EP0773880B1 - Verfahren und unterwassertauchvorrichtung mit hydrogen als atmungsgas - Google Patents

Verfahren und unterwassertauchvorrichtung mit hydrogen als atmungsgas Download PDF

Info

Publication number
EP0773880B1
EP0773880B1 EP95927785A EP95927785A EP0773880B1 EP 0773880 B1 EP0773880 B1 EP 0773880B1 EP 95927785 A EP95927785 A EP 95927785A EP 95927785 A EP95927785 A EP 95927785A EP 0773880 B1 EP0773880 B1 EP 0773880B1
Authority
EP
European Patent Office
Prior art keywords
mixture
enclosure
pressure
breathing
hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP95927785A
Other languages
English (en)
French (fr)
Other versions
EP0773880A1 (de
Inventor
Henri Delauze
Bernard Gardette
Claude Gortan
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MARITIME D'EXPERTISES - COMEX Cie
Original Assignee
MARITIME D'EXPERTISES - COMEX Cie
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MARITIME D'EXPERTISES - COMEX Cie filed Critical MARITIME D'EXPERTISES - COMEX Cie
Publication of EP0773880A1 publication Critical patent/EP0773880A1/de
Application granted granted Critical
Publication of EP0773880B1 publication Critical patent/EP0773880B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63CLAUNCHING, HAULING-OUT, OR DRY-DOCKING OF VESSELS; LIFE-SAVING IN WATER; EQUIPMENT FOR DWELLING OR WORKING UNDER WATER; MEANS FOR SALVAGING OR SEARCHING FOR UNDERWATER OBJECTS
    • B63C11/00Equipment for dwelling or working underwater; Means for searching for underwater objects
    • B63C11/02Divers' equipment
    • B63C11/18Air supply

Definitions

  • the present invention relates to methods and scuba diving facilities in breathing mixture at hydrogen.
  • the technical sector of the invention is the field of diving industrial submarine for medium and large interventions depth.
  • One of the main applications of the invention is the possibility of diving from facilities ensuring immersion and pressurization of divers to a certain depth beyond 50 m, and allowing this diver to go perform a given job, safely and efficiently, until minus 650 m, thanks to the use of a ternary gas mixture baptized hydreliox, and containing at least helium, oxygen and of hydrogen, then bringing said plunger back to pressure atmospheric at the surface after a decompression phase.
  • heliox is a mixture of helium and oxygen: a mixture is thus obtained ternary, mentioned in the introduction as part of the presentation of one of the main applications of the invention, called hydreliox which, when tested in accessible depth zones with heliox mixtures, has shown to improve significant the efficiency and the working capacity of the divers and, consequently, their safety and the reliability of human underwater interventions. Hydreliox also helps divers to intervene effectively beyond the limits of diving with heliox located, on an industrial level, around 350/450 meters. So under hydreliox, the record depth of minus 701 meters was reached in 1992 at the depositor's Hyperbaric Test Center under the control of the team of Doctor X. FRUCTUS, certainly in simulator hyperbaric.
  • the objectives and the problem posed and that we want to solve in the present invention are to determine in a way industrial, repetitive, reliable, safe and by professional but not necessarily scientific, both criteria for using hydreliox mixtures, the compositions optimum of these to perform work safely and with the best efficiency, the diving processes using these mixtures, the means of controlling and controlling the composition of these, especially with respect to the hydrogen and oxygen levels, and the facilities for such dives.
  • an enclosure filled with respiratory gas maintained at all times at the desired pressure P up to the depth p 2 is used , that is to say in the case of mixed diving as defined below for the resumption of possible hydrogen leaks which would occur in the enclosure, that is to say in the case of the saturation dive with hydrogen during the decompression phase to modify the rate of hydrogen in said enclosure, one circulates in closed loop said mixture of gases contained therein through at least one treatment circuit in which it is dehydrogenated before returning it to the enclosure; for this, said respiratory mixture is forced into said treatment circuit with a circulator and the gas mixture is thus passed through a catalytic oxidation reactor before returning the gas mixture thus dehydrogenated in said enclosure.
  • a first safety valve we fill a buffer capacity of a given volume by opening a upstream charge valve, then, when the partial pressure of oxygen in said respiratory mixture which is then either that of said pregnant, the one directly breathed by the diver, descends in below a given threshold, the charge valve is closed and no one opens that then the downstream discharge valve through which oxygen escapes into said mixture to breathe, either towards the enclosure, or directly into the closed supply loop of the plunger, by at minus another safety valve.
  • said person is pressurized and lowered into an enclosure which in this case is called a turret, until reaching the desired pressure and depth p 2 , using mixtures of respiratory gas not containing hydrogen; such a non-hydrogenated mixture is maintained in said enclosure for the duration of the intervention then of decompression; said person is supplied with a hydreliox type respiratory mixture using a circuit separate from those supplying said enclosure from the moment the person must leave said enclosure to perform his intervention and until his return to this enclosure.
  • a respiratory mixture according to the present invention is such that it includes oxygen at a rate less than 4%, helium at a partial pressure of at least 0.1 MPa, hydrogen at a partial pressure of at least 0.33 MPa and at most 1.8 MPa, and other possible gases such as nitrogen with a total partial pressure less than 0.09 MPa.
  • the rate hydrogen must be such that its partial pressure is always less than 1.8 MPa for exposure times less than about six hours and preferably less than 1.2 MPa for longer durations.
  • the partial pressure of hydrogen used is then at least 0.38 MPa.
  • the interest of the use such hydreliox gases only intervene for dives intervention beyond 70 meters, which then defines a pressure partial hydrogen used of at least 0.5 MPa.
  • said plunger will be pressurized from the initial minimum pressure P 1 minimum to the diving depth p2 of the desired intervention, in supplying said person with the second type of hydreliox type respiratory mixture, the pressure P of which is increased as a function of the equivalent diving depth p to which this person is lowered: this second type of hydreliox type mixture must at all times comply with its composition the rates and percentages of gases defined above and sufficient quantities of helium and hydrogen are added to it, either simultaneously or alternately so as not to be located in one of the zones of the high pressure nervous syndrome or narcosis; after the desired intervention at said depth p2, the diver is decompressed by making him breathe the same type of mixture of hydreliox gas which respects the above proportions of composition and up to the pressure P 1 of 0.45 MPa from which replaces the hydreliox mixture with any other type of non-hydrogenated respiratory mixture.
  • intervention diving there are two types of diving process, one of which is called intervention diving, and the other dive in saturation and for which the processes of the present invention can be applied according to different criteria described above and below.
  • the intervention dive consists after each immersion, at immediately return to the surface at atmospheric pressure: it can be done either in a scuba suit with a reserve of high pressure gas carried by the plunger, at the surface requires for which the diver is connected to the surface by an umbilical which supplies it with respiratory gas from a high gas reserve pressure, in a wet turret called a reserve bubble gas or in a hyperbaric turret with a decompression chamber in area.
  • Saturation diving consists of confining divers in one or more hyperbaric chambers, generally located on the surface, at the hydrostatic pressure equivalent to the depth of the site or the underwater operation: every day, the divers carry out a underwater intervention with transfer under pressure in a turret lift; decompression to return to pressure atmospheric occurs only at the end of the work or the authorized period of life in saturation.
  • Saturation diving requires the use of heavy equipment, such as a caisson hyperbaric, turret, regeneration system, etc.
  • qualification saturation status can be attributed to the types of dives exceeding a certain intervention time beyond which the decompression phases are identical anyway, whatever or the effective duration of the dive: thus, we can consider that, to get saturation with hydrogen, you have to breathe this gas to the operating pressure for at least 6 hours: a duration of breathing of this gas below this period will therefore not considered to be saturation with this gas. So, we take as practical saturation limit criteria for decompression curves identical, even if it doesn't correspond to what we can call the physiological tissue saturation which is to consider that there is as much gas not consumed and therefore not metabolized, dissolved in the organism than in the one we breathe.
  • Figure 1 is a block diagram of a type diving installation with box and intervention turret for applying the method of the present invention.
  • Figure 2 is a set of curves representing the type of mixtures usable according to the present invention and explaining certain process steps thereof.
  • Figure 3 is a diagram of a following dehydrogenator the invention.
  • Figure 4 is a diagram of an oxygenator according to the invention.
  • Figure 1 shows a block diagram of a type of diving facility known to date with a set of surface saturation speakers 1, known as decompression, and an underwater enclosure 5 allowing to descend divers to the desired depth such as a turret dive 5; this enclosure could also be what is called a diving bubble in which the diver can shelter at least at the level of his head but which cannot be isolated from the middle in which it is located unlike a diving turret, such as shown in Figure 1.
  • the respiratory mixture is recycled by a treatment system which then comprises at least on the one hand, gas regeneration equipment known to eliminate in particular carbon dioxide and on the other hand an oxygenator of the type of that shown in figure 4, specifically in the frame power to a speaker, but can be used in the case of a closed loop to oxygenate a respiratory mixture regardless of the enclosure.
  • Said turret 5 shown in Figure 1 may include thus an external breathing loop 7 such as precisely a oxygenator shown in Figure 4 and inside its enclosure in addition to known regeneration equipment, a dehydrogenator 6 such as that described in FIG. 3, especially in the framework of mixed diving, to eliminate any hydrogen leakage which could emerge inside the enclosure 5 in order to keep the respiratory mixture thereof non-hydrogenated.
  • an external breathing loop 7 such as precisely a oxygenator shown in Figure 4 and inside its enclosure in addition to known regeneration equipment
  • a dehydrogenator 6 such as that described in FIG. 3, especially in the framework of mixed diving, to eliminate any hydrogen leakage which could emerge inside the enclosure 5 in order to keep the respiratory mixture thereof non-hydrogenated.
  • compression or decompression from diver 8 to and from depth 18 can be done in said turret 5 but preferably at least the decompression in a surface box 1, by connecting a sealingly a side door 10 of said turret 5 brought back in surface after closing the lower door 9 and maintained at the pressure from depth 18, to another corresponding door 11 of said box.
  • Figure 2 on the one hand represents the different areas of respiratory mixtures defined by the present invention and others part explains the pressurization process, supply and decompression according to the present invention: thus, the zones 19 and 20 represented are those covering the whole hydreliox respiratory mixtures according to the invention with in especially zone 19 up to 1.2 MPa partial pressure hydrogen, preferably used for periods longer than six hours, and zone 20 of up to 1.8 MPa for durations lower exposure.
  • the plunger 8 is pressurized to a pressure absolute P1.14, at least 0.45 MPa with a first type of mixture not containing hydrogen and we feed at least from this pressure P1,14, said plunger 8 with a second type of breathing mixtures at pressure P depending on the diving depth p to which it is lowered; which second respiratory mixture is of the hydreliox type containing hydrogen at a minimum partial pressure of 0.33 Mpa, oxygen at less than 4% by volume, helium at more than 0.1 Mpa of pressure partial and other gases such as nitrogen at less than 0.09 Mpa total partial pressure.
  • the final hydreliox mixture thus obtained is then maintained at the pressure P 2 18 of the diving depth p2 of the desired intervention and said person or said diver is authorized to perform the desired intervention at this depth p 2 by feeding it with this mixture.
  • the curve represented 21 at the bottom of FIG. 2 below the zones 19.20, of hydreliox mixtures according to the invention is that of known binary mixtures of oxygen and hydrogen.
  • the abscissa axis of all of these curves represents the partial pressures of hydrogen in Megapascal, and the ordinate axis represents on the left of the figure the density of the respiratory mixture obtained in grams per cubic decimeter and the equivalent in meters of water on the right mixtures of air with the same densities as those represented on the left scale: we notice that at 600 meters of diving in hydreliox mixture with 1.8 MPa of pressure partial hydrogen according to the present invention, at the limit of the zone 20 defined above, the diver actually breathes a gas having a density equivalent to an air dive at 70 meters.
  • the curves 15 in Figure 2 represent for the same given depths, from 60 meters to 60 meters, for example, the variation of the density of respiratory mixture according to the invention, depending on the partial pressure of hydrogen it contains and appears on the abscissa: these curves are of course decreasing and linear at constant temperature.
  • Figures 3 and 4 show diagrams of devices according to the invention allowing on the one hand power carry out the processes as defined above and on the other hand maintain the respiratory mixtures according to the invention in the composition limits indicated above.
  • FIG. 3 is shown a dehydrogenator which allows either to modify on demand the rate of hydrogen in the saturation chamber 1 at the surface during the decompression phase for example, either to eliminate any hydrogen leakage in the case of mixed diving inside a diving enclosure or turret 5: this dehydrogenator can operate alone or in combination with a regenerator of gas for the elimination of carbon dioxide for example.
  • Said enclosure 1.5 is connected to said dehydrogenator respectively 4.6 which comprises at least one circulator which can be either a circulator with variable flow 28, i.e. a circulator of the VENTURI 27 system type, or a combination of the two types.
  • the dehydrogenation circuit also includes at least one catalytic oxidation reactor 22 containing catalyst which may be based on platinum or palladium: the gas flow through this reactor is controlled by an automatic valve 29 controlled by an electronic regulator 30, in order to maintain an optimum flow rate for the efficiency of said reactor. Its operating temperature is also controlled by this said electronic regulator 30 and serves as a decision parameter for the possible automatic locking of the dehydrogenator in the event of exceeding the limit temperature: the valves are closed safety 31 isolating the entire enclosure circuit 1.5, we injects helium through a valve 43 into said reactor 22 and we purge said helium by valve 44.
  • a dehydrogenator can allow to oxidize 20 Nm3 of hydrogen under an operating pressure which can reach 8 MPa with a reaction temperature of 500 ° C.
  • Such dehydrogenator can be installed in a diving turret 5 to eliminate any hydrogen leakage from a closed hydreliox supply circuit for the diver for a dive mixed; but if we want to eliminate large hydrogen capacities as in the case of a 1.5 enclosure completely filled with gas may contain hydrogen, during the phase in particular decompression, you must be able to remove the water produced by said reactor 22: for this, the dehydrogenator circuit then includes a capacitor 23 at the outlet of said reactor 22, connected to a chiller 24 as well as to a water and gas separator 25 at the outlet of said capacitor 23 which makes it possible to separate the water from the phase carbonated; this water is collected in a capacity 26 and is then evacuated by automatic level control through a purge valve 32.
  • Said electronic regulator 30 ensures control of the assembly said valves 29, 31, 32, 43 and 44 as well as circulators 27,
  • said closed loop or said enclosure 1.5 is then connected to an oxygenator 3 which has at least one capacity buffer 33 filled with oxygen provided on one side with a charging valve 42 and on the other a relief valve 34, as well as security 35; which charge and discharge valves are controlled by a regulator 37 connected to a sensor 38 for measuring the oxygen level in enclosure 1.5, or in the closed loop supplying said plunger 8, and which opens valve 34 when said rate drops below a given threshold and only when the valve 42 is closed; conversely, said valve 42 can only be opened when the automatic discharge valve 34 is closed.
  • an oxygenator 3 which has at least one capacity buffer 33 filled with oxygen provided on one side with a charging valve 42 and on the other a relief valve 34, as well as security 35; which charge and discharge valves are controlled by a regulator 37 connected to a sensor 38 for measuring the oxygen level in enclosure 1.5, or in the closed loop supplying said plunger 8, and which opens valve 34 when said rate drops below a given threshold and only when the valve 42 is closed; conversely, said valve 42 can only be opened when the automatic discharge
  • the opening time of said discharge valve 34 is a function the difference between the set point set on regulator 37 and the oxygen value read by sensors 38 and regulator analyzer 37 with a maximum opening time of less than half the time between two oxygen measurements: thus, only a quantity desired oxygen leaves 39 from the oxygenator via the automatic valve safety 35, either towards the enclosure, or in the closed loop and without there is therefore a risk of accumulation of too much oxygen raised in the same place in too short a time.
  • the arrival of oxygen 36 is provided by storage bottles located outside of said enclosure 1.5, for example.
  • said capacity buffer 33 can be doubled with a parallel circuit 40, in case one of the automatic charge and discharge valves 34,42 would come to fail.
  • the safety valves 35 close automatically and a discharge valve 45 opens to evacuate and relax, at outside the enclosure or closed loop, the area upstream to the discharge safety valve 35; in the event of an operational stop and for safety reasons, these valves cannot be reset only manually as well as switching from one to the other parallel circuits 33 and 40.

Landscapes

  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Pulmonology (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Ocean & Marine Engineering (AREA)
  • Respiratory Apparatuses And Protective Means (AREA)

Claims (11)

  1. Verfahren, um eine Person, die mit einem wasserstoffhaltigen Atemluftgemisch einen Tauchgang zur Ausführung eines Unterwassereingriffes durchführt, unter Druck zu setzen, zu versorgen und zu dekomprimieren, damit sie diesen Tauchgang durchführen kann,
    dadurch gekennzeichnet, daß
    für die Person bis zu einem absoluten Druck P1 (14) von mindestens 0,45 MPa mit einem ersten Typ von Atemluftgemischen, die keinen Wasserstoff enthalten, normale Druckverhältnisse aufrechterhalten werden;
    die Person (8) mindestens ab diesem Druck P1 (14) mit einem zweiten Typ von Atemluftgemischen bei dem Druck P in Abhängigkeit von der Tauchtiefe p, auf die die Person absteigt, versorgt wird, wobei das zweite Atemluftgemisch von Hydreliox-Typ ist, das Wasserstoff mit einem Partialdruck von mindestens 0,33 MPa, Sauerstoff von weniger als 4 Vol.-%, Helium von mehr als 0,1 MPa Partialdruck und weitere Gase, wie beispielsweise Stickstoff, von weniger als 0,09 MPa des gesamten Partialdrucks enthält;
    die Bereitstellung dieses zweiten Typs von wasserstoffhaltigen Atemluftgemischen in einer Zusammensetzung vermieden wird, die den Tauchgang in einen der Bereiche des durch hohe Drücke ausgelösten Nervensyndroms (16) oder der Narkose (17) bringen würde;
    die Versorgung mit dem Hydreliox-Gemisch, das bei dem Druck P2 (18) der Tauchtiefe p2 des gewünschten Eingriffs hergestellt wurde, aufrechterhalten wird, und die Person den gewünschten Eingriff bei dieser Tiefe p2 durchführen kann.
  2. Verfahren nach Anspruch 1, wobei mindestens eine Kammer (1, 5) verwendet wird, die mit einem Gemisch von Atemluftgasen gefüllt ist und bis zur Tiefe des Eingriffs p2 (18) in jedem Moment auf dem gewünschten Druck P gehalten wird, dadurch gekennzeichnet, daß das in der Kammer enthaltene Gasgemisch in einem geschlossenen Kreis über mindestens einen Behandlungskreislauf (4, 6) umlaufen gelassen wird, in welchem der Wasserstoff entzogen wird, bevor das Gasgemisch in die Kammer (1, 5) zurückgeleitet wird.
  3. Verfahren nach Anspruch 2, dadurch gekennzeichnet, daß dem Atemluftgemisch über den Behandlungskreislauf (4, 6) der Wasserstoff entzogen wird, indem der Umlauf des Gases über eine Zirkuliervorrichtung (27, 28) bewirkt wird und das Gasgemisch in einen Reaktor (22) zur katalytischen Oxidation geleitet wird, bevor das Gasgemisch, dem so der Wasserstoff entzogen wurde, in die Kammer (1, 5) zurückgeleitet wird.
  4. Verfahren nach Anspruch 3, dadurch gekennzeichnet, daß das aus der Oxidation des Wasserstoffs resultierende Wasser in einer Kondensationsvorrichtung (23) kondensiert wird, nachdem das Gasgemisch in den Reaktor (22) geleitet wurde, und das Wasser über einen Abscheider (25) in einem vom Behandlungskreislauf (4, 6) getrennten Raum (26) gesammelt wird, bevor das Gasgemisch, dem so der Wasserstoff (und die Feuchtigkeit) entzogen wurde, in die Kammer (1, 5) zurückgeleitet wird.
  5. Verfahren nach einem der Ansprüche 2 bis 4, dadurch gekennzeichnet, daß:
    die Person (8) in einer Kammer (5) bis zum Erreichen des gewünschten Drucks und der gewünschten Tiefe p2 (18) des Eingriffs unter normale Druckverhältnisse gesetzt wird und absteigen gelassen wird, wobei Gemische von Atemluftgasen verwendet werden, die keinen Wasserstoff enthalten;
    dieses nicht wasserstoffhaltige Gemisch in der Kammer (5) während der gesamten Dauer des Eingriffs und der anschließenden Dekompression beibehalten wird;
    die Person (8) mit einem Atemluftgemisch vom Hydreliox-Typ über einen Kreislauf (12), der von den Kreisläufen, die die Kammer (5) versorgen, verschieden ist, von dem Moment an, bei dem die Person die Kammer (5) zur Durchführung des Eingriffs verlassen muß, bis zu ihrer Rückkehr in die Kammer versorgt wird.
  6. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß:
    der Druck P des Hydreliox-Atemluftgemisches in Abhängigkeit von der Tauchtiefe p erhöht wird, wobei die in Anspruch 1 definierten Anteile und Prozentzahlen der Gase beachtet werden und ausreichende Mengen Helium und Wasserstoff entweder gleichzeitig oder abwechselnd so zugefügt werden, daß man sich nicht in einem der Bereiche des durch hohe Drücke verursachten Nervensyndroms (16) oder der Narkose (17) befindet,
    nach dem gewünschten Eingriff bei der Tauchtiefe p2 die Person (8) dekomprimiert wird, indem sie den gleichen Typ von Hydreliox-Gasgemischen atmen gelassen wird, der die vorherigen Anteile der Zusammensetzung einhält, jedoch höchstens bis zum Druck P1 (14) von 0,45 MPa, ab dem das Hydreliox-Gemisch durch beliebige andere Typen nicht wasserstoffhaltiger Atemluftgemische ersetzt wird,
    um für die Person vom absoluten Druck P1 (14) bis zum Druck P2 des Eingriffs (18) normale Druckverhältnisse aufrecht zu erhalten.
  7. Verfahren nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß der Sauerstoff dem Atemluftgemisch aus einem externen Hochdruck-Vorratsbehälter (36) über einen Sauerstoffzufuhrkreislauf (3) in einer Weise zugeführt wird, daß über ein erstes Sicherheitsventil (35) ein Pufferraum (33) eines gegebenen Volumens durch Öffnen eines Einlaßventils (42) stromaufwärts gefüllt wird, dann, wenn der Sauerstoffpartialdruck in dem Atemluftgemisch unter einen gegebenen Schwellenwert fällt, das Einlaßventil (42) geschlossen wird und erst jetzt das Ablaßventil (34) stromab geöffnet wird, über das der Sauerstoff (39) über mindestens ein weiteres Sicherheitsventil (35) in das zu atmende Gemisch strömt.
  8. Vorrichtung, um eine Person (8), die mit einem wasserstoffhaltigen Atemluftgemisch einen Tauchgang zur Ausführung eines Unterwassereingriffs durchführt, unter Druck zu setzen, zur Durchführung dieses Tauchgangs zu versorgen und zu dekomprimieren, die mindestens eine Kammer (1, 5) aufweist, die mit einem Atemluftgasgemisch gefüllt ist, das Wasserstoff enthalten kann, dadurch gekennzeichnet, daß die Kammer (1, 5) mit einer Vorrichtung zum Wasserstoffentzug (4, 6) verbunden ist, welche mindestens eine Zirkuliervorrichtung (27, 28) für das Gasgemisch, einen Reaktionsraum (22) für die katalytische Oxidation, eine Kondensationsvorrichtung (23), die mit einer Kälteeinheit (24) verbunden ist, einen Abscheider (25), um das Wasser und das Gas zu trennen, ein Regelventil (29), verschiedene Sicherheitsventile (31) und einen elektronischen Reger (30), der die gesamten Ventile, die Zirkuliervorrichtung, den Reaktor, die Kondensationsvorrichtung und den Abscheider steuert, aufweist.
  9. Vorrichtung, um eine Person (8), die mit einem wasserstoffhaltigen Atemluftgemisch einen Tauchgang zur Ausführung eines Unterwassereingriffs durchführt, unter Druck zu setzen, zur Durchführung eines Tauchgangs zu versorgen, und zu dekomprimieren, die mindestens eine Kammer (1, 5) aufweist, die mit einem Atemluftgemisch gefüllt ist, das Wasserstoff enthalten kann, dadurch gekennzeichnet, daß die Kammer (1, 5) mit einer Vorrichtung zur Sauerstoffzufuhr (3) verbunden ist, die mindestens ein Puffervolumen (33) aufweist, das mit Sauerstoff gefüllt ist, an einer Seite mit einem Einlaßventil (42) und an der anderen Seite mit einem Auslaßventil (34) versehen ist und Sicherheitsventile (35) aufweist, wobei das Einlaßventil und das Auslaßventil über einen Regler (37) gesteuert werden, der mit einem Meßfühler (38) zur Bestimmung des Sauerstoffgehalts in der Kammer verbunden ist und der das Ventil (34) öffnet, wenn der Sauerstoffgehalt unter einen gegebenen Schwellenwert fällt, jedoch nur, wenn das Ventil (42) geschlossen ist.
  10. Atemluftgemisch, das zumindest Helium und Sauerstoff enthält, für sogenannte gemischte Tauchgänge von mehr als 35 m Tiefe, dadurch gekennzeichnet, daß es Sauerstoff mit einem Gehalt unter 4 %, Helium mit einem Partialdruck von mindestens 0,1 MPa, Wasserstoff mit einem Partialdruck von mindestens 0,33 MPa und höchstens 1,8 MPa und weitere gegebenenfalls vorliegende Gase mit einem Gesamtpartialdruck von unter 0,09 MPa enthält.
  11. Atemluftgemisch nach Anspruch 10, dadurch gekennzeichnet, daß das Gemisch bei Tauchtiefen über 50 m mit Wasserstoff bei einem Partialdruck von mindestens 0,38 MPa verwendet wird.
EP95927785A 1994-08-26 1995-08-11 Verfahren und unterwassertauchvorrichtung mit hydrogen als atmungsgas Expired - Lifetime EP0773880B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR9410538 1994-08-26
FR9410538A FR2723909A1 (fr) 1994-08-26 1994-08-26 Procede et installation de plongee sous-marine en melange respiratoire a l'hydrogene
PCT/FR1995/001083 WO1996006771A1 (fr) 1994-08-26 1995-08-11 Procede et installation de plongee sous-marine en melange respiratoire a l'hydrogene

Publications (2)

Publication Number Publication Date
EP0773880A1 EP0773880A1 (de) 1997-05-21
EP0773880B1 true EP0773880B1 (de) 1998-10-28

Family

ID=9466644

Family Applications (1)

Application Number Title Priority Date Filing Date
EP95927785A Expired - Lifetime EP0773880B1 (de) 1994-08-26 1995-08-11 Verfahren und unterwassertauchvorrichtung mit hydrogen als atmungsgas

Country Status (6)

Country Link
US (1) US6138670A (de)
EP (1) EP0773880B1 (de)
AU (1) AU3180295A (de)
BR (1) BR9508682A (de)
FR (1) FR2723909A1 (de)
WO (1) WO1996006771A1 (de)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002057089A (ja) * 2000-08-09 2002-02-22 Canon Inc 露光装置
US7100603B1 (en) 2000-08-31 2006-09-05 Alan Krasberg System for providing protection from reactive oxygen species
US7387123B2 (en) * 2001-11-30 2008-06-17 Viasys Manufacturing, Inc. Gas identification system and volumetrically correct gas delivery system
US6827084B2 (en) * 2002-06-21 2004-12-07 Lloyd Thomas Grubb, Jr. Automatic gas blender
RU2516942C2 (ru) * 2012-06-05 2014-05-20 Открытое акционерное общество"Центральное конструкторское бюро "Лазурит" Глубоководный водолазный комплекс с мобильной установкой выделения гелия из использованных дыхательных смесей
GB2528025B (en) * 2014-05-02 2019-03-06 Fathom Systems Ltd Determining the partial pressure of a gas in a pressure vessel
CN107097903A (zh) * 2017-04-14 2017-08-29 中国海洋大学 一种承压舱充气体的方法
CN109398646B (zh) * 2018-12-26 2023-08-15 烟台宏远氧业股份有限公司 多功能混合气潜水控制箱

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3807396A (en) * 1967-03-16 1974-04-30 E & M Labor Life support system and method
US3941124A (en) * 1969-01-21 1976-03-02 Rodewald Newell C Recirculating breathing apparatus and method
US3730178A (en) * 1970-03-24 1973-05-01 F Moreland Deep-sea dive suit and life support system
US3815591A (en) * 1972-04-28 1974-06-11 Union Carbide Corp Diving gas mixtures and methods of deep diving
US3831594A (en) * 1973-03-05 1974-08-27 Us Navy Life support system
US3863459A (en) * 1973-11-14 1975-02-04 Us Navy Underwater heat sink
US4026283A (en) * 1973-12-28 1977-05-31 Taylor Diving & Salvage Co., Inc. Closed circuit, free-flow underwater breathing system
AU499164B2 (en) * 1976-08-24 1979-04-05 Foundation Of Ocean Research Breathing apparatus heater-humidifier
US4211086A (en) * 1977-10-11 1980-07-08 Beatrice Foods Company Cryogenic breathing system
US4269791A (en) * 1977-11-14 1981-05-26 The United States Of America As Represented By The Secretary Of The Navy Hydrogen-oxygen mixer apparatus and process
US4206753A (en) * 1977-11-16 1980-06-10 Fife William P Method and apparatus for mixing gases
US4181126A (en) * 1978-01-23 1980-01-01 Hendry Stephen M Cryogenic, underwater-breathing apparatus
IT1130983B (it) * 1979-03-21 1986-06-18 Lama Lab Mec Appliquees Procedimenti e dispositivi per regolare la pressione parziale d'ossigeno della miscela gassosa del circuito respiratorio di un sommozzatore
US4442835A (en) * 1980-12-04 1984-04-17 Normalair-Garrett (Holdings) Limited Deep diving breathing systems
DE3538960A1 (de) * 1985-11-02 1987-05-14 Draegerwerk Ag Tauchretter
US5503145A (en) * 1992-06-19 1996-04-02 Clough; Stuart Computer-controlling life support system and method for mixed-gas diving
US5794616A (en) * 1993-11-17 1998-08-18 Cochran Consulting, Inc. Use of multiple gas blends with a dive computer
US5678542A (en) * 1996-05-28 1997-10-21 Maffatone; Anthony Neil Decompression gas switching manifold

Also Published As

Publication number Publication date
FR2723909A1 (fr) 1996-03-01
BR9508682A (pt) 1998-01-06
EP0773880A1 (de) 1997-05-21
AU3180295A (en) 1996-03-22
US6138670A (en) 2000-10-31
FR2723909B1 (de) 1997-02-21
WO1996006771A1 (fr) 1996-03-07

Similar Documents

Publication Publication Date Title
EP0773880B1 (de) Verfahren und unterwassertauchvorrichtung mit hydrogen als atmungsgas
JPH08230772A (ja) 二酸化炭素の海底投棄システム
EP0025444B1 (de) Verfahren und vorrichtungen zum regeln des partiellen sauerstoffdrucks der gasmischung des atmungskreislaufs eines tauchers
EP0071553A1 (de) Verfahren und Vorrichtung zur Reinigung von Helium in einer Gasmischung
EP0245343A1 (de) Tauchgeräte und deren bedienung
FR2587297A1 (fr) Systeme de respiration pour scaphandrier
FR2780618A1 (fr) Procede pour minimiser l'oxydation des produits alimentaires
DE19922310A1 (de) Druckfester Behälter zur Konservierung von Geweben und Organen
US1294188A (en) Pressure-chamber for removing divers' diseases.
WO1997019848A1 (fr) Appareillage de plongee autonome
Rahn Oxygen stores of man
Kulbe et al. Freeze coring of soft surface sediments at a water depth of several hundred meters
EP0203133A1 (de) Sekundär-system zur lebensrettung.
WO2005013702A3 (en) A method for the treatment of fresh meat
US5778876A (en) Self-contained oxygen rebreather with semi-permeable membrane to vent excess helium
RU2155700C2 (ru) Способ спасения подводников из аварийной подводной лодки и устройство для его осуществления
O'NEAL et al. An experimental eleven-day undersea saturation dive at 193 feet
BE1030767B1 (fr) Système de respiration aquatique
FR3061202A1 (fr) Dispositif permettant de conserver les vins apres la premiere ouverture de la bouteille
Imbert et al. Hydra 8: Pre-commercial Hydrogen Diving Project
EP0611584B1 (de) Vorrichtung zur Luftregenerierung in einem geschlossenen Behälter
WO2004075639A1 (en) A method of processing fish
Palmer et al. The state of oxygenation of haemoglobin in the blood of living Tubifex (Annelida)
JPS56152712A (en) Continuous pressure-supplying method for raw liquid of pressure filter
Wells The use of nitrogen-oxygen as divers breathing gas

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19970212

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): GB

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

17Q First examination report despatched

Effective date: 19980114

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): GB

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19981223

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20100721

Year of fee payment: 16

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20110811

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110811