EP0787833A1 - Conductor arrangement for electrolytic cells - Google Patents

Conductor arrangement for electrolytic cells Download PDF

Info

Publication number
EP0787833A1
EP0787833A1 EP96810051A EP96810051A EP0787833A1 EP 0787833 A1 EP0787833 A1 EP 0787833A1 EP 96810051 A EP96810051 A EP 96810051A EP 96810051 A EP96810051 A EP 96810051A EP 0787833 A1 EP0787833 A1 EP 0787833A1
Authority
EP
European Patent Office
Prior art keywords
cell
busbar
current
partial
busbars
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP96810051A
Other languages
German (de)
French (fr)
Other versions
EP0787833B1 (en
Inventor
Jacques Antille
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
3A Composites International AG
Original Assignee
Alusuisse Lonza Services Ltd
Alusuisse Technology and Management Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alusuisse Lonza Services Ltd, Alusuisse Technology and Management Ltd filed Critical Alusuisse Lonza Services Ltd
Priority to EP96810051A priority Critical patent/EP0787833B1/en
Priority to DE59607944T priority patent/DE59607944D1/en
Priority to US08/773,762 priority patent/US5830335A/en
Priority to AU76455/96A priority patent/AU693391B2/en
Priority to RU96124395A priority patent/RU2118410C1/en
Priority to CA002194832A priority patent/CA2194832A1/en
Priority to ZA97246A priority patent/ZA97246B/en
Priority to IS4414A priority patent/IS4414A/en
Priority to SK91-97A priority patent/SK282829B6/en
Priority to NO19970328A priority patent/NO317172B1/en
Publication of EP0787833A1 publication Critical patent/EP0787833A1/en
Application granted granted Critical
Publication of EP0787833B1 publication Critical patent/EP0787833B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C3/00Electrolytic production, recovery or refining of metals by electrolysis of melts
    • C25C3/06Electrolytic production, recovery or refining of metals by electrolysis of melts of aluminium
    • C25C3/16Electric current supply devices, e.g. bus bars

Definitions

  • the invention relates to a rail arrangement for guiding the direct electrical current from the cathode bar ends of a longitudinal electrolysis cell, in particular for the production of aluminum, via conductor rails to the traverse ends of the subsequent cell.
  • the electrolysis cell In normal operation, the electrolysis cell is usually operated periodically, even if there is no anode effect by breaking in the crust and adding alumina.
  • the cathode bars are embedded in the carbon bottom of the electrolysis cell, the ends of which penetrate the electrolysis tank on both long sides. These iron bars collect the Electrolysis current, which flows via the busbars arranged outside the cell, the risers, the anode bars or traverses and the anode rods to the carbon anodes of the subsequent cell.
  • the ohmic resistance from the cathode bars to the anodes of the subsequent cell causes energy losses in the order of up to 1 kWh / kg of aluminum produced. There have therefore been repeated attempts to optimize the arrangement of the busbars with respect to the ohmic resistance.
  • the vertical components of magnetic induction formed must also be taken into account, which - together with the horizontal current density components - generate a force field in the liquid metal obtained through the reduction process.
  • the current is conducted from cell to cell as follows:
  • the direct electrical current emerges from cathode bars arranged in the carbon bottom of the cell.
  • the ends of the cathode bars are connected to the busbars via flexible bands, which run parallel to the row of electrolytic cells. From these busbars running along the long sides of the cells, the current is led via other flexible belts and via risers to the two ends of the traverse of the subsequent cell.
  • the current distribution between the nearer and the far end of the traverse based on the general current direction of the cell row, varies from 100/0% to 50/50%.
  • the vertical anode rods which carry the carbon anodes and feed with electrical current, are attached to the crossbar by means of locks.
  • the inventor has set himself the task of providing a rail arrangement of the type mentioned at the outset with which the greatest possible compensation of the electromagnetic force fields generated by the various current flows can be achieved.
  • a part of the cathode bar ends on each long side of the cell is combined to form a partial current bar, the partial current bars being brought together under the subsequent cell to form a common current bar and the common current bar under the cell in the longitudinal direction thereof to the downstream end of the traverse is led.
  • the rail arrangement according to the invention for longitudinal electrolysis cells is suitable for arrangements with currents up to 170 KA.
  • the partial current rails are arranged under each cell in the longitudinal center thereof and perpendicular to the longitudinal axis thereof, and the busbar runs in the longitudinal axis of the cell.
  • the partial busbars expediently run under each cell between support supports of the cathode trough, the busbar crossing the support supports.
  • the arrangement of partial busbars and busbars is preferably arranged approximately halfway up the height of the support beams.
  • both the stationary state of the cell is improved by reducing the level differences in the liquid metal surface and the stability of the cell in the non-stationary state is reduced by the interference influences during cell operation.
  • an electrolysis cell 10 has a steel trough 12 which is lined with thermal insulation 14 and receives a carbon base 16.
  • Cathode bars 18 are embedded in the carbon base 16, the ends of which extend through the steel trough 12 on both longitudinal sides.
  • the cathode bars 18 are connected to busbars 22 via flexible current strips 20.
  • the steel trough 12 is arranged at a distance h from the floor 26 and rests on steel supports 24.
  • FIG. 2 has the arrangement according to the invention for a series of electrolytic cells 10 with a nominal current strength of 140 KA.
  • the general direction of the direct electrical current is designated I.
  • the numbers in parentheses in FIG. 2 refer to the number of cathode bars, which are each brought together to form individual busbars.
  • the current distribution within a cell depends on the current strength for the same cell type. Since there is no linear relationship between current intensity and current distribution, the current distribution, i.e. the exact number of cathode bar units combined to form individual busbars for a specific current density is calculated using magnetohydrodynamic models.
  • the electrolytic cell 10 n is equipped with 20 cathode bar ends on each longitudinal side of the cell, of which 26 cathode bar units feed the upstream end of the anode bar or the traverse 28 of the subsequent cell 10 n + 1 and 14 units the downstream end.
  • 3 cathode bar units from each long side of the cell 10 n are combined to form a partial busbar A, B and are guided along the longitudinal center m of the subsequent cell 10 n + 1 below the cell to its longitudinal axis x.
  • the two partial busbars A, B unite to form a busbar C which leads along the longitudinal axis x to the downstream end of the traverse 28.
  • the two partial busbars A, B run between the steel beams 24.
  • the busbar C crosses the steel beams 24 in openings 25 provided for this purpose.
  • the arrangement consisting of the partial busbars A, B and the busbar C, which has the shape of a "T", is located at a height a above the floor 26, which corresponds to approximately half the height h of the steel beams 24.
  • the magnetic influence of the partial busbars A, B and the busbar C is increased by the proximity of the electrolysis metal and by the ferromagnetic environment present as a result of the steel trough 12 and the steel support 24.
  • the small distance between the busbars A, B and the busbar C to the electrolysis metal allows the current to be reduced by dividing the busbars into a "T”. Magnetohydrodynamic calculations in the present case lead to the results summarized in the table below.
  • the calculated values clearly show the superiority of the conductor rail arrangement according to the invention in the form of a “T” compared to a conventional rail arrangement.
  • the most important information comes from the stability analysis.
  • the maximum of the growth factor associated with the excitation states is for the magnetically optimized rail guide in the form of a "T” by a factor of 3 less than the rail guide without "T". This results in a significant improvement in the stability of the electrolytic cell.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electrolytic Production Of Metals (AREA)
  • Fuel Cell (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

Arrangement of current rails from the cathode bar ends of an electrolysis cell, especially for the production of aluminium, to the anode beam ends of the follow-on cell, wherein the cathode bar ends on both sides of the cell (10n) are each connected to a part current rail (A,B) and the part current rails are led under the follow-on cell (10n+1) to a current collector rail (C) below the cell lying in the longitudinal direction (X) towards the downstream end of the anode beam.

Description

Die Erfindung betrifft eine Schienenanordnung zum Leiten des elektrischen Gleichstromes von den Kathodenbarrenenden einer längsgestellten Elektrolysezelle, insbesondere zur Herstellung von Aluminium, über Stromschienen zu den Traversenenden der Folgezelle.The invention relates to a rail arrangement for guiding the direct electrical current from the cathode bar ends of a longitudinal electrolysis cell, in particular for the production of aluminum, via conductor rails to the traverse ends of the subsequent cell.

Für die Gewinnung von Aluminium durch Elektrolyse von Aluminiumoxid wird dieses in einer Fluoridschmelze gelöst, die zum grössten Teil aus Kryolith besteht. Das kathodisch abgeschiedene Aluminium sammelt sich unter der Fluoridschmelze auf dem Kohleboden der Zelle, wobei die Oberfläche des flüssigen Aluminiums die Kathode bildet. In die Schmelze tauchen von oben an Anodenbalken bzw. Traversen befestigte Anoden ein, die bei konventionellen Verfahren aus amorphem Kohlenstoff bestehen. An den Kohleanoden entsteht durch die elektrolytische Zersetzung des Aluminiumoxids Sauerstoff, der sich mit dem Kohlenstoff der Anoden zu CO2 und CO verbindet. Die Elektrolyse findet im allgemeinen in einem Temperaturbereich von etwa 940 bis 970°C statt. Im Laufe der Elektrolyse verarmt der Elektrolyt an Aluminiumoxid. Bei einer unteren Konzentration von 1 bis 2 Gew.-% Aluminiumoxid im Elektrolyten kommt es zum Anodeneffekt, der sich in einer Erhöhung der Spannung von beispielsweise 4 bis 5 V auf 30 V und darüber auswirkt. Spätestens dann muss die aus erstarrtem Elektrolytmaterial gebildete Kruste eingeschlagen und die Aluminiumoxidkonzentration durch Zugabe von neuem Aluminiumoxid angehoben werden.For the production of aluminum by electrolysis of aluminum oxide, this is dissolved in a fluoride melt, which largely consists of cryolite. The cathodically deposited aluminum collects under the fluoride melt on the carbon bottom of the cell, the surface of the liquid aluminum forming the cathode. Anodes, which are attached to anode bars or traverses and which consist of amorphous carbon in conventional processes, are immersed in the melt. The electrolytic decomposition of the aluminum oxide produces oxygen at the carbon anodes, which combines with the carbon of the anodes to form CO 2 and CO. The electrolysis generally takes place in a temperature range from about 940 to 970 ° C. In the course of electrolysis, the electrolyte becomes poor in aluminum oxide. At a lower concentration of 1 to 2% by weight of aluminum oxide in the electrolyte, there is an anode effect, which results in an increase in the voltage from, for example, 4 to 5 V to 30 V and above. Then, at the latest, the crust formed from solidified electrolyte material must be hammered in and the aluminum oxide concentration increased by adding new aluminum oxide.

Im normalen Betrieb wird die Elektrolysezelle üblicherweise periodisch bedient, auch wenn kein Anodeneffekt auftritt, indem die Kruste eingeschlagen und Tonerde zugegeben wird.In normal operation, the electrolysis cell is usually operated periodically, even if there is no anode effect by breaking in the crust and adding alumina.

Im Kohleboden der Elektrolysezelle sind die Kathodenbarren eingebettet, wobei deren Enden die Elektrolysewanne auf beiden Längsseiten durchgreifen. Diese Eisenbarren sammeln den Elektrolysestrom, welcher über die ausserhalb der Zelle angeordneten Stromschienen, die Steigleitungen, die Anodenbalken bzw. Traversen und die Anodenstangen zu den Kohleanoden der Folgezelle fliesst. Durch den ohmschen Widerstand von den Kathodenbarren bis zu den Anoden der Folgezelle werden Energieverluste verursacht, die in der Grössenordnung von bis 1 kWh/kg produziertes Aluminium liegen. Es ist deshalb wiederholt versucht worden, die Anordnung der Stromschienen in bezug auf den ohmschen Widerstand zu optimieren. Dabei müssen jedoch auch die gebildeten Vertikalkomponenten der magnetischen Induktion berücksichtigt werden, welche --zusammen mit den horizontalen Stromdichtekomponenten -- im durch den Reduktionsprozess gewonnenen flüssigen Metall ein Kraftfeld erzeugen.The cathode bars are embedded in the carbon bottom of the electrolysis cell, the ends of which penetrate the electrolysis tank on both long sides. These iron bars collect the Electrolysis current, which flows via the busbars arranged outside the cell, the risers, the anode bars or traverses and the anode rods to the carbon anodes of the subsequent cell. The ohmic resistance from the cathode bars to the anodes of the subsequent cell causes energy losses in the order of up to 1 kWh / kg of aluminum produced. There have therefore been repeated attempts to optimize the arrangement of the busbars with respect to the ohmic resistance. However, the vertical components of magnetic induction formed must also be taken into account, which - together with the horizontal current density components - generate a force field in the liquid metal obtained through the reduction process.

In einer Aluminiumhütte mit längsgestellten Elektrolysezellen erfolgt die Stromführung von Zelle zu Zelle wie folgt: Der elektrische Gleichstrom tritt aus im Kohleboden der Zelle angeordneten Kathodenbarren aus. Die Enden der Kathodenbarren sind über flexible Bänder mit den Sammel- bzw. Stromschienen verbunden, welche parallel zu der Elektrolysezellenreihe verlaufen. Aus diesen entlang der Längsseiten der Zellen verlaufenden Stromschienen wird der Strom über andere flexible Bänder und über Steigleitungen zu den beiden Enden der Traverse der Folgezelle geführt. Je nach Ofentyp variiert die Stromverteilung zwischen dem näheren und dem entfernteren Ende der Traverse, bezogen auf die allgemeine Stromrichtung der Zellenreihe, von 100/0% bis 50/50%. Mittels Schlössern sind an der Traverse die vertikalen Anodenstangen befestigt, welche die Kohleanoden tragen und mit elektrischem Strom speisen.In an aluminum smelter with longitudinal electrolysis cells, the current is conducted from cell to cell as follows: The direct electrical current emerges from cathode bars arranged in the carbon bottom of the cell. The ends of the cathode bars are connected to the busbars via flexible bands, which run parallel to the row of electrolytic cells. From these busbars running along the long sides of the cells, the current is led via other flexible belts and via risers to the two ends of the traverse of the subsequent cell. Depending on the type of furnace, the current distribution between the nearer and the far end of the traverse, based on the general current direction of the cell row, varies from 100/0% to 50/50%. The vertical anode rods, which carry the carbon anodes and feed with electrical current, are attached to the crossbar by means of locks.

In magnetischer Hinsicht ist die gegenwärtig übliche Speisung mit elektrischem Gleichstrom nicht besonders günstig. Durch Ueberlagerung von drei Strömungskomponenten entstehen Bewegungen im flüssigen Metall:

  • Die erste Strömungskomponente, welche im Prinzip eine Zirkulationsbewegung entlang der inneren Zellenwände ist, hat besonders schädliche Auswirkungen in bezug auf die Stabilität der Elektrolysezelle. Diese erste Komponente entsteht durch den Einfluss der benachbarten Elektrolysezellenreihe, welche den elektrischen Strom zum Gleichrichter zurückführt. Der Drehsinn der Rotation hängt davon ab, ob die benachbarten Zellenreihe links oder rechts, bezogen auf die allgemeine Richtung des Gleichstromes, von der Zelle liegt.
  • Die zweite Strömungskomponente besteht darin, dass in jeder Zellenhälfte (in bezug auf die Längsrichtung) je eine Zirkularströmung entsteht, wobei die Strömungsrichtungen gegenläufig sind. Diese Rotationsart hängt von der Stromverteilung zwischen den Steigleitungen ab.
  • Die dritte Strömungskomponente schliesslich besteht aus vier in den Zellenquadranten ausgebildeten Rotationen, wobei die diagonal gegenüberliegenden Rotationsrichtungen gleich sind. Diese Rotationen entstehen durch die ungleiche Stromverteilung in den Stromschienen und der Traverse von einem Zellenende zum anderen.
From a magnetic point of view, the current supply with direct electrical current is not particularly favorable. Superposition of three flow components creates movements in the liquid metal:
  • The first flow component, which is in principle a circulation movement along the inner cell walls, has particularly harmful effects with regard to the stability of the electrolytic cell. This first component is created by the influence of the neighboring row of electrolytic cells, which returns the electrical current to the rectifier. The direction of rotation of the rotation depends on whether the neighboring row of cells is on the left or right of the cell in relation to the general direction of the direct current.
  • The second flow component is that a circular flow occurs in each cell half (with respect to the longitudinal direction), the flow directions being opposite. This type of rotation depends on the current distribution between the risers.
  • Finally, the third flow component consists of four rotations formed in the cell quadrants, the diagonally opposite directions of rotation being the same. These rotations result from the uneven distribution of current in the busbars and the crossbar from one end of the cell to the other.

Die Ueberlagerung dieser drei Strömungskomponenten bewirkt, dass die Geschwindigkeit der Metallströmungen innerhalb der Zelle stark unterschiedlich ist. Wo alle drei Strömungskomponenten in gleicher Richtung verlaufen, entsteht eine hohe Metallgeschwindigkeit.The superimposition of these three flow components causes the speed of the metal flows within the cell to differ greatly. Where all three flow components run in the same direction, there is a high metal speed.

Angesichts dieser Gegebenheiten hat sich der Erfinder die Aufgabe gestellt, eine Schienenanordnung der eingangs erwähnten Art bereitzustellen, mit der eine möglichst weitgehende Kompensation der durch die verschiedenen Stromflüsse erzeugten elektromagnetischen Kraftfelder erzielt werden kann.In view of these circumstances, the inventor has set himself the task of providing a rail arrangement of the type mentioned at the outset with which the greatest possible compensation of the electromagnetic force fields generated by the various current flows can be achieved.

Zur erfindungsgemässen Lösung der Aufgabe führt, dass ein Teil der Kathodenbarrenenden an jeder Längsseite der Zelle zu je einer Teilstromschiene zusammengefasst ist, wobei die Teilstromschienen unter der Folgezelle zu einer Sammelstromschiene zusammengeführt sind und die Sammelstromschiene unter der Zelle in deren Längsrichtung zum stromab liegenden Ende der Traverse geführt ist.To achieve the object according to the invention, a part of the cathode bar ends on each long side of the cell is combined to form a partial current bar, the partial current bars being brought together under the subsequent cell to form a common current bar and the common current bar under the cell in the longitudinal direction thereof to the downstream end of the traverse is led.

Die erfindungsgemässe Schienenanordnung für längsgestellte Elektrolysezellen eignet sich für Anordnungen mit Stromstärken bis zu 170 KA.The rail arrangement according to the invention for longitudinal electrolysis cells is suitable for arrangements with currents up to 170 KA.

Bei einer bevorzugten Schienenanordnung sind die Teilstromschienen unter jeder Zelle in deren Längsmitte sowie senkrecht zu deren Längsachse angeordnet und die Sammelschiene verläuft in der Längsachse der Zelle.In a preferred rail arrangement, the partial current rails are arranged under each cell in the longitudinal center thereof and perpendicular to the longitudinal axis thereof, and the busbar runs in the longitudinal axis of the cell.

Zweckmässigerweise verlaufen die Teilstromschienen unter jeder Zelle zwischen Stützträgern der Kathodenwanne, wobei die Sammelstromschiene die Stützträger quert. Die Anordnung aus Teilstromschienen und Sammelstromschienen ist bevorzugt etwa in halber Höhe zur Höhe der Stützträger angeordnet.The partial busbars expediently run under each cell between support supports of the cathode trough, the busbar crossing the support supports. The arrangement of partial busbars and busbars is preferably arranged approximately halfway up the height of the support beams.

Mit der erfindungsgemässen Stromschienenkonfiguration wird sowohl der stationäre Zustand der Zelle durch Verminderung der Niveauunterschiede der flüssigen Metallobefläche als auch die Stabilität der Zelle im nicht-stationären Zustand durch Abnahme der Störungseinflüsse während des Zellenbetriebs verbessert.With the busbar configuration according to the invention, both the stationary state of the cell is improved by reducing the level differences in the liquid metal surface and the stability of the cell in the non-stationary state is reduced by the interference influences during cell operation.

Weitere Vorteile, Merkmale und Einzelheiten der Erfindung ergeben sich aus der nachfolgenden Beschreibung eines bevorzugten Ausführungsbeispiels sowie anhand der Zeichnung; diese zeigt schematisch in

- Fig. 1
einen Querschnitt durch eine Elektrolysezelle;
- Fig. 2
das Prinzip der magnetischen Kompensation.
Further advantages, features and details of the invention emerge from the following description of a preferred exemplary embodiment and with reference to the drawing; this shows schematically in
- Fig. 1
a cross section through an electrolytic cell;
- Fig. 2
the principle of magnetic compensation.

Eine Elektrolysezelle 10 weist gemäss Fig. 1 eine Stahlwanne 12 auf, die mit einer thermischen Isolation 14 ausgekleidet ist und einen Kohleboden 16 aufnimmt. Im Kohleboden 16 sind Kathodenbarren 18 eingebettet, deren Enden die Stahlwanne 12 auf beiden Längsseiten durchgreifen. Die Kathodenbarren 18 sind über flexible Strombänder 20 an Stromschienen 22 angeschlossen. Die Stahlwanne 12 ist in einem Abstand h zum Boden 26 angeordnet und ruht auf Stahlträgern 24.According to FIG. 1, an electrolysis cell 10 has a steel trough 12 which is lined with thermal insulation 14 and receives a carbon base 16. Cathode bars 18 are embedded in the carbon base 16, the ends of which extend through the steel trough 12 on both longitudinal sides. The cathode bars 18 are connected to busbars 22 via flexible current strips 20. The steel trough 12 is arranged at a distance h from the floor 26 and rests on steel supports 24.

Das Prinzip der magnetischen Kompensation durch die spezielle Stromschienenführung ergibt sich aus der Betrachtung der Fig. 2, welche die erfindungsgemässe Anordnung für eine Reihe von Elektrolysezellen 10 mit einer nominalen Stromstärke von 140 KA aufweist. Die allgemeine Richtung des elektrischen Gleichstromes ist mit I bezeichnet. Die in Fig. 2 in Klammern gesetzten Ziffern beziehen sich auf die Anzahl der Kathodenbarren, die jeweils zu einzelnen Sammelschienen zusammengeführt sind. Die Stromverteilung innerhalb einer Zelle richtet sich bei gleichem Zellentyp nach der Stromstärke. Da kein linearer Zusammenhang zwischen Stromstärke und Stromverteilung besteht, wird die Stromverteilung, d.h. die genaue Anzahl der jeweils zu einzelnen Sammelschienen zusammengeführten Kathodenbarreneinheiten, für eine bestimmte Stromdichte anhand von magnetohydrodynamischen Modellen berechnet.The principle of magnetic compensation by means of the special conductor rail guidance results from the consideration of FIG. 2, which has the arrangement according to the invention for a series of electrolytic cells 10 with a nominal current strength of 140 KA. The general direction of the direct electrical current is designated I. The numbers in parentheses in FIG. 2 refer to the number of cathode bars, which are each brought together to form individual busbars. The current distribution within a cell depends on the current strength for the same cell type. Since there is no linear relationship between current intensity and current distribution, the current distribution, i.e. the exact number of cathode bar units combined to form individual busbars for a specific current density is calculated using magnetohydrodynamic models.

Im vorliegenden Beispiel ist die Elektrolysezelle 10n mit je 20 Kathodenbarrenenden an jeder Zellenlängsseite ausgestattet, wovon 26 Kathodenbarreneinheiten das stromauf liegende Ende des Anodenbarrens bzw. der Traverse 28 der Folgezelle 10n+1 speisen und 14 Einheiten das stromab liegende Ende. Je 3 Kathodenbarreneinheiten von jeder Längsseite der Zelle 10n sind zu je einer Teilstromschiene A, B zusammengefasst und entlang der Längsmitte m der Folgezelle 10n+1 unter der Zelle zu deren Längsachse x geführt. In der Mitte der Zellenlängsachse x vereinigen sich die beiden Teilstromschienen A, B zu einer Sammelstromschiene C, die entlang der Längsachse x zum stromab liegenden Ende der Traverse 28 führt.In the present example, the electrolytic cell 10 n is equipped with 20 cathode bar ends on each longitudinal side of the cell, of which 26 cathode bar units feed the upstream end of the anode bar or the traverse 28 of the subsequent cell 10 n + 1 and 14 units the downstream end. 3 cathode bar units from each long side of the cell 10 n are combined to form a partial busbar A, B and are guided along the longitudinal center m of the subsequent cell 10 n + 1 below the cell to its longitudinal axis x. In the middle of the cell's longitudinal axis x the two partial busbars A, B unite to form a busbar C which leads along the longitudinal axis x to the downstream end of the traverse 28.

Die beiden Teilstromschienen A, B verlaufen zwischen den Stahlträgern 24. Die Sammelstromschiene C durchquert die Stahlträger 24 in hierfür vorgesehenen Durchbrüchen 25. Die aus den Teilstromschienen A, B sowie der Sammelstromschiene C bestehende Anordnung, die die Form eines "T" aufweist, befindet sich auf einer Höhe a über dem Boden 26, die etwa der halben Höhe h der Stahlträger 24 entspricht.The two partial busbars A, B run between the steel beams 24. The busbar C crosses the steel beams 24 in openings 25 provided for this purpose. The arrangement consisting of the partial busbars A, B and the busbar C, which has the shape of a "T", is located at a height a above the floor 26, which corresponds to approximately half the height h of the steel beams 24.

Der magnetische Einfluss der Teilstromschienen A, B sowie der Sammelstromschiene C wird durch die Nähe des Elektrolysemetalls und durch die als Folge der Stahlwanne 12 und der Stahlträger 24 vorhandenen ferromagnetischen Umgebung verstärkt. Der geringe Abstand der Teilstromschienen A, B sowie der Sammelstromschiene C zum Elektrolysemetall lässt eine Herabsetzung des Stromes durch Aufteilung der Stromschienen zu einem "T" zu. Magnetohydrodynamische Berechnungen führen im vorliegenden Fall zu den in der nachfolgenden Tabelle zusammengestellten Ergebnissen. Schienenführung Stromstärke (KA) Stationäre Analyse Stabilitätsanalyse Vmax (cm/s) Vmetal (cm/s) Δh (mm) Zuwachsfaktor (1/S).10-2 ohne "T" 140 28 7.8 37 1.5 mit "T" 140 20 6.6 28 .44 Vmax = maximale Geschwindigkeit im flüssigen Metall
Vmetal = mittlere quadratische Geschwindigkeit im flüssigen Metall
Δh = Niveauunterschied der flüssigen Metalloberfläche
The magnetic influence of the partial busbars A, B and the busbar C is increased by the proximity of the electrolysis metal and by the ferromagnetic environment present as a result of the steel trough 12 and the steel support 24. The small distance between the busbars A, B and the busbar C to the electrolysis metal allows the current to be reduced by dividing the busbars into a "T". Magnetohydrodynamic calculations in the present case lead to the results summarized in the table below. Rail guide Current (KA) Stationary analysis Stability analysis Vmax (cm / s) Vmetal (cm / s) Δh (mm) Growth factor (1 / S) .10 -2 without "T" 140 28 7.8 37 1.5 with "T" 140 20th 6.6 28 .44 Vmax = maximum speed in the liquid metal
Vmetal = mean quadratic velocity in the liquid metal
Δh = level difference of the liquid metal surface

Die errechneten Werte zeigen deutlich die Ueberlegenheit der erfindungsgemässen Stromschienenführung in Form eines "T" im Vergleich zu einer konventionellen Schienenführung. Die wichtigste Information ergibt sich aus der Stabilitätsanalyse. Das Maximum des mit den Anregungszuständen verknüpften Zuwachsfaktors ist für die in magnetischer Hinsicht optimierte Schienenführung in Form eines "T" gegenüber der Schienenführung ohne "T" um den Faktor 3 geringer. Daraus ergibt sich eine wesentliche Verbesserung der Stabilität der Elektrolysezelle.The calculated values clearly show the superiority of the conductor rail arrangement according to the invention in the form of a “T” compared to a conventional rail arrangement. The most important information comes from the stability analysis. The maximum of the growth factor associated with the excitation states is for the magnetically optimized rail guide in the form of a "T" by a factor of 3 less than the rail guide without "T". This results in a significant improvement in the stability of the electrolytic cell.

Claims (4)

Schienenanordnung zum Leiten des elektrischen Gleichstromes von den Kathodenbarrenenden einer längsgestellten Elektrolysezelle, insbesondere zur Herstellung von Aluminium, über Stromschienen zu den Traversenenden der Folgezelle,
dadurch gekennzeichnet,
dass ein Teil der Kathodenbarrenenden an jeder Längsseite der Zelle (10n) zu je einer Teilstromschiene (A,B) zusammengefasst ist, wobei die Teilstromschienen unter der Folgezelle (10n+1) zu einer Sammelstromschiene (C) zusammengeführt sind und die Sammelstromschiene unter der Zelle in deren Längsrichtung (x) zum stromab liegenden Ende der Traverse (28) geführt ist.
Rail arrangement for guiding the direct electrical current from the cathode bar ends of a longitudinal electrolysis cell, in particular for the production of aluminum, via conductor rails to the traverse ends of the subsequent cell,
characterized,
that a part of the cathode bar ends on each long side of the cell (10 n ) is combined to form a partial busbar (A, B), the partial busbars under the subsequent cell (10n + 1 ) being brought together to form a busbar (C) and the busbar below the cell is guided in the longitudinal direction (x) to the downstream end of the crossmember (28).
Schienenanordnung nach Anspruch 1, dadurch gekennzeichnet, dass die Teilstromschienen (A,B) unter jeder Zelle (10) in deren Längsmitte (m) und senkrecht zu deren Längsachse (x) angeordnet sind und die Sammelstromschiene (C) in der Längsachse (x) der Zelle verläuft.Rail arrangement according to Claim 1, characterized in that the partial current rails (A, B) are arranged under each cell (10) in the longitudinal center (m) and perpendicular to their longitudinal axis (x) and the busbar (C) in the longitudinal axis (x) the cell runs. Schienenanordnung nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Teilstromschienen (A,B) unter jeder Zelle (10) zwischen Stützträgern (24) der Kathodenwanne (12) verlaufen und die Sammelstromschiene (C) die Stützträger (24) quert.Rail arrangement according to Claim 1 or 2, characterized in that the partial current rails (A, B) run under each cell (10) between support carriers (24) of the cathode trough (12) and the busbar (C) crosses the support carriers (24). Schienenanordnung nach Anspruch 3, dadurch gekennzeichnet, dass die Teilstromschienen (A,B) und die Sammelstromschiene (C) unter jeder Zelle (10) etwa in halber Höhe (a) zur Höhe (h) der Stützträger (24) angeordnet sind.Rail arrangement according to claim 3, characterized in that the partial busbars (A, B) and the busbar (C) are arranged under each cell (10) approximately at half the height (a) to the height (h) of the support beams (24).
EP96810051A 1996-01-26 1996-01-26 Conductor arrangement for electrolytic cells Expired - Lifetime EP0787833B1 (en)

Priority Applications (10)

Application Number Priority Date Filing Date Title
EP96810051A EP0787833B1 (en) 1996-01-26 1996-01-26 Conductor arrangement for electrolytic cells
DE59607944T DE59607944D1 (en) 1996-01-26 1996-01-26 Rail arrangement for electrolysis cells
US08/773,762 US5830335A (en) 1996-01-26 1996-12-24 Busbar arrangement for electrolytic cells
AU76455/96A AU693391B2 (en) 1996-01-26 1996-12-24 Busbar arrangement for electrolytic cells
RU96124395A RU2118410C1 (en) 1996-01-26 1996-12-25 Bus arrangement system of electrolyzer
CA002194832A CA2194832A1 (en) 1996-01-26 1997-01-10 Busbar arrangement for electrolytic cells
ZA97246A ZA97246B (en) 1996-01-26 1997-01-13 Busbar arrangement for electrolytic cells
IS4414A IS4414A (en) 1996-01-26 1997-01-16 Arrangement of rails for electrolytic tanks
SK91-97A SK282829B6 (en) 1996-01-26 1997-01-21 Busbar for direct current conduction
NO19970328A NO317172B1 (en) 1996-01-26 1997-01-24 Rail device for electrolytic cells

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP96810051A EP0787833B1 (en) 1996-01-26 1996-01-26 Conductor arrangement for electrolytic cells

Publications (2)

Publication Number Publication Date
EP0787833A1 true EP0787833A1 (en) 1997-08-06
EP0787833B1 EP0787833B1 (en) 2001-10-17

Family

ID=8225538

Family Applications (1)

Application Number Title Priority Date Filing Date
EP96810051A Expired - Lifetime EP0787833B1 (en) 1996-01-26 1996-01-26 Conductor arrangement for electrolytic cells

Country Status (10)

Country Link
US (1) US5830335A (en)
EP (1) EP0787833B1 (en)
AU (1) AU693391B2 (en)
CA (1) CA2194832A1 (en)
DE (1) DE59607944D1 (en)
IS (1) IS4414A (en)
NO (1) NO317172B1 (en)
RU (1) RU2118410C1 (en)
SK (1) SK282829B6 (en)
ZA (1) ZA97246B (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU9652798A (en) * 1997-10-13 1999-05-03 Suparator B.V. Device for continuously skimming off a floating toplayer
FR2871479B1 (en) * 2004-06-10 2006-08-11 Solvay Sa Sa Belge ELECTRICAL CIRCUIT OF A BIPOLAR ELECTROLYSET ELECTRODES AND BIPOLAR ELECTROLYSIS ELECTROLYSIS INSTALLATION
CN100439566C (en) * 2004-08-06 2008-12-03 贵阳铝镁设计研究院 Five power-on bus distributing style with different current
FR2882888B1 (en) * 2005-03-01 2007-04-27 Solvay ELECTRIC CIRCUIT OF ELECTROLYSER AND METHOD FOR REDUCING ELECTROMAGNETIC FIELDS IN THE VICINITY OF THE ELECTROLYSER
FR2882887B1 (en) * 2005-03-01 2007-04-27 Solvay ELECTRIC CIRCUIT OF ELECTROLYSER AND METHOD FOR REDUCING ELECTROMAGNETIC FIELDS IN THE VICINITY OF THE ELECTROLYSER
US20080143189A1 (en) * 2006-02-27 2008-06-19 Solvay (Societe Anonyme) Electrical Circuit Of An Electrolyzer And Method For Reducing The Electromagnetic Fields In The Vicinity Of The Electrolyzer
FI121472B (en) * 2008-06-05 2010-11-30 Outotec Oyj Method for Arranging Electrodes in the Electrolysis Process, Electrolysis System and Method Use, and / or System Use
RU2536577C2 (en) * 2012-02-17 2014-12-27 Общество с ограниченной ответственностью "Объединенная Компания РУСАЛ Инженерно-технологический центр" Basbar of powerful aluminium electrolyser with their lateral arrangement in housing
BR112014033044A2 (en) * 2012-07-17 2018-04-17 Obshchestvo S Ogranichennoy Otvetstvennostyu Obedinennaya Kompaniya Rusal Inzhenerno Tekh Tsentr connection bar arrangement for aluminum electrolysers with a longitudinal position.
RU2505626C1 (en) * 2012-10-25 2014-01-27 Общество с ограниченной ответственностью "Объединенная Компания РУСАЛ Инженерно-технологический центр" Bus arrangement of electrolysis cell for producing aluminium
RU2566120C1 (en) * 2014-07-24 2015-10-20 Общество с ограниченной ответственностью "Объединенная Компания РУСАЛ Инженерно-технологический центр" Aluminium electrolyser busbar
JP2019527462A (en) 2016-07-26 2019-09-26 コベックス・ゲーエムベーハー Hall Elsell cathode current collector / connector

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2001344A (en) * 1977-07-14 1979-01-31 Ardal Og Sunndal Verk Conductor arrangement for compensating for horizontal magnetic fields in pots containing a molten electrolytic bath
EP0084142A2 (en) * 1982-01-18 1983-07-27 ALUMINIA S.p.A. Method and apparatus for electric current supply of pots for electrolytic production of metals, particularly aluminium

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4196067A (en) * 1978-02-07 1980-04-01 Swiss Aluminium Ltd. Absorption of magnetic field lines in electrolytic reduction cells
DE3009098C2 (en) * 1979-12-21 1983-02-24 Schweizerische Aluminium AG, 3965 Chippis Method of conducting electricity between electrolytic furnaces

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2001344A (en) * 1977-07-14 1979-01-31 Ardal Og Sunndal Verk Conductor arrangement for compensating for horizontal magnetic fields in pots containing a molten electrolytic bath
EP0084142A2 (en) * 1982-01-18 1983-07-27 ALUMINIA S.p.A. Method and apparatus for electric current supply of pots for electrolytic production of metals, particularly aluminium

Also Published As

Publication number Publication date
NO317172B1 (en) 2004-09-06
RU2118410C1 (en) 1998-08-27
NO970328L (en) 1997-07-28
SK9197A3 (en) 1998-04-08
US5830335A (en) 1998-11-03
CA2194832A1 (en) 1997-07-27
IS4414A (en) 1997-02-20
AU693391B2 (en) 1998-06-25
DE59607944D1 (en) 2001-11-22
ZA97246B (en) 1997-07-23
EP0787833B1 (en) 2001-10-17
SK282829B6 (en) 2002-12-03
AU7645596A (en) 1997-07-31
NO970328D0 (en) 1997-01-24

Similar Documents

Publication Publication Date Title
EP0787833B1 (en) Conductor arrangement for electrolytic cells
DE3828291A1 (en) ELECTROLYTIC TREATMENT PROCEDURE
DE1083554B (en) Furnace for fused aluminum electrolysis
EP0097613B1 (en) Bus bars arrangement for electrolytic cells
EP0072778B1 (en) Bus bar arrangement for electrolysis cells
DE2841205C3 (en) Electrolysis cell with compensated magnetic field components
DE3436442C2 (en)
DE2131473A1 (en) Conductor arrangement to compensate for harmful magnetic influences of rows of electrolytic cells on neighboring cell rows
DE68903033T2 (en) ARRANGEMENT FOR COMPENSATING DAMAGING MAGNETIC FIELDS IN CROSS-POSITIONED ELECTROLYSIS CELLS.
EP0042815B1 (en) Bus-bar arrangement for electrolytic cells
DE2801650C2 (en) Circuit arrangement for the electrical power supply of electrolytic cells in a longitudinal arrangement
CH641209A5 (en) ELECTROLYSIS CELL.
EP0033714B1 (en) Busbar system for electrolysis cells
EP0034117A2 (en) Asymmetrical busbar system for electrolysis cells
EP0030212B1 (en) Anode supporting system for a fusion electrolysis cell
DE2143603A1 (en) Cell for the production of aluminum by electrolysis of aluminum oxide in a melt flow
DE3012697A1 (en) METHOD OF STABILIZING AN ALUMINUM METAL LAYER IN AN ALUMINUM ELECTROLYTIC CELL
DE102004008813B3 (en) Process and installation for the electrochemical deposition of copper
DE2143602A1 (en) Cell for the production of aluminum by electrolysis of aluminum oxide in a melt flow
DE3618588A1 (en) CONNECTION CIRCUIT FOR MELTFLOW ELECTROLYSIS CELLS
DE68904406T2 (en) BUSBAR ARRANGEMENT FOR CROSS-LAYING ELECTROLYSIS CELLS.
CH636908A5 (en) ARRANGEMENT FOR COMPENSATING MAGNETIC FIELDS IN MELTING MOLDS.
DE1758664C (en) Process to compensate for the magnetic effects in electrolysis furnace with high current strength for the manufacture of aluminum and rail system to carry out the process
DE2459930C2 (en) Electrolytic cell
DE3004071A1 (en) Cathode bus=bars for mfg. aluminium in electrolysis cells - where bus=bars are divided into two lengths to reduce voltage drop between adjacent cells

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB NL

17P Request for examination filed

Effective date: 19980206

17Q First examination report despatched

Effective date: 20000623

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

RBV Designated contracting states (corrected)

Designated state(s): DE FR GB NL

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB NL

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: ALCAN TECHNOLOGY & MANAGEMENT AG

REF Corresponds to:

Ref document number: 59607944

Country of ref document: DE

Date of ref document: 20011122

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

NLT2 Nl: modifications (of names), taken from the european patent patent bulletin

Owner name: ALCAN TECHNOLOGY & MANAGEMENT AG

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20011228

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20021224

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20030116

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040126

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20040126

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040930

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20100127

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20100124

Year of fee payment: 15

REG Reference to a national code

Ref country code: NL

Ref legal event code: V1

Effective date: 20110801

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 59607944

Country of ref document: DE

Effective date: 20110802

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110801

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110802