik. In diesem Zusammenhang ist weiter vorgesehen, daß die Stellvorrichtung als mittels eines Steuerventil verschließbare, an die Unterseite der Membran angeschlossenen Bypaßleitung für den Flüssigkeitsstom ausgebildet ist. Solange das Steuerventil geöffnet ist, kann folglich der Flüssigkeitsstom ungehindert durch die an die Unterseite der Membran angeschlossene Bypaßleitung hindurchfließen. Wenn jedoch das Steuerventil geschlossen wird, so steigt der Druck in der Bypaßleitung an und führt zu einer Verformung der Membran in der Weise, daß der Strömungsquerschnitt des Flüssigkeitsstromes verringert wird. Diesbezüglich ist es auch möglich, zwei sich gegenüberliegende Membranen an der jeweiligen Peripherie des Flüssigkeitsstromes mit jeweiligen Bypaßleitungen Vorzusehen. Auf diese Weise wird der Flüssigkeitsstrom nicht nur einseitig, sondern praktisch zweiseitig eingeengt. Die beiden Bypaßleitungen können jeweils getrennte Steuerventile aufweisen, so daß - wie im Fall mehrerer Hohlkörper - beispielsweise eine Verdoppelung der Breite des Druckimpulses erreicht werden kann. Vorzugsweise ist jedoch in diesem Fall vorgesehen, daß die beiden Membranen mit den beiden Bypaßleitungen von einem gemeinsamen Steuerventil beaufschlagbar sind.The adjusting device is preferably mechanical, pneumatic or hydraulically operated. There can be mechanical actuators be used to change the flow cross-section, in such a way that these mechanical actuators attack on the outside of the flow resistance body and this body squeeze or pull apart. A pneumatic one Actuation of the flow resistance body can be carried out in this way be that this flow resistance body, for example with Compressed air is applied and consequently its flow cross-section changed. In the same way is one hydraulic actuation conceivable, in which, for example, as Flow body with a hollow body Hydraulic fluid is applied accordingly. Further it is preferably provided that the elastic flow resistance body formed as a membrane attached in the drill string is, whose top in the direction of flow of the liquid flow is arranged on the periphery of the liquid flow, acted upon by the actuating device during the underside thereof is. This allows a simple variation of the Reach flow cross-section. For example, the Actuating device as a servomotor directly to the bottom of the Membrane connected. The top of the membrane now protrudes - influenced by the actuator - more or less in the liquid flow in and thus reduces the Flow cross section. Of course instead of one electric actuator at the bottom of the membrane too corresponding hydraulic drives or mechanical actuators possible. In any case, a direct and delay-free approach is always successful Defined loading of the membrane and thus the Generation of pressure pulses with perfect characteristics. In in this context it is further provided that the adjusting device as closable by means of a control valve to which Bottom of the membrane connected bypass line for the Fluid flow is formed. As long as the control valve is open, the fluid flow can consequently be unimpeded through the bypass line connected to the underside of the membrane flow through. However, if the control valve is closed, the pressure in the bypass line increases and leads to a deformation of the membrane in such a way that the flow cross section of the liquid flow is reduced becomes. In this regard, it is also possible to have two opposite one another Membranes on the respective periphery of the liquid flow to be provided with respective bypass lines. On this way the liquid flow is not only one-sided, but practically narrowed on two sides. The two bypass lines can each have separate control valves, so that - as in the case of several hollow bodies - for example one Doubling the width of the pressure pulse can be achieved can. However, it is preferably provided in this case that the two membranes with the two bypass lines from one common control valve can be acted upon.

Die Erfindung wird im folgenden anhand einer lediglich ein Ausführungsbeispiel darstellenden Zeichnung näher erläutert; es zeigen:

Fig. 1
einen Bohrrohrstrang im Bohrloch einer Tiefbohrung in schematischer Ansicht,
Fig. 2
mehrere Ausführungsformen des erfindungsgemäßen Strömungswiderstandskörpers,
Fig. 3
einen als Membran ausgebildeten Strömungswiderstandskörper im Bohrstrang, links bei unbelasteter Membran, rechts bei belasteter Membran unter Erzeugung eines Druckimpulses und
Fig. 4
eine andere Ausführungsform des Strömungswiderstandskörpers als Hohlkörper im Bohrrohrstrang in schematischer Ansicht.
The invention is explained in more detail below with the aid of a drawing which represents only one exemplary embodiment; show it:
Fig. 1
a drill pipe string in the borehole of a deep hole in a schematic view,
Fig. 2
several embodiments of the flow resistance body according to the invention,
Fig. 3
a flow resistance body in the form of a membrane in the drill string, on the left when the membrane is not loaded, on the right when the membrane is loaded, producing a pressure pulse and
Fig. 4
another embodiment of the flow resistance body as a hollow body in the drill pipe in a schematic view.

In den Figuren ist eine Vorrichtung zum Übertragen von Informationen innerhalb eines Bohrrohrstranges 1 einer Bohrvorrichtung 2 mittels Druckimpulsen in einer strömenden Flüssigkeit, insbesondere Bohrspülflüssigkeit F, mit einer Informationserzeugungseinrichtung 3, mit einer an die Informationserzeugungseinrichtung 3 angeschlossenen Übertragungseinrichtung 4 zur Erzeugung der Druckimpulse in der Flüssigkeit bzw. Bohrspülflüssigkeit F, und mit einer Empfangseinrichtung 5 zum Empfangen und Auswerten der durch die Druckimpulse übertragenden Informationen gezeigt. Dies ist am besten anhand der schematischen Übersicht in Fig. 1 zu erkennen. Hier ist zusätzlich eine Pumpe P gezeigt, welche die Bohrspülflüssigkeit F in den Bohrrohrstrang 1 so pumpt, daß die Bohrspülflüssigkeit F den Bohrrohrstrang 1 in der mit Pfeilen angedeuteten Fließrichtung durchströmt. Nach dem Austreten durch einen Drehbohrmeißel D am Ende des Bohrrohrstranges 1 tritt die Bohrspülflüssigkeit F in das erzeugte Bohrloch B aus. Dies geschieht in der Weise, daß die Bohrspülflüssigkeit F in einem zwischen Bohrrohrstrang 1 und Bohrloch B gebildeten Ringraum S wieder aufwärts strömt. Dies ist ebenfalls durch Pfeile angedeutet. Die Druckimpulse werden nun in der Übertragungseinrichtung 4 erzeugt. Sie liefern Informationen über den Betriebszustand des Bohrkopfes bzw. Bohrmeißels - im Ausführungsbeispiel des Drehbohrmeißels D. Bei den den Betriebszustand des Drehbohrmeißels D bzw. Bohrkopfes kennzeichnenden Werten handelt es sich beispielsweise um dessen Neigung, seinen Rollwinkel, die Temperatur, den Druck, das aufgebrachte Drehmoment oder auch die jeweilige Richtung des Bohrkopfes bzw. Drehbohrmeißels D. Diese Aufzählung ist nicht erschöpfend, da selbstverständlich auch andere Werte übertragen werden können. Jedenfalls werden diese Werte insgesamt in der Informationserzeugungseinrichtung 3 ermittelt und an die angeschlossenen Übertragungseinrichtung 4 weitergegeben. Diese Übertragungseinrichtung 4 erzeugt nun die Druckimpulse in der Bohrspülflüssigkeit F. Die Druckimpulse pflanzen sich darauf in der durch Pfeile angedeuteten Fließrichtung der Bohrspülflüssigkeit F bis zur Oberfläche fort. An dieser Stelle ist die Empfangseinrichtung 5 vorgesehen, welche im Ausführungsbeispiel aus einem Drucksensor 5a und einer Auswärtevorrichtung 5b besteht. Hier werden die durch die Druckimpulse übertragenden Informationen erfaßt und dekodiert.In the figures is a device for transmitting information within a drill pipe string 1 of a drilling device 2 by means of pressure pulses in a flowing liquid, in particular drilling fluid F, with an information generating device 3, with one to the information generating device 3 connected transmission device 4 to generate the pressure pulses in the liquid or drilling fluid F, and with a receiving device 5 for Receiving and evaluating those transmitted by the pressure pulses Information shown. This is best based on the schematic overview in Fig. 1 can be seen. Here is additional a pump P is shown, which the drilling fluid F pumps into the drill pipe string 1 so that the drilling fluid F the drill pipe string 1 in the direction indicated by arrows Flow direction. After exiting through a rotary drill bit D occurs at the end of the drill pipe string 1 the drilling fluid F into the borehole B produced. This happens in such a way that the drilling fluid F in one Annulus S formed between drill pipe string 1 and borehole B. flows up again. This is also indicated by arrows. The pressure pulses are now in the transmission device 4 generated. They provide information about the operating status of the drill head or drill bit - in the embodiment of the rotary drill bit D. At the operating state of the rotary drill bit D or drill head Values, for example, its inclination, its roll angle, the temperature, the pressure, the applied Torque or the respective direction of the drill head or rotary drill bit D. This list is not exhaustive, because of course other values are transferred can be. In any case, these values are total in the Information generation device 3 determined and to the connected transmission device 4 passed on. This Transmission device 4 now generates the pressure pulses in the Drilling fluid F. The pressure impulses plant on it in the direction of flow of the drilling fluid indicated by arrows F continues to the surface. At this point the receiving device 5 is provided, which in the exemplary embodiment from a pressure sensor 5a and a heating device 5b exists. Here are the pressure pulses transmitting information is recorded and decoded.

Die Übertragungseinrichtung 4 weist einen elastischen Strömungswiderstandskörper 6 im Flüssigkeitsstrom und eine Stellvorrichtung 7 zur Steuerung des Strömungsquerschnittes Q des Strömungswiderstandskörpers 6 im Takt der zu erzeugenden Druckimpulse auf. Selbstverständlich kann der Strömungsquerschnitt Q auch im Zuge einer Regelung verändert werden. In Fig. 2 sind mehrere Ausführungsformen dieses Strömungswiderstandskörpers 6 gezeigt. So ist im Ausführungsbeipiel links oben der elastische Strömungswiderstandskörper 6 als Hohlkugel ausgebildet. In der Abbildung darunter ist ein als Torus ausgeführter Strömungswiderstandskörper 6 zu sehen. Die Abbildung rechts oben zeigt einen aus mehreren Hohlkugeln bzw. Hohlkörpern zusammengesetzten Strömungswiderstandskörper 6. Dabei können die Hohlkörper bzw. Strömungswiderstandskörper 6 einzeln, gemeinsam oder abwechselnd von der Stellvorrichtung 7 angesteuert werden. Der Strömungswiderstandskörper 6 besteht aus einem elastischen Kunststoff, im Ausführungsbeispiel aus einem Elastomer vorgegebener Shore-Härte. Die Stellvorrichtung 7 kann mechanisch, pneumatisch oder hydraulisch betätigbar sein. Im Ausführungsbeispiel nach den Fig. 3 und 4 ist eine hydraulische Betätigung der Stellvorrichtung 7 gezeigt. Endlich ist in der Abbildung rechts unten in der Fig. 2 ein Strömungswiderstandskörper 6 zu erkennen, welcher als Hohlkörper, im Ausführungsbeispiel als zylinderförmiger Hohlkörper mit über die Länge verändertlichen Querschnitt ausgebildet ist. In jeder Abbildung der Fig. 2 sind darüber hinaus die jeweiligen Strömungsquerschnitte Q angedeutet.The transmission device 4 has an elastic flow resistance body 6 in the liquid flow and an actuator 7 to control the flow cross section Q of the Flow resistance body 6 in time with the to be generated Pressure impulses. Of course, the flow cross section Q can also be changed in the course of a regulation. In Fig. 2 are several embodiments of this flow resistance body 6 shown. So is in the example on the left above the elastic flow resistance body 6 as a hollow ball educated. In the figure below is a torus Flow resistance body 6 to see. The image top right shows one of several hollow spheres or hollow bodies composite flow resistance body 6 can the hollow body or flow resistance body 6 individually, together or alternately from the actuating device 7 can be controlled. The flow resistance body 6 is made made of an elastic plastic, in the embodiment an elastomer of specified Shore hardness. The actuator 7 can be operated mechanically, pneumatically or hydraulically his. 3 and 4 is in the embodiment a hydraulic actuation of the actuating device 7 is shown. Finally in the picture at the bottom right in Fig. 2 is a Flow resistance body 6 can be seen, which as a hollow body, in the exemplary embodiment as a cylindrical hollow body formed with cross-section variable over the length is. In each figure of Fig. 2 are also the respective flow cross sections Q indicated.

Die Fig. 3 zeigt eine weitere Ausführungsform des Strömungswiderstandskörpers 6. Denn hier ist der Strömungswiderstandskörper 6 als im Bohrstrang 1 befestigte Membran 8 ausgebildet, deren Oberseite in mit Pfeilen angedeuteter Fließrichtung des Flüssigkeitsstromes der Bohrspülflüssigkeit F an der Peripherie 9 des Flüssigkeitsstomes angeordnet ist, während deren Unterseite von der Stellvorrichtung 7 beaufschlagbar ist. Im Ausführungsbeispiel ist die Stellvorrichtung 7 als mittels eines Steuerventils 10 verschließbare, an die Unterseite der Membran 8 angeschlossene Bypaßleitung 11 für den Flüssigkeitsstrom der Bohrspülflüssigkeit F ausgebildet. Nach dem in der Fig. 3 gezeigten Ausführungsbeispiel sind zwei sich gegenüberliegende Membranen 8a, 8b an der jeweiligen Peripherie 9 des Flüssigkeitsstromes der Bohrspülflüssigkeit F mit jeweiligen Bypaßleitungen 11a, 11b verwirklicht. Dabei sind die beiden Membranen 8a, 8b mit den beiden Bypaßleitungen 11a, 11b von dem gemeinsamen Steuerventil 10 beaufschlagbar. Im linken Teil der Fig. 3 sind die beiden Membranen 8a, 8b im Ruhezustand gezeigt, d.h. hier fließt der Flüssigkeitsstrom der Bohrspülflüssigkeit F ungehindert durch die beiden Bypaßleitungen 11a, 11b am Steuerventil 10 vorbei wieder zurück in den Hauptstrom. Zur Erzeugung von Druckimpulsen wird nun das Steuerventil 10 geschlossen, so daß sich in den Bypaßleitungen 11a,11b der nach wie vor einströmende Flüssigkeitsstrom der Bohrspülflüssigkeit F aufstaut. Dies hat einen Druckanstieg in den Bypaßleitungen 11a, 11b zur Folge, welcher dazu führt, daß sich die beiden Membranen 8a, 8b - wie im rechten Teil der Fig. 3 gezeigt - in den Flüssigkeitsstrom wölben und den Flüssigkeitsstrom verengen. Diese Verengung des Flüssigkeitsstromes läßt sich anhand der Änderung des Strömungsquerschnittes Q erkennen. Zur Verdeutlichung ist deshalb der im linken Teil der Fig. 3 erreichte Strömungsquerschnitt auch im rechten Teil der Fig. 3 bei Erzeugung der Druckimpulse gestrichtelt angedeutet. Diese Verringerung des Strömungsquerschnittes Q führt nun dazu, daß sich die Strömungsgeschwindigkeit der Bohrspülflüssigkeit F im Bereich der beiden Membranen 8a, 8b erhöht, was gleichzeitig mit einer partiellen Druckabnahme verbunden ist, so daß insgesamt ein Druckimpuls erzeugt wird, welcher sich in Fließrichtung des Flüssigkeitsstromes ungehindert bis zur Empfangseinrichtung 5 bzw. bis zum Drucksensor 5a ausbreiten kann.3 shows a further embodiment of the flow resistance body 6. Because here is the flow resistance body 6 designed as a membrane 8 fastened in the drill string 1, the top of which in the direction of flow indicated by arrows Liquid flow of drilling fluid F at the periphery 9 of the liquid flow is arranged during which The bottom of the actuator 7 can be acted upon. in the The exemplary embodiment is the adjusting device 7 as means a control valve 10 closable to the bottom of the Membrane 8 connected bypass line 11 for the liquid flow the drilling fluid F is formed. After the in The embodiment shown in FIG. 3 are two opposite one another Membranes 8a, 8b on the respective periphery 9 the liquid flow of drilling fluid F with respective Bypass lines 11a, 11b realized. Here are the two membranes 8a, 8b with the two bypass lines 11a, 11b acted upon by the common control valve 10. In the left Part of Fig. 3 are the two membranes 8a, 8b in the idle state shown, i.e. here the liquid flow flows Drilling fluid F unhindered by the two bypass lines 11a, 11b past the control valve 10 back into the main stream. This is now used to generate pressure pulses Control valve 10 closed so that it is in the bypass lines 11a, 11b the liquid flow still flowing in of drilling fluid F. This has an increase in pressure in the bypass lines 11a, 11b which leads to this leads that the two membranes 8a, 8b - as in the right Part of Fig. 3 shown - bulge into the liquid flow and restrict the flow of liquid. This narrowing of the fluid flow can be determined by changing the flow cross-section Recognize Q For clarification, the im left part of Fig. 3 reached flow cross section in the right part of Fig. 3 dashed when generating the pressure pulses indicated. This reduction in the flow cross-section Q now causes the flow velocity to change the drilling fluid F in the area of the two membranes 8a, 8b increases, which is simultaneous with a partial Decrease in pressure is connected, so that a total of a pressure pulse is generated, which is in the direction of flow of the liquid stream unhindered to the receiving device 5 or to Pressure sensor 5a can spread.

Endlich zeigt die Fig. 4 eine andere Ausführungsform des Strömungswiderstandskörpers 6, welcher hier als zylindrischer Hohlkörper bzw. Hohlzylinder mit bikonkaven Einschnürungen ausgeführt ist. Die Größe dieses elastischen Hohlkörpers läßt sich - ähnlich wie bei der Ausführungsform nach Fig. 3 - dadurch variieren, daß der Hohlkörper mittels des Steuerventiles 10 mehr oder minder mit Bohrspülflüssigkeit F "aufgepumpt" wird. Dadurch verändert sich der Strömungsquerschnitt Q in vergleichbarer Weise wie im in der Fig. 3 gezeigten Ausführungsbeispiel.Finally, Fig. 4 shows another embodiment of the Flow resistance body 6, which here as a cylindrical Hollow body or hollow cylinder with biconcave constrictions is executed. The size of this elastic hollow body leaves similar to the embodiment according to FIG. 3 vary in that the hollow body by means of the control valve 10 more or less "inflated" with drilling fluid F becomes. This changes the flow cross section Q in a manner comparable to that in the exemplary embodiment shown in FIG. 3.

Claims (9)

  1. A device for transmitting data within a train of drill-hole tubes (1) of a drilling jig (2) by means of pressure impulses in a flow of fluid, in particular drilling fluid (F), with a data-generating device (3), with a transmitter device (4) connected to the data-generating device (3) for generating the pressure impulses in the fluid, and with a receiver device (5) for receiving and evaluating the data transmitted by the pressure impulses, in which the transmitter device (4) has an elastic flow-resistance body (6) in the fluid flow and a regulating device (7) for changing the flow cross-section (Q) of the flow-resistance body (6) in rhythm with the pressure impulses to be generated, characterised in that the flow-resistance body (6) is made of rubber or of an elastic plastics material, e.g. an elastomer of stipulated Shore hardness.
  2. A device according to claim 1, characterised in that the flow-resistance body (6) is in the form of an elastic hollow body, e.g. a hollow sphere, torus or hollow cylinder with biconcave areas of reduced cross-section.
  3. A device according to Claim 1 or 2, characterised in that the flow-resistance body (6) is composed of a plurality of hollow bodies.
  4. A device according to Claim 3, characterised in that the hollow bodies are drivable by the regulating device (7) individually, jointly, or one after another.
  5. A device according to one of Claims 1 to 4, characterised in that the regulating device (7) is actuable mechanically, pneumatically or hydraulically.
  6. A device according to one of Claims 1 to 5, characterised in that the flow-resistance body (6) is in the form of a membrane (8) fixed within the tube train (1), the upper face of the membrane being arranged in the direction of flow of the fluid flow at the periphery (9) of the fluid flow, while its lower face can be acted upon by the regulating device (7).
  7. A device according to Claim 6, characterised in that the regulating device (7) is in the form of a by-pass duct (11) which is closable by means of a control valve (10) and is attached to the underside of the membrane (8).
  8. A device according to Claim 7, characterised in that two mutually opposing membranes (8a, 8b) are provided at the respective periphery (9) of the fluid flow with respective by-pass ducts (11a, 11b).
  9. A device according to Claim 8, characterised in that the two membranes (8a, 8b) with the two by-pass ducts (11a, 11b) can be acted upon by a common control valve (10).
EP97103081A 1996-02-28 1997-02-26 Means for transmitting informations inside the drilling string of a drilling apparatus Expired - Lifetime EP0792999B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19607402 1996-02-28
DE19607402A DE19607402C1 (en) 1996-02-28 1996-02-28 Device for transmitting information within a drill pipe string of a drilling device by means of pressure pulses in a flowing liquid, in particular drilling fluid

Publications (3)

Publication Number Publication Date
EP0792999A2 EP0792999A2 (en) 1997-09-03
EP0792999A3 EP0792999A3 (en) 1998-04-01
EP0792999B1 true EP0792999B1 (en) 2002-01-23

Family

ID=7786599

Family Applications (1)

Application Number Title Priority Date Filing Date
EP97103081A Expired - Lifetime EP0792999B1 (en) 1996-02-28 1997-02-26 Means for transmitting informations inside the drilling string of a drilling apparatus

Country Status (4)

Country Link
US (1) US5806612A (en)
EP (1) EP0792999B1 (en)
AT (1) ATE212416T1 (en)
DE (2) DE19607402C1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012004392A1 (en) 2012-03-03 2013-09-05 Inoson GmbH Apparatus for transmitting information within drill string, through pulses, has a receiving unit for receiving and evaluating information transmitted through pulses generated as sound waves and transmitted through a transmission device

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6050349A (en) * 1997-10-16 2000-04-18 Prime Directional Systems, Llc Hydraulic system for mud pulse generation
US6321596B1 (en) 1999-04-21 2001-11-27 Ctes L.C. System and method for measuring and controlling rotation of coiled tubing
US6443242B1 (en) 2000-09-29 2002-09-03 Ctes, L.C. Method for wellbore operations using calculated wellbore parameters in real time
US20030026167A1 (en) * 2001-07-25 2003-02-06 Baker Hughes Incorporated System and methods for detecting pressure signals generated by a downhole actuator
WO2003025334A1 (en) * 2001-09-14 2003-03-27 Shell Internationale Research Maatschappij B.V. System for controlling the discharge of drilling fluid
US7185719B2 (en) * 2002-02-20 2007-03-06 Shell Oil Company Dynamic annular pressure control apparatus and method
US6970398B2 (en) * 2003-02-07 2005-11-29 Schlumberger Technology Corporation Pressure pulse generator for downhole tool
AU2004265457B2 (en) * 2003-08-19 2007-04-26 @Balance B.V. Drilling system and method
NO337489B1 (en) * 2010-10-21 2016-04-25 Tco As Device for pressure pulse transmission of control signals to downhole equipment
US20140262507A1 (en) 2013-03-12 2014-09-18 Weatherford/Lamb, Inc. Rotary steerable system for vertical drilling
DE102016001780A1 (en) 2016-02-08 2017-08-24 Stefan von den Driesch Cost-effective method of calibrating magnetic field sensors in a high-precision directional drill for early, reliable and timely hole definition and a high-precision directional drill for low-cost deep direction drilling
DE102016001779A1 (en) 2016-02-08 2017-08-10 Stefan von den Driesch Low-maintenance, reliable drill tool for trouble-free continuous operation for sinking automatically direction-monitored drill holes in subterranean rock formations

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3958217A (en) * 1974-05-10 1976-05-18 Teleco Inc. Pilot operated mud-pulse valve
US4078620A (en) * 1975-03-10 1978-03-14 Westlake John H Method of and apparatus for telemetering information from a point in a well borehole to the earth's surface
US4557295A (en) * 1979-11-09 1985-12-10 The United States Of America As Represented By The Secretary Of The Army Fluidic mud pulse telemetry transmitter
US4553226A (en) * 1980-01-10 1985-11-12 Scherbatskoy Serge Alexander Systems, apparatus and methods for measuring while drilling
DE3324587A1 (en) * 1982-07-10 1984-01-19 NL Sperry-Sun, Inc., Stafford, Tex. DRILL HOLE TRANSMITTER FOR A SLUDGE PULSE TELEMETRY SYSTEM
DE3531226A1 (en) * 1985-08-31 1987-03-19 Schwing Hydraulik Elektronik DEVICE, IN PARTICULAR FOR UNDERGROUND APPLICATION FOR REMOTE TRANSMISSION OF INFORMATION FROM A DRILL HOLE
DE3715514C1 (en) * 1987-05-09 1988-09-08 Eastman Christensen Co., Salt Lake City, Utah, Us
US4805449A (en) * 1987-12-01 1989-02-21 Anadrill, Inc. Apparatus and method for measuring differential pressure while drilling
DE4134609C2 (en) * 1991-10-19 1993-10-07 Bergwerksverband Gmbh Pressure pulse generator
FR2691812B1 (en) * 1992-05-29 1994-09-02 Geophysique Cie Gle Signal processing method for geophysical prospecting using an operator to extrapolate an improved wave field.

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012004392A1 (en) 2012-03-03 2013-09-05 Inoson GmbH Apparatus for transmitting information within drill string, through pulses, has a receiving unit for receiving and evaluating information transmitted through pulses generated as sound waves and transmitted through a transmission device

Also Published As

Publication number Publication date
DE59706148D1 (en) 2002-03-14
EP0792999A3 (en) 1998-04-01
US5806612A (en) 1998-09-15
DE19607402C1 (en) 1997-07-10
ATE212416T1 (en) 2002-02-15
EP0792999A2 (en) 1997-09-03

Similar Documents

Publication Publication Date Title
EP0792999B1 (en) Means for transmitting informations inside the drilling string of a drilling apparatus
DE2930014C2 (en)
DE10106080C2 (en) Deep hole well logger having means for transmitting logging data
DE2511471C3 (en) Hydraulic drilling machine, in particular rock drilling machine
EP3417177B1 (en) Hydraulic actuator, robot arm, robot hand and operating method
DE2705191A1 (en) IMPACT DRILLING TOOL
DE2919007C2 (en) Core drilling equipment for rock boreholes
DE10239591B4 (en) Single engine injection and screw drive hybrid actuator
DE2060402A1 (en) Device for stabilizing the direction of movement of the propulsion organ
DE3015367C2 (en) Electrically remote-controlled, hydrostatic transmission, especially for driving vehicles
DE60023509T2 (en) PLACTER FOR POSITIONING A VALVE O.Ä. IN A DESIRED POSITION
DE1505258B2 (en) Overlay steering device for caterpillar vehicles, in particular combat vehicles
DE2026424B2 (en) HYDRAULIC TORQUE FOLLOWING AMPLIFIER
DE60202445T2 (en) Device for generating a reciprocating motion and pneumatic tool
DE2349620C2 (en) Remote control system for a hydraulic power transmission device
DE1458635C3 (en) Rock drilling machine
DE2301622A1 (en) SHIP RUDDER CONTROL SYSTEM
DE102009030865A1 (en) Guide device for a drilling device
EP1338401A1 (en) Extrusion die for Tubes with a modified profile of the spider legs of the mandrel
DE3531226C2 (en)
DE557281C (en) Adjustable shock absorber
DE2120045C3 (en) Device for generating vibrations with a hydraulic working cylinder
EP0145701A1 (en) Percussion drill controls
DE10254687A1 (en) Hydraulic power steering for motor vehicle has arrangement that can increase relative rotation between servo valve control parts caused by manual steering control element depending on parameter
DE2236888B2 (en) HYDRAULIC TRANSMISSION SETTING SYSTEM

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH DE DK ES FR GB IT LI NL SE

17P Request for examination filed

Effective date: 19971103

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH DE DK ES FR GB IT LI NL SE

17Q First examination report despatched

Effective date: 20001025

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: WELLDONE ENGINEERING GMBH

Owner name: DEUSTCH MONTAN TECHNOLOGIE GMBH,

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE DK ES FR GB IT LI NL SE

REF Corresponds to:

Ref document number: 212416

Country of ref document: AT

Date of ref document: 20020215

Kind code of ref document: T

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20020218

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020226

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020228

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020228

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020228

REF Corresponds to:

Ref document number: 59706148

Country of ref document: DE

Date of ref document: 20020314

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20020423

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20020423

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20020425

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20020730

BERE Be: lapsed

Owner name: WELLDONE ENGINEERING G.M.B.H.

Effective date: 20020228

Owner name: DEUTSCHE MONTAN TECHNOLOGIE G.M.B.H.

Effective date: 20020228

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20140219

Year of fee payment: 18

Ref country code: NL

Payment date: 20140218

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20140219

Year of fee payment: 18

Ref country code: IT

Payment date: 20140225

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20140218

Year of fee payment: 18

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 59706148

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: V1

Effective date: 20150901

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150901

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20150226

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20151030

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150226

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150226

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150901

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150302