EP0774984A1 - Method of training a skeletal muscle for a biomechanical heart and biomechanical heart using said muscle - Google Patents

Method of training a skeletal muscle for a biomechanical heart and biomechanical heart using said muscle

Info

Publication number
EP0774984A1
EP0774984A1 EP94916281A EP94916281A EP0774984A1 EP 0774984 A1 EP0774984 A1 EP 0774984A1 EP 94916281 A EP94916281 A EP 94916281A EP 94916281 A EP94916281 A EP 94916281A EP 0774984 A1 EP0774984 A1 EP 0774984A1
Authority
EP
European Patent Office
Prior art keywords
muscle
cage
biomechanical
heart
training
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
EP94916281A
Other languages
German (de)
French (fr)
Inventor
Norbert Guldner
Sylvain Thuaudet
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from FR9305853A external-priority patent/FR2705238B1/en
Priority claimed from FR9309954A external-priority patent/FR2708857B1/en
Priority claimed from FR9312075A external-priority patent/FR2711062B1/en
Application filed by Individual filed Critical Individual
Publication of EP0774984A1 publication Critical patent/EP0774984A1/en
Ceased legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/80Constructional details other than related to driving
    • A61M60/855Constructional details other than related to driving of implantable pumps or pumping devices
    • A61M60/871Energy supply devices; Converters therefor
    • A61M60/882Devices powered by the patient, e.g. skeletal muscle powered devices
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/10Location thereof with respect to the patient's body
    • A61M60/122Implantable pumps or pumping devices, i.e. the blood being pumped inside the patient's body
    • A61M60/126Implantable pumps or pumping devices, i.e. the blood being pumped inside the patient's body implantable via, into, inside, in line, branching on, or around a blood vessel
    • A61M60/152Implantable pumps or pumping devices, i.e. the blood being pumped inside the patient's body implantable via, into, inside, in line, branching on, or around a blood vessel branching on and drawing blood from a blood vessel
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/10Location thereof with respect to the patient's body
    • A61M60/122Implantable pumps or pumping devices, i.e. the blood being pumped inside the patient's body
    • A61M60/165Implantable pumps or pumping devices, i.e. the blood being pumped inside the patient's body implantable in, on, or around the heart
    • A61M60/191Implantable pumps or pumping devices, i.e. the blood being pumped inside the patient's body implantable in, on, or around the heart mechanically acting upon the outside of the patient's native heart, e.g. compressive structures placed around the heart
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/20Type thereof
    • A61M60/247Positive displacement blood pumps
    • A61M60/253Positive displacement blood pumps including a displacement member directly acting on the blood
    • A61M60/268Positive displacement blood pumps including a displacement member directly acting on the blood the displacement member being flexible, e.g. membranes, diaphragms or bladders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/20Type thereof
    • A61M60/289Devices for mechanical circulatory actuation assisting the residual heart function by means mechanically acting upon the patient's native heart or blood vessel structure, e.g. direct cardiac compression [DCC] devices
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/40Details relating to driving
    • A61M60/424Details relating to driving for positive displacement blood pumps
    • A61M60/438Details relating to driving for positive displacement blood pumps the force acting on the blood contacting member being mechanical
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/40Details relating to driving
    • A61M60/465Details relating to driving for devices for mechanical circulatory actuation
    • A61M60/468Details relating to driving for devices for mechanical circulatory actuation the force acting on the actuation means being hydraulic or pneumatic
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/40Details relating to driving
    • A61M60/465Details relating to driving for devices for mechanical circulatory actuation
    • A61M60/47Details relating to driving for devices for mechanical circulatory actuation the force acting on the actuation means being mechanical, e.g. mechanically driven members clamping a blood vessel
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/50Details relating to control
    • A61M60/508Electronic control means, e.g. for feedback regulation
    • A61M60/515Regulation using real-time patient data
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/20Type thereof
    • A61M60/247Positive displacement blood pumps
    • A61M60/253Positive displacement blood pumps including a displacement member directly acting on the blood
    • A61M60/268Positive displacement blood pumps including a displacement member directly acting on the blood the displacement member being flexible, e.g. membranes, diaphragms or bladders
    • A61M60/274Positive displacement blood pumps including a displacement member directly acting on the blood the displacement member being flexible, e.g. membranes, diaphragms or bladders the inlet and outlet being the same, e.g. para-aortic counter-pulsation blood pumps

Definitions

  • the present invention relates to a dynamic training process of a skeletal muscle for a biomechanical heart as well as a biomechanical heart using such a muscle.
  • a biomechanical heart in the form of a circulatory pump capable of being completely implanted in the chest of a patient, in particular in cases of terminal heart failure.
  • This pump is actuated by a skeletal muscle, for example the dorsal muscle, subjected to electrostimulation in such a way that all the pulsating energy of the pump comes from the metabolism of the muscle which in a way constitutes its motor.
  • a biomechanical heart using a skeletal muscle as a motor, offers the advantage that it does not cause a rejection reaction of the organism because the muscle is taken from the patient in which the biomechanical heart is implanted. .
  • This type of dynamic training consists in wrapping the muscle around a training device comprising an elastically deformable element with an internal chamber filled with liquid and terminated at its ends by inflatable bladders, such a device being described in the document WO- A-9205813.
  • a training device comprising an elastically deformable element with an internal chamber filled with liquid and terminated at its ends by inflatable bladders, such a device being described in the document WO- A-9205813.
  • it is connected to a myostimulator producing periodic electrical impulses of stimulation and when the muscle is thus excited by an electrical impulse, it contracts, which causes a retraction of the central chamber and an expulsion of the liquid to the side bladders which swell.
  • the bladders deflate and the liquid returns to the central chamber which increases in volume, and the cycle can then start again.
  • the present invention relates to improvements made to this method of training a muscle making it possible to obtain a significant increase in muscle mass and in developed power.
  • this dynamic training process for a skeletal muscle intended for use in a biomechanical heart in which the skeletal muscle is wound around a deformable training device capable of being able to contract, by opposing resistance to the contraction, and then return to its initial shape and the skeletal muscle is stimulated, by means of periodic electrical pulses so as to cause its contraction and that of the deformable training apparatus and their subsequent relaxation, is characterized in that during a first step, the skeletal muscle is stimulated by means of electrical impulses having an increasing frequency as a function of time and during a second step, the resistance of the deformable training device is gradually increased. the contraction, the first and second stages possibly overlapping somewhat.
  • the invention also relates to a biomechanical heart using as motor a skeletal muscle having been subjected to such dynamic training.
  • FIG. 1 is a diagram illustrating the method according to the invention, for the dynamic training of a skeletal muscle intended to be used in a biomechanical heart.
  • FIG. 2 is a diagram illustrating the variation, as a function of time, of the frequency of the electrical stimulation pulses and of the resistant mechanical load applied to the muscle during its training.
  • FIG. 3 is a diagram illustrating the range of variation of the pressure / volume characteristic for each of the inflatable bladders of the training apparatus.
  • Figure 4 is an elevational view, partially in axial section, of a biomechanical ventricle according to the invention, with axial circulation of the blood flow.
  • Figure 5 is a cross-sectional view, on a larger scale, taken along the line VV of FIG. 4, the upper half of the figure representing the biomechanical ventricle in the relaxed state while the lower half represents the ventricle in the contracted state.
  • - Figure 6 is a diagram of an application of a biomechanical ventricle according to the invention, with axial circulation, for cardiac assistance.
  • FIG. 7 is a schematic sectional view of an alternative embodiment of a biomechanical ventricle with transverse circulation of the blood flow.
  • FIG. 8 is a schematic perspective view illustrating the different phases of training a muscle housed in a tubular envelope.
  • - Figure 9 is a cross-sectional view of the muscle and its envelope wound around the dynamic training apparatus.
  • FIG. 10 is a perspective view of a motor muscle of Figures 8 and 9 wound around a spring cage constituting a pericardial device.
  • FIG. 11 is a diagram illustrating a muscle wound around the dynamic training apparatus with the interposition of an intermediate envelope.
  • - Figure 12 is a schematic axial sectional view of the motor muscle and its intermediate envelope obtained after the training period.
  • FIG. 13 is a diagram of an alternative embodiment of a pericardial device comprising a hydraulic transmission system between the pump and the human heart.
  • FIG. 14 is a schematic sectional view of an alternative embodiment of the receptor associated with the human heart.
  • FIG. 1 is shown schematically the dynamic training process of a skeletal muscle 1, for example the back muscle, intended for use in a biomechanical heart according to the invention.
  • This muscle 1 is wound around a dynamic training device 2 and more particularly around a central chamber 2a filled with liquid and extended, at its two ends, by inflatable bladders 2b.
  • the material constituting the internal chamber 2a should not be elastic while the material forming the inflatable bladders 2b is.
  • this muscle is electrostimulated by connecting it to a myostimulator 3 which is in fact a generator of periodic electrical pulses.
  • the muscle When the muscle is excited by one of these impulses, it contracts, which leads to a reduction of the volume of the central chamber 2a and an expulsion of the liquid from this chamber towards the elastic lateral bladders 2b which inflate, so that the training apparatus 2 opposes a contraction resistance of the muscle 1.
  • the muscle 1 relaxes and the elastic bladders 2b deflate by expelling the liquid which returns to the central chamber 2a.
  • This central chamber 2a then inflates in turn, to return to at least its initial shape, by exerting a positive restoring force on the muscle 1, force directed towards the outside and oriented in the opposite direction to that exerted by the muscle during its contraction. .
  • an incremental variation of the frequency of the electrical pulses of the generator 3 is used, and, on the other hand, an incremental variation of the resistant mechanical load which opposes the contraction of the muscle 1.
  • the internal volume of the training device 2 is connected to a catheter 5 communicating with an implantable chamber under the skin and making it possible to gradually increase the quantity of liquid found in the central chamber 2a and the inflatable bladders 2b.
  • electrical stimulation pulses are applied to this muscle, the frequency of which f gradually increases over time.
  • the combination of the first step of increasing frequency electrical stimulation and the second step of gradually increasing resistance to muscle contraction allows a noticeable increase in muscle mass and muscle power.
  • the material constituting the two inflatable bladders 2b consists of a silicone of elastic type forming the wall of the bladders and by polymer threads embedded in this wall so that one obtains, for each of the inflatable bladders 2b, a pressure / volume characteristic included in the range delimited between the two limit curves a and b in Figure 3.
  • each bladder 2b is made up of three layers, namely an inner layer and an outer layer of material known as "Rehau SI 1511” and a middle layer in material known as "Dow Corning Q3-8111" or "Dow Corning MDX4-4210".
  • FIGS. 4 and 5 illustrate an embodiment of a biomechanical heart according to the invention constituting a "ventricle" with axial circulation of the blood flow, using as a motor a skeletal muscle dynamically driven in the manner described above.
  • This biomechanical ventricle comprises a muscle 1, previously trained as indicated above, which is connected to a myostimulator 3 and is wound around a tubular pumping cage, deformable 6.
  • This cage 6, flexible and elastic, has a central part of large diameter extended by two opposite end portions of smaller diameter.
  • the tubular pumping cage 6 comprises a flexible outer casing 7, for example made of silicone, and inside this casing several cambered spring leaves 8, with convexity facing outwards, extending over the entire length of the 'casing 7, from one end to the other of the cage 6, and distributed around the axis of this cage 6.
  • the ends of the spring blades 8 are embedded in two transverse stiffening rings 9 housed respectively in the two ends open of the tubular cage 6.
  • the tubular cage 6 When the muscle 1 is not excited, that is to say when it is released, the tubular cage 6 has a large diameter and in this case the membrane 11 delimits relatively flattened chambers, as shown in the upper part of FIG. 5.
  • the tubular cage 6 is contracted, as well as 'It is shown in the lower part of Figure 5, the spring blades 8 are flattened and close to each other and the membrane 11 then forms chambers which extend inwardly projecting between the spring blades 8, substantially in radial directions.
  • the spring blades 8 allow the distension, that is to say the return of the tubular pumping cage 6 to its initial shape at large volume.
  • FIG. 6 illustrates a use of the tubular pumping cage 6 produced in the manner illustrated in FIGS. 4 and 5, to constitute an extra-aortic counter-pulse device.
  • the tubular pumping cage 6, the muscle 1 of which is electrically connected to a myostimulator 3, is connected to a conduit 13 bypass on the aorta 14 of a patient whose heart is represented at 15.
  • the myostimulator 3 sends, in synchronism with the left ventricular diastole, an electrical impulse to muscle 1 to stimulate it. Synchronization is ensured by a sensor 17 for monitoring the cardiac pulses in contact with the heart 15 and connected to the myostimulator 3.
  • the tubular pumping cage 6 Due to the excitation of the muscle 1, the tubular pumping cage 6 is compressed and the blood is pumped towards upstream and downstream, as indicated by the arrows. The backflow of blood results in an increase in circulation in the coronaries 18.
  • the aortic valve is open (systole) the muscle 1 is not electrically stimulated, it relaxes and the tubular cage 6 expands creating a depression promoting blood circulation in the aorta.
  • This biomechanical ventricle with axial circulation of the blood flow can also be used in other topographic configurations, such as between the left atrium and the aorta between the left ventricle and the aorta, between the right atrium and the pulmonary artery. In this case, these biomechanical ventricles will be provided with two connections, namely an inlet connection provided with an inlet valve and an outlet connection provided with a discharge valve.
  • the muscle 1 surrounds a flexible pouch not expandable 19 extending outside a hollow body 21, through an opening of the latter.
  • the body 21 is separated into two parts by a waterproof membrane 22 (or a piston) delimiting, on one side, a pumping chamber 23 inside the flexible bag 19, containing a liquid such as physiological saline, and , on the other side, a flushing chamber 24.
  • the flushing chamber 24 is provided with two connections, namely an inlet connection 25 provided with an inlet valve 26, and an outlet connection 27 provided with '' a discharge valve 28.
  • the biomechanical "ventricle” shown in FIG. 7 can be used in partial or total assistance, both for the left heart, between the left ventricle and aortic artery, and for the right heart between the right atrium and the pulmonary artery.
  • the inlet 25 and outlet 27 fittings are connected to the circulatory system. It can be used without inlet and outlet valves in an aorto-aortic configuration of extra-aortic counter-pulse.
  • the apparatus shown in FIG. 7 can also be used to ensure dynamic training of the muscle 1.
  • the inlet 25 and outlet 27 connections are not connected in the circulatory system but they are interconnected by a conduit 29 which is then cut to remove it when from the transition to operation, in order to connect the fittings 25 and 27 to the circulatory system.
  • a catheter 31 communicating the pumping chamber 23 with a device for filling this pumping chamber with propellant liquid, during the second step of the dynamic drive process, in order to gradually increase the amount of liquid in the pumping chamber 23, and to be able to regularly measure the pressure of this liquid to follow the evolution of muscle performance.
  • the catheter 18 can optionally be removed during the transition to normal operation but it can also be left in place to serve to measure the pressure of the propellant liquid.
  • FIG. 8 and 9 show an alternative embodiment in which the muscle 1 is previously housed, before the implementation of the dynamic training process, in a tubular sheath 32 constituted by a polymer membrane which protects the muscle during the process dynamic training and ensures its non-adhesion to surrounding tissues.
  • the sheath 32 is made of any natural, artificial or synthetic polymer, but preferably it is constituted by a polymer substituted in particular by fluorine, such as polymers of the polytetrafluoroethylene type.
  • FIG. 10 illustrates a pericardial device comprising a muscle 1, around a flexible and elastic tubular cage 30, open at its two ends. One of the openings of the cage 30 has a diameter large enough to allow the introduction of a human heart inside the cage 30. The stimulation of the muscle 1 then causes the contraction of the cage 30 and that of the human heart housed tightly in this cage. If the muscle is not long enough, we can provide an extension in Y 33, made of a resistant polymer, such as Dacron or PTFE.
  • FIG. 11 and 12 show an alternative embodiment in which, during the dynamic training of the muscle, there is interposed between the muscle 1 and the dynamic training apparatus 2 a membrane 34 wound around an axis, on the surface continuous, open at both ends.
  • This membrane 34 is preferably made of a material "colonizable" by the connective tissue.
  • the flexible tubular "cage" 35 thus obtained comprises, on the outside, the muscle 1 and, on the inside, the membrane 34 adhering to the muscle and colonized by the cells of the connective tissue.
  • the cage 35 can be used directly as a pumping chamber and it can be connected to arterial prostheses 36.
  • FIG. 13 illustrates an embodiment of a pericardial device in which the muscle 1 is wound around a flexible and elastic cage 37, forming a pumping chamber or a transmitter of pressure pulses, the internal volume of which communicates , by a conduit 38, with a pocket 39 in the form of a bowl in which is housed a human heart 15.
  • the pocket 39 which forms a receptor for pressure pulses, has a hollow wall and it includes an external non-expandable envelope 41 and a internal envelope 42 expandable in contact with the heart.
  • the flexible and elastic cage 37, with variable pumping volume, is thus connected by a hydraulic transmission device to the pocket 39.
  • the cage 37 contracts, under the action of the electrically stimulated muscle 1, it expels liquid, by through the conduit 38, inside the pocket 39, in other words it creates a pressure pulse transmitted to the pocket 39.
  • the excess liquid arriving in the pocket causes an expansion of the internal envelope 42 and consequently a contraction of the human heart 15.
  • the conduit 38 is connected, by means of a bypass conduit 43, to a chamber 44 situated under the skin 45 of a patient and closed by a perforable membrane 46. Through this membrane can be introduced a needle 47 for replenishing propellant. Furthermore, a needle for measuring the pressure 48 can also be introduced through the membrane 46.
  • the conduit 38 of the hydraulic transmission device terminates in a pressure pulse receiver comprising an expandable envelope 49 housed inside an external non-expandable pocket 51, pocket inside which the human heart is also located 15.
  • the expandable cover 49 is in contact on the one hand with the external pocket 51 and on the other hand with the human heart 15 so that the pressure pulses in the conduit 38 result in an increase in volume of the expandable envelope 49 and a contraction of the heart 15.
  • This pipe allows transcutaneous connection to a suction system (suction) during a short period.
  • This transcutaneous connection can be removed after a few days when the internal surface of the hydraulic bag 39 (made of silicone, for example), adheres permanently to the epicardium.

Abstract

A method for dynamically training a skeletal muscle (1) to be used for a biomechanical heart involves wrapping the skeletal muscle around a deformable training device (2) which can contract, resistance to contraction being provided, and recover its initial form. The skeletal muscle is stimulated by periodic electrical impulses. In a first stage, the skeletal muscle (1) is stimulated by electrical impulses at a frequency increasing with time, and in a second stage the contraction resistance of the deformable training device (2) is increased progressively, the first and second stages possibly overlapping slightly. A biomechanical heart operated by a skeletal muscle having undergone said dynamic training is also disclosed.

Description

PROCEDE D'ENTRAINEMENT D'UN MUSCLE SQUELETTIQUE POUR UN COEUR BIOMECANIQUE ET COEUR BIOMECANIQUE UTILISJANT UN TEL MUSCLE. METHOD FOR TRAINING A SKELETON MUSCLE FOR A BIOMECHANICAL HEART AND BIOMECHANICAL HEART USING SUCH A MUSCLE.
La présente invention concerne un procédé d'entraînement dynamique d'un muscle squelettique pour un coeur biomécanique ainsi qu'un coeur biomécanique utilisant un tel muscle.The present invention relates to a dynamic training process of a skeletal muscle for a biomechanical heart as well as a biomechanical heart using such a muscle.
Il a déjà été envisagé de réaliser un coeur biomécanique se présentant sous la forme d'une pompe circulatoire susceptible d'être complètement implantée dans la cage thoracique d'un patient, en particulier dans les cas d'insuffisance cardiaque terminale. Cette pompe est actionnée par un muscle squelettique, par exemple le muscle grand dorsal, soumis à une électrostimulation de telle façon que toute l'énergie pulsatoire de la pompe provienne du métabolisme du muscle qui en constitue en quelque sorte le moteur. Un tel coeur biomécanique, utilisant un muscle squelettique en tant que moteur, offre l'avantage qu'il n'entraîne pas une réaction de rejet de l'organisme du fait que le muscle est prélevé sur le patient dans lequel le coeur biomécanique est implanté.It has already been envisaged to produce a biomechanical heart in the form of a circulatory pump capable of being completely implanted in the chest of a patient, in particular in cases of terminal heart failure. This pump is actuated by a skeletal muscle, for example the dorsal muscle, subjected to electrostimulation in such a way that all the pulsating energy of the pump comes from the metabolism of the muscle which in a way constitutes its motor. Such a biomechanical heart, using a skeletal muscle as a motor, offers the advantage that it does not cause a rejection reaction of the organism because the muscle is taken from the patient in which the biomechanical heart is implanted. .
Pour pouvoir utiliser, en tant que moteur d'un tel coeur biomécanique, un muscle non fatigable, à fibres dites de type I, il a déjà été prévu de soumettre préalablement le muscle à un entraînement dynamique, ainsi qu'il est décrit dans les publications:In order to be able to use, as the motor of such a biomechanical heart, a non-tireable muscle, with so-called type I fibers, it has already been planned to subject the muscle to prior training. dynamic, as described in the publications:
N.W.Guldner et al.; "Development and training of skeletal muscle ventricle with low preload"; J.Card.Surg.,1991;vol.6, N°l.N.W. Guldner et al .; "Development and training of skeletal muscle ventricle with low preload"; J.Card.Surg., 1991; vol. 6, No. 1.
N.W.Guldner et al.;"Dynamic training of skeletal muscle ventricles - a method to create high performance for muscle powered cardiac assist."; Fourth Vienne International Workshop on Functional Electrostimulation; Baden/Vienne, 24-27 septembre 1992; ISBN 3-900928-08-9 1992.N.W. Guldner et al.; "Dynamic training of skeletal muscle ventricles - a method to create high performance for muscle powered cardiac assist."; Fourth Vienna International Workshop on Functional Electrostimulation; Baden / Vienna, September 24-27, 1992; ISBN 3-900928-08-9 1992.
Ce type d'entraînement dynamique consiste à enrouler le muscle autour d'un appareil d'entraînement comportant un élément déformable élastiquement à chambre interne remplie de liquide et terminée à ses extrémités par des vessies gonflables, un tel appareil étant décrit dans le document WO-A-9205813. Pour assurer l'entraînement du muscle, on le relie à un myostimulateur produisant des impulsions électriques périodiques de stimulation et lorsque le muscle est ainsi excité par une impulsion électrique, il se contracte, ce qui provoque une rétraction de la chambre centrale et une expulsion du liquide vers les vessies latérales qui se gonflent. Lorsque le muscle n'est plus excité, entre deux impulsions électriques successives et qu'il se relâche, les vessies se dégonflent et le liquide retourne dans la chambre centrale qui augmente de volume, et le cycle peut alors recommencer.This type of dynamic training consists in wrapping the muscle around a training device comprising an elastically deformable element with an internal chamber filled with liquid and terminated at its ends by inflatable bladders, such a device being described in the document WO- A-9205813. To ensure the training of the muscle, it is connected to a myostimulator producing periodic electrical impulses of stimulation and when the muscle is thus excited by an electrical impulse, it contracts, which causes a retraction of the central chamber and an expulsion of the liquid to the side bladders which swell. When the muscle is no longer excited, between two successive electrical impulses and it relaxes, the bladders deflate and the liquid returns to the central chamber which increases in volume, and the cycle can then start again.
La présente invention concerne des perfectionnements apportés à ce procédé d'entraînement d'un muscle permettant d'obtenir un accroissement notable de la masse musculaire et de la puissance développée.The present invention relates to improvements made to this method of training a muscle making it possible to obtain a significant increase in muscle mass and in developed power.
A cet effet ce procédé d'entraînement dynamique d'un muscle squelettique destiné à être utilisé dans un coeur biomécanique, dans lequel on enroule le muscle squelettique autour d'un appareil d'entraînement déformable susceptible de pouvoir se contracter, en opposant une résistance à la contraction, et reprendre ensuite sa forme initiale et on stimule le muscle squelettique, au moyen d'impulsions électriques périodiques de manière à provoquer sa contraction et celle de l'appareil d'entraînement déformable et leur relaxation subséquente, est caractérisé en ce qu'au cours d'une première étape on stimule le muscle squelettique au moyen d'impulsions électriques ayant une fréquence allant en croissant en fonction du temps et au cours d'une seconde étape on augmente progressivement la résistance de l'appareil d'entraînement déformable à la contraction, les première et seconde étapes se chevauchant éventuellement quelque peu. L'invention a également pour objet un coeur biomécanique utilisant en tant que moteur un muscle squelettique ayant été soumis à un tel entraînement dynamique. On décrira ci-après, à titre d'exemples non limitatifs, diverses formes d'exécution de la présente invention en référence aux dessins annexés sur lesquels:To this end, this dynamic training process for a skeletal muscle intended for use in a biomechanical heart, in which the skeletal muscle is wound around a deformable training device capable of being able to contract, by opposing resistance to the contraction, and then return to its initial shape and the skeletal muscle is stimulated, by means of periodic electrical pulses so as to cause its contraction and that of the deformable training apparatus and their subsequent relaxation, is characterized in that during a first step, the skeletal muscle is stimulated by means of electrical impulses having an increasing frequency as a function of time and during a second step, the resistance of the deformable training device is gradually increased. the contraction, the first and second stages possibly overlapping somewhat. The invention also relates to a biomechanical heart using as motor a skeletal muscle having been subjected to such dynamic training. Various embodiments of the present invention will be described below, by way of non-limiting examples, with reference to the appended drawings in which:
- la figure 1 est un schéma illustrant le procédé, suivant l'invention, pour l'entraînement dynamique d'un muscle squelettique destiné à être utilisé dans un coeur biomécanique.- Figure 1 is a diagram illustrating the method according to the invention, for the dynamic training of a skeletal muscle intended to be used in a biomechanical heart.
- la figure 2 est un diagramme illustrant la variation, en fonction du temps, de la fréquence des impulsions de stimulation électrique et de la charge mécanique résistante appliquée au muscle pendant son entraînement.FIG. 2 is a diagram illustrating the variation, as a function of time, of the frequency of the electrical stimulation pulses and of the resistant mechanical load applied to the muscle during its training.
- la figure 3 est un diagramme illustrant la plage de variation de la caractéristique pression/volume pour chacune des vessies gonflables de l'appareil d'entraînement. la figure 4 est une vue en élévation, partiellement en coupe axiale, d'un ventricule biomécanique suivant l'invention, à circulation axiale du flux sanguin. la figure 5 est une vue en coupe transversale, à plus grande échelle, faite suivant la ligne V-V de la figure 4, la moitié supérieure de la figure représentant le ventricule biomécanique à l'état relâché tandis que la moitié inférieure représente le ventricule à l'état contracté. - la figure 6 est un schéma d'une application d'un ventricule biomécanique suivant l'invention, à circulation axiale, pour une assistance cardiaque.- Figure 3 is a diagram illustrating the range of variation of the pressure / volume characteristic for each of the inflatable bladders of the training apparatus. Figure 4 is an elevational view, partially in axial section, of a biomechanical ventricle according to the invention, with axial circulation of the blood flow. Figure 5 is a cross-sectional view, on a larger scale, taken along the line VV of FIG. 4, the upper half of the figure representing the biomechanical ventricle in the relaxed state while the lower half represents the ventricle in the contracted state. - Figure 6 is a diagram of an application of a biomechanical ventricle according to the invention, with axial circulation, for cardiac assistance.
- la figure 7 est une vue en coupe schématique d'une variante d'exécution d'un ventricule biomécanique à circulation transversale du flux sanguin.- Figure 7 is a schematic sectional view of an alternative embodiment of a biomechanical ventricle with transverse circulation of the blood flow.
- la figure 8 est une vue en perspective schématique illustrant les différentes phases de l'entraînement d'un muscle logé dans une enveloppe tubulaire. - la figure 9 est une vue en coupe transversale du muscle et de son enveloppe enroulés autour de l'appareil d'entraînement dynamique.- Figure 8 is a schematic perspective view illustrating the different phases of training a muscle housed in a tubular envelope. - Figure 9 is a cross-sectional view of the muscle and its envelope wound around the dynamic training apparatus.
- la figure 10 est une vue en perspective d'un muscle moteur des figures 8 et 9 enroulé autour d'une cage à ressorts constituant un dispositif péricardiaque.- Figure 10 is a perspective view of a motor muscle of Figures 8 and 9 wound around a spring cage constituting a pericardial device.
- la figure 11 est un schéma illustrant un muscle enroulé autour de l'appareil d'entraînement dynamique avec interposition d'une enveloppe intermédiaire. - la figure 12 est une vue en coupe axiale schématique du muscle moteur et de son enveloppe intermédiaire obtenus après la période d'entraînement.- Figure 11 is a diagram illustrating a muscle wound around the dynamic training apparatus with the interposition of an intermediate envelope. - Figure 12 is a schematic axial sectional view of the motor muscle and its intermediate envelope obtained after the training period.
- la figure 13 est un schéma d'une variante d'exécution d'un dispositif péricardiaque comportant un système de transmission hydraulique entre la pompe et le coeur humain.- Figure 13 is a diagram of an alternative embodiment of a pericardial device comprising a hydraulic transmission system between the pump and the human heart.
- la figure 14 est une vue en coupe schématique d'une variante d'exécution du récepteur associé au coeur humain.- Figure 14 is a schematic sectional view of an alternative embodiment of the receptor associated with the human heart.
Sur la figure 1 est représenté schématiquement le procédé d'entraînement dynamique d'un muscle squelettique 1, par exemple le muscle grand dorsal, destiné à être utilisé dans un coeur biomécanique suivant l'invention. Ce muscle 1 est enroulé autour d'un appareil d'entraînement dynamique 2 et plus particulièrement autour d'une chambre centrale 2a remplie de liquide et prolongée, à ses deux extrémités, par des vessies gonflables 2b. Le matériau constituant la chambre interne 2a ne devrait pas être élastique alors que le matériau formant les vessies gonflables 2b l'est. Pour l'entraînement du muscle 1 on procède tout d'abord à une électrostimulation de ce muscle en le reliant à un myostimulateur 3 qui est en fait un générateur d'impulsions électriques périodiques. Lorsque le muscle est excité par l'une de ces impulsions, il se contracte, ce qui entraîne une réduction du volume de la chambre centrale 2a et une expulsion du liquide à partir de cette chambre vers les vessies latérales élastiques 2b qui se gonflent, si bien que l'appareil d'entraînement 2 oppose une résistance à la contraction du muscle 1. Après la disparition de l'impulsion d'excitation électrique, le muscle 1 se relâche et les vessies élastiques 2b se dégonflent en chassant le liquide qui revient dans la chambre centrale 2a. Cette chambre centrale 2a gonfle alors à son tour, pour reprendre au moins sa forme initiale, en exerçant une force de rappel positive sur le muscle 1, force dirigée vers l'extérieur et orientée en sens inverse de celle exercée par le muscle pendant sa contraction. Dans le procédé suivant l'invention on utilise, d'une part, une variation incrémentielle de la fréquence des impulsions électriques du générateur 3 et, d'autre part, une variation incrémentielle de la charge mécanique résistante qui s'oppose à la contraction du muscle 1. A cet effet le volume interne de l'appareil d'entraînement 2 est relié à un cathéter 5 communiquant avec une chambre implantable sous la peau et permettant d'augmenter progressivement la quantité de liquide se trouvant dans la chambre centrale 2a et les vessies gonflables 2b. Pendant une première étape de l'entraînement du muscle 1, indiqué par I sur la figure 2, on applique à ce muscle des impulsions de stimulation électriques dont la fréquence f augmente progressivement dans le temps. On commence par exemple par une pulsation lente, de l'ordre d'une impulsion par minute (correspondant à une fréquence d'environ 0,017Hz au stimulateur) et on augmente ensuite cette fréquence progressivement, pendant une période de temps de l'ordre de 6 à 10 semaines, jusqu'à un rythme cardiaque normal de l'ordre de 60 à 80 pulsations par minute (fréquence de 1 à 1,33Hz au stimulateur). Cette augmentation de la fréquence f en fonction du temps t est illustrée par la courbe A de la figure 2. Par ailleurs la première étape de stimulation électrique I est suivie d'une seconde étape II au cours de laquelle on fait croître progressivement la résistance r opposée par l'appareil d'entraînement 2 à la contraction musculaire, ainsi qu'il est représenté par la courbe B. Cet accroissement de la charge résistante est obtenu par une introduction progressive de liquide dans l'appareil 2, au moyen du dispositif 5.In Figure 1 is shown schematically the dynamic training process of a skeletal muscle 1, for example the back muscle, intended for use in a biomechanical heart according to the invention. This muscle 1 is wound around a dynamic training device 2 and more particularly around a central chamber 2a filled with liquid and extended, at its two ends, by inflatable bladders 2b. The material constituting the internal chamber 2a should not be elastic while the material forming the inflatable bladders 2b is. To train muscle 1, first of all, this muscle is electrostimulated by connecting it to a myostimulator 3 which is in fact a generator of periodic electrical pulses. When the muscle is excited by one of these impulses, it contracts, which leads to a reduction of the volume of the central chamber 2a and an expulsion of the liquid from this chamber towards the elastic lateral bladders 2b which inflate, so that the training apparatus 2 opposes a contraction resistance of the muscle 1. After the disappearance of the electrical excitation pulse, the muscle 1 relaxes and the elastic bladders 2b deflate by expelling the liquid which returns to the central chamber 2a. This central chamber 2a then inflates in turn, to return to at least its initial shape, by exerting a positive restoring force on the muscle 1, force directed towards the outside and oriented in the opposite direction to that exerted by the muscle during its contraction. . In the process according to the invention, on the one hand, an incremental variation of the frequency of the electrical pulses of the generator 3 is used, and, on the other hand, an incremental variation of the resistant mechanical load which opposes the contraction of the muscle 1. For this purpose, the internal volume of the training device 2 is connected to a catheter 5 communicating with an implantable chamber under the skin and making it possible to gradually increase the quantity of liquid found in the central chamber 2a and the inflatable bladders 2b. During a first stage of training muscle 1, indicated by I in FIG. 2, electrical stimulation pulses are applied to this muscle, the frequency of which f gradually increases over time. We start for example with a slow pulsation, of the order of one pulse per minute (corresponding to a frequency of about 0.017 Hz at the stimulator) and we then increase this frequency gradually, over a period of time of the order of 6 to 10 weeks, up to a normal heart rate of the order of 60 to 80 pulses per minute (frequency from 1 to 1.33 Hz with the pacemaker). This increase in frequency f as a function of time t is illustrated by curve A in FIG. 2. Furthermore the first step of electrical stimulation I is followed by a second step II during which the resistance r is gradually increased opposite by the training device 2 to the muscle contraction, as represented by the curve B. This increase in the resistant load is obtained by a progressive introduction of liquid into the device 2, by means of the device 5 .
La combinaison de la première étape de stimulation électrique à fréquence croissante et de la seconde étape à croissance progressive de la résistance à la contraction musculaire permet d'obtenir une augmentation notable de la masse musculaire et de la puissance du muscle. Ainsi à la suite d'expériences effectuées sur le muscle grand dorsal du veau, on a pu atteindre une puissance de 10 watts, alors que chez l'homme sain et au repos la puissance maximale d'un ventricule gauche est d'environ 3 watts.The combination of the first step of increasing frequency electrical stimulation and the second step of gradually increasing resistance to muscle contraction allows a noticeable increase in muscle mass and muscle power. Thus, following experiments carried out on the dorsal muscle of the calf, we were able to reach a power of 10 watts, whereas in healthy and resting man the maximum power of a left ventricle is approximately 3 watts.
On a constaté, chez certains sujets, qu'il est possible de rendre partiellement simultanées les deux étapes I et II, c'est-à-dire que l'on peut être amené, au moins pendant un certain temps de recouvrement des deux étapes, à augmenter à la fois et progressivement la fréquence d'excitation du stimulateur et la quantité de liquide introduite dans l'appareil d'entraînement 2. Suivant une caractéristique complémentaire de l'invention le matériau constituant les deux vessies gonflables 2b est constitué par une silicone de type élastique formant la paroi des vessies et par des filets de polymère noyés dans cette paroi de telle façon que l'on obtienne, pour chacune des vessies gonflables 2b, une caractéristique pression/volume comprise dans la plage délimitée entre les deux courbes limites a et b sur la figure 3. Sur cette figure l'élasticité C des vessies gonflables est donnée par le rapport entre le volume V et la pression P de chaque vessie. Les résultats les meilleurs ont été obtenus avec une valeur de l'élasticité C comprise entre 1/4 (courbe a) et 2 (courbe b). Dans une forme d'exécution particulièrement avantageuse la paroi de chaque vessie 2b est constituée de trois couches, à savoir une couche interne et une couche externe en matériau connu sous le nom de "Rehau SI 1511" et une couche médiane en matériau connu sous le nom de "Dow Corning Q3-8111" ou "Dow Corning MDX4-4210".It has been found, in certain subjects, that it is possible to make the two stages I and II partially simultaneous, that is to say that one can be led, at least for a certain time to overlap the two stages. , to increase both the frequency of excitation of the stimulator and the quantity of liquid introduced into the training device 2. Gradually, according to a complementary characteristic of the invention, the material constituting the two inflatable bladders 2b consists of a silicone of elastic type forming the wall of the bladders and by polymer threads embedded in this wall so that one obtains, for each of the inflatable bladders 2b, a pressure / volume characteristic included in the range delimited between the two limit curves a and b in Figure 3. In this figure the elasticity C of the inflatable bladders is given by the ratio between the volume V and the pressure P of each bladder. The best results have been obtained with a value of elasticity C between 1/4 (curve a) and 2 (curve b). In a particularly advantageous embodiment, the wall of each bladder 2b is made up of three layers, namely an inner layer and an outer layer of material known as "Rehau SI 1511" and a middle layer in material known as "Dow Corning Q3-8111" or "Dow Corning MDX4-4210".
Les figures 4 et 5 illustrent une forme d'exécution d'un coeur biomécanique suivant l'invention constituant un "ventricule" à circulation axiale du flux sanguin, utilisant comme moteur un muscle squelettique entraîné dynamiquement de la façon décrite précédemment. Ce ventricule biomécanique comporte un muscle 1, préalablement entraîné comme indiqué précédemment, lequel est connecté à un myostimulateur 3 et est enroulé autour d'une cage de pompage tubulaire, déformable 6. Cette cage 6, souple et élastique, présente une partie centrale de grand diamètre se prolongeant par deux parties extrêmes opposées de plus petit diamètre. La cage de pompage tubulaire 6 comporte une enveloppe externe souple 7, par exemple en silicone, et à l'intérieur de cette enveloppe plusieurs lames de ressort cambrées 8, à convexité tournée vers l'extérieur, s'étendant sur toute la longueur de l'enveloppe 7, d'une extrémité à l'autre de la cage 6, et réparties autour de l'axe de cette cage 6. Les extrémités des lames de ressort 8 sont noyées dans deux anneaux raidisseurs transversaux 9 logés respectivement dans les deux extrémités ouvertes de la cage tubulaire 6. Une membrane interne 11, athrombogène, par exemple en polyuréthanne, s'étend à l'intérieur de la cage 6, en recouvrant les lames de ressort 8 auxquelles elle adhère de manière à délimiter, entre les lames de ressort 8, des chambres individuelles étanches remplies d'un fluide 12. Lorsque le muscle 1 n'est pas excité, c'est-à-dire lorsqu'il est relâché, la cage tubulaire 6 a un grand diamètre et dans ce cas la membrane 11 délimite des chambres relativement aplaties, comme il est représenté dans la partie supérieure de la figure 5. Par contre, lorsque le muscle 1 est excité, la cage tubulaire 6 est contractée, ainsi qu'il est représenté dans la partie inférieure de la figure 5, les lames de ressort 8 sont aplaties et rapprochées les unes des autres et la membrane 11 forme alors des chambres qui s'étendent en saillie vers l'intérieur, entre les lames de ressort 8, sensiblement dans des directions radiales. Lorsque le muscle se relâche, les lames de ressort 8 permettent la distension c'est-à-dire le retour de la cage de pompage tubulaire 6 à sa forme initiale à grand volume.FIGS. 4 and 5 illustrate an embodiment of a biomechanical heart according to the invention constituting a "ventricle" with axial circulation of the blood flow, using as a motor a skeletal muscle dynamically driven in the manner described above. This biomechanical ventricle comprises a muscle 1, previously trained as indicated above, which is connected to a myostimulator 3 and is wound around a tubular pumping cage, deformable 6. This cage 6, flexible and elastic, has a central part of large diameter extended by two opposite end portions of smaller diameter. The tubular pumping cage 6 comprises a flexible outer casing 7, for example made of silicone, and inside this casing several cambered spring leaves 8, with convexity facing outwards, extending over the entire length of the 'casing 7, from one end to the other of the cage 6, and distributed around the axis of this cage 6. The ends of the spring blades 8 are embedded in two transverse stiffening rings 9 housed respectively in the two ends open of the tubular cage 6. An internal membrane 11, athrombogenic, for example made of polyurethane, extends inside the cage 6, covering the spring leaves 8 to which it adheres so as to delimit, between the spring blades 8, sealed individual chambers filled with a fluid 12. When the muscle 1 is not excited, that is to say when it is released, the tubular cage 6 has a large diameter and in this case the membrane 11 delimits relatively flattened chambers, as shown in the upper part of FIG. 5. On the other hand, when the muscle 1 is excited, the tubular cage 6 is contracted, as well as 'It is shown in the lower part of Figure 5, the spring blades 8 are flattened and close to each other and the membrane 11 then forms chambers which extend inwardly projecting between the spring blades 8, substantially in radial directions. When the muscle relaxes, the spring blades 8 allow the distension, that is to say the return of the tubular pumping cage 6 to its initial shape at large volume.
La figure 6 illustre une utilisation de la cage de pompage tubulaire 6 réalisée de la façon illustrée sur les figures 4 et 5, pour constituer un dispositif de contre-pulsion extra-aortique. La cage de pompage tubulaire 6 dont le muscle 1 est relié électriquement à un myostimulateur 3, est branchée dans un conduit 13 en dérivation sur l'aorte 14 d'un patient dont le coeur est représenté en 15. Lorsque la valve aortique 16 est fermée (diastole), le myostimulateur 3 envoie, en synchronisme avec la diastole ventriculaire gauche, une impulsion électrique au muscle 1 pour le stimuler. La synchronisation est assurée par un capteur 17 d'écoute des pulsations cardiaques en contact avec le coeur 15 et relié au myostimulateur 3. Du fait de l'excitation du muscle 1, la cage de pompage tubulaire 6 est comprimée et le sang est refoulé vers l'amont et vers l'aval, comme il est indiqué par les flèches. Le refoulement du sang vers l'amont se traduit par une augmentation de la circulation dans les coronaires 18. Par contre lorsque la valve aortique est ouverte (systole) le muscle 1 n'est pas stimulé électriquement, il se relâche et la cage tubulaire 6 se dilate en créant une dépression favorisant la circulation du sang dans l'aorte. Ce ventricule biomécanique à circulation axiale du flux sanguin peut également être utilisé dans des configurations topographiques autres, telles entre l'oreillette gauche et l'aorte entre le ventricule gauche et l'aorte, entre l'oreillette droite et l'artère pulmonaire. Dans ce cas, ces ventricules biomécaniques seront pourvus de deux raccords, à savoir un raccord d'entrée muni d'une valve d'admission et un raccord de sortie muni d'une valve de refoulement.FIG. 6 illustrates a use of the tubular pumping cage 6 produced in the manner illustrated in FIGS. 4 and 5, to constitute an extra-aortic counter-pulse device. The tubular pumping cage 6, the muscle 1 of which is electrically connected to a myostimulator 3, is connected to a conduit 13 bypass on the aorta 14 of a patient whose heart is represented at 15. When the aortic valve 16 is closed (diastole), the myostimulator 3 sends, in synchronism with the left ventricular diastole, an electrical impulse to muscle 1 to stimulate it. Synchronization is ensured by a sensor 17 for monitoring the cardiac pulses in contact with the heart 15 and connected to the myostimulator 3. Due to the excitation of the muscle 1, the tubular pumping cage 6 is compressed and the blood is pumped towards upstream and downstream, as indicated by the arrows. The backflow of blood results in an increase in circulation in the coronaries 18. On the other hand when the aortic valve is open (systole) the muscle 1 is not electrically stimulated, it relaxes and the tubular cage 6 expands creating a depression promoting blood circulation in the aorta. This biomechanical ventricle with axial circulation of the blood flow can also be used in other topographic configurations, such as between the left atrium and the aorta between the left ventricle and the aorta, between the right atrium and the pulmonary artery. In this case, these biomechanical ventricles will be provided with two connections, namely an inlet connection provided with an inlet valve and an outlet connection provided with a discharge valve.
Dans la variante d'exécution d'un "ventricule" biomécanique représentée sur la figure 7, laquelle est prévue pour une circulation transversale du flux sanguin, le muscle 1 entoure une poche souple non expansible 19 s'étendant à l'extérieur d'un corps creux 21, à travers une ouverture de ce dernier. Le corps 21 est séparé en deux parties par une membrane étanche 22 (ou un piston) délimitant, d'un côté, une chambre de pompage 23 à l'intérieur de la poche souple 19, contenant un liquide tel que du sérum physiologique, et, de l'autre côté, une chambre de chasse 24. La chambre de chasse 24 est pourvue de deux raccords, à savoir un raccord d'entrée 25 pourvu d'une valve d'admission 26, et un raccord de sortie 27 pourvu d'une valve de refoulement 28.In the alternative embodiment of a biomechanical "ventricle" represented in FIG. 7, which is intended for a transverse circulation of the blood flow, the muscle 1 surrounds a flexible pouch not expandable 19 extending outside a hollow body 21, through an opening of the latter. The body 21 is separated into two parts by a waterproof membrane 22 (or a piston) delimiting, on one side, a pumping chamber 23 inside the flexible bag 19, containing a liquid such as physiological saline, and , on the other side, a flushing chamber 24. The flushing chamber 24 is provided with two connections, namely an inlet connection 25 provided with an inlet valve 26, and an outlet connection 27 provided with '' a discharge valve 28.
Le "ventricule" biomécanique représenté sur la figure 7 peut être utilisé en assistance partielle ou totale, aussi bien pour le coeur gauche, entre ventricule gauche et artère aorte, que pour le coeur droit entre oreillette droite et artère pulmonaire. Dans ce cas les raccords d'entrée 25 et de sortie 27 sont branchés dans le système circulatoire. Il peut être utilisé sans valves d'admission et de refoulement en configuration aorto-aortique de contre-pulsion extra-aortique.The biomechanical "ventricle" shown in FIG. 7 can be used in partial or total assistance, both for the left heart, between the left ventricle and aortic artery, and for the right heart between the right atrium and the pulmonary artery. In this case, the inlet 25 and outlet 27 fittings are connected to the circulatory system. It can be used without inlet and outlet valves in an aorto-aortic configuration of extra-aortic counter-pulse.
L'appareil représenté sur la figure 7 peut être également utilisé pour assurer l'entraînement dynamique du muscle 1. Dans ce cas les raccords d'entrée 25 et de sortie 27 ne sont pas branchés dans le système circulatoire mais ils sont reliés entre eux par un conduit 29 qui est coupé ensuite pour le supprimer lors du passage à la mise en fonctionnement, afin de relier les raccords 25 et 27 au système circulatoire.The apparatus shown in FIG. 7 can also be used to ensure dynamic training of the muscle 1. In this case, the inlet 25 and outlet 27 connections are not connected in the circulatory system but they are interconnected by a conduit 29 which is then cut to remove it when from the transition to operation, in order to connect the fittings 25 and 27 to the circulatory system.
Sur la figure 7 est également représenté un cathéter 31 faisant communiquer la chambre de pompage 23 avec un dispositif de remplissage de cette chambre de pompage en liquide propulseur, pendant la seconde étape du procédé d'entraînement dynamique, afin de permettre d'augmenter progressivement la quantité de liquide se trouvant dans la chambre de pompage 23, et de pouvoir mesuere régulièrement la pression de ce liquide pour suivre l'évolution de la performance musculaire. Le cathéter 18 peut être éventuellement supprimé lors du passage au fonctionnement normal mais il peut être aussi laissé en place pour servir à mesurer la pression du liquide propulseur.Also shown in FIG. 7 is a catheter 31 communicating the pumping chamber 23 with a device for filling this pumping chamber with propellant liquid, during the second step of the dynamic drive process, in order to gradually increase the amount of liquid in the pumping chamber 23, and to be able to regularly measure the pressure of this liquid to follow the evolution of muscle performance. The catheter 18 can optionally be removed during the transition to normal operation but it can also be left in place to serve to measure the pressure of the propellant liquid.
Les figures 8 et 9 représentent une variante d'exécution dans laquelle le muscle 1 est préalablement logé, avant la mise en oeuvre du procédé d'entraînement dynamique, dans une gaine tubulaire 32 constituée par une membrane en polymère qui protège le muscle pendant le procédé d'entraînement dynamique et assure sa non adhérence aux tissus environnants. La gaine 32 est réalisée en n'importe quel polymère naturel, artificiel ou synthétique mais de préférence elle est constituée par un polymère substitué notamment par le fluor, tels que les polymères du type polytétrafluoroéthylène. La figure 10 illustre un dispositif péricardiaque comportant un muscle 1, autour d'une cage tubulaire 30 souple et élastique, ouverte à ses deux extrémités.L'une des ouvertures de la cage 30 a un diamètre suffisamment grand pour permettre l'introduction d'un coeur humain à l'intérieur de la cage 30. La stimulation du muscle 1 provoque alors la contraction de la cage 30 et celle du coeur humain logé étroitement dans cette cage. Si le muscle est insuffisamment long, on peut prévoir un prolongement en Y 33, fait d'un polymère résistant, comme par exemple du Dacron ou du PTFE..Figures 8 and 9 show an alternative embodiment in which the muscle 1 is previously housed, before the implementation of the dynamic training process, in a tubular sheath 32 constituted by a polymer membrane which protects the muscle during the process dynamic training and ensures its non-adhesion to surrounding tissues. The sheath 32 is made of any natural, artificial or synthetic polymer, but preferably it is constituted by a polymer substituted in particular by fluorine, such as polymers of the polytetrafluoroethylene type. FIG. 10 illustrates a pericardial device comprising a muscle 1, around a flexible and elastic tubular cage 30, open at its two ends. One of the openings of the cage 30 has a diameter large enough to allow the introduction of a human heart inside the cage 30. The stimulation of the muscle 1 then causes the contraction of the cage 30 and that of the human heart housed tightly in this cage. If the muscle is not long enough, we can provide an extension in Y 33, made of a resistant polymer, such as Dacron or PTFE.
Les figures 11 et 12 représentent une variante d'exécution dans laquelle, pendant l'entraînement dynamique du muscle, on interpose, entre le muscle 1 et l'appareil d'entraînement dynamique 2 une membrane 34 enroulée autour d'un axe, à surface continue, ouverte à ses deux extrémités. Cette membrane 34 est réalisée de préférence en une matière "colonisable" par le tissu conjonctif. Après la phase d'entraînement la "cage" tubulaire souple 35 ainsi obtenue comprend, à l'extérieur, le muscle 1 et, à l'intérieur la membrane 34 adhérant au muscle et colonisée par les cellules du tissu conjonctif. La cage 35 peut être utilisée directement comme chambre de pompage et elle peut être raccordée à des prothèses artérielles 36. La figure 13 illustre une forme d'exécution d'un dispositif péricardique dans laquelle le muscle 1 est enroulé autour d'une cage souple et élastique 37, formant une chambre de pompage ou un émetteur d'impulsions de pression, dont le volume interne communique, par un conduit 38, avec une poche 39 en forme de bol dans laquelle est logé un coeur humain 15. La poche 39 qui forme un récepteur des impulsions de pression, a une paroi creuse et elle comprend une enveloppe externe 41 non dilatable et une enveloppe interne 42 dilatable en contact avec le coeur. La cage souple et élastique 37, à volume de pompage variable, est ainsi reliée par un dispositif de transmission hydraulique à la poche 39. Lorsque la cage 37 se contracte, sous l'action du muscle 1 stimulé électriquement, elle refoule du liquide, par l'intermédiaire du conduit 38, à l'intérieur de la poche 39, autrement dit elle crée une impulsion de pression transmise à la poche 39. Comme son enveloppe externe 41 n'est pas dilatable, le liquide en excédent arrivant dans la poche provoque une dilatation de l'enveloppe interne 42 et par conséquent une contraction du coeur humain 15.Figures 11 and 12 show an alternative embodiment in which, during the dynamic training of the muscle, there is interposed between the muscle 1 and the dynamic training apparatus 2 a membrane 34 wound around an axis, on the surface continuous, open at both ends. This membrane 34 is preferably made of a material "colonizable" by the connective tissue. After the training phase the flexible tubular "cage" 35 thus obtained comprises, on the outside, the muscle 1 and, on the inside, the membrane 34 adhering to the muscle and colonized by the cells of the connective tissue. The cage 35 can be used directly as a pumping chamber and it can be connected to arterial prostheses 36. FIG. 13 illustrates an embodiment of a pericardial device in which the muscle 1 is wound around a flexible and elastic cage 37, forming a pumping chamber or a transmitter of pressure pulses, the internal volume of which communicates , by a conduit 38, with a pocket 39 in the form of a bowl in which is housed a human heart 15. The pocket 39 which forms a receptor for pressure pulses, has a hollow wall and it includes an external non-expandable envelope 41 and a internal envelope 42 expandable in contact with the heart. The flexible and elastic cage 37, with variable pumping volume, is thus connected by a hydraulic transmission device to the pocket 39. When the cage 37 contracts, under the action of the electrically stimulated muscle 1, it expels liquid, by through the conduit 38, inside the pocket 39, in other words it creates a pressure pulse transmitted to the pocket 39. As its external envelope 41 is not expandable, the excess liquid arriving in the pocket causes an expansion of the internal envelope 42 and consequently a contraction of the human heart 15.
Le conduit 38 est relié, par l'intermédiaire d'un conduit en dérivation 43, à une -chambre 44 située sous la peau 45 d'un patient et obturée par une membrane perforable 46. A travers cette membrane peut être introduite une aiguille 47 pour la réalimentation en liquide propulseur. Par ailleurs une aiguille pour la mesure de la pression 48 peut être également introduite à travers la membrane 46. Dans la variante d'exécution représentée sur la figure 14, le conduit 38 du dispositif de transmission hydraulique aboutit à un récepteur d'impulsions de pression comportant une enveloppe dilatable 49 logée à l'intérieur d'une poche externe 51 non dilatable, poche à l'intérieur de laquelle se trouve également le coeur humain 15. L'enveloppe dilatable 49 est en contact d'une part avec la poche externe 51 et d'autre part avec le coeur humain 15 si bien que les impulsions de pression dans le conduit 38 se traduisent par une augmentation de volume de l'enveloppe dilatable 49 et une contraction du coeur 15.The conduit 38 is connected, by means of a bypass conduit 43, to a chamber 44 situated under the skin 45 of a patient and closed by a perforable membrane 46. Through this membrane can be introduced a needle 47 for replenishing propellant. Furthermore, a needle for measuring the pressure 48 can also be introduced through the membrane 46. In the alternative embodiment shown in FIG. 14, the conduit 38 of the hydraulic transmission device terminates in a pressure pulse receiver comprising an expandable envelope 49 housed inside an external non-expandable pocket 51, pocket inside which the human heart is also located 15. The expandable cover 49 is in contact on the one hand with the external pocket 51 and on the other hand with the human heart 15 so that the pressure pulses in the conduit 38 result in an increase in volume of the expandable envelope 49 and a contraction of the heart 15.
On peut prévoir également, ainsi qu'il est représenté sur la figure 13, un tuyau 52 raccordé au circuit de transmission hydraulique, par exemple au conduit 43 ou 38. Ce tuyau permet la connexion transcutanée à un système de succion (aspiration) pendant une courte période. Cette connexion transcutanée peut être supprimée après quelques jours quand la surface interne de la poche hydraulique 39 (en silicone par exemple), adhère de façon permanente à 1'épicarde. One can also provide, as shown in Figure 13, a pipe 52 connected to the hydraulic transmission circuit, for example to conduit 43 or 38. This pipe allows transcutaneous connection to a suction system (suction) during a short period. This transcutaneous connection can be removed after a few days when the internal surface of the hydraulic bag 39 (made of silicone, for example), adheres permanently to the epicardium.

Claims

REVENDICATIONS
1- Procédé d'entraînement dynamique d'un muscle squelettique (1) destiné à être utilisé dans un coeur biomécanique, dans lequel on enroule le muscle squelettique autour d'un appareil d'entraînement déformable (2) susceptible de pouvoir se contracter, en opposant une résistance à la contraction, et reprendre ensuite sa forme initiale et on stimule le muscle squelettique (1), au moyen d'impulsions électriques périodiques (3) de manière à provoquer sa contraction et celle de l'appareil d'entraînement déformable (2) et leur relaxation subséquente, caractérisé en ce qu'au cours d'une première étape on stimule le muscle squelettique (1) au moyen d'impulsions électriques ayant une fréquence allant en croissant en fonction du temps et au cours d'une seconde étape on augmente progressivement la résistance de l'appareil d'entraînement déformable (2) à la contraction, les première et seconde étapes se chevauchant éventuellement quelque peu.1- Method for dynamic training of a skeletal muscle (1) intended for use in a biomechanical heart, in which the skeletal muscle is wound around a deformable training device (2) capable of being able to contract, in opposing a resistance to contraction, and then return to its initial shape and the skeletal muscle (1) is stimulated, by means of periodic electrical pulses (3) so as to cause its contraction and that of the deformable training apparatus ( 2) and their subsequent relaxation, characterized in that during a first step, the skeletal muscle (1) is stimulated by means of electrical impulses having a frequency increasing as a function of time and during a second step the resistance of the deformable training device (2) to contraction is gradually increased, the first and second steps possibly overlapping somewhat.
2- Procédé selon la revendication 1, caractérisé en ce qu'on applique, au muscle, pendant la phase de relaxation faisant suite à la phase de stimulation électrique ou de contraction, une force de distension s'exerçant dans le sens inverse de celui de la force de contraction. 3- Procédé selon l'une quelconque des revendications 1 et 2, caractérisé en ce qu'on applique, entre le muscle (1) et l'appareil d'entraînement déformable (2), une couche de matière intermédiaire (34) colonisable par le tissu conjonctif.2- A method according to claim 1, characterized in that one applies to the muscle, during the relaxation phase following the phase of electrical stimulation or contraction, a distension force exerted in the opposite direction to that of the force of contraction. 3- Method according to any one of claims 1 and 2, characterized in that one applies, between the muscle (1) and the deformable training device (2), a layer of intermediate material (34) colonizable by connective tissue.
4- Procédé selon l'une quelconque des revendications 1 et 2, caractérisé en ce qu'on loge préalablement le muscle squelettique (1) à l'intérieur d'une gaine tubulaire (32) évitant l'adhérence du muscle aux tissus environnants.4- A method according to any one of claims 1 and 2, characterized in that the skeletal muscle (1) is housed beforehand inside a tubular sheath (32) avoiding the adhesion of the muscle to the surrounding tissues.
5- Coeur biomécanique implantable fonctionnant à partir des contractions périodiques, sous l'effet d'impulsions électriques de stimulation, d'un muscle squelettique moteur (1), caractérisé en ce que son muscle moteur est un muscle (1) préalablement entraîné par le procédé selon l'une quelconque des revendications 1 à 4.5- Implantable biomechanical heart operating from periodic contractions, under the effect of electrical stimulation pulses, of a skeletal motor muscle (1), characterized in that its motor muscle is a muscle (1) previously driven by the method according to any one of claims 1 to 4.
6- Coeur biomécanique selon la revendication 5, caractérisé en ce qu'il comprend une cage tubulaire (6, 30), déformable élastiquement, à extrémités ouvertes, présentant une partie centrale de grand diamètre autour de laquelle est enroulée le muscle (1) et se prolongeant par deux parties extrêmes opposées de plus petit diamètre. 7- Coeur biomécanique selon la revendication 6, caractérisé en ce que la cage tubulaire (6) qui constitue une cage de pompage d'un ventricule à circulation axiale du flux sanguin, comporte une enveloppe externe souple (7), plusieurs lames de ressort cambrées (8), à convexité tournée vers l'extérieur, s'étendant sur toute la longueur de l'enveloppe (7), d'une extrémité à l'autre de la cage (6), et réparties autour de l'axe de cette cage (6), deux anneaux raidisseurs transversaux (9) logés respectivement dans les deux extrémités ouvertes de la cage tubulaire (6) et dans lesquels sont noyées les extrémités des lames de ressort (8), une membrane interne athrombogène s'étendant à l'intérieur de la cage (6), en recouvrant les lames de ressort (8) auxquelles elle adhère de manière à délimiter, entre les lames de ressort (8), des chambres individuelles étanches remplies d'un fluide (12).6- Biomechanical core according to claim 5, characterized in that it comprises a tubular cage (6, 30), elastically deformable, with open ends, having a central part of large diameter around which the muscle (1) is wound and extending by two opposite end portions of smaller diameter. 7- Biomechanical heart according to claim 6, characterized in that the tubular cage (6) which constitutes a pumping cage of a ventricle to axial circulation of the blood flow, comprises a flexible external envelope (7), several cambered spring blades (8), with convexity turned towards the outside, extending over the entire length of the envelope (7), of a end to end of the cage (6), and distributed around the axis of this cage (6), two transverse stiffening rings (9) respectively housed in the two open ends of the tubular cage (6) and in which the ends of the spring leaves (8) are embedded, an internal ahrombogenic membrane extending inside the cage (6), covering the spring leaves (8) to which it adheres so as to delimit, between the leaves spring (8), sealed individual chambers filled with a fluid (12).
8- Coeur biomécanique selon la revendication 6, caractérisé en ce qu'il comprend une membrane (34) enroulée autour d'un axe, à surface continue, ouverte à ses deux extrémités, interposée entre le muscle (1) et l'appareil d'entraînement dynamique (2) pendant la période d'entraînement, la membrane (34) étant en une matière colonisable par le tissu conjonctif pour donner, après la période d'entraînement, une cage tubulaire souple (35) comprenant, à l'extérieur, le muscle (1) et, à l'intérieur, la membrane (34) adhérant au muscle et colonisée par les cellules du tissu conjonctif. 9- Coeur biomécanique selon la revendication 6, caractérisé en ce qu'il constitue un dispositif péricardiaque comportant une cage tubulaire souple et élastique (30), ouverte à ses deux extrémités, entourée du muscle (1), l'une des ouverture de la cage (30) ayant un diamètre suffisamment grand pour permettre l'introduction d'un coeur humain à l'intérieur de cette cage, le muscle entourant la cage tubulaire peut être prolongé s'il est trop court par un élément de polymère (33) résistant lui permettant d'entourer complètement cette cage tubulaire.8- Biomechanical core according to claim 6, characterized in that it comprises a membrane (34) wound around an axis, with a continuous surface, open at its two ends, interposed between the muscle (1) and the apparatus d dynamic training (2) during the training period, the membrane (34) being made of a material colonizable by the connective tissue to give, after the training period, a flexible tubular cage (35) comprising, on the outside , the muscle (1) and, inside, the membrane (34) adhering to the muscle and colonized by the cells of the connective tissue. 9- Biomechanical heart according to claim 6, characterized in that it constitutes a pericardial device comprising a flexible and elastic tubular cage (30), open at its two ends, surrounded by the muscle (1), one of the opening of the cage (30) having a diameter large enough to allow the introduction of a human heart inside this cage, the muscle surrounding the tubular cage can be extended if it is too short by a polymer element (33) resistant allowing it to completely surround this tubular cage.
10- Coeur biomécanique selon la revendication 5, caractérisé en ce qu'il constitue un ventricule à circulation transversale du flux sanguin comportant une poche souple non expansible (19) entourée par le muscle (1) et s'étendant à l'extérieur d'un corps creux (21) à travers une ouverture de ce corps, une membrane étanche (22) ou un piston séparant en deux parties le corps creux (21) de manière à délimiter, d'un côté une chambre de pompage (23) à l'intérieur de la poche souple (19) contenant un liquide, et, de l'autre côté, une chambre de chasse (24), cette chambre de chasse (24) étant pourvue de deux raccords à savoir un raccord d'entrée (25) pourvu d'une valve d'admission (26) et un raccord de sortie (27) pourvu d'un valve de refoulement (28). 11- Coeur biomécanique selon la revendication 5, caractérisé en ce qu'il constitue un dispositif péricardiaque comportant une cage souple et élastique (37) formant une chambre de pompage ou un émetteur d'impulsions de pression, autour de laquelle est enroulé le muscle (1), une poche (39, 51) dans laquelle est logée un coeur humain (15) et formant un récepteur des impulsions de pression et un moyen dilatable (42, 49) relié à la cage (37) par un conduit de transmission hydraulique (38), pour provoquer la contraction du coeur (15) lors de la réception de chaque impulsion de pression.10- Biomechanical heart according to claim 5, characterized in that it constitutes a ventricle with transverse circulation of the blood flow comprising a flexible non-expandable pocket (19) surrounded by the muscle (1) and extending outside of a hollow body (21) through an opening of this body, a waterproof membrane (22) or a piston separating the hollow body (21) into two parts so as to delimit, on one side a pumping chamber (23) to the interior of the flexible bag (19) containing a liquid, and, on the other side, a flushing chamber (24), this flushing chamber (24) being provided with two connections, namely an inlet connection ( 25) provided with an inlet valve (26) and an outlet fitting (27) provided with a discharge valve (28). 11- Biomechanical heart according to claim 5, characterized in that it constitutes a pericardial device comprising a flexible and elastic cage (37) forming a pumping chamber or a transmitter of pressure pulses, around which the muscle is wound ( 1), a pocket (39, 51) in which is housed a human heart (15) and forming a receiver of pressure pulses and an expandable means (42, 49) connected to the cage (37) by a hydraulic transmission conduit (38), to cause the heart (15) to contract when each pressure pulse is received.
12- Coeur biomécanique selon la revendication 11, caractérisé en ce que la poche (39) dans laquelle est logé le coeur (15), a une paroi creuse et elle comprend une enveloppe externe (41) non dilatable et une enveloppe interne (42) dilatable en contact avec le coeur.12- Biomechanical core according to claim 11, characterized in that the pocket (39) in which is housed the heart (15), has a hollow wall and it comprises an external envelope (41) non-expandable and an internal envelope (42) expandable in contact with the heart.
13- Coeur biomécanique selon la revendication 11, caractérisé en ce qu'il comprend une poche externe13- Biomechanical core according to claim 11, characterized in that it comprises an external pocket
(51) non dilatable à l'intérieur de laquelle sont logés le coeur humain (15) et une enveloppe dilatable (49) en contact d'une part avec la poche externe (51) et d'autre part avec le coeur humain (15). 14- Coeur biomécanique selon l'une quelconque des revendications 11 à 13, caractérisé en ce que le conduit (38) s'étendant entre la cage souple et élastique (37) formant la chambre de pompage et la poche (39, 51) dans laquelle est logé le coeur humain (15), est relié, par l'intermédiaire d'un conduit en dérivation (43), à une chambre (44) située sous le peau (45) du patient et obturée par une membrane perforable (46) à travers laquelle peut être introduite une aiguille (47) pour la réalimentation en liquide propulseur et éventuellement une aiguille pour la mesure de la pression (48). 15- Coeur biomécanique suivant l'une quelconque des revendications 11 à 14, caractérisé en ce qu'un tuyau (52) est relié au conduit de transmission hydraulique (38) pour permettre la connexion transcutanée à un système de succion et pour permettre à la surface interne de la poche hydraulique (39) d'adhérer de façon permanente à l'épicarde. (51) non-expandable inside which are housed the human heart (15) and an expandable envelope (49) in contact on the one hand with the external pocket (51) and on the other hand with the human heart (15 ). 14- Biomechanical core according to any one of claims 11 to 13, characterized in that the conduit (38) extending between the flexible cage and elastic (37) forming the pumping chamber and the pocket (39, 51) in which the human heart (15) is housed, is connected, by means of a bypass duct (43), to a chamber (44 ) located under the skin (45) of the patient and closed by a perforable membrane (46) through which a needle (47) can be introduced for replenishing the propellant and possibly a needle for measuring the pressure (48). 15- Biomechanical core according to any one of claims 11 to 14, characterized in that a pipe (52) is connected to the hydraulic transmission conduit (38) to allow the transcutaneous connection to a suction system and to allow the internal surface of the hydraulic pocket (39) to adhere permanently to the epicardium.
EP94916281A 1993-05-14 1994-05-13 Method of training a skeletal muscle for a biomechanical heart and biomechanical heart using said muscle Ceased EP0774984A1 (en)

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
FR9305853 1993-05-14
FR9305853A FR2705238B1 (en) 1993-05-14 1993-05-14 Bio-mechanical heart with dynamic development.
FR9309954 1993-08-13
FR9309954A FR2708857B1 (en) 1993-08-13 1993-08-13 Bio-mechanical heart with dynamic development.
FR9312075 1993-10-11
FR9312075A FR2711062B1 (en) 1993-10-11 1993-10-11 Pericardial substitute used in cardiomyoplasty after dynamic and electrical training of the dorsal muscle.
PCT/FR1994/000571 WO1994026326A1 (en) 1993-05-14 1994-05-13 Method of training a skeletal muscle for a biomechanical heart and biomechanical heart using said muscle

Publications (1)

Publication Number Publication Date
EP0774984A1 true EP0774984A1 (en) 1997-05-28

Family

ID=27252747

Family Applications (1)

Application Number Title Priority Date Filing Date
EP94916281A Ceased EP0774984A1 (en) 1993-05-14 1994-05-13 Method of training a skeletal muscle for a biomechanical heart and biomechanical heart using said muscle

Country Status (6)

Country Link
US (1) US5814102A (en)
EP (1) EP0774984A1 (en)
JP (1) JPH09506517A (en)
AU (1) AU692770B2 (en)
CA (1) CA2162585A1 (en)
WO (1) WO1994026326A1 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2744924B1 (en) * 1996-02-21 1998-04-24 Franchi Pierre PRESSURE GENERATOR / REGULATOR DEVICE FOR AN IMPLANTABLE HEART ASSISTANCE PUMP OF THE COUNTERPRESSURE BALLOON TYPE
FR2751549B1 (en) * 1996-07-24 1998-10-16 Ist Cardiology S A BIO-MECHANICAL HEART WITH EXTRA-AORTIC DIASTOLIC COUNTER-PULSE
US6086526A (en) * 1997-04-11 2000-07-11 Medtronic, Inc. Cardiac assistance system
CA2534156C (en) * 2005-01-26 2012-05-29 Steven B. Taplin Sediment removal apparatus and method for removing sediment from open waterways
CA3004121C (en) * 2008-10-10 2020-06-16 Medicaltree Patent Ltd. Heart help device, system, and method
AU2018280236A1 (en) 2017-06-07 2020-01-16 Shifamed Holdings, Llc Intravascular fluid movement devices, systems, and methods of use
JP7319266B2 (en) 2017-11-13 2023-08-01 シファメド・ホールディングス・エルエルシー Intravascular fluid transfer devices, systems and methods of use
CN112004563A (en) 2018-02-01 2020-11-27 施菲姆德控股有限责任公司 Intravascular blood pump and methods of use and manufacture
US20210205601A1 (en) * 2018-06-12 2021-07-08 Arizona Board Of Regents On Behalf Of The University Of Arizona Pulsatile ventricular assist device
EP3996797A4 (en) 2019-07-12 2023-08-02 Shifamed Holdings, LLC Intravascular blood pumps and methods of manufacture and use
US11654275B2 (en) 2019-07-22 2023-05-23 Shifamed Holdings, Llc Intravascular blood pumps with struts and methods of use and manufacture
US11724089B2 (en) 2019-09-25 2023-08-15 Shifamed Holdings, Llc Intravascular blood pump systems and methods of use and control thereof

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT964474B (en) * 1971-07-09 1974-01-21 Cutter Lab PROSTHETIC SUPPORT FOR PARTS OF THE HUMAN BODY SLIDING BETWEEN THEM
US4453537A (en) * 1981-08-04 1984-06-12 Spitzer Daniel E Apparatus for powering a body implant device
DE3234572C2 (en) * 1981-09-18 1985-08-29 Karl Prof. Dr.med. 8390 Passau Heckmann Pump device for implantation in a human or animal body
US4813952A (en) * 1985-08-01 1989-03-21 Medtronic, Inc. Cardiac assist device
US4979936A (en) * 1987-04-28 1990-12-25 Trustees Of The University Of Pennsylvania Autologous biologic pump motor
SE8802414D0 (en) * 1988-06-27 1988-06-28 Astra Meditec Ab NEW SURGICAL MATERIAL
US4994078A (en) * 1988-02-17 1991-02-19 Jarvik Robert K Intraventricular artificial hearts and methods of their surgical implantation and use
US4976730A (en) * 1988-10-11 1990-12-11 Kwan Gett Clifford S Artificial pericardium
US5007927A (en) * 1989-10-24 1991-04-16 Purdue Research Foundation Muscle-powered cardiac assist device
US5098442A (en) * 1989-12-06 1992-03-24 Medtronic, Inc. Muscle contraction control by intramuscular pressure monitoring
DE4020120A1 (en) * 1990-06-25 1991-01-31 Klaus Prof Dr Ing Affeld MEDICAL DEVICE FOR GENERATING AN ALTERNATING VOLUME FLOW FOR DRIVING IMPLANTABLE BLOOD PUMPS
AU665175B2 (en) * 1990-10-02 1995-12-21 Maurice Hubertus Josephina Tilmans Training appliance for a muscle
WO1992008500A1 (en) * 1990-11-09 1992-05-29 Mcgill University Cardiac assist method and apparatus
FR2674130B1 (en) * 1991-03-20 1998-04-03 Clinique Residence Parc IMPLANTABLE BLOOD PUMP

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9426326A1 *

Also Published As

Publication number Publication date
WO1994026326A1 (en) 1994-11-24
AU692770B2 (en) 1998-06-18
CA2162585A1 (en) 1994-11-24
JPH09506517A (en) 1997-06-30
US5814102A (en) 1998-09-29
AU6799894A (en) 1994-12-12

Similar Documents

Publication Publication Date Title
EP0876168B1 (en) Implantable heart assistance pump with a counter-pressure balloon
FR2773995A1 (en) IMPLANTABLE BLOOD PUMP AND METHOD FOR BLOOD SUPPLY OF THE CIRCULATORY SYSTEM OF A PATIENT
AU2014229150B2 (en) Renal pump
AU672368B2 (en) Implantable heart-assist device
US7766814B2 (en) Vessel or sac wall treatment and a cardiac assist device
WO1994026326A1 (en) Method of training a skeletal muscle for a biomechanical heart and biomechanical heart using said muscle
EP0014130A1 (en) Complete cardiac prosthesis and device for regulating the blood flow rate therein
US20080234537A1 (en) Extracardiac Blood Flow Amplification Device
FR2566264A1 (en) IMPLANT AND VALVE SYSTEM FOR IMPLANT
JP2009517183A (en) Method and apparatus for minimally invasive direct mechanical ventricular actuation
FR2766373A1 (en) VENTRICULAR COUNTER-PULSE HEART ASSISTANCE DEVICE
FR2733143A1 (en) DEVICE FOR TEMPORARILY SHUTTERING A BODY CHANNEL, ESPECIALLY USEFUL FOR PRESSURE HEART ASSISTANCE
EP0148661B1 (en) Implantable blood pump
HU226250B1 (en) An assist device for the failing heart
FR2759575A1 (en) ARTIFICIAL IMPLANT FOR REPLACING THE URINARY EXCRETING APPARATUS IN HUMAN BEINGS
FR2767874A1 (en) Fluid actuator for implantable cardiac assist operating in counter pulse mode.
EP0925079A1 (en) Biomechanical heart for extra-aortic diastolic balloon pumping
WO2022194981A1 (en) Device for assistance by direct cardiac compression
FR2705238A1 (en) Biomechanical heart with dynamic development
FR2708857A1 (en) Biomechanical heart with dynamic development
BE1005293A6 (en) Circulatory assistance procedure and system for implementing this procedure
FR2883756A1 (en) Cardiac assistance system or artificial heart comprises series of pouches implanted under the patient's skin to pump blood round the body

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19951207

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): BE DE FR GB IT NL

17Q First examination report despatched

Effective date: 19970908

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN REFUSED

18R Application refused

Effective date: 20000910