EP0779988B1 - Process and device for measuring an alternating electric current with temperature compensation - Google Patents

Process and device for measuring an alternating electric current with temperature compensation Download PDF

Info

Publication number
EP0779988B1
EP0779988B1 EP95928986A EP95928986A EP0779988B1 EP 0779988 B1 EP0779988 B1 EP 0779988B1 EP 95928986 A EP95928986 A EP 95928986A EP 95928986 A EP95928986 A EP 95928986A EP 0779988 B1 EP0779988 B1 EP 0779988B1
Authority
EP
European Patent Office
Prior art keywords
signal
measuring
intensity
light
signals
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP95928986A
Other languages
German (de)
French (fr)
Other versions
EP0779988A1 (en
Inventor
Thomas Bosselmann
Peter Menke
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP0779988A1 publication Critical patent/EP0779988A1/en
Application granted granted Critical
Publication of EP0779988B1 publication Critical patent/EP0779988B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R15/00Details of measuring arrangements of the types provided for in groups G01R17/00 - G01R29/00, G01R33/00 - G01R33/26 or G01R35/00
    • G01R15/14Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks
    • G01R15/24Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using light-modulating devices
    • G01R15/245Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using light-modulating devices using magneto-optical modulators, e.g. based on the Faraday or Cotton-Mouton effect
    • G01R15/246Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using light-modulating devices using magneto-optical modulators, e.g. based on the Faraday or Cotton-Mouton effect based on the Faraday, i.e. linear magneto-optic, effect

Definitions

  • the invention relates to a method and an apparatus for Measuring an electrical alternating current.
  • the electrical one Electricity generated magnetic field causes rotation of the Polarization plane of the light in the sensor device around an angle of rotation by an evaluation unit as a measure of the strength of the magnetic field and thus for the strength of the electrical current can be evaluated.
  • an evaluation unit as a measure of the strength of the magnetic field and thus for the strength of the electrical current can be evaluated.
  • the current conductor In general surrounds the sensor device, the current conductor, so that the polarized light the conductor in a quasi closed Path runs around. In this case, the amount of the polarization rotation angle in good approximation directly proportional to Amplitude of the measuring current.
  • optical measuring device for measuring an electric current is the sensor device as part of an optical single-mode fiber trained the current conductor in the form of a Measuring winding surrounds.
  • the polarized measuring light circulates around the Conductors therefore N times during a run, if N is the number is the turns of the measuring winding.
  • Transmission type the measuring light only passes through the measuring winding once.
  • reflection type the other end is the Mirrored fiber, so that the measuring light after a first Run the measurement winding a second time in reverse Direction goes through. Because of the non-reciprocity of the Faraday effect is therefore the angle of rotation for the reflection type with the same measuring winding twice as large as the transmission type.
  • an optical measuring device for Measuring a current in which the sensor device is designed as a solid glass ring around the current conductor.
  • Light from a light source becomes linear with a polarizer polarized and then coupled into the sensor device.
  • the linearly polarized light passes through the sensor device once and then using a wollaston prism as polarizing beam splitter into two linearly polarized Partial light signals A and B with perpendicular to each other Divided polarization planes.
  • Each of these two light signals A and B is via an associated optical transmission fiber transmitted to an associated light detector and in a corresponding electrical signal PA and PB converted.
  • an intensity-standardized measurement signal M (PA-PB) / (PA + PB) is formed.
  • This measurement signal M is independent of intensity fluctuations the light source or attenuation in the optical Supply lines.
  • calibrated values Correction factor K obtained for the quotient Q determined.
  • the value Q * K corrected by this correction factor K is called Temperature compensated measured value for an electrical to be measured AC used. With this procedure the temperature sensitivity can be reduced to about 1/50.
  • Another temperature compensation method is known from EP-A-0 557 090 for an optical measuring device for measuring magnetic Alternating fields known that exploits the Faraday effect and therefore also for measuring electrical alternating currents suitable is.
  • This Measurement signal M is largely independent of temperature changes caused changes in the Verdet constant and the circular birefringence described in the sensor device. Via compensation of the temperature-induced linear birefringence says nothing.
  • the constants ⁇ and ⁇ are determined experimentally.
  • the invention is based on the object of a method and a device for measuring an electrical alternating current with the help of a sensor device showing the Faraday effect specify where influences from temperature-induced linear birefringence and intensity fluctuations largely compensated for the measurement signal.
  • linearly polarized measuring light is coupled in via coupling means.
  • the polarization plane of the measuring light is changed as a function of the electrical alternating current.
  • the measuring light is divided by an analyzer into two linearly polarized partial light signals with different polarization levels. These two partial light signals are then each converted into corresponding electrical intensity signals by optoelectric converters. Each of these two intensity signals is separately intensity-normalized by the quotient signal being formed from its alternating signal component and its DC signal component by standardizing means.
  • FIG. 1 shows an embodiment of the measuring device for measuring an electrical alternating current I in a conductor 2 in a basic structure.
  • the current conductor 2 is one Associated sensor device 3 which, under the influence of the magnetic alternating current I generated the magnetic field Polarization of radiation radiated into the sensor device 3 linearly polarized measuring light depending on the electrical AC current I changes.
  • the sensor device 3 exists to do this at least partially from at least one magneto-optical Faraday effect material.
  • In the Sensor device 3 is coupled in linearly polarized measuring light L.
  • To generate this linearly polarized measuring light L can be a simple light source and associated, not shown polarizing means or even one polarizing light source 4, for example a laser diode, be provided.
  • the sensor device 3 and the light source 4 are preferably a polarization-maintaining Light guide 34, for example a single-mode optical fiber such as HiBi (high birefringence) fiber or polarization neutral LoBi (low birefringence) fiber, optically connected.
  • a multimode light guide can also be used, for example an optical fiber used in telecommunications will.
  • the light the light source 4 directly before being coupled into the sensor device 3 sent through an additional polarizer and linearly polarized.
  • the linearly polarized measuring light L passes through the sensor device 3 at least once and experiences one of the electrical alternating current I in the conductor 2 dependent change in its polarization.
  • the decoupled Measuring light L has one due to the Faraday effect Measuring angle ⁇ , not shown, rotated plane of polarization on.
  • the measuring angle ⁇ is dependent on an alternating current I in the current conductor 2.
  • the sensor device 3 can be provided with a light guide, preferably an optical fiber, which is the current conductor 2 in a measuring winding with at least one measuring winding surrounds.
  • the light guide of the sensor device 3 is with the Light guide 34 for supplying the measuring light L then preferably connected by a splice.
  • the sensor device 3 must have the current conductor 2 not in a closed light path, but can also arranged in close proximity to the current conductor 2 be.
  • the measuring light L fed to an analyzer 7 and in the analyzer 7 in split two linearly polarized light signals L1 and L2, whose polarization planes are different from each other.
  • the polarization planes of the two partial light signals L1 and L2 directed perpendicular to each other (orthogonal Disassembly).
  • a polarizing one can be used as the analyzer 7 Beam splitter, for example a Wollaston prism, or also two at an appropriate angle and preferably 90 ° crossed polarization filters and a simple beam splitter be provided with a partially transparent mirror.
  • the sensor device 3 and the analyzer 7 can have a free jet arrangement or via a polarization-maintaining Optical fiber, preferably a single-mode optical fiber such as a HiBi (high birefringence) fiber or one polarization-neutral LoBi (low birefringence) fiber, optical be connected.
  • a polarization-maintaining Optical fiber preferably a single-mode optical fiber such as a HiBi (high birefringence) fiber or one polarization-neutral LoBi (low birefringence) fiber, optical be connected.
  • the two partial light signals L1 and L2 are then each a photoelectric converter 12 and 22 respectively.
  • the Transmission of the two partial light signals L1 and L2 from the analyzer 7 to the associated transducer 12 or 22 can over a free jet arrangement or preferably over each a light guide 11 or 21 take place.
  • the two partial light signals L1 and L2 are each in converted an electrical intensity signal I1 or I2, which is a measure of the intensity of the associated partial light signal L1 or L2 is.
  • each Standardizing means 20 are the intensity-standardized signals S1 and S2 on.
  • intensity-standardized signals S1 and S2 the quotient of the alternating signal component and the DC signal component of the associated intensity signal I1 or I2 formed.
  • the intensity norms thus formed Signals S1 and S2 are compensated for fluctuations in intensity, i.e. Fluctuations in the light intensities in particular Microbending losses in the light guides and due to vibrations or other mechanical influences and through Fluctuations in the intensity of the light source 4 are practical eliminated.
  • different intensity changes in the two optical transmission paths for the partial light signals L1 and L2 are through this intensity normalization compensated. Therefore, as transmission links for the two light part signals L1 and L2 also each have a multimode fiber be provided.
  • the two intensity-standardized signals S1 and S2 each fed to an input of the evaluation means 40.
  • the Evaluation means 40 form the two intensity-standardized Signals S1 and S2 an output signal as a measurement signal S, the at least approximately satisfies the aforementioned equation (1), essentially the quotient of the double product 2 * S1 * S2 of the two intensity-standardized signals S1 and S2 and the sum of the difference S2-S1 and that with a correction factor K multiplied sum S1 + S2 of the two intensity normalized Corresponds to signals S1 and S2.
  • the correction factor K is a real number that depends from one in FIG. 4 coupling angle ⁇ shown Polarization plane P of the one coupled into the sensor device 3 linearly polarized measuring light L to a natural axis EF the linear birefringence of the sensor device 3 on the one hand and from one also in FIG. 4 decoupling angle shown ⁇ between this eigen axis EF and an eigen axis EA of the analyzer 7 is set so that at least approximately meets the aforementioned conditions (2a) and (2b) are. From equation (2a) it follows in particular that for the Correction factor K ⁇ -2/3 or K ⁇ 2/3 applies.
  • a self axis of a birefringent material is due to the state of polarization of the measuring light L defines the material leaves unchanged.
  • FIG. 4 defines the drawing level a plane that is perpendicular to the direction of propagation of the Measuring light L is directed.
  • Deviations from the conditions (2a) and (2b) Precisely fulfilling angle values are especially great linear and / or circular birefringence in the sensor device 3 possible and can be up to about 5 °.
  • This measurement signal S corresponds to the theoretical measurement signal for the measurement angle ⁇ without birefringence effects. This will the evaluation process is particularly simple. At given Coupling and decoupling angles ⁇ and ⁇ is the correction factor K just set so that the measurement signal S of the measuring device the theoretical measurement signal when none Birefringence corresponds. With this correction factor K is the measuring device then to minimal temperature dependence adjusted.
  • the measuring light L before coupling into the sensor device 3 can be linearly polarized with a polarizer as the coupling angle ⁇ simply the angle between the natural axis this polarizer 5 and a natural axis of the linear Birefringence can be selected in the sensor device 3.
  • the measurement signal S is both against fluctuations in intensity the light source and in the optical transmission links as also with regard to its working point and its sensitivity largely stable at variable temperatures.
  • the arithmetic derivation of the measurement signal S according to the Equation (1) is preferably created using appropriate analog components for the arithmetic to be performed Operations performed. In this embodiment, one is Temperature compensation possible in real time.
  • the measurement signal S can also be digital using a digital signal processor or a microprocessor and / or calculated with Can be determined using a stored value table.
  • the measuring light L is the sensor device 3 only runs in one direction
  • the linearly polarized Measuring light L of the light source 4 is then preferably over a beam splitter at an optical connection in the sensor device 3 coupled in and after the first pass reflected by a mirror, passes through the sensor device 3 a second time, it is coupled out again at the named connection and fed to the analyzer 7 via the beam splitter.
  • FIG. 2 shows an advantageous embodiment of the standardization means 20.
  • the optoelectric Converter 12 electrically connected filter 13 for disassembling the first intensity signal I1 into an alternating signal component A1 and a DC signal component D1 and a second one with which second optoelectric converter 22 electrically connected Filter 23 for breaking down the second intensity signal I2 into an AC signal component A2 and a DC signal component D2 intended.
  • the cut-off frequencies of both filters 13 and 23 are chosen so high that the alternating signal components A1 and A2 the intensity signals essentially all information contained about the alternating current I to be measured. Especially the crossover frequency is lower than the base frequency of the alternating current I choose.
  • Both filters 13 and 23 each contain a low-pass filter 14 or 24 and a subtractor (SUB) 15 or 25.
  • the intensity signal I1 or I2 is assigned to an input of the Low pass filter 14 and 24 created.
  • the DC signal component D1 and D2 of the intensity signal I1 and I2 on the frequency components corresponds to the intensity signal I1 or I2, the below a predetermined cut-off frequency of the low-pass filter 14 or 24 are.
  • the respective alternating signal component Al or A2 is now simply subtracted from the DC signal component D1 or D2 from the intensity signal I1 or I2 with With the help of a subtractor 15 and 25 respectively.
  • To are at two inputs of the associated subtractor 15 or 25 the intensity signal I1 or I2 and the associated one DC signal component D1 or D2 applied.
  • the AC signal component Al and the DC signal component D1 of the first intensity signal I1 are now one input each a divider 16 supplied.
  • the first intensity-standardized signal S1 A1 / D1 as the quotient of AC signal component A1 and DC signal component D1 of the first intensity signal I1.
  • the intensity-standardized signal S2 A2 / D2 forms for the second intensity signal I2.
  • the two intensity-standardized Signals S1 and S2 can then be sent to corresponding Outputs of the standardization means 20 are tapped.
  • FIG. 3 shows an embodiment of the evaluation means 40 with analog hardware.
  • a multiplier (MULT) 41, a first adder (ADD) 42, a subtractor (SUB) 43, two amplifiers 44 and 45, a second adder (ADD) 46 and a divider (DIV) 47 are provided.
  • the two intensity-normalized signals S1 and S2 of the normalization means 20 are each fed to two inputs of the multiplier 41, the first adder 42 and the subtractor 43.
  • the product S1 * S2 of the two signals S1 and S2 at the output of the multiplier 41 is fed to an input of the traitor 44.
  • the amplifier 44 is set to a gain factor 2, so that the double product 2 * S1 * S2 of the two signals S1 and S2 is present at its output.
  • the sum S1 + S2 of the two signals S1 and S2 at the output of the first adder 42 is applied to an input of the further amplifier 45 and amplified by the correction factor K.
  • the amplification factor of the amplifier 45 is to be set to the predetermined correction factor K.
  • the product K * (S1 + S2) at the output of the amplifier 45 is fed to an input of the second adder 46.
  • the output signal S2-S1 of the subtractor 43 is applied, which corresponds to the difference between the two signals S1 and S2.
  • the adder 46 forms the output signal K * (S1 + S2) + (S2-S1) as the sum of its two input signals.
  • the output signal 2 * S1 * S2 of the amplifier 44 is fed to the first input of the divider 47 and the output signal of the second adder 46 to the second input of the divider 47.
  • This embodiment with analog components according to FIG. 3 has the advantage that the calculation of the measurement signal S is carried out particularly quickly. In particular in combination with standardization means 20 according to FIG. 2, temperature compensation is possible in real time.
  • the measuring method and the measuring device according to the invention can of course also be used to measure magnetic Alternating fields can be used by the sensor device 3 is arranged in the alternating magnetic field.

Abstract

PCT No. PCT/DE95/01138 Sec. 371 Date Mar. 7, 1997 Sec. 102(e) Date Mar. 7, 1997 PCT Filed Aug. 25, 1995 PCT Pub. No. WO96/07922 PCT Pub. Date Mar. 14, 1996Linearly polarized measuring light is broken down into two differently polarized component light signals in an analyzer after passing through a Faraday sensor device. The intensity of the corresponding electric intensity signals is normalized by dividing the respective alternating signal component by the respective direct signal component. From the two normalized intensity signals S1 and S2, a measuring signal is derived according to the formula: S=(2xS1xS2)/((S2-S1)+Kx(S1+S2)) where cos(2 theta +2 eta )=-2/(3K) and sin(2 theta -2 eta )=1 are valid for a correction factor K, an injection angle eta between the plane of polarization of the injected measuring light to a natural axis of the linear birefringence in the sensor device and a exit angle theta between this natural axis and a natural axis of the analyzer.

Description

Die Erfindung betrifft ein Verfahren und eine Vorrichtung zum Messen eines elektrischen Wechselstromes.The invention relates to a method and an apparatus for Measuring an electrical alternating current.

Es sind optische Meßverfahren und Meßvorrichtungen zum Messen eines elektrischen Stromes bekannt, bei denen der magnetooptische Faraday-Effekt ausgenutzt wird. Unter dem Faraday-Effekt versteht man die Drehung der Polarisationsebene von linear polarisiertem Licht in Abhängigkeit von einem Magnetfeld. Der Drehwinkel ist dabei proportional zum Wegintegral über dem magnetischen Feld entlang des von dem Licht zurückgelegten Weges mit der Verdet-Konstanten als Proportionalitätskonstanten. Die Verdet-Konstante ist abhängig von dem Material, in dem das Licht verläuft, und von der Wellenlänge des Lichts. Zum Messen eines elektrischen Stromes in einem Stromleiter ist in der Nähe des Stromleiters eine den Faraday-Effekt zeigende Sensoreinrichtung angeordnet, die aus einem optisch transparenten Material und im allgemeinen aus Glas besteht und mit einem oder mehreren, einen Lichtpfad bildenden massiven Körpern oder auch mit einem Lichtwellenleiter gebildet sein kann. Durch die Sensoreinrichtung wird linear polarisiertes Licht geschickt. Das von dem elektrischen Strom erzeugte Magnetfeld bewirkt eine Drehung der Polarisationsebene des Lichtes in der Sensoreinrichtung um einen Drehwinkel, die von einer Auswerteeinheit als Maß für die Stärke des Magnetfeldes und damit für die Stärke des elektrischen Stromes ausgewertet werden kann. Im allgemeinen umgibt die Sensoreinrichtung den Stromleiter, so daß das polarisierte Licht den Stromleiter in einem quasi geschlossenen Weg umläuft. In diesem Fall ist der Betrag des Polarisationsdrehwinkels in guter Näherung direkt proportional zur Amplitude des Meßstromes. There are optical measuring methods and measuring devices for measuring of an electric current, in which the magneto-optical Faraday effect is used. Under the Faraday effect one understands the rotation of the plane of polarization of linearly polarized light depending on a magnetic field. The angle of rotation is proportional to the path integral over the magnetic field along the distance traveled by the light Way with the Verdet constants as proportionality constants. The Verdet constant depends on that Material in which the light runs and on the wavelength of light. For measuring an electrical current in one Conductor near the conductor is the Faraday effect pointing sensor device arranged from an optically transparent material and in general Glass is made and with one or more, a light path forming solid bodies or with an optical waveguide can be formed. Through the sensor device sent linearly polarized light. The electrical one Electricity generated magnetic field causes rotation of the Polarization plane of the light in the sensor device around an angle of rotation by an evaluation unit as a measure of the strength of the magnetic field and thus for the strength of the electrical current can be evaluated. In general surrounds the sensor device, the current conductor, so that the polarized light the conductor in a quasi closed Path runs around. In this case, the amount of the polarization rotation angle in good approximation directly proportional to Amplitude of the measuring current.

In einer aus W0 91/01501 bekannten Ausführungsform einer optischen Meßvorrichtung zum Messen eines elektrischen Stromes ist die Sensoreinrichtung als Teil einer optischen Monomode-Faser ausgebildet, die den Stromleiter in Form einer Meßwicklung umgibt. Das polarisierte Meßlicht umläuft den Stromleiter daher bei einem Durchlauf N-mal, wenn N die Anzahl der Windungen der Meßwicklung ist. Beim sogenannten Transmissionstyp durchläuft das Meßlicht die Meßwicklung nur einmal. Beim Reflexionstyp ist dagegen das andere Ende der Faser verspiegelt, so daß das Meßlicht nach einem ersten Durchlauf die Meßwicklung ein zweites Mal in umgekehrter Richtung durchläuft. Wegen der Nicht-Reziprokität des Faraday-Effekts ist deshalb der Drehwinkel beim Reflexionstyp bei gleicher Meßwicklung doppelt so groß wie beim Transmissionstyp.In an embodiment known from W0 91/01501 optical measuring device for measuring an electric current is the sensor device as part of an optical single-mode fiber trained the current conductor in the form of a Measuring winding surrounds. The polarized measuring light circulates around the Conductors therefore N times during a run, if N is the number is the turns of the measuring winding. With the so-called Transmission type, the measuring light only passes through the measuring winding once. On the other hand, in the reflection type, the other end is the Mirrored fiber, so that the measuring light after a first Run the measurement winding a second time in reverse Direction goes through. Because of the non-reciprocity of the Faraday effect is therefore the angle of rotation for the reflection type with the same measuring winding twice as large as the transmission type.

Aus der EP-B-0 088 419 ist eine optische Meßvorrichtung zum Messen eines Stromes bekannt, bei der die Sensoreinrichtung als massiver Glasring um den Stromleiter ausgebildet ist. Licht einer Lichtquelle wird mit einem Polarisator linear polarisiert und dann in die Sensoreinrichtung eingekoppelt. Das linear polarisierte Licht durchläuft die Sensoreinrichtung einmal und wird dann mit einem Wollaston-Prisma als polarisierendem Strahlteiler in zwei linear polarisierte Lichtteilsignale A und B mit senkrecht zueinander gerichteten Polarisationsebenen geteilt. Jedes dieser beiden Lichtsignale A und B wird über eine zugehörige optische Übertragungsfaser zu einem zugehörigen Lichtdetektor übertragen und in ein entsprechendes elektrisches Signal PA und PB umgewandelt. Aus diesen beiden Signalen PA und PB wird in einer Recheneinheit ein intensitätsnormiertes Meßsignal M = (PA-PB)/(PA+PB) gebildet. Dieses Meßsignal M ist unabhängig von Intensitätsschwankungen der Lichtquelle oder Dämpfungen in den optischen Zuleitungen.From EP-B-0 088 419 an optical measuring device for Measuring a current is known in which the sensor device is designed as a solid glass ring around the current conductor. Light from a light source becomes linear with a polarizer polarized and then coupled into the sensor device. The linearly polarized light passes through the sensor device once and then using a wollaston prism as polarizing beam splitter into two linearly polarized Partial light signals A and B with perpendicular to each other Divided polarization planes. Each of these two light signals A and B is via an associated optical transmission fiber transmitted to an associated light detector and in a corresponding electrical signal PA and PB converted. Out these two signals PA and PB is in a processing unit an intensity-standardized measurement signal M = (PA-PB) / (PA + PB) is formed. This measurement signal M is independent of intensity fluctuations the light source or attenuation in the optical Supply lines.

Ein Problem bei solchen optischen Meßverfahren und Meßvorrichtungen zur Strommessung stellen Störeinflüsse durch zusätzliche lineare Doppelbrechung in den optischen Materialien der Sensoreinrichtung und der optischen Übertragungsstrecken dar. Solche zusätzliche lineare Doppelbrechung kann durch mechanische Spannungen, die beispielsweise durch Verbiegen oder Vibrationen hervorgerufen werden, oder durch Temperaturänderungen verursacht werden. Diese durch Störgrößen bewirkte, lineare Doppelbrechung führt zu einer unerwünschten Änderung des Arbeitspunktes und der Meßempfindlichkeit.A problem with such optical measuring methods and measuring devices for current measurement there are interferences from additional linear birefringence in optical materials the sensor device and the optical transmission links Such additional linear birefringence can be achieved by mechanical Tensions caused, for example, by bending or Vibrations are caused, or by temperature changes caused. This caused by disturbances linear birefringence leads to an undesirable change the operating point and the sensitivity.

Zur Kompensation von Temperatureinflüssen sind bereits verschiedene Temperaturkompensationsverfahren bekannt.There are already several for compensating for temperature influences Temperature compensation method known.

In US 4 755 665 wird ein Temperaturkompensationsverfahren für eine magnetooptische Meßvorrichtung zum Messen von Wechselströmen vorgeschlagen. Bei diesem Verfahren werden die analog zu der zuvor beschriebenen, aus EP-B-0 088 419 bekannten Meßvorrichtung gewonnenen elektrischen Signale PA und PB jeweils in einem Filter in ihre Gleichstromanteile PA(DC) bzw. PB(DC) und ihre Wechselstromanteile PA(AC) bzw. PB(AC) zerlegt. Aus dem Wechselstromanteil PA(AC) bzw. PB(AC) und dem Gleichstromanteil PA(DC) bzw. PB(DC) wird für jedes Signal PA und PB zum Ausgleich auch von unterschiedlichen Intensitätsschwankungen in den beiden Übertragungsstrecken für die Lichtsignale A und B der Quotient QA = PA(AC)/PA(DC) bzw. QB = PB(AC)/PB(DC) aus seinem Wechselstromanteil PA(AC) bzw. PB(AC) und seinem Gleichstromanteil PA(DC) bzw. PA(DC) gebildet. Aus jedem dieser beiden Quotienten QA und QB wird ein zeitlicher Mittelwert MW(QA) und MW(QB) gebildet, und aus diesen beiden Mittelwerten MW(QA) und MW(QB) wird schließlich ein Quotient Q = MW(QA)/MW(QB) gebildet. Im Rahmen eines Iterationsverfahrens wird durch Vergleich mit in einer Wertetabelle (Look-up-table) gespeicherten, geeichten Werten ein Korrekturfaktor K für den ermittelten Quotienten Q erhalten. Der um diesen Korrekturfaktor K korrigierte Wert Q*K wird als temperaturkompensierter Meßwert für einen zu messenden elektrischen Wechselstrom herangezogen. Mit diesem Verfahren kann die Temperaturempfindlichkeit auf etwa 1/50 herabgesetzt werden.In US 4,755,665 a temperature compensation method for a magneto-optical measuring device for measuring alternating currents suggested. In this process, the analog to the previously described measuring device known from EP-B-0 088 419 obtained electrical signals PA and PB respectively in a filter into their direct current components PA (DC) or PB (DC) and their AC components PA (AC) and PB (AC) disassembled. Out the AC component PA (AC) or PB (AC) and the DC component PA (DC) or PB (DC) is used for each signal PA and PB to compensate for different intensity fluctuations in the two transmission links for the Light signals A and B with the quotient QA = PA (AC) / PA (DC) or QB = PB (AC) / PB (DC) from its AC component PA (AC) or PB (AC) and its direct current component PA (DC) or PA (DC) are formed. Each of these two quotients QA and QB becomes one temporal mean MW (QA) and MW (QB) formed, and from these two averages MW (QA) and MW (QB) will eventually a quotient Q = MW (QA) / MW (QB) is formed. As part of a Iteration process is done by comparison with in a table of values (Look-up table) stored, calibrated values Correction factor K obtained for the quotient Q determined. The value Q * K corrected by this correction factor K is called Temperature compensated measured value for an electrical to be measured AC used. With this procedure the temperature sensitivity can be reduced to about 1/50.

Aus EP-A-0 557 090 ist ein weiteres Temperaturkompensationsverfahren für eine optische Meßvorrichtung zum Messen magnetischer Wechselfelder bekannt, die den Faraday-Effekt ausnutzt und daher auch zum Messen elektrischer Wechselströme geeignet ist. Bei diesem bekannten Verfahren wird das linear polarisierte Meßlicht nach Durchlaufen einer Sensoreinrichtung in einem Analysator in zwei unterschiedlich linear polarisierte Lichtteilsignale A und B aufgespalten, und es wird zur Intensitätsnormierung für jedes der beiden zugehörigen elektrischen Signale PA und PB gesondert der Quotient QA = PA(AC)/PA(DC) bzw. QB = PB(AC)/PB(DC) aus seinem zugehörigen Wechselstromanteil PA(AC) bzw. PB(AC) und seinem zugehörigen Gleichstromanteil PA(DC) bzw. PB(DC) gebildet. Aus den beiden Quotienten QA und QB wird nun in einer Recheneinheit ein Meßsignal M = 1/((α/QA)-(β/QB)) gebildet mit den reellen Konstanten α und β, die die Beziehung α+β = 1 erfüllen. Dieses Meßsignal M wird als weitgehend unabhängig von durch Temperaturänderungen verursachten Änderungen der Verdet-Konstanten und der zirkularen Doppelbrechung im Sensoreinrichtung beschrieben. Über eine Kompensation der temperaturinduzierten linearen Doppelbrechung ist nichts ausgesagt. Die Konstanten α und β werden experimentell bestimmt.Another temperature compensation method is known from EP-A-0 557 090 for an optical measuring device for measuring magnetic Alternating fields known that exploits the Faraday effect and therefore also for measuring electrical alternating currents suitable is. In this known method, this becomes linear polarized measuring light after passing through a sensor device in one analyzer in two different linearly polarized Split light signals A and B, and it will for intensity normalization for each of the two associated electrical signals PA and PB separately the quotient QA = PA (AC) / PA (DC) or QB = PB (AC) / PB (DC) from its associated AC component PA (AC) or PB (AC) and its associated DC component PA (DC) or PB (DC) formed. From the two Quotients QA and QB is now entered in a computing unit Measurement signal M = 1 / ((α / QA) - (β / QB)) formed with the real constants α and β, which satisfy the relation α + β = 1. This Measurement signal M is largely independent of temperature changes caused changes in the Verdet constant and the circular birefringence described in the sensor device. Via compensation of the temperature-induced linear birefringence says nothing. The constants α and β are determined experimentally.

Der Erfindung liegt nun die Aufgabe zugrunde, ein Verfahren und eine Vorrichtung zum Messen eines elektrischen Wechselstromes mit Hilfe einer den Faraday-Effekt zeigenden Sensoreinrichtung anzugeben, bei denen Einflüsse von temperaturinduzierter linearer Doppelbrechung und von Intensitätsschwankungen auf das Meßsignal weitgehend kompensiert werden.The invention is based on the object of a method and a device for measuring an electrical alternating current with the help of a sensor device showing the Faraday effect specify where influences from temperature-induced linear birefringence and intensity fluctuations largely compensated for the measurement signal.

Diese Aufgabe wird gemäß der Erfindung gelöst mit den Merkmalen des Anspruchs 1 bzw. des Anspruchs 2. In die unter dem Einfluß eines vom elektrischen Wechselstrom erzeugten Magnetfeldes stehende optische Sensoreinrichtung wird über Einkoppelmittel linear polarisiertes Meßlicht eingekoppelt. Beim Durchlaufen der Sensoreinrichtung wird die Polarisationsebene des Meßlichts in Abhängigkeit vom elektrischen Wechselstrom geändert. Nach Durchlaufen der Sensoreinrichtung wird das Meßlicht von einem Analysator in zwei linear polarisierte Lichtteilsignale mit unterschiedlichen Polarisationsebenen aufgeteilt. Anschließend werden diese beiden Lichtteilsignale von optoelektrischen Wandlern jeweils in entsprechende elektrische Intensitätssignale umgewandelt. Jedes dieser beiden Intensitätssignale wird gesondert intensitätsnormiert, indem von Normierungsmitteln das Quotientensignal aus seinem Wechselsignalanteil und seinem Gleichsignalanteil gebildet wird. Dadurch können Intensitätsschwankungen der optischen Einkoppelmittel und in den Übertragungsstrecken für die beiden Lichtteilsignale kompensiert werden. Aus den beiden Quotientensignalen als intensitätsnormierte Signale I1 und I2 wird nun von Auswertemitteln ein Meßsignal S für den elektrischen Wechselstrom I gemäß der Vorschrift S = (2*S1*S2)/((S2-S1) + K*(S1+S2)) abgeleitet, wobei K ein reeller Korrekturfaktor ist und dieser Korrekturfaktor K, der Einkoppelwinkel η der Polarisationsebene des in die Sensoreinrichtung eingekoppelten Meßlichts zu einer Eigenachse der linearen Doppelbrechung in der Sensoreinrichtung sowie der sogenannte Auskoppelwinkel  zwischen dieser Eigenachse der linearen Doppelbrechung und einer Eigenachse des Analysators die folgenden zwei Bedingungen erfüllen: cos(2 + 2η) = - 2/(3K) sin(2 - 2η) = 1 . Vorteilhafte Ausgestaltungen des Meßverfahrens und der Meßvorrichtung gemäß der Erfindung ergeben sich aus den jeweils abhängigen Ansprüchen. This object is achieved according to the invention with the features of claim 1 and claim 2. In the optical sensor device under the influence of a magnetic field generated by the electrical alternating current, linearly polarized measuring light is coupled in via coupling means. When passing through the sensor device, the polarization plane of the measuring light is changed as a function of the electrical alternating current. After passing through the sensor device, the measuring light is divided by an analyzer into two linearly polarized partial light signals with different polarization levels. These two partial light signals are then each converted into corresponding electrical intensity signals by optoelectric converters. Each of these two intensity signals is separately intensity-normalized by the quotient signal being formed from its alternating signal component and its DC signal component by standardizing means. As a result, fluctuations in the intensity of the optical coupling means and in the transmission links can be compensated for the two partial light signals. The two quotient signals as intensity-normalized signals I1 and I2 are now used by evaluation means to produce a measurement signal S for the electrical alternating current I in accordance with the regulation S = (2 * S1 * S2) / ((S2-S1) + K * (S1 + S2)) derived, where K is a real correction factor and this correction factor K, the coupling angle η of the polarization plane of the measuring light coupled into the sensor device to a natural axis of the linear birefringence in the sensor device and the so-called coupling angle  between this natural axis of the linear birefringence and a natural axis of the analyzer meet the following two conditions: cos (2 + 2η) = - 2 / (3K) sin (2 - 2η) = 1. Advantageous embodiments of the measuring method and the measuring device according to the invention result from the respective dependent claims.

Zur weiteren Erläuterung der Erfindung wird auf die Zeichnung Bezug genommen, in deren

FIG. 1
ein prinzipieller Aufbau einer Vorrichtung zum Messen eines elektrischen Wechselstromes,
FIG. 2
eine Ausführungsform von Normierungsmitteln für eine solche Meßvorrichtung,
FIG. 3
eine Ausführungsform von Auswertemitteln zur Temperaturkompensation für eine solche Meßvorrichtung und
FIG. 4
ein Einkoppelwinkel η und ein Auskoppelwinkel  in einem Diagramm
schematisch veranschaulicht sind. Einander entsprechende Teile sind mit denselben Bezugszeichen versehen.To further explain the invention, reference is made to the drawing in which
FIG. 1
a basic structure of a device for measuring an electrical alternating current,
FIG. 2nd
one embodiment of standardization means for such a measuring device,
FIG. 3rd
an embodiment of evaluation means for temperature compensation for such a measuring device and
FIG. 4th
a coupling angle η and a coupling angle  in a diagram
are illustrated schematically. Corresponding parts are provided with the same reference numerals.

FIG. 1 zeigt eine Ausführungsform der Meßvorrichtung zum Messen eines elektrischen Wechselstromes I in einem Stromleiter 2 in einem prinzipiellen Aufbau. Dem Stromleiter 2 ist eine Sensoreinrichtung 3 zugeordnet, die unter dem Einfluß des von dem elektrischen Wechselstrom I erzeugten Magnetfeldes die Polarisation von in die Sensoreinrichtung 3 eingestrahltem linear polarisierten Meßlicht in Abhängigkeit von dem elektrischen Wechselstrom I ändert. Die Sensoreinrichtung 3 besteht dazu wenigstens teilweise aus wenigstens einem den magnetooptischen Faraday-Effekt zeigenden Material. In die Sensoreinrichtung 3 wird linear polarisiertes Meßlicht L eingekoppelt. Zum Erzeugen dieses linear polarisierten Meßlichts L können eine einfache Lichtquelle und zugeordnete, nicht dargestellte polarisierende Mittel oder auch eine selbst polarisierende Lichtquelle 4, beispielsweise eine Laserdiode, vorgesehen sein. Die Sensoreinrichtung 3 und die Lichtquelle 4 sind vorzugweise über einen polarisationserhaltenden Lichtleiter 34, beispielsweise eine Monomode-Lichtfaser wie eine HiBi (High-Birefringence)-Faser oder eine polarisationsneutrale LoBi (Low-Birefringence)-Faser, optisch verbunden. Es kann jedoch auch ein Multimode-Lichtleiter, beispielsweise eine in der Telekommunikation verwendete Lichtleitfaser, verwendet werden. Insbesondere im letzten Fall wird das Licht der Lichtquelle 4 direkt vor dem Einkoppeln in die Sensoreinrichtung 3 durch einen zusätzlichen Polarisator geschickt und linear polarisiert. Das linear polarisierte Meßlicht L durchläuft die Sensoreinrichtung 3 wenigstens einmal und erfährt dabei eine von dem elektrischen Wechselstrom I im Stromleiter 2 abhängige Änderung seiner Polarisation. Das ausgekoppelte Meßlicht L weist eine aufgrund des Faraday-Effekts um einen nicht dargestellten Meßwinkel α gedrehte Polarisationsebene auf. Der Meßwinkel α ist dabei abhängig von einem Wechselstrom I in dem Stromleiter 2.FIG. 1 shows an embodiment of the measuring device for measuring an electrical alternating current I in a conductor 2 in a basic structure. The current conductor 2 is one Associated sensor device 3 which, under the influence of the magnetic alternating current I generated the magnetic field Polarization of radiation radiated into the sensor device 3 linearly polarized measuring light depending on the electrical AC current I changes. The sensor device 3 exists to do this at least partially from at least one magneto-optical Faraday effect material. In the Sensor device 3 is coupled in linearly polarized measuring light L. To generate this linearly polarized measuring light L can be a simple light source and associated, not shown polarizing means or even one polarizing light source 4, for example a laser diode, be provided. The sensor device 3 and the light source 4 are preferably a polarization-maintaining Light guide 34, for example a single-mode optical fiber such as HiBi (high birefringence) fiber or polarization neutral LoBi (low birefringence) fiber, optically connected. However, a multimode light guide can also be used, for example an optical fiber used in telecommunications will. Especially in the latter case, the light the light source 4 directly before being coupled into the sensor device 3 sent through an additional polarizer and linearly polarized. The linearly polarized measuring light L passes through the sensor device 3 at least once and experiences one of the electrical alternating current I in the conductor 2 dependent change in its polarization. The decoupled Measuring light L has one due to the Faraday effect Measuring angle α, not shown, rotated plane of polarization on. The measuring angle α is dependent on an alternating current I in the current conductor 2.

Die Sensoreinrichtung 3 kann mit einem Lichtleiter, vorzugsweise einer optischen Faser, gebildet sein, der den Stromleiter 2 in einer Meßwicklung mit wenigstens einer Meßwindung umgibt. Der Lichtleiter des Sensoreinrichtungs 3 ist mit dem Lichtleiter 34 zum Zuführen des Meßlichts L dann vorzugsweise über einen Spleiß verbunden. Als Sensoreinrichtung 3 können jedoch auch ein oder mehrere massive Körper aus Faraday-Materialien vorgesehen sein, die einen vorzugsweise geschlossenen Lichtpfad um den Stromleiter 2 bilden, beispielsweise ein Glasring. Die Sensoreinrichtung 3 muß den Stromleiter 2 aber nicht in einem geschlossenen Lichtpfad umgeben, sondern kann auch nur in räumliche Nähe neben dem Stromleiter 2 angeordnet sein.The sensor device 3 can be provided with a light guide, preferably an optical fiber, which is the current conductor 2 in a measuring winding with at least one measuring winding surrounds. The light guide of the sensor device 3 is with the Light guide 34 for supplying the measuring light L then preferably connected by a splice. Can as sensor device 3 but also one or more solid bodies made of Faraday materials be provided, which is preferably closed Form light path around the current conductor 2, for example a Glass ring. However, the sensor device 3 must have the current conductor 2 not in a closed light path, but can also arranged in close proximity to the current conductor 2 be.

Nach dem Durchlaufen der Sensoreinrichtung 3 wird das Meßlicht L einem Analysator 7 zugeführt und im Analysator 7 in zwei linear polarisierte Lichtteilsignale L1 und L2 zerlegt, deren Polarisationsebenen verschieden voneinander sind. Vorzugsweise sind die Polarisationsebenen der beiden Lichtteilsignale L1 und L2 senkrecht zueinander gerichtet (orthogonale Zerlegung). Als Analysator 7 können ein polarisierender Strahlteiler, beispielsweise ein Wollaston-Prisma, oder auch zwei um einen entsprechenden Winkel und vorzugsweise um 90° gekreuzte Polarisationsfilter und ein einfacher Strahlteiler mit einem teildurchlässigen Spiegel vorgesehen sein. Die Sensoreinrichtung 3 und der Analysator 7 können über eine Freistrahlanordnung oder auch über einen polarisationserhaltenden Lichtleiter, vorzugsweise eine Monomode-Lichtfaser wie beispielsweise eine HiBi (High-Birefringence)-Faser oder eine polarisationsneutrale LoBi (Low-Birefringence)-Faser, optisch miteinander verbunden sein.After passing through the sensor device 3, the measuring light L fed to an analyzer 7 and in the analyzer 7 in split two linearly polarized light signals L1 and L2, whose polarization planes are different from each other. Preferably are the polarization planes of the two partial light signals L1 and L2 directed perpendicular to each other (orthogonal Disassembly). A polarizing one can be used as the analyzer 7 Beam splitter, for example a Wollaston prism, or also two at an appropriate angle and preferably 90 ° crossed polarization filters and a simple beam splitter be provided with a partially transparent mirror. The sensor device 3 and the analyzer 7 can have a free jet arrangement or via a polarization-maintaining Optical fiber, preferably a single-mode optical fiber such as a HiBi (high birefringence) fiber or one polarization-neutral LoBi (low birefringence) fiber, optical be connected.

Die beiden Lichtteilsignale L1 und L2 werden dann jeweils einem photoelektrischen Wandler 12 bzw. 22 zugeführt. Die Übertragung der beiden Lichtteilsignale L1 und L2 vom Analysator 7 zu dem jeweils zugehörigen Wandler 12 bzw. 22 kann über eine Freistrahlanordnung oder vorzugsweise über jeweils einen Lichtleiter 11 bzw. 21 erfolgen. In den Wandlern 12 und 22 werden die beiden Lichtteilsignale L1 und L2 jeweils in ein elektrisches Intensitätssignal I1 bzw. I2 umgewandelt, das ein Maß für die Intensität des zugehörigen Lichtteilsignals L1 bzw. L2 ist.The two partial light signals L1 and L2 are then each a photoelectric converter 12 and 22 respectively. The Transmission of the two partial light signals L1 and L2 from the analyzer 7 to the associated transducer 12 or 22 can over a free jet arrangement or preferably over each a light guide 11 or 21 take place. In the converters 12 and 22, the two partial light signals L1 and L2 are each in converted an electrical intensity signal I1 or I2, which is a measure of the intensity of the associated partial light signal L1 or L2 is.

Die elektrischen Intensitatssignale I1 und I2 werden nun Normierungsmitteln 20 zugeführt. An jeweils einem Ausgang der Normierungsmittel 20 stehen die intensitätsnormierten Signale S1 und S2 an. Als intensitätsnormierte Signale S1 und S2 werden jeweils der Quotient aus dem Wechselsignalanteil und dem Gleichsignalanteil des zugehörigen Intensitätssignals I1 bzw. I2 gebildet. Die derart gebildeten intensitätsnormierten Signale S1 und S2 sind intensitätsschwankungskompensiert, d.h. Schwankungen in den Lichtintensitäten insbesondere durch Mikrobiegeverluste in den Lichtleitern und infolge von Vibrationen oder sonstigen mechanischen Einwirkungen und durch Schwankungen der Intensität der Lichtquelle 4 sind praktisch eliminiert. Auch unterschiedliche Intensitätsänderungen in den beiden optischen Übertragungsstrecken für die Lichtteilsignale L1 und L2 werden durch diese Intensitätsnormierung kompensiert. Deshalb können als Übertragungsstrecken für die beiden Lichteilsignale L1 und L2 auch jeweils eine Multimode-Faser vorgesehen sein.The electrical intensity signals I1 and I2 now become standardization means 20 fed. At one exit each Standardizing means 20 are the intensity-standardized signals S1 and S2 on. As intensity-standardized signals S1 and S2 the quotient of the alternating signal component and the DC signal component of the associated intensity signal I1 or I2 formed. The intensity norms thus formed Signals S1 and S2 are compensated for fluctuations in intensity, i.e. Fluctuations in the light intensities in particular Microbending losses in the light guides and due to vibrations or other mechanical influences and through Fluctuations in the intensity of the light source 4 are practical eliminated. Also different intensity changes in the two optical transmission paths for the partial light signals L1 and L2 are through this intensity normalization compensated. Therefore, as transmission links for the two light part signals L1 and L2 also each have a multimode fiber be provided.

Ein Problem bereiten nun jedoch Änderungen der Temperatur aufgrund von temperaturinduzierter linearer Doppelbrechung in den optischen Materialien der optischen Meßvorrichtung, insbesondere der Sensoreinrichtung 3, und die damit verbundene Verschiebung des Arbeitspunktes und insbesondere die Änderung der Meßempfindlichkeit der Meßvorrichtung. Diese temperaturinduzierte Änderung der Meßempfindlichkeit wird durch ein im folgenden beschriebenes Temperaturkompensationsverfahren mit Hilfe von Auswertemitteln 40 weitgehend kompensiert.However, changes in temperature are a problem due to temperature induced linear birefringence in the optical materials of the optical measuring device, in particular the sensor device 3, and the associated Shift of the working point and in particular the change the measuring sensitivity of the measuring device. This temperature-induced A change in the sensitivity is indicated by an im following described temperature compensation method with With the help of evaluation means 40 largely compensated.

Dazu werden die beiden intensitätsnormierten Signale S1 und S2 jeweils einem Eingang der Auswertemittel 40 zugeführt. Die Auswertemittel 40 bilden aus den beiden intensitätsnormierten Signalen S1 und S2 ein Ausgangssignal als Meßsignal S, das zumindest annähernd der vorgenannten Gleichung (1) genügt, also im wesentlichen dem Quotienten aus dem doppelten Produkt 2*S1*S2 der beiden intensitätsnormierten Signale S1 und S2 und der Summe aus der Differenz S2-S1 und der mit einem Korrekturfaktor K multiplizierten Summe S1+S2 der beiden intensitätsnormierten Signale S1 und S2 entspricht.For this purpose, the two intensity-standardized signals S1 and S2 each fed to an input of the evaluation means 40. The Evaluation means 40 form the two intensity-standardized Signals S1 and S2 an output signal as a measurement signal S, the at least approximately satisfies the aforementioned equation (1), essentially the quotient of the double product 2 * S1 * S2 of the two intensity-standardized signals S1 and S2 and the sum of the difference S2-S1 and that with a correction factor K multiplied sum S1 + S2 of the two intensity normalized Corresponds to signals S1 and S2.

Der Korrekturfaktor K ist eine reelle Zahl, die in Abhängigkeit von einem in FIG. 4 dargestellten Einkoppelwinkel η der Polarisationsebene P des in die Sensoreinrichtung 3 eingekoppelten linear polarisierten Meßlichts L zu einer Eigenachse EF der linearen Doppelbrechung der Sensoreinrichtung 3 einerseits und von einem ebenfalls in FIG. 4 dargestellten Auskoppelwinkel  zwischen dieser Eigenachse EF und einer Eigenachse EA des Analysators 7 so eingestellt ist, daß wenigstens annähernd die vorgenannten Bedingungen (2a) und (2b) erfüllt sind. Aus Gleichung (2a) folgt insbesondere, daß für den Korrekturfaktor K ≤ -2/3 oder K ≥ 2/3 gilt. Eine Eigenachse eines doppelbrechenden Materials ist dabei durch den Polarisationszustand des Meßlichts L definiert, der das Material unverändert wieder verläßt. In FIG. 4 definiert die Zeichenebene eine Ebene, die senkrecht zur Ausbreitungsrichtung des Meßlichts L gerichtet ist. The correction factor K is a real number that depends from one in FIG. 4 coupling angle η shown Polarization plane P of the one coupled into the sensor device 3 linearly polarized measuring light L to a natural axis EF the linear birefringence of the sensor device 3 on the one hand and from one also in FIG. 4 decoupling angle shown  between this eigen axis EF and an eigen axis EA of the analyzer 7 is set so that at least approximately meets the aforementioned conditions (2a) and (2b) are. From equation (2a) it follows in particular that for the Correction factor K ≤ -2/3 or K ≥ 2/3 applies. A self axis of a birefringent material is due to the state of polarization of the measuring light L defines the material leaves unchanged. In FIG. 4 defines the drawing level a plane that is perpendicular to the direction of propagation of the Measuring light L is directed.

Abweichungen von den die genannten Bedingungen (2a) und (2b) exakt erfüllenden Winkelwerten sind insbesondere bei großer linearer und/oder zirkularer Doppelbrechung in der Sensoreinrichtung 3 möglich und können bis zu etwa 5° betragen.Deviations from the conditions (2a) and (2b) Precisely fulfilling angle values are especially great linear and / or circular birefringence in the sensor device 3 possible and can be up to about 5 °.

Rechnungen ergaben, daß bei derart in Abhängigkeit vom Korrekturfaktor K gewählten Einkoppelwinkel η und Auskoppelwinkel  das Meßsignal S eine besonders einfache Abhängigkeit von dem Faraday-Drehwinkel oder Meßwinkel α aufweist. Es gilt nämlich dann in guter Näherung die Beziehung S = sin(2·α) Calculations have shown that with such a coupling angle η and coupling angle  chosen as a function of the correction factor K, the measurement signal S has a particularly simple dependency on the Faraday rotation angle or measurement angle α. The relationship then applies to a good approximation S = sin (2α)

Dieses Meßsignal S entspricht dem theoretischen Meßsignal für den Meßwinkel α ohne Doppelbrechungseffekte. Dadurch wird das Auswerteverfahren besonders einfach. Bei vorgegebenen Einkoppel- und Auskoppelwinkeln η bzw.  ist der Korrekturfaktor K gerade so einzustellen, daß das Meßsignal S der Meßvorrichtung dem theoretischen Meßsignal bei nicht vorhandener Doppelbrechung entspricht. Mit diesem Korrekturfaktor K ist die Meßvorrichtung dann auf minimale Temperaturabhängigkeit justiert.This measurement signal S corresponds to the theoretical measurement signal for the measurement angle α without birefringence effects. This will the evaluation process is particularly simple. At given Coupling and decoupling angles η and  is the correction factor K just set so that the measurement signal S of the measuring device the theoretical measurement signal when none Birefringence corresponds. With this correction factor K is the measuring device then to minimal temperature dependence adjusted.

Wenn das Meßlicht L vor dem Einkoppeln in die Sensoreinrichtung 3 mit einem Polarisator linear polarisiert wird, kann als Einkoppelwinkel η einfach der Winkel zwischen der Eigenachse dieses Polarisators 5 und einer Eigenachse der linearen Doppelbrechung in der Sensoreinrichtung 3 gewählt werden.If the measuring light L before coupling into the sensor device 3 can be linearly polarized with a polarizer as the coupling angle η simply the angle between the natural axis this polarizer 5 and a natural axis of the linear Birefringence can be selected in the sensor device 3.

Das Meßsignal S ist sowohl gegenüber Intensitätschwankungen der Lichtquelle und in den optischen Übertragungsstrecken als auch bezüglich seines Arbeitspunktes und seiner Meßempfindlichkeit bei veränderlichen Temperaturen weitgehend stabil. Die arithmethische Herleitung des Meßsignals S gemäß der Gleichung (1) wird vorzugsweise mit Hilfe von entsprechenden analogen Bauelementen für die auszuführenden arithmetischen Operationen durchgeführt. In dieser Ausführungsform ist eine Temperaturkompensation in Echtzeit möglich. Das Meßsignal S kann aber auch digital mit Hilfe eines digitalen Signalprozessors oder eines Mikroprozessors berechnet und/oder mit Hilfe einer gespeicherten Wertetabelle ermittelt werden.The measurement signal S is both against fluctuations in intensity the light source and in the optical transmission links as also with regard to its working point and its sensitivity largely stable at variable temperatures. The arithmetic derivation of the measurement signal S according to the Equation (1) is preferably created using appropriate analog components for the arithmetic to be performed Operations performed. In this embodiment, one is Temperature compensation possible in real time. The measurement signal S can also be digital using a digital signal processor or a microprocessor and / or calculated with Can be determined using a stored value table.

Neben der in FIG. 1 dargestellten Ausführungsform vom Transmissionstyp, bei der das Meßlicht L die Sensoreinrichtung 3 nur in einer Richtung durchläuft, ist auch eine Ausführungsform vom Reflexionstyp möglich, bei der das Meßlicht L nach einem ersten Durchlauf in die Sensoreinrichtung 3 zurückreflektiert wird und die Sensoreinrichtung 3 ein zweites Mal in umgekehrter Richtung durchläuft. Das linear polarisierte Meßlicht L der Lichtquelle 4 wird dann vorzugsweise über einen Strahlteiler an einem optischen Anschluß in die Sensoreinrichtung 3 eingekoppelt und nach dem ersten Durchlauf an einem Spiegel reflektiert, durchläuft die Sensoreinrichtung 3 ein zweites Mal, wird am genannten Anschluß wieder ausgekoppelt und über den Strahlteiler dem Analysator 7 zugeführt.In addition to the one shown in FIG. 1 shown embodiment of the transmission type, in which the measuring light L is the sensor device 3 only runs in one direction is also an embodiment of the reflection type possible, in which the measuring light L after a first pass back into the sensor device 3 and the sensor device 3 a second time in the opposite direction. The linearly polarized Measuring light L of the light source 4 is then preferably over a beam splitter at an optical connection in the sensor device 3 coupled in and after the first pass reflected by a mirror, passes through the sensor device 3 a second time, it is coupled out again at the named connection and fed to the analyzer 7 via the beam splitter.

FIG. 2 zeigt eine vorteilhafte Ausführungsform der Normierungsmittel 20. Es sind ein erstes, mit dem optoelektrischen Wandler 12 elektrisch verbundenes Filter 13 zum Zerlegen des ersten Intensitätssignals I1 in einen Wechselsignalanteil A1 und einen Gleichsignalanteil D1 und ein zweites, mit dem zweiten optoelektrischen Wandler 22 elektrisch verbundenes Filter 23 zum Zerlegen des zweiten Intensitätssignals I2 in einen Wechselsignalanteil A2 und einen Gleichsignalanteil D2 vorgesehen. Die Trennfrequenzen beider Filter 13 und 23 sind dabei so hoch gewählt, daß die Wechselsignalanteile A1 und A2 der Intensitätssignale im wesentlichen alle Informationen über den zu messenden Wechselstrom I enthalten. Insbesondere ist die Trennfrequenz kleiner als die Grundfrequenz des Wechselstromes I zu wählen. In der dargestellten Ausführungsform enthalten beide Filter 13 und 23 jeweils ein Tiefpaßfilter 14 bzw. 24 und einen Subtrahierer (SUB) 15 bzw. 25. Das Intensitätssignal I1 oder I2 wird an einen Eingang des zugehörigen Tiefpaßfilters 14 bzw. 24 angelegt. An einem Ausgang des Tiefpaßfilters 14 bzw. 24 steht dann der Gleichsignalanteil D1 bzw. D2 des Intensitätssignals I1 bzw. I2 an, der den Frequenzanteilen des Intensitätssignals I1 bzw. I2 entspricht, die unterhalb einer vorgegebenen Trennfrequenz des Tiefpaßfilters 14 bzw. 24 liegen. Der jeweilige Wechselsignalanteil Al oder A2 wird nun einfach durch Subtraktion des Gleichsignalanteils D1 bzw. D2 vom Intensitätssignal I1 bzw. I2 mit Hilfe jeweils eines Subtrahierers 15 bzw. 25 gebildet. Dazu werden an zwei Eingängen des zugehörigen Subtrahierers 15 oder 25 das Intensitätssignal I1 bzw. I2 und der zugehörige Gleichsignalanteil D1 bzw. D2 angelegt.FIG. 2 shows an advantageous embodiment of the standardization means 20. There is a first, with the optoelectric Converter 12 electrically connected filter 13 for disassembling the first intensity signal I1 into an alternating signal component A1 and a DC signal component D1 and a second one with which second optoelectric converter 22 electrically connected Filter 23 for breaking down the second intensity signal I2 into an AC signal component A2 and a DC signal component D2 intended. The cut-off frequencies of both filters 13 and 23 are chosen so high that the alternating signal components A1 and A2 the intensity signals essentially all information contained about the alternating current I to be measured. Especially the crossover frequency is lower than the base frequency of the alternating current I choose. In the illustrated embodiment Both filters 13 and 23 each contain a low-pass filter 14 or 24 and a subtractor (SUB) 15 or 25. The intensity signal I1 or I2 is assigned to an input of the Low pass filter 14 and 24 created. At an exit of the Low pass filter 14 or 24 is then the DC signal component D1 and D2 of the intensity signal I1 and I2 on the frequency components corresponds to the intensity signal I1 or I2, the below a predetermined cut-off frequency of the low-pass filter 14 or 24 are. The respective alternating signal component Al or A2 is now simply subtracted from the DC signal component D1 or D2 from the intensity signal I1 or I2 with With the help of a subtractor 15 and 25 respectively. To are at two inputs of the associated subtractor 15 or 25 the intensity signal I1 or I2 and the associated one DC signal component D1 or D2 applied.

Anstelle der in FIG. 2 gezeigten Ausführungsformen der Filter 13 und 23 können natürlich auch Hochpaßfilter und Tiefpaßfilter zum Herausfiltern der Wechselsignalanteile A1 und A2 bzw. der Gleichsignalanteile D1 und D2 vorgesehen sein oder auch jeweils ein Hochpaßfilter zum Herausfiltern des Wechselsignalanteils Al oder A2 und ein Subtrahierer zum Ableiten des Gleichsignalanteils D1=I1-A1 bzw. D2=I2-A2.Instead of the in FIG. 2 shown embodiments of the filter 13 and 23 can of course also high-pass filters and low-pass filters to filter out the alternating signal components A1 and A2 or the DC signal components D1 and D2 can be provided or also a high-pass filter to filter out the AC signal component Al or A2 and a subtractor for deriving of the DC signal component D1 = I1-A1 or D2 = I2-A2.

Der Wechselsignalanteil Al und der Gleichsignalanteil D1 des ersten Intensitätssignals I1 werden nun jeweils einem Eingang eines Dividierers 16 zugeführt. An einem Ausgang des Dividierers 16 steht dann das erste intensitätsnormierte Signal S1 = A1/D1 als Quotient aus Wechselsignalanteil A1 und Gleichsignalanteil D1 des ersten Intensitätssignals I1 an. Ebenso werden der Wechselsignalanteil A2 und der Gleichsignalanteil D2 des zweiten Intensitätssignals I2 einem zweiten Dividierer 26 zugeführt, der das intensitätsnormierte Signal S2 = A2/D2 für das zweite Intensitätssignal I2 bildet. Die beiden intensitäsnormierten Signale S1 und S2 können dann an entsprechenden Ausgängen der Normierungsmittel 20 abgegriffen werden.The AC signal component Al and the DC signal component D1 of the first intensity signal I1 are now one input each a divider 16 supplied. At an exit of the divider 16 is then the first intensity-standardized signal S1 = A1 / D1 as the quotient of AC signal component A1 and DC signal component D1 of the first intensity signal I1. As well become the AC signal component A2 and the DC signal component D2 of the second intensity signal I2 a second divider 26 supplied, the intensity-standardized signal S2 = A2 / D2 forms for the second intensity signal I2. The two intensity-standardized Signals S1 and S2 can then be sent to corresponding Outputs of the standardization means 20 are tapped.

Die FIG. 3 zeigt eine Ausführungsform der Auswertemittel 40 mit analoger Hardware. Es sind ein Multiplizierer (MULT) 41, ein erster Addierer (ADD) 42, ein Subtrahierer (SUB) 43, zwei Verstärker 44 und 45, ein zweiter Addierer (ADD) 46 und ein Dividierer (DIV) 47 vorgesehen. Die beiden intensitätsnormierten Signale S1 und S2 der Normierungsmittel 20 werden jeweils zwei Eingängen des Multiplizierers 41, des ersten Addierers 42 und des Subtrahierers 43 zugeführt. Das Produkt S1*S2 der beiden Signale S1 und S2 am Ausgang des Multiplizierers 41 wird einem Eingang des Verräters 44 zugeleitet. Der Verstärker 44 ist auf einen Verstärkungsfaktor 2 eingestellt, so daß an seinem Ausgang das doppelte Produkt 2*S1*S2 der beiden Signale S1 und S2 ansteht. Die Summe S1+S2 der beiden Signale S1 und S2 am Ausgang des ersten Addierers 42 wird an einen Eingang des weiteren Verstärkers 45 angelegt und um den Korrekturfaktor K verstärkt. Der Verstärkungsfaktor des Verstärkers 45 ist dazu auf den vorgegebenen Korrekturfaktor K einzustellen. Das Produkt K*(S1+S2) am Ausgang des Verstärkers 45 wird einem Eingang des zweiten Addierers 46 zugeführt. An den anderen Eingang dieses Addierers 46 wird das Ausgangssignal S2-S1 des Subtrahierers 43 angelegt, das der Differenz der beiden Signale S1 und S2 entspricht. Als Summe seiner beiden Eingangssignale bildet der Addierer 46 das Ausgangssignal K*(S1+S2)+(S2-S1). Schließlich werden das Ausgangssignal 2*S1*S2 des Verstärkers 44 dem ersten Eingang des Dividierers 47 und das Ausgangssignal des zweiten Addierers 46 dem zweiten Eingang des Dividierers 47 zugeführt. Der Dividierer 47 berechnet aus diesen beiden Eingangssignalen das Meßsignal S = (2*S1*S2)/(K*(S1+S2)+(S2-S1)) gemäß Gleichung (1). Diese Ausführungsform mit analogen Bauelementen gemäß FIG. 3 hat den Vorteil, daß die Berechnung des Meßsignals S besonders schnell durchgeführt wird. Insbesondere in Kombination mit Normierungsmitteln 20 gemäß FIG. 2 ist so eine Temperaturkompensation in Echtzeit möglich.The FIG. 3 shows an embodiment of the evaluation means 40 with analog hardware. A multiplier (MULT) 41, a first adder (ADD) 42, a subtractor (SUB) 43, two amplifiers 44 and 45, a second adder (ADD) 46 and a divider (DIV) 47 are provided. The two intensity-normalized signals S1 and S2 of the normalization means 20 are each fed to two inputs of the multiplier 41, the first adder 42 and the subtractor 43. The product S1 * S2 of the two signals S1 and S2 at the output of the multiplier 41 is fed to an input of the traitor 44. The amplifier 44 is set to a gain factor 2, so that the double product 2 * S1 * S2 of the two signals S1 and S2 is present at its output. The sum S1 + S2 of the two signals S1 and S2 at the output of the first adder 42 is applied to an input of the further amplifier 45 and amplified by the correction factor K. For this purpose, the amplification factor of the amplifier 45 is to be set to the predetermined correction factor K. The product K * (S1 + S2) at the output of the amplifier 45 is fed to an input of the second adder 46. At the other input of this adder 46, the output signal S2-S1 of the subtractor 43 is applied, which corresponds to the difference between the two signals S1 and S2. The adder 46 forms the output signal K * (S1 + S2) + (S2-S1) as the sum of its two input signals. Finally, the output signal 2 * S1 * S2 of the amplifier 44 is fed to the first input of the divider 47 and the output signal of the second adder 46 to the second input of the divider 47. The divider 47 calculates the measurement signal from these two input signals S = (2 * S1 * S2) / (K * (S1 + S2) + (S2-S1)) according to equation (1). This embodiment with analog components according to FIG. 3 has the advantage that the calculation of the measurement signal S is carried out particularly quickly. In particular in combination with standardization means 20 according to FIG. 2, temperature compensation is possible in real time.

Das Meßverfahren und die Meßvorrichtung gemäß der Erfindung können natürlich auch direkt zum Messen von magnetischen Wechselfeldern verwendet werden, indem die Sensoreinrichtung 3 in dem magnetischen Wechselfeld angeordnet wird.The measuring method and the measuring device according to the invention can of course also be used to measure magnetic Alternating fields can be used by the sensor device 3 is arranged in the alternating magnetic field.

Claims (7)

  1. Method for measuring an electric alternating current (I) by using the Faraday effect, having the following features:
    a) linearly polarized measuring light (L) is coupled into a sensor equipment (3) which is under the influence of a magnetic field generated by the electric alternating current (I), and the plane of polarization of the measuring light (L) is rotated while passing through the sensor equipment (3), as a function of the electric alternating current (I);
    b) the measuring light (L), after passing at least once through the sensor equipment (3), is split by an analyser (7) into two linearly polarized light partial signals (L1, L2) having different planes of polarization;
    c) the two light partial signals (L1, L2) are in each case converted into an electric intensity signal (I1, I2);
    d) for each of these two electric intensity signals (I1, I2) an intensity-normalized signal S1 and S2 is formed, which corresponds to the quotient of an AC signal component and a DC signal component of the associated intensity signal (I1, I2);
    e) a measured signal S for the electric alternating current I is now derived from the two intensity-normalized signals S1 and S2 in accordance with the rule S = (2*S1*S2)/((S2-S1) + K*(S1+S2)) where the real correction factor K, an input coupling angle η of the plane of polarization of the measuring light (L) coupled into the sensor equipment (3) to an intrinsic axis of the linear birefringence in the sensor equipment (3), and an output coupling angle  between this intrinsic axis of the linear birefringence and an intrinsic axis of the analyser (7) fulfil the following two conditions: cos(2 + 2η) = - 2/(3K) sin(2 - 2η) = 1.
  2. Device for measuring an electric alternating current (I) having
    a) input coupling means (4, 34) for coupling linearly polarized measuring light (L) into a sensor equipment (3) which is under the influence of a magnetic field generated by the alternating current (I), and rotates the plane of polarization of the measuring light (L) as a function of the electric alternating current (I),
    b) an analyser (7) for splitting the measuring light (L), after passing at least once through the sensor equipment (3), into two linearly polarized light partial signals (L1, L2) having different planes of polarization,
    c) optoelectric converters (12, 22) for converting the two light partial signals (L1, L2) into one electric intensity signal (I1, I2) in each case,
    d) normalizing means (13, 23) which, for both intensity signals (I1, I2) in each case form an intensitynormalized signal S1 and S2 which corresponds to the quotient of an AC signal component and a DC signal component of the associated intensity signal (I1, I2);
    e) evaluation means (20) for deriving a measured signal S for the electric alternating current (I) from the two intensity-normalized signals S1 and S2 in accordance with the rule S = (2*S1*S2)/((S2-S1) + K*(S1+S2)), where K is a real correction factor and this correction factor K, an input coupling angle η of the plane of polarization of the measuring light (L) coupled into the sensor equipment (3) to an intrinsic axis of the linear birefringence in the sensor equipment (3), and an output coupling angle  between this intrinsic axis of the linear birefringence and an intrinsic axis of the analyser (7) fulfil the following two conditions: cos(2 + 2η) = - 2/(3K) sin(2 - 2η) = 1.
  3. Device according to Claim 2, in which a Wollaston prism is provided as analyser (7).
  4. Device according to Claim 2 or Claim 3, in which the analyser (7) is optically connected to the optoelectric converters (12, 22) via in each case an optical waveguide (11, 21) for each light partial signal (L1, L2).
  5. Device according to Claim 4, in which the optical waveguides (11, 21) are multimode fibres.
  6. Device according to one of Claims 2 to 5, in which the sensor equipment (3) and the analyser (7) are optically connected to each other, for transmitting the measuring light (L) coupled out of the sensor equipment (3), via a polarization-maintaining optical fibre.
  7. Device according to one of Claims 2 to 6, in which a glass ring is provided as sensor equipment (3).
EP95928986A 1994-09-09 1995-08-25 Process and device for measuring an alternating electric current with temperature compensation Expired - Lifetime EP0779988B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE4432146A DE4432146A1 (en) 1994-09-09 1994-09-09 Method and device for measuring an electrical alternating current with temperature compensation
DE4432146 1994-09-09
PCT/DE1995/001138 WO1996007922A1 (en) 1994-09-09 1995-08-25 Process and device for measuring an alternating electric current with temperature compensation

Publications (2)

Publication Number Publication Date
EP0779988A1 EP0779988A1 (en) 1997-06-25
EP0779988B1 true EP0779988B1 (en) 1998-05-20

Family

ID=6527814

Family Applications (1)

Application Number Title Priority Date Filing Date
EP95928986A Expired - Lifetime EP0779988B1 (en) 1994-09-09 1995-08-25 Process and device for measuring an alternating electric current with temperature compensation

Country Status (8)

Country Link
US (1) US5847560A (en)
EP (1) EP0779988B1 (en)
JP (1) JPH10505422A (en)
CN (1) CN1157656A (en)
AT (1) ATE166463T1 (en)
CA (1) CA2199519A1 (en)
DE (2) DE4432146A1 (en)
WO (1) WO1996007922A1 (en)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19601727C1 (en) * 1996-01-18 1997-04-30 Siemens Ag Magneto-optical current converter including Faraday sensor
US6043648A (en) * 1996-06-14 2000-03-28 Siemens Aktiengesellschaft Method for temperature calibration of an optical magnetic field measurement array and measurement array calibrated by the method
DE19623810C1 (en) * 1996-06-14 1997-07-10 Siemens Ag Temp calibration system for optical magnetic field measuring device
DE19624922A1 (en) * 1996-06-21 1998-01-08 Siemens Ag Optical measuring process for measuring alternating quantity
EP0910801B1 (en) 1996-07-09 2001-09-19 Siemens Aktiengesellschaft Process for standardising the intensity of optical sensors used for measuring periodically oscillating electric or magnetic field intensities
DE19747416A1 (en) * 1997-10-27 1999-05-06 Siemens Ag Method of optical detection of narrow band monofrequent electric measurement parameter
DE19917751C2 (en) * 1999-04-20 2001-05-31 Nokia Networks Oy Method and monitoring device for monitoring the quality of data transmission over analog lines
US7805262B2 (en) * 2001-09-25 2010-09-28 Landis + Gyr, Inc. Utility meter using temperature compensation
US6946827B2 (en) * 2001-11-13 2005-09-20 Nxtphase T & D Corporation Optical electric field or voltage sensing system
US7655900B2 (en) * 2005-03-08 2010-02-02 The Tokyo Electric Power Company, Incorporated Intensity modulation type optical sensor and optical current/voltage sensor
US7786719B2 (en) * 2005-03-08 2010-08-31 The Tokyo Electric Power Company, Incorporated Optical sensor, optical current sensor and optical voltage sensor
CN103760413A (en) * 2013-12-27 2014-04-30 航天科工深圳(集团)有限公司 Current detection system of fault indicator and current detection low-temperature compensation method of fault indicator
US9377489B2 (en) * 2014-04-15 2016-06-28 General Electric Company Systems and methods for monitoring fiber optic current sensing systems
JP2016099292A (en) * 2014-11-25 2016-05-30 日立金属株式会社 Current detector and current detection method
US10473697B2 (en) * 2015-04-01 2019-11-12 General Electric Company Current transducer with offset cancellation
US10197603B2 (en) * 2015-04-01 2019-02-05 General Electric Company Optical current transducer with offset cancellation and current linearization
CN111512165A (en) 2017-12-22 2020-08-07 Abb电网瑞士股份公司 Polarized optical detection with enhanced accuracy at high signal range
DE102018216482A1 (en) * 2018-09-26 2020-03-26 Siemens Aktiengesellschaft Glass ring and method for optical current measurements

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4564754A (en) * 1982-03-08 1986-01-14 Hitachi, Ltd. Method and apparatus for optically measuring a current
US4698497A (en) * 1986-05-22 1987-10-06 Westinghouse Electric Corp. Direct current magneto-optic current transformer
US4755665A (en) * 1987-07-22 1988-07-05 Square D Company Light detector and signal processing circuit
DE3923804A1 (en) * 1989-07-19 1991-01-31 Messwandler Bau Ag FIBER OPTICAL ARRANGEMENT FOR MEASURING THE STRENGTH OF AN ELECTRIC CURRENT
DE3923803A1 (en) * 1989-07-19 1991-01-31 Messwandler Bau Ag FIBER OPTICAL ARRANGEMENT FOR MEASURING THE STRENGTH OF AN ELECTRIC CURRENT
US4973899A (en) * 1989-08-24 1990-11-27 Sundstrand Corporation Current sensor and method utilizing multiple layers of thin film magneto-optic material and signal processing to make the output independent of system losses
AU643913B2 (en) * 1992-02-21 1993-11-25 Ngk Insulators, Ltd. Optical magnetic field sensor
DE4312184A1 (en) * 1993-04-14 1994-10-20 Siemens Ag Optical measuring method for measuring an electrical alternating current with temperature compensation and device for carrying out the method

Also Published As

Publication number Publication date
JPH10505422A (en) 1998-05-26
DE59502272D1 (en) 1998-06-25
WO1996007922A1 (en) 1996-03-14
DE4432146A1 (en) 1996-03-14
ATE166463T1 (en) 1998-06-15
CN1157656A (en) 1997-08-20
EP0779988A1 (en) 1997-06-25
CA2199519A1 (en) 1996-03-14
US5847560A (en) 1998-12-08

Similar Documents

Publication Publication Date Title
EP0779988B1 (en) Process and device for measuring an alternating electric current with temperature compensation
EP0706662B1 (en) Optical method of measuring an alternating electrical current, including temperature compensation, and a device for carrying out the method
EP0011110B1 (en) Arrangement for electro-optical voltage measuring
EP0706661B1 (en) Optical method of measuring an alternating electrical current, including temperature compensation, and a device for carrying out the method
EP0721589B1 (en) Method and device for measuring an alternating electrical quantity to include temperature compensation
EP0799426B1 (en) Process and arrangement for measuring a magnetic field using the faraday effect with compensation of variations in intensity and temperature effects
EP0786091B1 (en) Process and device for measuring an alternating electric quantity with temperature compensation
EP0721590B1 (en) Method and device for measuring an electric current using two oppositely directed light signals and making use of the faraday effect
EP0866974B1 (en) Optical measuring process and optical measuring arrangement for measuring an alternating quantity with intensity scaling
DE3141325A1 (en) Method for measuring the current on an electric conductor by means of the Faraday effect
EP0811170B1 (en) Process and device for measuring a magnetic field by faraday effect while compensating for intensity variations
EP0865610B1 (en) Optical measurement method and optical measurement device for measuring an alternating magnetic field with intensity normalization
DE60118662T2 (en) Arrangement for measuring the electric current through the Faraday effect
EP0864098B1 (en) Process and device for measuring a quantity, in particular an electric current, with a high measurement resolution
DE19517128A1 (en) Alternating magnetic field measurement
EP0786092B1 (en) Optical measuring process and device for measuring an electric a.c. voltage or an electric alternating field with temperature compensation
WO1996018113A1 (en) Process and device for measuring a magnetic field with two opposed light signals using the faraday effect and compensating for intensity variations
DE102005003200B4 (en) Circuit for measuring electrical currents in electrical conductors with optical fibers
DE3135285A1 (en) Method for using parameters to determine the modal noise of optical components in optical fibre transmision links

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19970121

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE FR GB IT LI NL SE

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

17Q First examination report despatched

Effective date: 19970804

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE FR GB IT LI NL SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19980520

REF Corresponds to:

Ref document number: 166463

Country of ref document: AT

Date of ref document: 19980615

Kind code of ref document: T

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: SIEMENS SCHWEIZ AG

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 59502272

Country of ref document: DE

Date of ref document: 19980625

ET Fr: translation filed
ITF It: translation for a ep patent filed

Owner name: STUDIO JAUMANN P. & C. S.N.C.

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19980722

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19980820

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980825

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980831

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
BERE Be: lapsed

Owner name: SIEMENS A.G.

Effective date: 19980831

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20010808

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20010823

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20011022

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20011112

Year of fee payment: 7

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020825

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020831

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030301

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20020825

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030430

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050825