EP0771136A1 - Cage froide pour dispositif à induction - Google Patents

Cage froide pour dispositif à induction Download PDF

Info

Publication number
EP0771136A1
EP0771136A1 EP96402275A EP96402275A EP0771136A1 EP 0771136 A1 EP0771136 A1 EP 0771136A1 EP 96402275 A EP96402275 A EP 96402275A EP 96402275 A EP96402275 A EP 96402275A EP 0771136 A1 EP0771136 A1 EP 0771136A1
Authority
EP
European Patent Office
Prior art keywords
partition
internal
sector
cage
external
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP96402275A
Other languages
German (de)
English (en)
Inventor
Philippe Fache
Bernard Paya
Benoît Michaud
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Electricite de France SA
Original Assignee
Electricite de France SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Electricite de France SA filed Critical Electricite de France SA
Publication of EP0771136A1 publication Critical patent/EP0771136A1/fr
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D11/00Arrangement of elements for electric heating in or on furnaces
    • F27D11/06Induction heating, i.e. in which the material being heated, or its container or elements embodied therein, form the secondary of a transformer
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/02Induction heating
    • H05B6/22Furnaces without an endless core
    • H05B6/24Crucible furnaces

Definitions

  • the present invention relates to cold cages used either in the field of electromagnetic induction fusion, or in the field of inductive plasma production or in the field of electromagnetic confinement.
  • Such cold cages in particular constitute the main element of cold crucibles in which the electromagnetic induction fusion of refractory materials, such as metals melting at very high temperatures, is practiced.
  • an inductive coil heats and confines the plasma.
  • a device called a cold cage dissipates the heat given off by the inductive plasma which could damage the coil.
  • cold cage will be used in the present description to designate the cooling structure of an inductive plasma torch or of an inductive cold crucible, equally.
  • Such cold cages are generally formed from several partitions assembled to form a body of revolution, in particular a cylinder.
  • Cold cage partitions which are made of a metal which is a good conductor of heat and which are cooled by the circulation of a heat transfer fluid.
  • a cage is disposed within an inductor, which generates currents in the material to be melted or the plasma, induced currents also arise in the metal partitions. These stray currents decrease the penetration of the magnetic field into the material. They also decrease the cooling efficiency, since the partition is itself directly heated by induction.
  • FIG. 1 illustrates a conventional cold cage structure, as described, in document FR-A-2 629 299.
  • partitions in the form of arcuate longitudinal sectors 2 are arranged in a circle in the manner of a barrel stave.
  • the partitions of sectors 2, in copper, are glued edge to edge with joints 3 insulating intermediates. This segmentation prevents the development of induced currents along a complete contour of the crucible.
  • Each sector partition 2 consists of metal walls welded edge to edge to form longitudinal channels 4 for cooling fluid circulation. Thus, each metal partition, in contact with the molten material or the plasma, is cooled.
  • induced currents appear in each sector because the magnetic field applied has axial and radial components while the cross section of a sector partition has a metallic outline.
  • FIG. 2 illustrates another known structure of sector 2 of a cold crucible, seen in cross section.
  • Each sector 2 is composed of an arcuate plate 5, made of stainless steel, glued to a ceramic gutter 6.
  • the gutter 6 forms a cooling channel 4 surrounded by ceramic edges 7 and 8, extending radially, and a bottom ceramic 9 forming a longitudinal part of the cylinder.
  • the channel 4 is covered by the metal plate 5 to form a tube in which the cooling fluid will circulate.
  • This structure has the drawback of not allowing the circulation of fluid at high pressure and of causing inductive losses at high frequency, in particular just at the limit of the inductors, the magnetic field having in these zones a direction perpendicular to the metal plate. 5.
  • the essential object of the present invention is improve the cooling and efficiency of a cold cage.
  • Another object of the invention is to reduce the inductive losses by currents induced in a cold cage.
  • a cold cage of revolution according to the invention comprises, for each sector, a metallic internal partition and at least a portion of insulating external partition, that is to say of electrically insulating material.
  • FIG. 3 shows a metal internal partition 10 of sector 2 of a cold cage seen in perspective.
  • Each internal partition 10 of the cage has the shape of an arc of a cylinder of revolution around an axis X-X. It can be formed of a curved metal plate or a part of a metal tube split longitudinally.
  • the internal partition is preferably made of copper, a good thermal and electrical conductor. Thus, high heat transfers and low inductive losses are obtained. Indeed, the inductive energy dissipated in the metal partition itself, is a function of the geometry of the partition and proportional to the resistivity of the metal used.
  • each sector also comprises a means for circulating fluid, each internal partition being covered by at least one part of external partition.
  • the circulation means is produced by digging at least two cooling channels in at least one partition internal.
  • the two channels are formed by milling perpendicular to the external surface 10b of the metal partition. As shown in FIG. 3, the digging of the two channels 11, 12 leaves two lateral longitudinal ribs 17 and 18, and a central longitudinal rib 13 which separates the two channels.
  • the digging of the channels can be interrupted before reaching the ends of the plate, leaving a solid border 15, 16 at each end.
  • the channels are closed when the external partition and the internal partition are assembled.
  • the invention provides a transverse cooling channel in at least one of the two partitions, following an arc of a circle centered on the axis, so as to connect the two cooling channels.
  • This transverse channel 14 can be hollowed out near the edge 15 for example, to put the two longitudinal channels 11, 12 into communication.
  • the transverse channel 14 is hollowed out in the same way as the longitudinal channels 11, 12.
  • the transverse channel 14 can be hollowed out by milling perpendicular to the external surface 10b of the metal partition which already has the longitudinal channels 11, 12. It is preferable to mill by turning the sector partition around its axis XX.
  • the fluid can be circulated by two openings made in the external partition 20, at the level corresponding to the end of each channel 11, 12 hollowed out in the internal partition 10.
  • the fluid injected through an opening passes through the channels 11, 14 and 12, before being collected by the other opening.
  • the cooling channels 11, 12 can be dug up to one end of the partition, thereby removing the border 16. The cooling fluid can then be injected and collected at the end of each channel 11, 12 formed.
  • transverse channel 14 can be omitted, each longitudinal channel 11, 12 being hollowed out to the two ends of the partition.
  • the fluid can then be injected and collected at one end of the partition by connecting the channels by a U-tube placed at the other end of the partition.
  • Each cooling channel 11, 12 is separated from the material to be melted or from the plasma by a respective wall 11a, 12a.
  • the production of the channels in the internal metal partition, and the digging perpendicular to the surface thereof makes it possible to obtain walls 11a, 12a of very reduced thickness and of large surface area.
  • the channel can be milled several times to obtain a wall 11a, 12a of regular and reduced thickness.
  • this thin and large surface wall increases heat exchange.
  • the wall may have a reduced thickness compared to the skin depth in which the induced currents develop. By reducing the thickness of this wall, it is therefore possible to reduce the inductive losses and / or increase the working frequency.
  • At least one sector has a slit, produced by drilling in the internal partition, the slit being arranged at the median plane of the channels of the sector, so as to maintain the tightness of the cooling channels.
  • the longitudinal rib 13 is split longitudinally over substantially its entire length. This longitudinal slot 21 crosses the entire partition internal metal. Thus, the transverse currents can no longer develop over the entire internal surface of the internal metal partition.
  • This slot formed in each internal metal partition is analogous to a doubling of the degree of sectorization of the cold cage. For example, it is possible to produce a cold cage comprising eight sectors with a split metal partition similar to a cold cage with sixteen sectors. A high degree of sectorization is advantageous in that it increases the efficiency of the magnetic field inside the cold cage.
  • This slot does not reach the transverse channel 14 so as to maintain the sealing of the channels. Similarly, it is preferable that the slot 21 does not reach the edges 15, 16 of the partition 10 so that it remains formed in one piece.
  • the external partition 20 made of electrically insulating material, is arranged opposite the internal partition.
  • the two partitions are joined so that the external surface of each internal partition is covered by the internal surface of at least one part of external partition so as to close and seal the cooling channels.
  • the external partitions 20 can indeed be as numerous as the internal partitions 10 and each sector 2 can be produced separately by gluing a respective external partition 20 on each internal partition 10.
  • the insulating external partitions 20 are for example formed from plates of composite material curved, like silirite.
  • the sectors are then assembled to form the cold cage 1 of revolution. 3 radial seals isolate and secure the sectors. In particular, these seals insulate the internal metal partitions 10 from one another.
  • the seals 3 are also placed in the slots 21 to electrically isolate the two parts of the partition.
  • the external partition can be formed in a single curved or tubular part inside which all the internal metal partitions are fixed.
  • the cold cage comprises a single external partition of revolution, each sector comprising an internal partition covered by a part of external partition corresponding to the sector.
  • the internal metal partitions 10 are first assembled in a body of revolution (for example a cylinder), with seals 3 electrically insulating them from one another.
  • a shrinking tape is glued over the entire contour of the body of revolution, that is to say the entire outer surface of the assembled metal partitions.
  • the external partition is formed by a hooping tape surrounding the external surface of the internal partitions assembled in sector of a body of revolution. This tape can be coated with resin to harden it and resist the pressure of coolant. More generally, the external partition will be formed from a resin reinforced with coating.
  • the fluid circulation means is produced by digging at least two cooling channels in at least one part of the insulating external partition corresponding to a sector.
  • FIG. 6 thus represents the digging of longitudinal channels 111, 112 in an insulating external partition 110.
  • each sector 2 of cold cage 1 comprises an insulating external partition 110 in which the channels 111, 112 are hollowed out on the internal surface side of the external partition 110.
  • This digging is carried out in a similar manner to the digging of the metal partition previously exposed. This digging also leaves a central longitudinal rib 113 and two lateral longitudinal ribs 117, 118 on the internal surface of the external partition 110.
  • a transverse channel can also be dug between the longitudinal channels 111, 112, to connect them.
  • a thin metallic internal partition 120 is bonded to the entire internal surface of the external partition 110 to close and seal the channels.
  • This internal partition preferably has a reduced cross section so that the coupling with respect to the magnetic field is also reduced.
  • the apparent resistance is in fact proportional to the conductive surface crossed by the magnetic field, the resistance also being proportional to the frequency of the magnetic field.
  • the section is therefore reduced and the stray current in the cold cage decreases.
  • This reduction of the stray current is an essential advantage of the invention. It reduces the inductive losses in the cold cage and / or increases the working frequency (for the same loss rate).
  • the internal metal partitions can be formed from copper walls of thickness less than one millimeter, in which the losses by induced currents will be low.
  • the internal metal partition 120 may still in the second embodiment include a longitudinal slot 121 to avoid the development of transverse currents.
  • This slot 121 is open parallel to the axis XX through the internal metal partition 120, in its middle part.
  • the middle part of the internal partition 120 in fact corresponds to the part which will cover the central rib 113 of the insulating external partition 110 when the partitions 110, 120 are joined.
  • the slot 121 is also limited in length so as not to reach this transverse channel once the partitions are joined.
  • a variant can be provided in which a single piece of revolution forms the external partition. Longitudinal channels are then dug in each part of the external partition corresponding to a sector. In each sector, an internal metal partition is then glued to the interior of the part of revolution. 3 radial seals are interposed between the internal metal partitions.
  • the cold cage is fixed at its lower part to a short-circuit ring.
  • This metal ring generally consists of a hollow copper flat disc. It has on one side a circular groove.
  • the cold cage composed of the glued sectors, can then be welded or brazed on the short-circuit ring by introducing the end of the sectors into the circular groove.
  • One of the essential advantages of the invention is the digging of the channels perpendicular to the surface of the partition.
  • the hollowed out surface has ribs 13, 15, 16, 17, 18 having a large surface.
  • glue a large surface and the fixing has good solidity.
  • the coolant can be subjected to a high flow and pressure without leakage from the channels.
  • Another major advantage is the reduction of inductive losses in the cold cage.
  • the wall may be thinner than the walls of the prior art which had to be rigid.
  • the volume of metal, where parasitic currents develop is reduced and the transparency vis-à-vis the induction increases.
  • the production of metal partitions requires less metal, therefore is more economical.
  • the different sectors of the cold cage are obtained from a unitary metal tube which is split into different parts over most of its height, the unsplit area maintaining the assembly of the sectors.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Continuous Casting (AREA)

Abstract

L'invention concerne une cage froide pour dispositif à induction de révolution autour d'un axe (X-X) divisée en secteurs (2), chaque secteur (2) comprenant une cloison interne (10) métallique et au moins une partie de cloison externe (20) en matériau isolant électriquement, ainsi qu'un moyen de circulation de fluide.
Pour réaliser ce moyen, l'invention consiste à creuser au moins deux canaux de refroidissement (11, 12):
  • . soit dans la cloison interne (10) métallique, perpendiculairement à sa surface externe (10b),
  • . soit dans la cloison externe (20) isolante, perpendiculairement à sa surface interne (20a),
et à accoler les deux cloisons (10, 20) de façon à fermer et rendre étanches les canaux (11, 12).

Description

  • La présente invention concerne les cages froides utilisées soit dans le domaine de la fusion par induction électromagnétique, soit dans le domaine de la production de plasma inductif ou encore dans le domaine du confinement électromagnétique.
  • De telles cages froides constituent en particulier l'élément principal des creusets froids dans lesquels on pratique la fusion par induction électromagnétique de matériaux réfractaires, comme des métaux fondant à des températures très élevées.
  • Dans une torche à plasma, une bobine inductive chauffe et confine le plasma. Un dispositif appelé cage froide évacue la chaleur dégagée par le plasma inductif qui pourrait endommager la bobine.
  • De façon générale, le terme de cage froide sera utilisé dans la présente description pour désigner la structure de refroidissement d'une torche à plasma inductive ou d'un creuset froid inductif, indifféremment.
  • De telles cages froides sont généralement formées de plusieurs cloisons assemblées pour former un corps de révolution, en particulier un cylindre.
  • On connaît des cloisons de cage froide constituées d'un métal bon conducteur de la chaleur et refroidies par une circulation d'un fluide caloporteur.
  • Comme une telle cage est disposée au sein d'un inducteur, qui engendre des courants dans le matériau à fondre ou le plasma, des courants induits naissent également dans les cloisons métalliques. Ces courants parasites diminuent la pénétration du champ magnétique dans le matériau. Ils diminuent également l'efficacité de refroidissement, car la cloison est elle-même directement échauffée par induction.
  • La figure 1 illustre une structure classique de cage froide, telle que décrite, dans le document FR-A-2 629 299.
  • Dans une telle cage 1 cylindrique d'axe O-O, des cloisons en forme de secteurs longitudinaux 2 arqués sont disposées en cercle à la façon des douves d'un tonneau. Les cloisons de secteurs 2, en cuivre, sont collées bord à bord avec des joints 3 isolants intermédiaires. Cette segmentation empêche le développement de courants induits suivant un contour complet du creuset.
  • Chaque cloison de secteurs 2 est constituée de parois métalliques soudées bord à bord pour former des canaux longitudinaux 4 de circulation de fluide de refroidissement. Ainsi, chaque cloison métallique, en contact avec le matériau en fusion ou le plasma, est refroidie.
  • Cependant des courants induits apparaissent dans chaque secteur car le champ magnétique appliqué a des composantes axiale et radiale alors que la section transversale d'une cloison de secteur a un contour métallique.
  • La figure 2 illustre une autre structure connue de secteur 2 de creuset froid, vue en coupe transversale.
  • Chaque secteur 2 est composé d'une plaque 5 arquée, en acier inoxydable, collée sur une gouttière céramique 6. La gouttière 6 forme un canal de refroidissement 4 entouré de bords céramiques 7 et 8, s'étendant radialement, et d'un fond céramique 9 formant une partie longitudinale de cylindre. Le canal 4 est couvert par la plaque métallique 5 pour former un tube dans lequel circulera le fluide de refroidissement.
  • Cette structure a l'inconvénient de ne pas permettre la circulation de fluide à haute pression et de provoquer des pertes inductives à haute fréquence, en particulier juste à la limite des inducteurs, le champ magnétique ayant dans ces zones une direction perpendiculaire à la plaque métallique 5.
  • Le but essentiel de la présente invention est d'améliorer le refroidissement et l'efficacité d'une cage froide.
  • Un autre but de l'invention est de diminuer les pertes inductives par courants induits dans une cage froide.
  • Ces buts sont atteints, selon l'invention, par une nouvelle structure de cage froide comprenant plusieurs cloisons internes métalliques et au moins une cloison externe isolante, en matériau isolant électriquement, la cage froide étant de révolution et divisée en secteurs, chaque secteur comprenant :
    • . une cloison interne métallique,
    • . au moins une partie de cloison externe isolante, et
    • . un moyen de circulation de fluide de refroidissement,
    chaque cloison interne étant couverte par au moins une partie de cloison externe, caractérisée en ce que, dans au moins un secteur, le moyen de circulation de fluide est réalisé par creusement, d'au moins deux canaux de refroidissement dans l'une au moins des deux cloisons, les cloisons étant accolées, de sorte que la surface externe de chaque cloison interne soit recouverte par la surface interne de cloison externe, de façon à fermer et rendre étanches les canaux de refroidissement.
  • La description qui va suivre et les dessins annexés, donnés surtout à titre d'exemples non limitatifs feront mieux comprendre comment l'invention est réalisée. Sur les dessins annexés :
    • . la figure 1, précédemment décrite, représente une cage froide selon l'art antérieur ;
    • . la figure 2, précédemment décrite, représente une vue en coupe transversale de secteurs de cage froide selon l'art antérieur ;
    • . la figure 3 représente une vue en perspective d'un secteur de cage froide selon un premier mode de réalisation de l'invention ;
    • . la figure 4 représente une coupe transversale, selon le plan IV-IV de la figure 3, de secteurs de cage froide selon le premier mode de réalisation de l'invention ;
    • . la figure 5 représente une coupe transversale, selon le plan V-V de la figure 3, de secteurs de cage froide selon le premier mode de réalisation de l'invention ;
    • . la figure 6 représente une coupe transversale de secteurs de cage froide selon un autre mode de réalisation de l'invention.
  • Une cage froide de révolution selon l'invention comporte, pour chaque secteur, une cloison interne métallique et au moins une partie de cloison externe isolante, c'est-à-dire en matériau isolant électriquement.
  • La figure 3 montre une cloison interne métallique 10 de secteur 2 de cage froide vue en perspective. Chaque cloison interne 10 de la cage a la forme d'un arc de cylindre de révolution autour d'un axe X-X. Elle peut être formée d'une plaque métallique courbée ou d'une partie de tube métallique fendu longitudinalement.
  • La cloison interne est de préférence en cuivre, bon conducteur thermique et électrique. Ainsi, on obtient des transferts thermiques élevés et de faibles pertes inductives. En effet, l'énergie inductive dissipée dans la cloison métallique elle-même, est fonction de la géométrie de la cloison et proportionnelle à la résistivité du métal utilisé.
  • Selon une caractéristique de l'invention, chaque secteur comporte en outre un moyen de circulation de fluide, chaque cloison interne étant couverte par au moins une partie de cloison externe.
  • Selon un premier mode de réalisation, le moyen de circulation est réalisé par creusement d'au moins deux canaux de refroidissement dans au moins une cloison interne.
  • De préférence, les deux canaux sont formés par fraisage perpendiculairement à la surface externe 10b de la cloison métallique. Comme le montre la figure 3, le creusement des deux canaux 11, 12 laisse deux nervures longitudinales latérales 17 et 18, et une nervure longitudinale centrale 13 qui sépare les deux canaux.
  • Le creusement des canaux peut être interrompu avant d'atteindre les extrémités de la plaque en laissant à chaque extrémité une bordure pleine 15, 16. Ainsi, les canaux sont obturés quand la cloison externe et la cloison interne sont assemblées. Pour raccorder les deux canaux, l'invention prévoit un canal de refroidissement transversal dans l'une au moins des deux cloisons, en suivant un arc de cercle centré sur l'axe, de façon à raccorder les deux canaux de refroidissement. Ce canal transversal 14 peut être creusé près de la bordure 15 par exemple, pour mettre en communication les deux canaux longitudinaux 11, 12. De préférence, le canal transversal 14 est creusé de la même façon que les canaux longitudinaux 11, 12. Ainsi, le canal transversal 14 peut être creusé par fraisage perpendiculairement à la surface externe 10b de la cloison métallique qui comporte déjà les canaux longitudinaux 11, 12. Il est préférable d'effectuer le fraisage en faisant tourner la cloison de secteur autour de son axe X-X.
  • Lorsque la cloison externe 20 est accolée à la cloison interne 10, le fluide peut être mis en circulation par deux ouvertures pratiquées dans la cloison externe 20, au niveau correspondant à l'extrémité de chaque canal 11, 12 creusé dans la cloison interne 10. Ainsi le fluide injecté par une ouverture, traverse les canaux 11, 14 et 12, avant d'être recueilli par l'autre ouverture.
  • Selon une variante, les canaux de refroidissement 11, 12 peuvent être creusés jusqu'à une extrémité de la cloison, en supprimant ainsi la bordure 16. Le fluide de refroidissement peut alors être injecté et recueilli à l'extrémité de chaque canal 11, 12 formé.
  • De plus, le canal transversal 14 peut être omis, chaque canal longitudinal 11, 12 étant creusé jusqu'aux deux extrémités de la cloison. Le fluide peut alors être injecté et recueilli à une extrémité de cloison en raccordant les canaux par un tube en U disposé à l'autre extrémité de la cloison.
  • Chaque canal 11, 12 de refroidissement est séparé du matériau à fondre ou du plasma par une paroi respective 11a, 12a.
  • De façon avantageuse, la réalisation des canaux dans la cloison interne métallique, et le creusement perpendiculairement à la surface de celle-ci, permet d'obtenir des parois 11a, 12a d'épaisseur très réduite et de grande surface. On peut par exemple fraiser plusieurs fois le canal pour obtenir une paroi 11a, 12a d'épaisseur régulière et réduite.
  • L'obtention d'une paroi mince présente un double intérêt. D'une part, cette paroi mince et de grande surface augmente les échanges thermiques. D'autre part, la paroi peut avoir une épaisseur réduite par rapport à la profondeur de peau dans laquelle se développent les courants induits. En diminuant l'épaisseur de cette paroi, on peut donc réduire les pertes inductives et/ou augmenter la fréquence de travail.
  • Selon une autre caractéristique avantageuse, au moins un secteur comporte une fente, réalisée par perçage dans la cloison interne, la fente étant disposée au niveau du plan médian des canaux du secteur, de façon à conserver l'étanchéité des canaux de refroidissement. Ainsi, la nervure longitudinale 13 est fendue longitudinalement sur sensiblement toute sa longueur. Cette fente longitudinale 21 traverse toute la cloison interne métallique. Ainsi, les courants transversaux ne peuvent plus se développer sur l'ensemble de la surface interne de la cloison interne métallique.
  • Cette fente formée dans chaque cloison interne métallique est analogue à un doublement du degré de sectorisation de la cage froide. Par exemple, on peut réaliser une cage froide comportant huit secteurs à cloison métallique fendue analogue à une cage froide à seize secteurs. Un degré de sectorisation élevé est intéressant en ce qu'il augmente l'efficacité du champ magnétique à l'intérieur de la cage froide. Cette fente n'atteint pas le canal transversal 14 de façon à conserver l'étanchéité des canaux. De même, il est préférable que la fente 21 n'atteigne pas les bordures 15, 16 de la cloison 10 pour qu'elle reste formée d'une seule pièce.
  • Comme représenté aux figures 4 et 5, la cloison externe 20, en matériau isolant électrique, est disposée en face de la cloison interne. Selon une caractéristique de l'invention, les deux cloisons sont accolées de sorte que la surface externe de chaque cloison interne soit recouverte par la surface interne d'au moins une partie de cloison externe de façon à fermer et rendre étanches les canaux de refroidissement.
  • Les cloisons externes 20 peuvent en effet être aussi nombreuses que les cloisons internes 10 et chaque secteur 2 peut être réalisé séparément en collant une cloison externe 20 respective sur chaque cloison interne 10. Les cloisons externes isolantes 20 sont par exemple formées de plaques de matériau composite courbées, comme la silirite. Les secteurs sont alors assemblés pour former la cage froide 1 de révolution. Des joints 3 radiaux, isolent et solidarisent les secteurs. En particulier, ces joints isolent les cloisons internes métalliques 10 l'une de l'autre. Les joints 3 sont placés aussi dans les fentes 21 pour isoler électriquement les deux parties de la cloison.
  • Selon une variante, la cloison externe peut être formée d'une seule pièce courbe ou tubulaire à l'intérieur de laquelle sont fixées toutes les cloisons internes métalliques. Ainsi, la cage froide comprend une seule cloison externe de révolution, chaque secteur comprenant une cloison interne recouverte par une partie de cloison externe correspondant au secteur.
  • En définitive, une cage froide selon l'invention comporte plusieurs cloisons internes métalliques, au moins une cloison externe isolante, la cage froide étant divisée en secteurs, chaque secteur comprenant :
    • . une cloison interne métallique,
    • . au moins une partie de cloison externe isolante.
  • Enfin, selon une autre variante, les cloisons internes métalliques 10 sont en premier lieu assemblées en un corps de révolution (par exemple un cylindre), avec des joints 3 les isolant électriquement l'une de l'autre. Un ruban de frettage est collé sur tout le contour du corps de révolution, c'est-à-dire toute la surface externe des cloisons métalliques assemblées. Ainsi, la cloison externe est formée par un ruban de frettage entourant la surface externe des cloisons internes assemblées en secteur d'un corps de révolution. Ce ruban peut être enduit de résine pour le durcir et résister à la pression de fluide de refroidissement. Plus généralement, la cloison externe sera formée d'une résine armée d'enrobage.
  • Selon le second mode de réalisation, le moyen de circulation de fluide est réalisé par creusement d'au moins deux canaux de refroidissement dans au moins une partie de cloison externe isolante correspondant à un secteur. La figure 6 représente ainsi le creusement de canaux longitudinaux 111, 112 dans une cloison externe isolante 110.
  • Dans l'exemple de la figure 6, chaque secteur 2 de cage froide 1 comporte une cloison externe isolante 110 dans laquelle les canaux 111, 112 sont creusés côté surface interne de la cloison externe 110. Ce creusement est effectué de façon analogue au creusement de la cloison métallique exposé précédemment. Ce creusement laisse aussi une nervure longitudinale centrale 113 et deux nervures longitudinales latérales 117, 118 à la surface interne de la cloison externe 110. Un canal transversal peut également être creusé entre les canaux longitudinaux 111, 112, pour les raccorder.
  • De façon avantageuse, une mince cloison interne métallique 120 est collée sur toute la surface interne de la cloison externe 110 pour fermer et rendre étanches les canaux.
  • Cette cloison interne a, de préférence, une section transversale réduite afin que le couplage vis-à-vis du champ magnétique soit lui aussi réduit. La résistance apparente est en effet proportionnelle à la surface conductrice traversée par le champ magnétique, la résistance étant aussi proportionnelle à la fréquence du champ magnétique.
  • En diminuant l'épaisseur de la cloison interne métallique, la section est donc diminuée et le courant parasite dans la cage froide diminue. Cette diminution du courant parasite est un avantage essentiel de l'invention. Il permet de diminuer les pertes inductives dans la cage froide et/ou d'augmenter la fréquence de travail (pour un même taux de pertes).
  • Par exemple, dans les deux modes de réalisation de l'invention, les cloisons internes métalliques peuvent être formées de parois en cuivre d'épaisseur inférieure au millimètre, dans lesquelles les pertes par courants induits seront faibles.
  • De plus, la cloison interne métallique 120 peut toujours dans le second mode de réalisation comporter une fente longitudinale 121 pour éviter le développement des courants transversaux. Cette fente 121 est ouverte parallèlement à l'axe X-X à travers la cloison interne métallique 120, dans sa partie médiane. La partie médiane de la cloison interne 120 correspond en effet à la partie qui recouvrira la nervure centrale 113 de la cloison externe isolante 110 quand les cloisons 110, 120 seront accolées.
  • L'étanchéité des canaux est ainsi conservée. Si un canal transversal est creusé entre les canaux longitudinaux 111, 112 de la cloison externe 110, la fente 121 est limitée également en longueur pour ne pas atteindre ce canal transversal une fois les cloisons accolées.
  • Dans ce second mode de réalisation également, on peut prévoir une variante dans laquelle une seule pièce de révolution forme la cloison externe. Des canaux longitudinaux sont alors creusés dans chaque partie de la cloison externe correspondant à un secteur. Dans chaque secteur, une cloison interne métallique est ensuite collée à l'intérieur de la pièce de révolution. Des joints 3 radiaux, sont intercalés entre les cloisons internes métalliques.
  • L'assemblage final de la cage froide peut se faire selon deux possibilités dans les cas où la cage contient autant de cloisons internes que de cloisons externes :
    • . soit on colle chaque cloison externe sur chaque cloison interne en formant les secteurs un à un. Une fois collés, les secteurs sont assemblés pour former la cage froide de révolution;
    • . soit on assemble en une étape toutes les cloisons internes et toutes les cloisons externes, encollées. Il est alors préférable de maintenir l'ensemble cerclé et d'insérer un disque support intérieur pour que la cage ait sa forme de révolution une fois la colle prise.
  • Si des ouvertures radiales ont été prévues pour injecter le fluide de refroidissement à une partie d'extrémité de la cage froide, on pourra, lors de l'assemblage final, disposer une pièce de raccord spécifique. On peut ainsi souder ou braser un court tube de cuivre autour de la partie d'extrémité de la cage froide. Ce tube comporte alors des ouvertures correspondant à chaque extrémité de canal 11,12. Ces overtures permettent la fixation des raccords d'injection de fluide.
  • La cage froide est fixée à sa partie inférieure à un anneau de court-circuit. Cet anneau métallique est généralement constitué d'un disque plan évidé en cuivre. Il comporte sur une face une gorge circulaire. La cage froide composée des secteurs collés, peut alors être soudée ou brasée sur l'anneau de court-circuit en introduisant l'extrémité des secteurs dans la gorge circulaire.
  • Un des avantages essentiels de l'invention est le creusement des canaux perpendiculairement à la surface de la cloison. Ainsi, la surface creusée présente des nervures 13, 15, 16, 17, 18 ayant une surface importante. Lors du collage de la cloison interne et de la cloison externe, on peut donc encoller une surface importante et la fixation a une bonne solidité. Ainsi, on peut soumettre le fluide de refroidissement à un débit et une pression élevés sans fuite des canaux.
  • Un autre avantage majeur est la diminution des pertes inductives dans la cage froide. Comme la cloison interne métallique est mieux fixée au niveau des nervures, la paroi peut être moins épaisse que les parois de l'art antérieur qui devaient être rigides. En diminuant l'épaisseur de métal, le volume de métal, où se développent les courants parasites, est diminué et la transparence vis-à-vis de l'induction augmente. De plus, la réalisation des cloisons métalliques nécessite moins de métal, donc est plus économique.
  • Avantageusement, les différents secteurs de la cage froide sont obtenus à partir d'un tube métallique unitaire qui est fendu en différentes parties sur l'essentiel de sa hauteur, la zone non fendue maintenant l'assemblage des secteurs.

Claims (11)

  1. Cage froide (1) pour dispositif à induction comprenant plusieurs cloisons internes métalliques (10) et au moins une cloison externe isolante (20), la cage froide (1) étant de révolution et divisée en secteurs (2), chaque secteur comprenant :
    . une cloison interne métallique (10),
    . au moins une partie de cloison externe isolante (20), et
    . un moyen de circulation de fluide,
    chaque cloison interne (10) étant couverte par au moins une partie de cloison externe, caractérisée en ce que, dans au moins un secteur (2), le moyen de circulation de fluide est réalisé par creusement, d'au moins deux canaux (11, 12) de refroidissement, dans l'une au moins des deux cloisons (10, 20), les cloisons étant accolées, de sorte que la surface externe (10b) de chaque cloison interne (10) soit recouverte par la surface interne (20a) de cloison externe (20), de façon à fermer et rendre étanches les canaux (11, 12) de refroidissement.
  2. Cage froide (1) selon la revendication 1, caractérisée en ce que, dans au moins un secteur (2), le moyen de circulation de fluide comporte un canal de refroidissement transversal (14) dans l'une au moins des deux cloisons (10, 20), de façon à raccorder les deux canaux de refroidissement (11, 12).
  3. Cage froide (1) selon l'une des revendications précédentes, caractérisée en ce que des canaux de refroidissement (11, 12, 14) sont creusés dans au moins une des cloisons internes (10).
  4. Cage froide (1) selon l'une des revendications 1 et 2, caractérisée en ce que des canaux de refroidissement (111, 112) sont creusés dans au moins une partie de cloison externe (20) correspondant à un secteur (2).
  5. Cage froide (1) selon l'une des revendications précédentes, caractérisée en ce que chaque secteur (2) comprend une cloison interne (10) et une cloison externe (20) respective.
  6. Cage froide (1) selon l'une des revendications précédentes, caractérisée en ce que la cage froide (1) comprend une seule cloison externe (30) de révolution, chaque secteur (2) comprenant une cloison interne (10) recouverte par une partie de cloison externe correspondant au secteur.
  7. Cage froide (1) selon l'une des revendications précédentes, caractérisée en ce que la cloison externe (30) est formée par une résine armée d'enrobage entourant la surface externe (10b) des cloisons internes (10) assemblées en secteurs (2) d'un corps de révolution.
  8. Cage froide (1) selon l'une des revendications précédentes, caractérisée en ce qu'au moins un secteur (2) comporte une fente (21), réalisée par perçage dans la cloison interne (10), la fente (21) étant disposée au niveau du plan médian des canaux (11, 12) du secteur (2), de façon à conserver l'étanchéité des canaux de refroidissement (11, 12, 14).
  9. Cage froide (1) selon l'une des revendications précédentes, caractérisée en ce qu'une cloison interne (10) est en cuivre.
  10. Creuset froid à induction, caractérisé en ce qu'il comporte une cage froide selon l'une des revendications précédentes.
  11. Torche à plasma à induction, caractérisée en ce qu'elle comporte une cage froide selon l'une des revendications précédentes.
EP96402275A 1995-10-27 1996-10-25 Cage froide pour dispositif à induction Withdrawn EP0771136A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9512712A FR2740646B1 (fr) 1995-10-27 1995-10-27 Cage froide pour dispositif a induction
FR9512712 1995-10-27

Publications (1)

Publication Number Publication Date
EP0771136A1 true EP0771136A1 (fr) 1997-05-02

Family

ID=9483996

Family Applications (1)

Application Number Title Priority Date Filing Date
EP96402275A Withdrawn EP0771136A1 (fr) 1995-10-27 1996-10-25 Cage froide pour dispositif à induction

Country Status (2)

Country Link
EP (1) EP0771136A1 (fr)
FR (1) FR2740646B1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2232324A1 (es) * 2005-02-11 2005-05-16 Josep Tomas Monfort Marti Dispositivo inductor.

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2031550A1 (de) * 1970-03-23 1971-10-14 Bbc Brown Boveri & Cie Schmelztiegel
US4058668A (en) * 1976-03-01 1977-11-15 The United States Of America As Represented By The Secretary Of The Interior Cold crucible
FR2497050A1 (fr) * 1980-12-23 1982-06-25 Saphymo Stel Dispositif de fusion par induction directe en cage froide avec confinement electromagnetique de la charge fondue
EP0169765A1 (fr) * 1984-06-29 1986-01-29 Commissariat A L'energie Atomique Cage froide pour creuset à fusion par induction électromagnétique à fréquence élevée
FR2629299A1 (fr) 1988-03-23 1989-09-29 Commissariat Energie Atomique Systeme de brassage de matiere fondue
US5012488A (en) * 1989-12-04 1991-04-30 Leybold Aktiengesellschaft Crucible for inductive heating
JPH04316980A (ja) * 1991-04-15 1992-11-09 Shinko Electric Co Ltd 凝固したスカルの取出しが容易なコールドウォールルツボ炉とその製造方法
EP0538024A1 (fr) * 1991-10-16 1993-04-21 Shinko Denki Kabushiki Kaisha Creuset de fusion par induction à paroi segmentée et refroidie

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2031550A1 (de) * 1970-03-23 1971-10-14 Bbc Brown Boveri & Cie Schmelztiegel
US4058668A (en) * 1976-03-01 1977-11-15 The United States Of America As Represented By The Secretary Of The Interior Cold crucible
FR2497050A1 (fr) * 1980-12-23 1982-06-25 Saphymo Stel Dispositif de fusion par induction directe en cage froide avec confinement electromagnetique de la charge fondue
EP0169765A1 (fr) * 1984-06-29 1986-01-29 Commissariat A L'energie Atomique Cage froide pour creuset à fusion par induction électromagnétique à fréquence élevée
FR2629299A1 (fr) 1988-03-23 1989-09-29 Commissariat Energie Atomique Systeme de brassage de matiere fondue
US5012488A (en) * 1989-12-04 1991-04-30 Leybold Aktiengesellschaft Crucible for inductive heating
JPH04316980A (ja) * 1991-04-15 1992-11-09 Shinko Electric Co Ltd 凝固したスカルの取出しが容易なコールドウォールルツボ炉とその製造方法
EP0538024A1 (fr) * 1991-10-16 1993-04-21 Shinko Denki Kabushiki Kaisha Creuset de fusion par induction à paroi segmentée et refroidie

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 017, no. 139 (M - 1385) 22 March 1993 (1993-03-22) *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2232324A1 (es) * 2005-02-11 2005-05-16 Josep Tomas Monfort Marti Dispositivo inductor.

Also Published As

Publication number Publication date
FR2740646A1 (fr) 1997-04-30
FR2740646B1 (fr) 1998-01-16

Similar Documents

Publication Publication Date Title
CA2574284C (fr) Echangeur de chaleur a serpentin(s) et nervure(s) helicoidale(s) d'ecartement
FR2489208A1 (fr) Manchon de soudage electrique en matiere thermoplastique pour la jonction de tuyaux en matiere thermoplastique
EP0615091B1 (fr) Raccord thermosoudable pour tube sur un matériau plastique ainsi qu'un procédé pour le fabriquer
EP0335781A1 (fr) Corps à structure composite pour joint de transmission et son procédé de réalisation
EP0311506A1 (fr) Creuset de four à induction
EP0644629B1 (fr) Collecteur rapporté pour alternateur notamment de véhicule automobile
EP0771136A1 (fr) Cage froide pour dispositif à induction
CH630274A5 (fr) Chemise de refroidissement pour lingotiere de coulee continue.
FR2710391A1 (fr) Manchon de soudage en matériau thermoplastique.
EP3737901B1 (fr) Creuset froid et collecteur de refroidissement associe pour dispositif de chauffage par induction
WO2009007537A1 (fr) Procede de liaison de tubes par soudage magnetique
FR2480033A1 (fr) Disque d'anode pour un tube a rayons x a anode tournante et procede pour le fabriquer
WO2017167853A1 (fr) Emballage de transport et/ou d'entreposage de matieres radioactives equipe de dispositifs de dissipation de chaleur realises d'un seul tenant
EP0421908A1 (fr) Cylindre pour dispositif de coulée continue directe de bandes minces de métal liquide
EP0117804A1 (fr) Procédé de fabrication d'une cavité hyperfréquence, et cavité obtenue par ce procédé
WO2006079703A1 (fr) Tige tubulaire de forage
JPH0868487A (ja) 複合管の接続構造および管端処理方法
EP0061368A1 (fr) Elément de joint homocinétique du type tripode
EP0743111B1 (fr) Procédé de fabrication d'un balancier de cornadis, le balancier de cornadis réalisé par le procédé et un cornadis incorporant un tel balancier
FR2972890A1 (fr) Systeme inductif pouvant servir de creuset froid
EP0746440B1 (fr) Procede de realisation de cadres de cycles, cyclomoteurs ou vehicules similaires et cadres ainsi realises
EP0010501B1 (fr) Soupape, notamment pour moteurs à combustion interne, du type à champignon et refroidie par circulation forcée d'un fluide réfrigérant
EP0234988A1 (fr) Chambre de combustion de propulseur et son procédé d'assemblage
FR2585598A1 (fr) Procede de fabrication par coulee d'une piece metallique munie interieurement d'une partie evidee entouree par un tube
FR2646285A1 (fr) Tube a ondes progressives muni d'une ligne a retard a helice brasee

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

17P Request for examination filed

Effective date: 19971027

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20030502