EP0769371A2 - Metallized polyolefin film - Google Patents

Metallized polyolefin film Download PDF

Info

Publication number
EP0769371A2
EP0769371A2 EP96116214A EP96116214A EP0769371A2 EP 0769371 A2 EP0769371 A2 EP 0769371A2 EP 96116214 A EP96116214 A EP 96116214A EP 96116214 A EP96116214 A EP 96116214A EP 0769371 A2 EP0769371 A2 EP 0769371A2
Authority
EP
European Patent Office
Prior art keywords
metallized
film
cycloolefin polymer
film according
cycloolefin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP96116214A
Other languages
German (de)
French (fr)
Other versions
EP0769371A3 (en
EP0769371B1 (en
Inventor
Wilfried Dr. Hatke
Karl-Heinz Dr. Kochem
Theo Grosse Kreul
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ticona GmbH
Original Assignee
Hoechst AG
Ticona GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoechst AG, Ticona GmbH filed Critical Hoechst AG
Publication of EP0769371A2 publication Critical patent/EP0769371A2/en
Publication of EP0769371A3 publication Critical patent/EP0769371A3/en
Application granted granted Critical
Publication of EP0769371B1 publication Critical patent/EP0769371B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • B32B27/325Layered products comprising a layer of synthetic resin comprising polyolefins comprising polycycloolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/16Layered products comprising a layer of synthetic resin specially treated, e.g. irradiated
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/018Dielectrics
    • H01G4/06Solid dielectrics
    • H01G4/14Organic dielectrics
    • H01G4/18Organic dielectrics of synthetic material, e.g. derivatives of cellulose
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/10Coating on the layer surface on synthetic resin layer or on natural or synthetic rubber layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/20Inorganic coating
    • B32B2255/205Metallic coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/514Oriented
    • B32B2307/518Oriented bi-axially
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2309/00Parameters for the laminating or treatment process; Apparatus details
    • B32B2309/08Dimensions, e.g. volume
    • B32B2309/10Dimensions, e.g. volume linear, e.g. length, distance, width
    • B32B2309/105Thickness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/16Capacitors

Definitions

  • the invention relates to metallized films, in particular metallized films on both sides, which are outstandingly suitable as a dielectric in capacitors.
  • the films according to the invention are polyolefin films, namely those made from cycloolefin polymers, which, surprisingly, do not have to be exposed to any processes for increasing the surface tension or surface energy (such as corona treatment), which are otherwise customary for polyolefins, before the metallization.
  • the dielectric loss factor is important for the use of polymer films as dielectric in capacitors tan ⁇ , the temperature resistance, ie the resistance of the mechanical (eg shrink) and the electrical film properties at elevated temperature and the metallizability of great importance.
  • Low dielectric loss factors are of particular interest in high-frequency AC applications, since low ones tan ⁇ the electrical power loss is also low. Increased electrical power loss - and thus increased tan ⁇ - Means heating, so that the temperature resistance of the film material can be exceeded and the capacitor can be damaged or destroyed. Accordingly, an ideal capacitor dielectric has a low dielectric loss factor combined with high temperature resistance.
  • polyester foils are easier to metallize than polyolefin foils, since these have to be subjected to a surface treatment before the metallization in order to achieve adhesion of the metal to the foil.
  • the metallization of thin foils for use in capacitors is the subject of intensive research. Between There is a fundamental difference in this regard between polyethylene terephthalate (PET) and polypropylene (PP), which are currently mainly used as a dielectric. Due to the polar polymer structure, PET has a critical surface tension of approx. 43 mN / m, which is sufficient to adhere to the metal, e.g. B. aluminum to ensure.
  • the critical surface tension of polyolefin films is with 30 to 33 mN / m in a range which is not sufficient to ensure adhesion to the vapor-deposited metal layer. For this reason, the surfaces of polyolefin films have to be treated with various processes in order to increase the surface tension and to achieve wettability, adhesion and metallizability.
  • corona treatment The most commonly used procedure is treatment with a high-frequency AC voltage (10-60 kHz, 10-20 kV), the so-called corona treatment.
  • the surface tension can be increased up to 50 mN / m.
  • surface tensions of 36 to 42 mN / m are usually set by means of corona discharge.
  • the disadvantages of corona treatment are that e.g. during the treatment, the surface tension is time-dependent form small-molecule fragments of the polymer chain, which can weaken the bond between the polymer surface and a vapor-deposited metal layer.
  • a capacitor For economic reasons, it is desirable to construct a capacitor from a film that is metallized on both sides and an unmetallized film. As described in US Pat. No. 3,900,775, this is possible, for example, by using a polyethylene terephthalate film metallized on both sides and an unmetallized polypropylene film.
  • the disadvantage of this structure is the greatly increased value of the polypropylene tan ⁇ of polyethylene terephthalate.
  • polyolefin films are preferred to polyester films in AC applications.
  • the economical production of metallized polypropylene films that are steamed on both sides is much more difficult and has not yet been carried out industrially.
  • the object of the present invention was further to provide a process for producing a metallized polyolefin film, if possible on both sides, which avoids the disadvantages of the prior art, in particular the additional process step for increasing the surface tension.
  • the object is achieved by a single- or double-sided metallized single or multilayer polyolefin film, at least one outermost layer of the unmetallized polyolefin film consisting essentially of a cycloolefin polymer which was not exposed to a process for increasing the surface tension before the metallization.
  • 'Metallized on one or both sides' means that the film has a metal layer on one or both surfaces.
  • One or more layers means that the unmetallized film is either a Monofilm is, i.e. consists of only one layer or has a multi-layer structure and can accordingly be composed of two, three, four, five or even more layers. It is essential to the invention that the monofilm or at least one outermost layer of the multilayer film consists essentially of a cycloolefin polymer.
  • the term consists essentially of a cycloolefin polymer means that the monofilm or at least one outermost layer of the multilayer film is at least 90-100% by weight, preferably at least 95-100% by weight, in particular at least 98-99% by weight (based on the weight of the monofilm or the outermost layer of the multilayer film) consists of cycloolefin polymer. If necessary, the single-layer film or the outermost layer can additionally contain additives which are usually used in film production.
  • pre-metallization does not mean that there is no surface tension increasing process means that after its usual manufacturing process, which usually includes extrusion, stretching and heat setting, the film is not subjected to any additional treatment which results in the surface tension increasing. This includes common processes such as corona or flame treatment. It is essential to the invention that the metallization can take place without the film being subjected to such a process beforehand.
  • Cycloolefin polymers are materials that are characterized by high heat resistance, high moduli of elasticity, low water absorption and good dielectric properties.
  • DD-A-224 538 describes the production of films from norbornene-ethylene copolymers by a cast film process.
  • the production of cycloolefin polymer films by melt extrusion is described in EP-A-0 384 694, EP-A-0 610 814, EP-A-0 610 815 and EP-A-0 610 816.
  • the improvement of the mechanical properties of the films by monoaxial or biaxial stretching is also described in these documents.
  • DD-241 971 and DD-224538 state that films made of cycloolefin polymers are characterized by low dielectric loss factors ( tan ⁇ ) mark.
  • the specified values for tan ⁇ of up to 1.2 ⁇ 10 -5 are below the values found for polymer materials which are used as dielectrics in capacitors according to the current state of the art. Only polystyrene has similarly low values.
  • DD-241 971 low values are for tan ⁇ of particular interest for high-frequency alternating current applications, since this can result in heating due to electrical power loss in the film.
  • cycloolefin polymers suitable materials for use as a dielectric in AC applications with high frequencies.
  • these materials have very good constancy of electrical properties up to temperatures that are just below the glass levels of the polymers. Cycloolefin polymers are therefore particularly suitable for use in capacitors that are exposed to an alternating electrical field at high frequencies and high temperatures.
  • Cycloolefin polymers can be processed very well into biaxially oriented films with good mechanical properties.
  • the oriented films have moduli in the range from 2.7 to 4.0 GPa, tear strengths from 80 to 150 MPa and elongation at break in the range from 5 to 100%.
  • the surface tension of these films is in the range from 30 to 31 mN / m and is therefore typical for polyolefin films. It is also typical that the polar part of the surface tension is very low. It was therefore to be expected that cycloolefin polymer films - like other polyolefin films - would not be without pretreatment to increase the Surface tension must be metallized.
  • the cyclolefin copolymer films can be metallized at low surface tension without any pretreatment. This behavior is also largely independent of the glass level of the cycloolefin polymer.
  • This invention is particularly surprising since it has been found in further investigations that corona treatment is required in order to be able to print on the film. As with other polyolefin films, the surface tension of the treated film increases. After the corona treatment, values for the surface tension are obtained, which are typical for polyolefins.
  • the cycloolefin polymers suitable for the invention are polymers containing 0.1 to 100% by weight, preferably 0.1 to 99% by weight, based on the total mass of the cycloolefin polymer, of polymerized units of at least one cyclic olefin of the formulas I, II, III, IV, V or VI, wherein R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 and R 8 are the same or different and a hydrogen atom or a C 1 -C 30 hydrocarbon radical, for example a linear or branched C 1 -C 8 alkyl radical, C 6 -C 18 aryl radical, C 7 -C 20 alkylene aryl radical or a cyclic C 3 -C 20 alkyl radical or acyclic C 2 -C 20 alkyl radical, or two or more radicals R 1 to R 8 are cyclically linked, where the same radicals in the different formulas can have different meanings, 0 to
  • the cycloolefin polymers preferably contain polymerized units of at least one polycyclic olefin, in particular of the formula I or III and an acyclic olefin of the formula VIII, which preferably has 2 to 20 carbon atoms, in particular ethylene.
  • Cycloolefin polymers are preferred which contain polymerized units of polycyclic olefins with a norbornene basic structure, particularly preferably norbornene or tetracyclododecene. Cycloolefin polymers which contain polymerized units of acyclic olefins, such as ⁇ -olefins, particularly preferably ethylene, are also preferred. Norbornene / ethylene and tetracyclododecene / ethylene copolymers are particularly preferred.
  • the proportion of polymerized units of acyclic olefins of the formula VIII is 0 to 99% by weight, preferably 5 to 80% by weight, particularly preferably 10 to 60% by weight, based on the total mass of the cycloolefin polymer.
  • the cycloolefin polymers generally have glass transition temperatures between -20 ° C and 400 ° C, preferably between 50 ° C and 200 ° C.
  • the viscosity number (decalin, 135 ° C, DIN 53728) is generally between 0.1 and 200 ml / g, preferably between 50 and 150 ml / g.
  • the cycloolefin polymers are produced by a heterogeneous or homogeneous catalysis with organometallic compounds and is described in a large number of documents. Catalyst systems based on mixed catalysts made of titanium or vanadium compounds in connection with aluminum organyls are described in DD 109 224, DD 237 070 and EP-A-0 156 464. EP-A-0 283 164, EP-A-0 407 870, EP-A-0 485 893 and EP-A-0 503 422 describe the preparation of cycloolefin polymers with catalysts based on soluble metallocene complexes. The production processes for cycloolefin polymers described in these steps are expressly referred to here.
  • the cycloolefin polymer films used according to the invention can contain the additives which are customary in film production, such as fine inert particles, which improve the slip and winding behavior.
  • Such particles which can be contained in an amount of 0 to 1%, are for example: SiO 2 , Al 2 O 3 , silicates with an SiO 2 content of at least 30% by weight, amorphous and crystalline clay minerals, aluminosilicates, oxides of Mg, Zn, Zr and Ti, sulfates of Ca, Mg and Ba, phosphates of Li, Na and Ca (including the monohydrogen salts and dihydrogen salts), benzoates of Li, Na and K, terephthalates of Ca, Ba, Zn and Mn, titanates of Mg, Ca, Ba, Zn, Cd, Pb, Sr, Mn, Fe , Co and Ni, chromates of Ba and Pb, carbon (e.g.
  • the film can also contain suitable additives such as stabilizers, neutralizing agents, lubricants or antioxidants.
  • additives which are used for polyolefins such as polyethylene or polypropylene are also suitable for the cycloolefin polymer films.
  • UV stabilizers which can be used are absorbers such as hydroxyphenylbenzotriazoles, hydroxybenzophenones, formamidine or benzylidene-camphor, quenchers such as cinnamic acid esters or nickel chelates, radical scavengers such as sterically hindered phenols, hydroperoxide decomposers such as nickel or zinc complexes of sulfur-containing compounds or light stabilizers, and HAL type stabilizers whose mixtures are used.
  • Free radical scavengers such as substituted phenols and aromatic amines and / or peroxide decomposers such as phosphites, phosphates and thio compounds can be added as antioxidants, for example.
  • the cycloolefin polymer films are produced in the customary manner known to the person skilled in the art, for example by casting films from solution, extrusion from the melt with slot dies and subsequent mono- or biaxial stretching, extrusion from the melt with ring dies and subsequent stretching by means of an air stream (film blowing ).
  • Wide slot die extrusion with subsequent sequential biaxial orientation and heat setting is preferred.
  • the polymer is heated and melted in an extruder and extruded through a slot die onto a cooling roll; usually the pre-film thus obtained is then drawn off the cooling roll and then biaxially, i.e. usually stretched first in the machine and then in the transverse direction. This biaxial orientation is usually followed by heat setting, on which the film is wound up.
  • the film can be extruded both as a mono film and as a multilayer film, in which case at least one outermost layer essentially consists of cycloolefin polymers, as described above.
  • the remaining layers of the multilayer film can, for example, also consist of cycloolefin polymers - possibly other than those used in the cover layer - but also consist of other polymers, in particular polyolefins such as polyethylene or polypropylene.
  • films with a thickness spectrum of 2 to 50 ⁇ m, preferably 3 to 30 ⁇ m, can be produced.
  • the film produced in this way can then be provided with a metal layer without previous measures to increase the surface energy, ie for example without prior corona treatment.
  • suitable metals are aluminum, zinc, mixtures of zinc and aluminum or silver.
  • Aluminum and zinc, and mixtures and / or alloys thereof are preferably used.
  • the metallization takes place in the usual way, which is more familiar to the person skilled in the art Way, for example by evaporating the film in vacuo.
  • the advantage according to the invention can be seen in the fact that the cycloolefin polymer films can not only be metallized on one side but now also on both sides.
  • Capacitors can be produced from the metallized cycloolefin polymer films by customary processes.
  • a 1.5 dm 3 reactor was filled with 1 liter of gasoline fraction (boiling range 90 to 110 ° C.) and 20 ml of toluene methylaluminoxane solution (10.1% by weight methylaluminoxane with a molecular weight of 1300 g / mol after cryoscopic determination) and at 70 ° C stirred for approx. 30 min to remove any contamination.
  • the reactor was charged with 480 cm 3 of an 85 weight percent solution of norbornene in toluene.
  • the solution was saturated with ethylene by repeatedly pressing in ethylene (6 bar G) and then 10 cm 3 of the toluene methylaluminoxane solution were added to the reactor and stirred at 70 ° C. for 5 min.
  • the mixture was polymerized with stirring (750 rpm) at 70 ° C. for 30 min, the ethylene pressure being kept at 6 bar G by further metering.
  • the homogeneous reaction solution was drained into a vessel and about 1 ml of water was added. Then the solution is mixed with a filter aid and filtered through a pressure filter. This solution is quickly poured into 5 dm 3 of acetone, stirred for 10 min and filtered. The solid obtained was washed with acetone.
  • the refiltered polymer was dried at 80 ° C. and a pressure of 0.2 bar for 15 hours.
  • 89.1 g of a colorless polymer were obtained.
  • 0.1 g of the polymer was dissolved in 100 ml of decalin. The solution was measured in a capillary viscometer at 135 ° C. The viscosity number was 56.5 dl / g.
  • the glass transition temperatures were determined using a DSC7 from Perkin Elmer. The glass transition temperature was determined at a heating rate of 20 ° C / min from the second heating curve and was 175 ° C. The content of norbornene was determined to be 58 mol% by means of 13 C nuclear magnetic resonance spectroscopy. The molecular weight of the polymer was determined by gel permeation chromatography at 135 ° C. Polyethylene fractions were used as standards. The following values were found for the polymer: M n : 21500 g / mol M w : 45000 g / mol M w / M n : 2.1.
  • the polymerization was carried out as described above for COC-A. However, isopropylene-bis (1-indenyl) zirconium dichloride was used as the metallocene catalyst and the polymerization was carried out at a pressure of 20 bar G. A statistical copolymer was obtained which had a norbornene content of 40 mol% determined by means of 13 C-NMR, a glass level of 75 ° C (DSC measurement) and a viscosity number of 120 ml / g (decalin, 135 ° C, 0.1 g / dl).
  • the polymerization was carried out as described above for COC-A. However, isopropylene-bis (1-indenyl) zirconium dichloride was used as the metallocene catalyst and the polymerization was carried out at a pressure of 10 bar G. A statistical copolymer was obtained which had a norbornene content of 53 mol% determined by means of 13 C-NMR, a glass level of 140 ° C (DSC measurement) and a viscosity number of 60 ml / g (decalin, 135 ° C, 0.1 g / dl).
  • the COC-B was extruded at a temperature of 200 ° C into a film with a thickness of 400 microns and a width of 250 mm. Pieces of 200 ⁇ 200 mm 2 were cut out of this film and stretched simultaneously and longitudinally by a factor of 3.0 in a film stretching apparatus (Karo III from Brückner, Siegsdorf) at 100 ° C.
  • the film thus obtained has the following properties: Thickness: 45 ⁇ m E-module: 2.9 GPa Tensile strength: 80 MPa Elongation at break: 20% Water vapor permeability (23 ° C, 85% relative humidity): 0.6 g ⁇ 40 ⁇ m / m 2 ⁇ d Surface tension: 30 mN / m
  • the COC-C was extruded at a temperature of 240 ° C into a film with a thickness of 300 microns and a width of 250 mm. Pieces of 200 ⁇ 200 mm 2 were cut out of this film and stretched simultaneously and longitudinally by a factor of 3.0 in a film stretching apparatus (Karo III from Brückner, Siegsdorf) at 155 ° C.
  • the film thus obtained has the following properties: Thickness: 35 ⁇ m E-module: 3.2 GPa Tensile strength: 90 MPa Elongation at break: 50% Water vapor permeability (23 ° C, 85% relative humidity): 1 g ⁇ 40 ⁇ m / m 2 ⁇ d Surface tension 29 mN / m
  • the film from COC's B and C was cut into large A4 parts and vapor-coated with aluminum on one side and on both sides without any further surface treatment (metallization conditions: pressure 10 -5 mbar, time 11 min).
  • the layer thickness of the evaporated aluminum was approximately 40 nm.
  • the water vapor permeability (23 ° C., 85% relative humidity) of the steamed foils was then 0.5 g ⁇ 40 ⁇ m / m 2 ⁇ d when steamed on one side and 0.4 g ⁇ 40 ⁇ m / steamed on both sides m 2 ⁇ d.
  • a biaxially oriented, non-corona-treated film made of highly isotactic polypropylene (Trespaphan PM A 10, manufacturer Hoechst, thickness 10 ⁇ m) was cut into A4-sized samples as in Example 1 and vapor-coated with aluminum on one side without any further surface treatment (test conditions as in Example 1) .
  • the surface tension on the side to be metallized was 31 mN / m before the metallization.
  • the thickness of the vapor-deposited aluminum layer was approximately 40 nm.
  • the adhesion of the aluminum layer was tested as in Example 1. The aluminum could be completely removed from the film surface using the adhesive tape.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Laminated Bodies (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Coating Of Shaped Articles Made Of Macromolecular Substances (AREA)
  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

In single or laminated polyolefin film, metallised on one or both sides, at least one outside layer of the unmetallised film is based on a cyclo-olefin polymer (I), which is not treated to increase its surface tension before metallisation. Also claimed are capacitors containing this film; and the use of (I) in the production of metallised film. Pref. (I) contains 0.1-100 wt.% units derived from cyclic olefin(s) of formula e.g. (IID), 0-45 wt.% units derived from monocyclic olefin(s) of formula (III) and 0-99 wt.% units derived from an acyclic olefin of formula (IV); in which R<1-8> = hydrogen (H) or 1-30 carbon (C) hydrocarbyl; or 2 or more of R<1-8> = a cyclic group; n = 2-10; R<9-12> = H or 1-10 C hydrocarbyl. (I) pref. is a norbornene/ethylene copolymer.

Description

Die Erfindung betrifft metallisierte, insbesondere beidseitig metallisierte Folien, welche sich hervorragend als Dielektrikum in Kondensatoren eignen. Die erfindungsgemäßen Folien sind Polyolefinfolien und zwar solche aus Cycloolefinpolymeren, welche überraschenderweise vor der Metallisierung keinem - ansonsten für Polyolefine üblichen - Verfahren zur Erhöhung der Oberflächenspannung bzw. Oberflächenenergie (wie Koronabehandlung) ausgesetzt werden müssen.The invention relates to metallized films, in particular metallized films on both sides, which are outstandingly suitable as a dielectric in capacitors. The films according to the invention are polyolefin films, namely those made from cycloolefin polymers, which, surprisingly, do not have to be exposed to any processes for increasing the surface tension or surface energy (such as corona treatment), which are otherwise customary for polyolefins, before the metallization.

Für den Einsatz von Polymerfilmen als Dielektrikum in Kondensatoren ist der dielektrische Verlustfaktor tan δ

Figure imgb0001
, die Temperaturbeständigkeit, d.h. die Beständigkeit der mechanischen (z.B. Schrumpf) und der elektrischen Folieneigenschaften bei erhöhter Temperatur und die Metallisierbarkeit von großer Bedeutung.The dielectric loss factor is important for the use of polymer films as dielectric in capacitors tan δ
Figure imgb0001
, the temperature resistance, ie the resistance of the mechanical (eg shrink) and the electrical film properties at elevated temperature and the metallizability of great importance.

Niedrige dielektrische Verlustfaktoren sind insbesondere bei hochfrequenten Wechselstromanwendungen von Interesse, da bei niedrigen tan δ

Figure imgb0002
die elektrische Verlustleistung ebenfalls niedrig ist. Erhöhte elektrische Verlustleistung - und damit erhöhtes tan δ
Figure imgb0003
- bedeutet Erwärmung, so daß schließlich die Temperaturbeständigkeit des Folienmaterials überschritten werden kann und der Kondensator geschädigt bzw. zerstört werden kann. Ein ideales Kondensatordielektrikum besitzt dementsprechend einen niedrigen dielektrischen Verlustfaktor bei gleichzeitig hoher Temperaturbeständigkeit.Low dielectric loss factors are of particular interest in high-frequency AC applications, since low ones tan δ
Figure imgb0002
the electrical power loss is also low. Increased electrical power loss - and thus increased tan δ
Figure imgb0003
- Means heating, so that the temperature resistance of the film material can be exceeded and the capacitor can be damaged or destroyed. Accordingly, an ideal capacitor dielectric has a low dielectric loss factor combined with high temperature resistance.

Im Bezug auf die Metallisierbarkeit ist bekannt, daß Polyesterfolien einfacher zu metallisieren sind als Polyolefinfolien, da diese vor der Metallisierung einer Oberflächenbehandlung unterzogen werden müssen, um eine Haftung des Metalls auf der Folie zu erzielen. Die Metallisierung von dünnen Folien für den Einsatz in Kondensatoren ist der Gegenstand intensiven forscherischen Bemühens. Zwischen dem zur Zeit überwiegend als Dielektrikum eingesetzten Polyethylenterephthalat (PET) und Polypropylen (PP) besteht diesbezüglich ein fundamentaler Unterschied. Aufgrund der polaren Polymerstruktur besitzt PET eine kritische Oberflächenspannung von ca. 43 mN/m, die ausreicht, um eine Haftung zum Metall, z. B. Aluminium, zu gewährleisten. Die kritische Oberflächenspannung von Polyolefinfolien liegt dagegen mit 30 bis 33 mN/m in einem Bereich, der nicht ausreicht, um eine Haftung zu der aufgedampften Metallschicht zu gewährleisten. Aus diesem Grund müssen die Oberflächen von Polyolefinfolien mit verschiedenen Verfahren behandelt werden, um die Oberflächenspannung zu erhöhen und eine Benetz-, Verkleb- und Metallisierbarkeit zu erreichen.With regard to the metallizability, it is known that polyester foils are easier to metallize than polyolefin foils, since these have to be subjected to a surface treatment before the metallization in order to achieve adhesion of the metal to the foil. The metallization of thin foils for use in capacitors is the subject of intensive research. Between There is a fundamental difference in this regard between polyethylene terephthalate (PET) and polypropylene (PP), which are currently mainly used as a dielectric. Due to the polar polymer structure, PET has a critical surface tension of approx. 43 mN / m, which is sufficient to adhere to the metal, e.g. B. aluminum to ensure. The critical surface tension of polyolefin films, on the other hand, is with 30 to 33 mN / m in a range which is not sufficient to ensure adhesion to the vapor-deposited metal layer. For this reason, the surfaces of polyolefin films have to be treated with various processes in order to increase the surface tension and to achieve wettability, adhesion and metallizability.

Das am häufigsten verwendete Verfahren ist die Behandlung mit einer hochfrequenten Wechselspannung (10-60 kHz, 10-20 kV), die sogenannte Koronabehandlung. Dabei kann die Oberflächenspannung auf bis zu 50 mN/m erhöht werden. Bei Polyolefinfolien, insbesondere biaxial orientierten Folien aus Polypropylen, werden üblicherweise mittels Koronaentladung Oberflächenspannungen von 36 bis 42 mN/m eingestellt. Die Nachteile einer Koronabehandlung sind jedoch, daß z.B. die Oberflächenspannung zeitabhängig ist bei der Behandlung niedermolekulare Bruchstücke der Polymerkette bilden, die zu einer Schwächung des Verbundes zwischen der Polymeroberfläche und einer aufgedampften Metallschicht führen können.The most commonly used procedure is treatment with a high-frequency AC voltage (10-60 kHz, 10-20 kV), the so-called corona treatment. The surface tension can be increased up to 50 mN / m. In the case of polyolefin films, in particular biaxially oriented films made of polypropylene, surface tensions of 36 to 42 mN / m are usually set by means of corona discharge. The disadvantages of corona treatment, however, are that e.g. during the treatment, the surface tension is time-dependent form small-molecule fragments of the polymer chain, which can weaken the bond between the polymer surface and a vapor-deposited metal layer.

Aus ökonomischen Gründen ist es wünschenswert, einen Kondensator aus einer beidseitig metallisierten und einer unmetallisierten Folie aufzubauen. Wie in US-3,900,775 beschrieben, ist dies zum Beispiel durch die Verwendung einer beidseitig metallisierten Polyethylenterephthalatfolie und einer unmetallisierten Polypropylenfolie möglich. Nachteil dieses Aufbaus ist jedoch der gegenüber Polypropylen stark erhöhte Wert des tan δ

Figure imgb0004
von Polyethylenterephthalat. Aus Gründen des besseren dielektrischen Verlustfaktors werden Polyolefinfolien den Polyesterfolien bei Wechselstromanwendungen vorgezogen. Die ökonomische Herstellung von beidseitig bedampften (metallisierten) Polypropylenfolien ist jedoch wesentlich schwieriger und wird bislang nicht industriell durchgeführt. Ein Problem ist die Koronabehandlung, die auf beiden Seiten der Folie vor der Metallisierung durchgeführt werden muß. Diese führt durch die dabei aufgebrachten elektrostatischen Ladungen zu einem Zusammenkleben (Blocken) der Folie auf dem Wickel. Durch die beim Abwickeln auftretenden Adhäsionskräfte werden wiederum Ladungen erzeugt, die ein anschließendes gleichmäßiges Bedampfen mit dem Metall unmöglich machen. Dieses Problem kann laut DE-A-28 02 769 umgangen werden, indem eine Entladung der Folie vor dem Bedampfen vorgenommen wird. Aber auch dies stellt einen zusätzlichen Verfahrensschritt und damit eine zusätzliche Fehlerquelle dar und ist deshalb unwirtschaftlich.For economic reasons, it is desirable to construct a capacitor from a film that is metallized on both sides and an unmetallized film. As described in US Pat. No. 3,900,775, this is possible, for example, by using a polyethylene terephthalate film metallized on both sides and an unmetallized polypropylene film. The disadvantage of this structure, however, is the greatly increased value of the polypropylene tan δ
Figure imgb0004
of polyethylene terephthalate. For reasons of better dielectric loss factor, polyolefin films are preferred to polyester films in AC applications. However, the economical production of metallized polypropylene films that are steamed on both sides is much more difficult and has not yet been carried out industrially. One problem is the corona treatment, which is done on both sides of the film before metallization must be carried out. This causes the film to stick together (block) on the roll due to the electrostatic charges applied. The adhesive forces that occur during unwinding in turn generate charges that make subsequent subsequent vapor deposition with the metal impossible. According to DE-A-28 02 769, this problem can be avoided by unloading the film before vapor deposition. But this also represents an additional procedural step and thus an additional source of error and is therefore uneconomical.

Es besteht deshalb nach wie vor das Bedürfnis nach einer metallisierbaren, vorzugsweise beidseitig metallisierten Polyolefinfolie, bei der die Nachteile des Standes der Technik vermieden werden und die einen niedrigen dielektrischen Verlustfaktor und hohe Temperaturbeständigkeit aufweist.There is therefore still a need for a metallizable, preferably double-sided metallized polyolefin film in which the disadvantages of the prior art are avoided and which has a low dielectric loss factor and high temperature resistance.

Die Aufgabe der vorliegenden Erfindung bestand weiterhin darin, ein Verfahren zur Herstellung einer - möglichst beidseitig - metallisierten Polyolefinfolie zur Verfügung zu stellen, das die Nachteile des Standes der Technik, insbesondere den zusätzlichen Verfahrensschritt zur Erhöhung der Oberflächenspannung, vermeidet.The object of the present invention was further to provide a process for producing a metallized polyolefin film, if possible on both sides, which avoids the disadvantages of the prior art, in particular the additional process step for increasing the surface tension.

Überraschenderweise wurde nun gefunden, daß sich aus der Vielzahl der Polyolefine die Cycloolefinpolymere - entgegen allen Erwartungen - ohne Oberflächenspannung erhöhende Vorbehandlung metallisieren lassen.Surprisingly, it has now been found that, contrary to all expectations, the cycloolefin polymers can be metallized from the large number of polyolefins without a pretreatment which increases surface tension.

Dementsprechend wird die gestellte Aufgabe gelöst durch eine ein- oder beidseitig metallisierte ein- oder mehrschichtige Polyolefinfolie, wobei mindestens eine äußerste Schicht der unmetallisierten Polyolefinfolie im wesentlichen aus einem Cycloolefinpolymeren besteht, welches vor der Metallisierung keinem Verfahren zur Erhöhung der Oberflächenspannung ausgesetzt wurde.Accordingly, the object is achieved by a single- or double-sided metallized single or multilayer polyolefin film, at least one outermost layer of the unmetallized polyolefin film consisting essentially of a cycloolefin polymer which was not exposed to a process for increasing the surface tension before the metallization.

'Ein- oder beidseitig' metallisiert heißt, daß die Folie auf einer oder auf beiden Oberflächen eine Metallschicht trägt.'Metallized on one or both sides' means that the film has a metal layer on one or both surfaces.

Ein- oder mehrschichtig bedeutet, daß die unmetallisierte Folie entweder eine Monofolie ist, also aus nur einer Schicht besteht oder mehrschichtig aufgebaut ist und dementsprechend aus zwei, drei, vier, fünf oder noch mehr Schichten aufgebaut sein kann. Erfindungswesentlich ist hierbei, daß die Monofolie oder zumindest eine äußerste Schicht der Mehrschichtfolie im wesentlichen aus einem Cycloolefinpolymeren besteht.One or more layers means that the unmetallized film is either a Monofilm is, i.e. consists of only one layer or has a multi-layer structure and can accordingly be composed of two, three, four, five or even more layers. It is essential to the invention that the monofilm or at least one outermost layer of the multilayer film consists essentially of a cycloolefin polymer.

Der Ausdruck im wesentlichen aus einem Cycloolefinpolymeren besteht

Figure imgb0005
bedeutet, daß die Monofolie oder mindestens eine äußerste Schicht der Mehrschichtfolie zu mindestens 90-100 Gew.-%, bevorzugt mindestens 95-100 Gew.-%, insbesondere mindestens 98-99 Gew.-% (bezogen auf das Gewicht der Monofolie bzw. der äußersten Schicht der Mehrschichtfolie) aus Cycloolefinpolymer besteht. Gegebenenfalls kann die einschichtige Folie oder die äußerste Schicht zusätzlich Additive enthalten, die üblicherweise bei der Folienherstellung eingesetzt werden.The term consists essentially of a cycloolefin polymer
Figure imgb0005
means that the monofilm or at least one outermost layer of the multilayer film is at least 90-100% by weight, preferably at least 95-100% by weight, in particular at least 98-99% by weight (based on the weight of the monofilm or the outermost layer of the multilayer film) consists of cycloolefin polymer. If necessary, the single-layer film or the outermost layer can additionally contain additives which are usually used in film production.

Der Ausdruck vor der Metallisierung keinem Verfahren zur Erhöhung der Oberflächenspannung ausgesetzt bedeutet, daß die Folie nach ihrem üblichen Herstellungsprozess, welcher gewöhnlich die Extrusion, die Streckung und die Thermofixierung umfaßt, keiner zusätzlichen Behandlung unterworfen wird, die die Erhöhung der Oberflächenspannung zur Folge hat. Hierunter sind übliche Verfahren wie die Korona- oder Flammbehandlung zu verstehen. Es ist erfindungswesentlich, daß die Metallisierung erfolgen kann, ohne daß die Folie vorher einem solchen Verfahren unterworfen wird.The term pre-metallization does not mean that there is no surface tension increasing process means that after its usual manufacturing process, which usually includes extrusion, stretching and heat setting, the film is not subjected to any additional treatment which results in the surface tension increasing. This includes common processes such as corona or flame treatment. It is essential to the invention that the metallization can take place without the film being subjected to such a process beforehand.

Cycloolefinpolymere sind Materialien, die sich durch hohe Wärmeformbeständigkeiten, hohe Elastizitätsmoduln, geringe Wasseraufnahme und gute dielektrische Eigenschaften auszeichnen.Cycloolefin polymers are materials that are characterized by high heat resistance, high moduli of elasticity, low water absorption and good dielectric properties.

Die DD-A-224 538 beschreibt die Herstellung von Folien aus Norbornen-Ethylen-Copolymeren durch ein Gießfilmverfahren. Die Herstellung von Cycloolefinpolymerfilmen durch Schmelzextrusion wird in EP-A-0 384 694, EP-A-0 610 814, EP-A-0 610 815 und EP-A-0 610 816 beschrieben. Die Verbesserung der mechanischen Eigenschaften der Folien durch monoaxiales oder biaxiales Verstrecken wird ebenfalls in diesen Schriften beschrieben.DD-A-224 538 describes the production of films from norbornene-ethylene copolymers by a cast film process. The production of cycloolefin polymer films by melt extrusion is described in EP-A-0 384 694, EP-A-0 610 814, EP-A-0 610 815 and EP-A-0 610 816. The improvement of the mechanical properties of the films by monoaxial or biaxial stretching is also described in these documents.

Die DD-241 971 und DD-224538 führen aus, daß sich Folien aus Cycloolefinpolymeren durch niedrige dielektrische Verlustfaktoren ( tan δ

Figure imgb0006
) auszeichnen. Die angegebenen Werte für tan δ
Figure imgb0007
von bis zu 1,2·10-5 liegen unter den Werten wie sie für Polymermaterialien, die nach dem gegenwärtigen Stand der Technik als Dielektrika in Kondensatoren verwendet werden, gefunden werden. Nur Polystyrol weist ähnlich niedrige Werte auf. Wie in DD-241 971 weiter ausgeführt, sind niedrige Werte für tan δ
Figure imgb0008
vor allem für hochfrequente Wechselstromanwendungen von Interesse, da es hier durch elektrische Verlustleistung in der Folie zur Erwärmung kommen kann. Aufgrund der Kombination von hoher Temperaturbeständigkeit (Beständigkeit der mechanischen und der elektrischen Folieneigenschaften bei höheren Temperaturen) und niedrigem tan δ
Figure imgb0009
sind Cycloolefinpolymere bestens als Folien für Kondensatoren geeignet, die bei hohen Temperaturen und hohen Frequenzen eingesetzt werden können. Folien auf Polystyrolbasis bieten diesen Vorteil nicht, da sie bereits bei Temperaturen um 90 °C zu erweichen beginnen.DD-241 971 and DD-224538 state that films made of cycloolefin polymers are characterized by low dielectric loss factors ( tan δ
Figure imgb0006
) mark. The specified values for tan δ
Figure imgb0007
of up to 1.2 · 10 -5 are below the values found for polymer materials which are used as dielectrics in capacitors according to the current state of the art. Only polystyrene has similarly low values. As further stated in DD-241 971, low values are for tan δ
Figure imgb0008
of particular interest for high-frequency alternating current applications, since this can result in heating due to electrical power loss in the film. Due to the combination of high temperature resistance (resistance of the mechanical and electrical film properties at higher temperatures) and low tan δ
Figure imgb0009
cycloolefin polymers are ideal as films for capacitors that can be used at high temperatures and high frequencies. Polystyrene-based films do not offer this advantage because they start to soften at temperatures around 90 ° C.

Die Kombination der oben genannten Eigenschaften macht Cycloolefinpolymere zu geeigneten Materialien für den Einsatz als Dielektrikum in Wechselspannungsanwendungen mit hohen Frequenzen. Zudem weisen diese Materialien eine sehr gute Konstanz der elektrischen Eigenschaften bis zu Temperaturen, die kurz unterhalb der Glasstufen der Polymere liegen, auf. Deshalb eignen sich Cycloolefinpolymere besonders für den Einsatz in Kondensatoren, die einem elektrischen Wechselfeld bei hohen Frequenzen und hohen Temperaturen ausgesetzt sind.The combination of the above properties makes cycloolefin polymers suitable materials for use as a dielectric in AC applications with high frequencies. In addition, these materials have very good constancy of electrical properties up to temperatures that are just below the glass levels of the polymers. Cycloolefin polymers are therefore particularly suitable for use in capacitors that are exposed to an alternating electrical field at high frequencies and high temperatures.

Cycloolefinpolymere lassen sich sehr gut zu biaxial orientierten Folien mit guten mechanischen Eigenschaften verarbeiten. Die orientierten Filme besitzen Moduli im Bereich von 2,7 bis 4,0 GPa, Reißfestigkeiten von 80 bis 150 MPa und Reißdehnungen im Bereich von 5 bis 100 %. Die Oberflächenspannung dieser Folien liegt im Bereich von 30 bis 31 mN/m und ist somit typisch für Polyolefin-Folien. Ebenfalls typisch ist, daß der polare Anteil an der Oberflächenspannung sehr gering ist. Es war daher zu erwarten, daß Cycloolefinpolymerfolien - wie auch andere Polyolefinfolien - nicht ohne Vorbehandlung zur Erhöhung der Oberflächenspannung zu metallisieren sind. Deshalb war es umso überraschender, daß die Cyclolefincopolymerfolien sich ohne jede Vorbehandlung bei niedriger Oberflächenspannung metallisieren lassen. Dieses Verhalten ist auch weitgehend unabhängig von der Glasstufe des Cycloolefinpolymeren. Diese Erfindung ist insbesondere überraschend, da in weiteren Untersuchungen gefunden wurde, daß jedoch eine Koronabehandlung erforderlich ist, um die Folie bedrucken zu können. Wie bei anderen Polyolefinfolien steigt dabei die Oberflächenspannung der behandelten Folie. Nach der Koronabehandlung werden Werte für die Oberflächenspannung erhalten, wie sie typisch für Polyolefine sind.Cycloolefin polymers can be processed very well into biaxially oriented films with good mechanical properties. The oriented films have moduli in the range from 2.7 to 4.0 GPa, tear strengths from 80 to 150 MPa and elongation at break in the range from 5 to 100%. The surface tension of these films is in the range from 30 to 31 mN / m and is therefore typical for polyolefin films. It is also typical that the polar part of the surface tension is very low. It was therefore to be expected that cycloolefin polymer films - like other polyolefin films - would not be without pretreatment to increase the Surface tension must be metallized. It was therefore all the more surprising that the cyclolefin copolymer films can be metallized at low surface tension without any pretreatment. This behavior is also largely independent of the glass level of the cycloolefin polymer. This invention is particularly surprising since it has been found in further investigations that corona treatment is required in order to be able to print on the film. As with other polyolefin films, the surface tension of the treated film increases. After the corona treatment, values for the surface tension are obtained, which are typical for polyolefins.

Die für die Erfindung geeigneten Cycloolefinpolymere sind Polymere, enthaltend 0,1 bis 100 Gew.-%, bevorzugt 0,1 bis 99 Gew.-%, bezogen auf die Gesamtmasse des Cycloolefinpolymers, polymerisierte Einheiten mindestens eines cyclischen Olefins der Formeln I, II, III, IV, V oder VI,

Figure imgb0010
Figure imgb0011
worin R1, R2, R3, R4, R5, R6, R7 und R8 gleich oder verschieden sind und ein Wasserstoffatom oder einen C1-C30-Kohlenwasserstoffrest, z.B. einen linearen oder verzweigten C1-C8-Alkylrest, C6 - C18-Arylrest, C7-C20 -Alkylenarylrest oder einen cyclischen C3-C20-Alkylrest oder acyclischen C2-C20-Alkylrest bedeuten, oder zwei oder mehrere Reste R1 bis R8 cyclisch verbunden sind, wobei gleiche Reste in den verschiedenen Formeln eine unterschiedliche Bedeutung haben können,
0 bis 45 Gew.-%, bezogen auf die Gesamtmasse des Cycloolefinpolymers, polymerisierte Einheiten mindestens eines monocyclischen Olefins der Formel VII,
Figure imgb0012
worin n eine Zahl von 2 bis 10 ist,
0 bis 99 Gew.-%, bezogen auf die Gesamtmasse des Cycloolefinpolymers, polymerisierte Einheiten eines acyclischen Olefins der Formel VIII,
Figure imgb0013
worin R9, R10, R11, R12 gleich oder verschieden sind und ein Wasserstoffatom oder C1-C10-Kohlenwasserstoffrest, z.B. einen C1-C8-Alkylrest oder C6-C14-Arylrest bedeuten. Ebenfalls geeignet sind Cycloolefinpolymere erhalten durch ringöffnende Polymerisation mindestens eines der Monomere mit den Formeln I bis VI und anschließende Hydrierung der erhaltenen Produkte.The cycloolefin polymers suitable for the invention are polymers containing 0.1 to 100% by weight, preferably 0.1 to 99% by weight, based on the total mass of the cycloolefin polymer, of polymerized units of at least one cyclic olefin of the formulas I, II, III, IV, V or VI,
Figure imgb0010
Figure imgb0011
wherein R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 and R 8 are the same or different and a hydrogen atom or a C 1 -C 30 hydrocarbon radical, for example a linear or branched C 1 -C 8 alkyl radical, C 6 -C 18 aryl radical, C 7 -C 20 alkylene aryl radical or a cyclic C 3 -C 20 alkyl radical or acyclic C 2 -C 20 alkyl radical, or two or more radicals R 1 to R 8 are cyclically linked, where the same radicals in the different formulas can have different meanings,
0 to 45% by weight, based on the total mass of the cycloolefin polymer, of polymerized units of at least one monocyclic olefin of the formula VII,
Figure imgb0012
where n is a number from 2 to 10,
0 to 99% by weight, based on the total mass of the cycloolefin polymer, polymerized units of an acyclic olefin of the formula VIII,
Figure imgb0013
wherein R 9 , R 10 , R 11 , R 12 are the same or different and represent a hydrogen atom or C 1 -C 10 hydrocarbon radical, for example a C 1 -C 8 alkyl radical or C 6 -C 14 aryl radical. Cycloolefin polymers obtained by ring-opening polymerization of at least one of the monomers having the formulas I to VI and subsequent hydrogenation of the products obtained are also suitable.

Bevorzugt enthalten die Cycloolefinpolymere polymerisierte Einheiten mindestens eines polycyclischen Olefins, insbesondere der Formel I oder III und eines acyclischen Olefins der Formel VIII, welches bevorzugt 2 bis 20 C-Atome aufweist, insbesondere Ethylen.The cycloolefin polymers preferably contain polymerized units of at least one polycyclic olefin, in particular of the formula I or III and an acyclic olefin of the formula VIII, which preferably has 2 to 20 carbon atoms, in particular ethylene.

Bevorzugt sind Cycloolefinpolymere, die polymerisierte Einheiten polycyclischer Olefine mit Norbornengrundstruktur, besonders bevorzugt Norbornen oder Tetracyclododecen, enthalten. Bevorzugt sind auch Cycloolefinpolymere, die polymerisierte Einheiten acyclischer Olefine, wie α-Olefine, besonders bevorzugt Ethylen, enthalten. Besonders bevorzugt sind Norbornen/Ethylen- und Tetracyclododecen/Ethylen-Copolymere.Cycloolefin polymers are preferred which contain polymerized units of polycyclic olefins with a norbornene basic structure, particularly preferably norbornene or tetracyclododecene. Cycloolefin polymers which contain polymerized units of acyclic olefins, such as α-olefins, particularly preferably ethylene, are also preferred. Norbornene / ethylene and tetracyclododecene / ethylene copolymers are particularly preferred.

Der Anteil polymerisierter Einheiten acyclischer Olefine der Formel VIII beträgt 0 bis 99 Gew.-%, bevorzugt 5 bis 80 Gew-%, besonders bevorzugt 10 bis 60 Gew.-%, bezogen auf die Gesamtmasse des Cycloolefinpolymers.The proportion of polymerized units of acyclic olefins of the formula VIII is 0 to 99% by weight, preferably 5 to 80% by weight, particularly preferably 10 to 60% by weight, based on the total mass of the cycloolefin polymer.

Die Cycloolefinpolymere weisen im allgemeinen Glastemperaturen zwischen -20 °C und 400 °C, bevorzugt zwischen 50 °C und 200 °C, auf. Die Viskositätszahl (Dekalin, 135 °C, DIN 53728) liegt im allgemeinen zwischen 0,1 und 200 ml/g, bevorzugt zwischen 50 und 150 ml/g.The cycloolefin polymers generally have glass transition temperatures between -20 ° C and 400 ° C, preferably between 50 ° C and 200 ° C. The viscosity number (decalin, 135 ° C, DIN 53728) is generally between 0.1 and 200 ml / g, preferably between 50 and 150 ml / g.

Die Herstellung der Cycloolefinpolymere geschieht durch eine heterogene oder homogene Katalyse mit metallorganischen Verbindungen und ist in einer Vielzahl von Dokumenten beschrieben. Katalysatorsysteme basierend auf Mischkatalysatoren aus Titan- bzw. Vanadiumverbindungen in Verbindung mit Aluminiumorganylen werden in DD 109 224, DD 237 070 und EP-A-0 156 464 beschrieben. EP-A-0 283 164, EP-A-0 407 870, EP-A-0 485 893 und EP-A-0 503 422 beschreiben die Herstellung von Cycloolefinpolymeren mit Katalysatoren basierend auf löslichen Metallocenkomplexen. Auf die in diesen Schritten beschriebenen Herstellverfahren von Cycloolefinpolymeren wird hier ausdrücklich bezuggenommen.The cycloolefin polymers are produced by a heterogeneous or homogeneous catalysis with organometallic compounds and is described in a large number of documents. Catalyst systems based on mixed catalysts made of titanium or vanadium compounds in connection with aluminum organyls are described in DD 109 224, DD 237 070 and EP-A-0 156 464. EP-A-0 283 164, EP-A-0 407 870, EP-A-0 485 893 and EP-A-0 503 422 describe the preparation of cycloolefin polymers with catalysts based on soluble metallocene complexes. The production processes for cycloolefin polymers described in these steps are expressly referred to here.

Die erfindungsgemäß verwendeten Cycloolefinpolymerfolien können die bei der Folienherstellung üblichen Additive wie feine inerte Partikel, die das Schlupf- und Wickelverhalten verbessern, enthalten. Solche Partikel, die in Menge von 0 bis 1 % enthalten sein können, sind beispielsweise:
SiO2, Al2O3, Silikate mit einem SiO2-Anteil von mindestens 30 Gew.-%, amorphe und kristalline Tonminerale, Alumosilikate, Oxide von Mg, Zn, Zr und Ti, Sulfate von Ca, Mg und Ba, Phosphate von Li, Na und Ca (inklusive der Monohydrogensalze und Dihydrogensalze), Benzoate von Li, Na und K, Terephthalate von Ca, Ba, Zn und Mn, Titanate von Mg, Ca, Ba, Zn, Cd, Pb, Sr, Mn, Fe, Co und Ni, Chromate von Ba und Pb, Kohlenstoff (z.B. Ruß oder Graphit), Glas (Glaspulver und Glaskugeln), Carbonate von Ca und Mg, Flußspat, Sulfide von Zn und Mo, organische Polymersubstanzen wie Polytetrafluorethylenpolyethylen, Talkum, Lithiumfluorid, und die Ca-, Ba-, Zn- und Mn-Salze von organischen Säuren.
The cycloolefin polymer films used according to the invention can contain the additives which are customary in film production, such as fine inert particles, which improve the slip and winding behavior. Such particles, which can be contained in an amount of 0 to 1%, are for example:
SiO 2 , Al 2 O 3 , silicates with an SiO 2 content of at least 30% by weight, amorphous and crystalline clay minerals, aluminosilicates, oxides of Mg, Zn, Zr and Ti, sulfates of Ca, Mg and Ba, phosphates of Li, Na and Ca (including the monohydrogen salts and dihydrogen salts), benzoates of Li, Na and K, terephthalates of Ca, Ba, Zn and Mn, titanates of Mg, Ca, Ba, Zn, Cd, Pb, Sr, Mn, Fe , Co and Ni, chromates of Ba and Pb, carbon (e.g. carbon black or graphite), glass (glass powder and glass balls), carbonates of Ca and Mg, fluorspar, sulfides of Zn and Mo, organic polymer substances such as polytetrafluoroethylene polyethylene, talc, lithium fluoride, and the Ca, Ba, Zn and Mn salts of organic acids.

Die Folie kann auch geeignete Additive wie z.B. Stabilisatoren, Neutralisationsmittel, Gleitmittel oder Antioxidantien enthalten. Prinzipiell sind Additive, die für Polyolefine wie Polyethylen oder Polypropylen verwendet werden, auch für die Cycloolefinpolymerfolien geeignet. Als UV-Stabilisatoren können beispielsweise Absorber wie Hydroxyphenylbenzotriazole, Hydroxybenzophenone, Formamidin oder Benzyliden-Campher, Quencher wie Zimtsäureester oder Nickel-Chelate, Radikalfänger wie sterisch gehinderte Phenole, Hydroperoxidzersetzer wie Nickel- oder Zink-Komplexe schwefelhaltiger Verbindungen oder Lichtstabilisatoren vom HALS-Typ, sowie deren Gemische eingesetzt werden. Als Gleitmittel können beispielsweise verwendet werden: Fettsäuren sowie deren Ester, Amide und Salze, Silikone oder Wachse wie PP- oder PE-Wachse. Als Antioxidantien können beispielsweise zugesetzt werden Radikalfänger wie substituierte Phenole und aromatische Amine und/oder Peroxidzersetzer wie Phosphite, Phosphate und Thioverbindungen.The film can also contain suitable additives such as stabilizers, neutralizing agents, lubricants or antioxidants. In principle, additives which are used for polyolefins such as polyethylene or polypropylene are also suitable for the cycloolefin polymer films. Examples of UV stabilizers which can be used are absorbers such as hydroxyphenylbenzotriazoles, hydroxybenzophenones, formamidine or benzylidene-camphor, quenchers such as cinnamic acid esters or nickel chelates, radical scavengers such as sterically hindered phenols, hydroperoxide decomposers such as nickel or zinc complexes of sulfur-containing compounds or light stabilizers, and HAL type stabilizers whose mixtures are used. Can be used as a lubricant for example: fatty acids and their esters, amides and salts, silicones or waxes such as PP or PE waxes. Free radical scavengers such as substituted phenols and aromatic amines and / or peroxide decomposers such as phosphites, phosphates and thio compounds can be added as antioxidants, for example.

Die Herstellung der Cycloolefinpolymerfolien geschieht in üblicher, dem Fachmann bekannter Weise, zum Beispiel durch Gießen von Filmen aus Lösung, Extrusion aus der Schmelze mit Breitschlitzdüsen und anschließender mono- oder biaxialer Verstreckung, Extrusion aus der Schmelze mit Ringdüsen unter anschließender Verstreckung mittels eines Lufstromes (Folienblasen). Bevorzugt ist die Breitschlitzdüsenextrusion mit anschließender sequentieller biaxialer Orientierung und Thermofixierung. Hierbei wird das Polymer in einem Extruder erwärmt und aufgeschmolzen und durch eine Breitschlitzdüse auf eine Abkühlwalze extrudiert; gewöhnlich wird der so erhaltene Vorfilm dann von der Abkühlwalze abgezogen und anschließend biaxial, d.h. meist zunächst in Maschinen- und dann in Querrichtung, gestreckt. An diese biaxiale Orientierung schließt sich üblicherweise eine Thermofixierung an, worauf die Folie aufgewickelt wird. Bei diesem Verfahren kann die Folie sowohl als Monofolie als auch als Mehrschichtfolie extrudiert werden, wobei dann zumindest eine äußerste Schicht im wesentlichen aus Cycloolefinpolymeren, wie oben beschrieben, besteht. Die übrigen Schichten der Mehrschichtfolie können beispielsweise ebenfalls aus Cycloolefinpolymeren - gegebenenfalls anderen als dem in der Deckschicht verwendeten - bestehen aber auch aus anderen Polymeren insbesondere Polyolefinen wie Polyethylen oder Polypropylen. Auf diese Weise lassen sich Folien mit einem Dickenspektrum von 2 bis 50 µm, vorzugsweise 3 bis 30 µm, herstellen.The cycloolefin polymer films are produced in the customary manner known to the person skilled in the art, for example by casting films from solution, extrusion from the melt with slot dies and subsequent mono- or biaxial stretching, extrusion from the melt with ring dies and subsequent stretching by means of an air stream (film blowing ). Wide slot die extrusion with subsequent sequential biaxial orientation and heat setting is preferred. Here, the polymer is heated and melted in an extruder and extruded through a slot die onto a cooling roll; usually the pre-film thus obtained is then drawn off the cooling roll and then biaxially, i.e. usually stretched first in the machine and then in the transverse direction. This biaxial orientation is usually followed by heat setting, on which the film is wound up. In this process, the film can be extruded both as a mono film and as a multilayer film, in which case at least one outermost layer essentially consists of cycloolefin polymers, as described above. The remaining layers of the multilayer film can, for example, also consist of cycloolefin polymers - possibly other than those used in the cover layer - but also consist of other polymers, in particular polyolefins such as polyethylene or polypropylene. In this way, films with a thickness spectrum of 2 to 50 μm, preferably 3 to 30 μm, can be produced.

Die so hergestellte Folie kann dann ohne vorherige Maßnahmen zur Erhöhung der Oberflächenenergie, d.h. beispielsweise ohne vorherige Koronabehandlung, mit einer Metallschicht versehen werden. Als Metalle eignen sich beispielsweise Aluminium, Zink, Mischungen aus Zink und Aluminium oder Silber. Bevorzugt werden Aluminium und Zink, sowie Mischungen und/oder Legierungen hiervon eingesetzt. Die Metallisierung geschieht in üblicher, dem Fachmann geläufiger Weise, beispielsweise durch Bedampfen der Folie im Vakuum. Der erfindungsgemäße Vorteil ist darin zu sehen, daß die Cycloolefinpolymerfolien nicht nur einseitig sondern nunmehr auch beidseitig metallisiert werden können.The film produced in this way can then be provided with a metal layer without previous measures to increase the surface energy, ie for example without prior corona treatment. Examples of suitable metals are aluminum, zinc, mixtures of zinc and aluminum or silver. Aluminum and zinc, and mixtures and / or alloys thereof are preferably used. The metallization takes place in the usual way, which is more familiar to the person skilled in the art Way, for example by evaporating the film in vacuo. The advantage according to the invention can be seen in the fact that the cycloolefin polymer films can not only be metallized on one side but now also on both sides.

Aus den metallisierten Cycloolefinpolymerfolien lassen sich nach üblichen Verfahren Kondensatoren herstellen.Capacitors can be produced from the metallized cycloolefin polymer films by customary processes.

Nachfolgend ist die Erfindung anhand von Beispielen näher erläutert.The invention is explained in more detail below with the aid of examples.

Beispiel 1example 1 Herstellung eines Norbornen/Ethylen-Polymeren (COC-A)Production of a norbornene / ethylene polymer (COC-A)

Eine 1,5-dm3-Reaktor wurde mit 1 Liter Benzinfraktion (Siedebereich 90 bis 110 °C) und 20 ml toluolischer Methylaluminoxanlösung (10,1 Gew.-% Methylaluminoxan der Molmasse 1300 g/mol nach kryoskopischer Bestimmung) befüllt und bei 70 °C ca. 30 min gerührt, um eventuell vorhandene Verunreinigungen zu entfernen. Nach Ablassen der Lösung wurde der Reaktor mit 480 cm3 einer 85-gewichtsprozentigen Lösung von Norbornen in Toluol beschickt. Durch mehrfaches Aufdrücken von Ethylen (6 bar G) wurde die Lösung mit Ethylen gesättigt und anschließend 10 cm3 der toluolischen Methylaluminoxanlösung in den Reaktor gegeben und 5 min bei 70 °C gerührt. Eine Lösung von 5,43 mg Isopropylen-(1-cyclopentadienyl)-(1-indenyl)-zirkondichlorid in 10 cm3 toluolischer Methylaluminoxanlösung wurde nach 15-minütiger Voraktivierung zugegeben.A 1.5 dm 3 reactor was filled with 1 liter of gasoline fraction (boiling range 90 to 110 ° C.) and 20 ml of toluene methylaluminoxane solution (10.1% by weight methylaluminoxane with a molecular weight of 1300 g / mol after cryoscopic determination) and at 70 ° C stirred for approx. 30 min to remove any contamination. After draining the solution, the reactor was charged with 480 cm 3 of an 85 weight percent solution of norbornene in toluene. The solution was saturated with ethylene by repeatedly pressing in ethylene (6 bar G) and then 10 cm 3 of the toluene methylaluminoxane solution were added to the reactor and stirred at 70 ° C. for 5 min. A solution of 5.43 mg of isopropylene (1-cyclopentadienyl) - (1-indenyl) zirconium dichloride in 10 cm 3 of toluene methylaluminoxane solution was added after 15 minutes of preactivation.

Unter Rühren (750 UPM) wurde 30 min bei 70 °C polymerisiert, wobei der Ethylendruck durch Nachdosieren bei 6 bar G gehalten wurde. Die homogene Reaktionslösung wurde in ein Gefäß abgelassen und mit ca. 1 ml Wasser versetzt. Anschließend wird die Lösung mit einem Filterhilfsmittel versetzt und über eine Drucknutsche filtriert. Diese Lösung wird schnell in 5 dm3 Aceton eingegossen, 10 min gerührt und filtriert. Der erhaltene Feststoff wurde mit Aceton gewaschen. Das erneut filtrierte Polymer wurde bei 80 °C und einem Druck von 0,2 bar 15 Stunden getrocknet.The mixture was polymerized with stirring (750 rpm) at 70 ° C. for 30 min, the ethylene pressure being kept at 6 bar G by further metering. The homogeneous reaction solution was drained into a vessel and about 1 ml of water was added. Then the solution is mixed with a filter aid and filtered through a pressure filter. This solution is quickly poured into 5 dm 3 of acetone, stirred for 10 min and filtered. The solid obtained was washed with acetone. The refiltered polymer was dried at 80 ° C. and a pressure of 0.2 bar for 15 hours.

Es wurden 89,1 g eines farblosen Polymers erhalten. Zur Bestimmung der Viskositätszahl wurden 0,1 g des Polymeren in 100 ml Dekalin gelöst. Die Lösung wurde in einem Kappillarviskosimeter bei 135 °C vermessen. Die Viskositätszahl betrug 56,5 dl/g. Die Glastemperaturen wurden mit einem DSC7 der Firma Perkin Elmer bestimmt. Die Glastemperatur wurde bei einer Heizrate von 20 °C/min aus der zweiten Heizkurve ermittelt und betrug 175 °C. Der Gehalt an Norbornen wurde mittel 13C-Kernresonanzspektroskopie zu 58-Mol% ermittelt. Das Molekulargewicht des Polymeren wurde mittels Gelpermeationschromatographie bei 135 °C ermittelt. Als Standards wurden Polyethylenfraktionen verwendet. Für das Polymer wurden folgende Werte gefunden:
   Mn : 21500 g/mol
   Mw: 45000 g/mol
   Mw/Mn : 2,1.
89.1 g of a colorless polymer were obtained. To determine the viscosity number, 0.1 g of the polymer was dissolved in 100 ml of decalin. The solution was measured in a capillary viscometer at 135 ° C. The viscosity number was 56.5 dl / g. The glass transition temperatures were determined using a DSC7 from Perkin Elmer. The glass transition temperature was determined at a heating rate of 20 ° C / min from the second heating curve and was 175 ° C. The content of norbornene was determined to be 58 mol% by means of 13 C nuclear magnetic resonance spectroscopy. The molecular weight of the polymer was determined by gel permeation chromatography at 135 ° C. Polyethylene fractions were used as standards. The following values were found for the polymer:
M n : 21500 g / mol
M w : 45000 g / mol
M w / M n : 2.1.

Herstellung eines Norbornen/Ethylen-Polymeren (COC-B)Production of a norbornene / ethylene polymer (COC-B)

Die Polymerisation wurde, wie oben für COC-A beschrieben, durchgeführt. Es wurde jedoch Isopropylen-bis(1-indenyl)-zirkoniumdichlorid als Metallocen-Katalysator verwendet und die Polymerisation bei einem Druck von 20 bar G durchgeführt. Es wurde ein statistisches Copolymer, welches einen mittels 13C-NMR ermittelten Norbornengehalt von 40 Mol-%, eine Glasstufe von 75 °C (DSC-Messung) und eine Viskositätszahl von 120 ml/g (Dekalin, 135 °C, 0,1 g/dl) besaß, hergestellt.The polymerization was carried out as described above for COC-A. However, isopropylene-bis (1-indenyl) zirconium dichloride was used as the metallocene catalyst and the polymerization was carried out at a pressure of 20 bar G. A statistical copolymer was obtained which had a norbornene content of 40 mol% determined by means of 13 C-NMR, a glass level of 75 ° C (DSC measurement) and a viscosity number of 120 ml / g (decalin, 135 ° C, 0.1 g / dl).

Herstellung eines Norbornen/Ethylen-Polymeren (COC-C)Production of a norbornene / ethylene polymer (COC-C)

Die Polymerisation wurde, wie oben für COC-A beschrieben, durchgeführt. Es wurde jedoch Isopropylen-bis(1-indenyl)-zirkoniumdichlorid als Metallocen-Katalysator verwendet und die Polymerisation bei einem Druck von 10 bar G durchgeführt. Es wurde ein statistisches Copolymer, welches einen mittels 13C-NMR ermittelten Norbornengehalt von 53 Mol-%, eine Glasstufe von 140 °C (DSC-Messung) und eine Viskositätszahl von 60 ml/g (Dekalin, 135 °C, 0,1 g/dl) besaß, hergestellt.The polymerization was carried out as described above for COC-A. However, isopropylene-bis (1-indenyl) zirconium dichloride was used as the metallocene catalyst and the polymerization was carried out at a pressure of 10 bar G. A statistical copolymer was obtained which had a norbornene content of 53 mol% determined by means of 13 C-NMR, a glass level of 140 ° C (DSC measurement) and a viscosity number of 60 ml / g (decalin, 135 ° C, 0.1 g / dl).

Herstellung einer Folie (aus COC-B)Production of a film (from COC-B)

Das COC-B wurde bei einer Temperatur von 200 °C zu einer Folie mit einer Dicke von 400 µm und einer Breite von 250 mm extrudiert. Aus dieser Folie wurden Stücke von 200·200 mm2 herausgeschnitten und in einer Folienstreckapparatur (Karo III der Firma Brückner, Siegsdorf) bei 100 °C simultan längs und quer um den Faktor 3,0 verstreckt.The COC-B was extruded at a temperature of 200 ° C into a film with a thickness of 400 microns and a width of 250 mm. Pieces of 200 × 200 mm 2 were cut out of this film and stretched simultaneously and longitudinally by a factor of 3.0 in a film stretching apparatus (Karo III from Brückner, Siegsdorf) at 100 ° C.

Die so erhaltene Folie hat folgende Eigenschaften: Dicke: 45 µm E-Modul: 2,9 GPa Reißfestigkeit: 80 MPa Reißdehnung: 20 % Wasserdampfdurchlässigkeit (23 °C, 85% rel. Feuchte): 0,6 g · 40 µm/m2 · d Oberflächenspannung: 30 mN/m The film thus obtained has the following properties: Thickness: 45 µm E-module: 2.9 GPa Tensile strength: 80 MPa Elongation at break: 20% Water vapor permeability (23 ° C, 85% relative humidity): 0.6 g · 40 µm / m 2 · d Surface tension: 30 mN / m

Herstellung einer Folie (aus COC-C)Production of a film (from COC-C)

Das COC-C wurde bei einer Temperatur von 240 °C zu einer Folie mit einer Dicke von 300 µm und einer Breite von 250 mm extrudiert. Aus dieser Folie wurden Stücke von 200·200 mm2 herausgeschnitten und in einer Folienstreckapparatur (Karo III der Firma Brückner, Siegsdorf) bei 155 °C simultan längs und quer um den Faktor 3,0 verstreckt.The COC-C was extruded at a temperature of 240 ° C into a film with a thickness of 300 microns and a width of 250 mm. Pieces of 200 × 200 mm 2 were cut out of this film and stretched simultaneously and longitudinally by a factor of 3.0 in a film stretching apparatus (Karo III from Brückner, Siegsdorf) at 155 ° C.

Die so erhaltene Folie hat folgende Eigenschaften: Dicke : 35 µm E-Modul: 3,2 GPa Reißfestigkeit: 90 MPa Reißdehnung: 50 % Wasserdampfdurchlässigkeit (23 °C, 85% rel. Feuchte): 1 g · 40 µm/m2 · d Oberflächenspanung 29 mN/m The film thus obtained has the following properties: Thickness: 35 µm E-module: 3.2 GPa Tensile strength: 90 MPa Elongation at break: 50% Water vapor permeability (23 ° C, 85% relative humidity): 1 g · 40 µm / m 2 · d Surface tension 29 mN / m

Metallisierung der FolieMetallization of the film

Die Folie aus den COC's B und C wurden in DIN-A4 große Teile geschnitten und ohne jede weitere Oberflächenbehandlung einseitig und beidseitig mit Aluminium bedampft (Metallisierungsbedingen: Druck 10-5 mbar, Zeit 11 min). Die Schichtdicke des aufgedampten Aluminiums betrug ca. 40 nm.The film from COC's B and C was cut into large A4 parts and vapor-coated with aluminum on one side and on both sides without any further surface treatment (metallization conditions: pressure 10 -5 mbar, time 11 min). The layer thickness of the evaporated aluminum was approximately 40 nm.

Die Haftung der Aluminiumschicht auf den Folien wurde in Anlehnung an ASTM D 3359 jedoch ohne Gitterschnitt durch Aufkleben und rasches Abziehen eines Klebestreifens (Tesafilm TP 104) getestet. Bei beiden Folien ließ sich von beiden bedampften Seiten kein Aluminium ablösen.The adhesion of the aluminum layer to the foils was tested based on ASTM D 3359 but without cross-cutting by gluing and quickly peeling off an adhesive strip (Tesafilm TP 104). With both foils, no aluminum could be peeled off from both steamed sides.

Die Wasserdampfdurchlässigkeit (23 °C, 85% rel. Feuchte) der bedampften Folien (aus COC-B) betrug anschließend einseitig bedampft 0,5 g · 40 µm/m2 · d, und beidseitig bedampft 0,4 g · 40 µm/m2 · d.The water vapor permeability (23 ° C., 85% relative humidity) of the steamed foils (from COC-B) was then 0.5 g · 40 μm / m 2 · d when steamed on one side and 0.4 g · 40 μm / steamed on both sides m 2 · d.

VergleichsbeispielComparative example

Eine biaxial orientierte, nicht coronabehandelte Folie aus hochisotaktischem Polypropylen (Trespaphan PM A 10, Hersteller Fa. Hoechst, Dicke 10 µm) wurde analog Beispiel 1 in DIN A4 große Muster geschnitten und ohne jede weitere Oberflächenbehandlung einseitig mit Aluminium bedampft (Versuchsbedingungen analog Beispiel 1). Die Oberflächenspannung auf der zu metallisierenden Seite betrug vor der Metallisierung 31 mN/m. Die Dicke der aufgedampften Aluminiumschicht betrug ca. 40 nm. Die Haftung der Aluminiumschicht wurde wie in Beispiel 1 geprüft. Das Aluminium ließ sich völlig mit dem Klebeband von der Folienoberfläche ablösen.A biaxially oriented, non-corona-treated film made of highly isotactic polypropylene (Trespaphan PM A 10, manufacturer Hoechst, thickness 10 µm) was cut into A4-sized samples as in Example 1 and vapor-coated with aluminum on one side without any further surface treatment (test conditions as in Example 1) . The surface tension on the side to be metallized was 31 mN / m before the metallization. The thickness of the vapor-deposited aluminum layer was approximately 40 nm. The adhesion of the aluminum layer was tested as in Example 1. The aluminum could be completely removed from the film surface using the adhesive tape.

Claims (12)

Ein- oder beidseitig metallisierte ein- oder mehrschichtige Polyolefinfolie, wobei mindestens eine äußerste Schicht der unmetallisierten Polyolefinfolie im wesentlichen aus einem Cycloolefinpolymeren besteht, welches vor der Metallisierung keinem Verfahren zur Erhöhung der Oberflächenspannung ausgesetzt wurde.Single or multilayered polyolefin film metallized on one or both sides, at least one outermost layer of the unmetallized polyolefin film consisting essentially of a cycloolefin polymer which was not exposed to any process for increasing the surface tension before the metallization. Metallisierte Cycloolefinpolymerfolie nach Anspruch 1, dadurch gekennzeichnet, daß das Cycloolefinpolymer ein Polymer ist, enthaltend 0,1 bis 100 Gew.-%, bezogen auf die Gesamtmasse des Cycloolefinpolymers, polymerisierte Einheiten mindestens eines cyclischen Olefins der Formeln I, II, III, IV, V oder VI,
Figure imgb0014
Figure imgb0015
worin R1, R2, R3, R4, R5, R6, R7 und R8 gleich oder verschieden sind und ein Wasserstoffatom oder einen C1-C30-Kohlenwasserstoffrest bedeuten, oder zwei oder mehrere Reste R1 bis R8 cyclisch verbunden sind, wobei gleiche Reste in den verschiedenen Formeln eine unterschiedliche Bedeutung haben können,
0 bis 45 Gew.-%, bezogen auf die Gesamtmasse des Cycloolefinpolymers, polymerisierte Einheiten mindestens eines monocyclischen Olefins der Formel VII,
Figure imgb0016
worin n eine Zahl von 2 bis 10 ist,
0 bis 99 Gew.-%, bezogen auf die Gesamtmasse des Cycloolefinpolymers, polymerisierte Einheiten eines acyclischen Olefins der Formel VIII,
Figure imgb0017
worin R9, R10, R11, R12 gleich oder verschieden sind und ein Wasserstoffatom oder C1-C10-Kohlenwasserstoffrest bedeuten.
Metallized cycloolefin polymer film according to Claim 1, characterized in that the cycloolefin polymer is a polymer containing 0.1 to 100% by weight, based on the total mass of the cycloolefin polymer, of polymerized units of at least one cyclic olefin of the formulas I, II, III, IV, V or VI,
Figure imgb0014
Figure imgb0015
wherein R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 and R 8 are the same or different and represent a hydrogen atom or a C 1 -C 30 hydrocarbon radical, or two or more radicals R 1 to R 8 are cyclically linked, the same radicals in the different formulas having different meanings,
0 to 45 wt .-%, based on the total mass of the cycloolefin polymer, polymerized units of at least one monocyclic olefin Formula VII,
Figure imgb0016
where n is a number from 2 to 10,
0 to 99% by weight, based on the total mass of the cycloolefin polymer, of polymerized units of an acyclic olefin of the formula VIII,
Figure imgb0017
wherein R 9 , R 10 , R 11 , R 12 are the same or different and represent a hydrogen atom or C 1 -C 10 hydrocarbon radical.
Metallisierte Cycloolefinpolymerfolie nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß das Cycloolefinpolymer ein Norbornen/Ethylencopolymer ist.Metallized cycloolefin polymer film according to claim 1 or 2, characterized in that the cycloolefin polymer is a norbornene / ethylene copolymer. Metallisierte Cycloolefinpolymerfolie nach einem oder mehreren der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß die metallisierte Folie mit Aluminium, Zink, Silber oder Mischungen oder Legierungen aus zwei oder mehreren dieser Metalle metallisiert ist.Metallized cycloolefin polymer film according to one or more of claims 1 to 3, characterized in that the metallized film is metallized with aluminum, zinc, silver or mixtures or alloys of two or more of these metals. Metallisierte Cycloolefinpolymerfolie nach einem oder mehreren der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß die Folie eine Monofolie ist.Metallized cycloolefin polymer film according to one or more of claims 1 to 4, characterized in that the film is a monofilm. Metallisierte Cycloolefinpolymerfolie nach einem oder mehreren der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß die Folie eine 2-, 3- oder Mehrschichtfolie ist.Metallized cycloolefin polymer film according to one or more of claims 1 to 4, characterized in that the film is a 2-, 3- or multilayer film. Metallisierte Cycloolefinpolymerfolie nach einem oder mehreren der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß die Folie beidseitig metallisiert ist.Metallized cycloolefin polymer film according to one or more of claims 1 to 6, characterized in that the film on both sides is metallized. Metallisiere Cycloolefinpolymerfolie nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß die Folie 2 bis 50 µm, vorzugsweise 3 bis 30 µm, dick ist.Metallized cycloolefin polymer film according to one of Claims 1 to 7, characterized in that the film is 2 to 50 µm, preferably 3 to 30 µm, thick. Metallisierte Cycloolefinpolymerfolie nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, daß die Folie biaxial orientiert ist.Metallized cycloolefin polymer film according to one of claims 1 to 8, characterized in that the film is biaxially oriented. Verwendung einer metallisierten Cycloolefinpolymerfolie nach einem oder mehreren der Ansprüche 1 bis 9 zur Herstellung von Kondensatoren.Use of a metallized cycloolefin polymer film according to one or more of claims 1 to 9 for the production of capacitors. Kondensator, enthaltend eine metallisierte Cycloolefinpolymerfolie nach einem oder mehreren der Ansprüche 1 bis 9.A capacitor containing a metallized cycloolefin polymer film according to one or more of claims 1 to 9. Verwendung eines Cycloolefinpolymeren zur Herstellung einer metallisietren Folie, wobei die Folie vor der Metallisierung keinem Verfahren zur Erhöhung der Oberflächenspannung unterworfen wurde.Use of a cycloolefin polymer to produce a metallized film, the film not being subjected to any process for increasing the surface tension before the metallization.
EP96116214A 1995-10-20 1996-10-10 Metallized polyolefin film Expired - Lifetime EP0769371B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19539093A DE19539093A1 (en) 1995-10-20 1995-10-20 Metallized polyolefin film
DE19539093 1995-10-20

Publications (3)

Publication Number Publication Date
EP0769371A2 true EP0769371A2 (en) 1997-04-23
EP0769371A3 EP0769371A3 (en) 1999-02-10
EP0769371B1 EP0769371B1 (en) 2002-06-12

Family

ID=7775352

Family Applications (1)

Application Number Title Priority Date Filing Date
EP96116214A Expired - Lifetime EP0769371B1 (en) 1995-10-20 1996-10-10 Metallized polyolefin film

Country Status (9)

Country Link
US (1) US6551653B1 (en)
EP (1) EP0769371B1 (en)
JP (1) JP4046788B2 (en)
KR (1) KR100467895B1 (en)
AU (1) AU723676B2 (en)
CA (1) CA2188235C (en)
DE (2) DE19539093A1 (en)
MX (1) MX9604964A (en)
TW (1) TW352363B (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0844077A2 (en) * 1996-11-20 1998-05-27 Ticona GmbH Biaxially oriented film of cycloolefin polymers, process for preparing and its use
WO1998056836A2 (en) * 1997-06-13 1998-12-17 Ticona Gmbh Electrets
EP0992531A1 (en) * 1997-06-20 2000-04-12 Nippon Zeon Co., Ltd. Polymer film and film capacitor
WO2008057673A1 (en) * 2006-11-07 2008-05-15 Exxonmobil Oil Corporation Metallized multi-layer films, methods of manufacture and articles made therefrom
EP4046621A1 (en) 2021-02-17 2022-08-24 Sigmund Lindner GmbH Glitter and its use

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3952560B2 (en) * 1997-10-31 2007-08-01 日本ゼオン株式会社 Composite film
TW563142B (en) * 2001-07-12 2003-11-21 Hitachi Ltd Thin film capacitor, and electronic circuit component
US6964936B1 (en) * 2003-03-06 2005-11-15 Sandia Corporation Method of making maximally dispersed heterogeneous catalysts
US20060046006A1 (en) * 2004-08-31 2006-03-02 Bastion Bradley J Multilayer polymeric barrier film, flexible packaging made therewith, and methods
US20060144499A1 (en) * 2004-12-01 2006-07-06 Brogan John J Method and apparatus for producing gloves and boots with a liquid inner coating
RU2296055C2 (en) * 2005-05-31 2007-03-27 Общество с ограниченной ответственностью "Восток" Nanostructurized coating of the carrying basis
ITUD20070039A1 (en) * 2007-02-20 2008-08-21 Cartotecnica Veneta S P A FILM AND PROCEDURE FOR REALIZING THIS FILM
US8945702B2 (en) * 2007-10-31 2015-02-03 Bemis Company, Inc. Barrier packaging webs having metallized non-oriented film
US8223472B1 (en) 2008-11-14 2012-07-17 Sandia Corporation Norbornylene-based polymer systems for dielectric applications
JP6160782B2 (en) * 2015-08-03 2017-07-12 東レ株式会社 Olefin-based laminated film and film capacitor
KR102392986B1 (en) 2021-09-15 2022-05-03 대한강관 주식회사 Corrugated steel pipe coating layer repair material and corrugated steel pipe repaired using the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DD241971A1 (en) * 1981-06-15 1987-01-07 Leuna Werke Veb POLYOLEFIN DIELECTRIC FOR CONDENSERS
JPH0750224A (en) * 1993-08-04 1995-02-21 Toray Ind Inc Metallized polypropylene film for capacitor
JPH0786088A (en) * 1993-09-09 1995-03-31 Shizuki Denki Seisakusho:Kk High voltage capacitor

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE109224C (en)
DE237070C (en)
DE241971C (en)
DE224538C (en)
FR2225446B1 (en) * 1973-04-12 1976-05-21 Aquitaine Petrole
US3900775A (en) 1974-06-24 1975-08-19 Matsushita Electric Ind Co Ltd Metallized film capacitor
DE2802769A1 (en) 1978-01-23 1979-07-26 Roederstein Kondensatoren Multilayer film capacitor - with polypropylene foil metallised on both sides and polypropylene dielectric
US4614778A (en) 1984-02-03 1986-09-30 Hirokazu Kajiura Random copolymer
DD241871A1 (en) * 1985-10-17 1987-01-07 Soernewitz Elektrowaerme Veb CIRCUIT ARRANGEMENT FOR MONITORING TEST PROCESSES
US5003019A (en) 1987-03-02 1991-03-26 Mitsui Petrochemical Industries, Ltd. Cyclo-olefinic random copolymer, olefinic random copolymer, and process for producing cyclo-olefinic random copolymers
CA2010320C (en) 1989-02-20 2001-04-17 Yohzoh Yamamoto Sheet or film of cyclo-olefin polymer
US5223311A (en) * 1989-05-22 1993-06-29 Showa Denko K.K. Laminate and process for producing the same
DE3922546A1 (en) 1989-07-08 1991-01-17 Hoechst Ag METHOD FOR THE PRODUCTION OF CYCLOOLEFINPOLYMERS
US5371158A (en) 1990-07-05 1994-12-06 Hoechst Aktiengesellschaft Bulk polymerization using specific metallocene catalysts for the preparation of cycloolefin polymers
TW227005B (en) 1990-11-14 1994-07-21 Hoechst Ag
DE59209964D1 (en) 1991-03-09 2002-10-10 Basell Polyolefine Gmbh Metallocene and catalyst
DE4304310A1 (en) 1993-02-12 1994-08-18 Hoechst Ag Semi-crystalline cycloolefin copolymer film
DE4304309A1 (en) 1993-02-12 1994-08-18 Hoechst Ag Flexible cycloolefin copolymer film
DE4304308A1 (en) 1993-02-12 1994-08-18 Hoechst Ag Rigid cycloolefin copolymer film
JPH075224A (en) * 1993-06-17 1995-01-10 Sumitomo Wiring Syst Ltd Loaded power testing method of cable for radiowave noise preventing ignition
JP3307067B2 (en) * 1994-04-15 2002-07-24 東レ株式会社 Evaporated film and capacitor using the same
DE4425408A1 (en) * 1994-07-13 1996-01-18 Hoechst Ag cycloolefin

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DD241971A1 (en) * 1981-06-15 1987-01-07 Leuna Werke Veb POLYOLEFIN DIELECTRIC FOR CONDENSERS
JPH0750224A (en) * 1993-08-04 1995-02-21 Toray Ind Inc Metallized polypropylene film for capacitor
JPH0786088A (en) * 1993-09-09 1995-03-31 Shizuki Denki Seisakusho:Kk High voltage capacitor

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 95, no. 5 & JP 07 050224 A (TORAY IND INC), 21. Februar 1995 *
PATENT ABSTRACTS OF JAPAN vol. 95, no. 6 & JP 07 086088 A (SHIZUKI DENKI SEISAKUSHO KK), 31. März 1995 *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0844077A2 (en) * 1996-11-20 1998-05-27 Ticona GmbH Biaxially oriented film of cycloolefin polymers, process for preparing and its use
EP0844077A3 (en) * 1996-11-20 2001-03-28 Ticona GmbH Biaxially oriented film of cycloolefin polymers, process for preparing and its use
WO1998056836A2 (en) * 1997-06-13 1998-12-17 Ticona Gmbh Electrets
WO1998056836A3 (en) * 1997-06-13 1999-03-04 Ticona Gmbh Electrets
US6489033B1 (en) 1997-06-13 2002-12-03 Ticona Gmbh Electrets
EP0992531A1 (en) * 1997-06-20 2000-04-12 Nippon Zeon Co., Ltd. Polymer film and film capacitor
EP0992531A4 (en) * 1997-06-20 2001-02-07 Nippon Zeon Co Polymer film and film capacitor
US6630234B1 (en) 1997-06-20 2003-10-07 Nippo Zeon Co., Ltd. Polymeric film and film capacitor
WO2008057673A1 (en) * 2006-11-07 2008-05-15 Exxonmobil Oil Corporation Metallized multi-layer films, methods of manufacture and articles made therefrom
EP4046621A1 (en) 2021-02-17 2022-08-24 Sigmund Lindner GmbH Glitter and its use
EP4046622A1 (en) 2021-02-17 2022-08-24 Sigmund Lindner GmbH Glitter and its use

Also Published As

Publication number Publication date
TW352363B (en) 1999-02-11
JPH09123351A (en) 1997-05-13
DE19539093A1 (en) 1997-04-24
JP4046788B2 (en) 2008-02-13
US6551653B1 (en) 2003-04-22
DE59609324D1 (en) 2002-07-18
AU7027496A (en) 1997-04-24
AU723676B2 (en) 2000-08-31
CA2188235C (en) 2007-03-20
KR100467895B1 (en) 2005-04-28
KR970020418A (en) 1997-05-28
EP0769371A3 (en) 1999-02-10
EP0769371B1 (en) 2002-06-12
MX9604964A (en) 1997-06-28
CA2188235A1 (en) 1997-04-21

Similar Documents

Publication Publication Date Title
EP0844077B1 (en) Biaxially oriented film of cycloolefin polymers, process for preparing and its use
EP0769371B1 (en) Metallized polyolefin film
EP0610815B1 (en) Cyclo-olefin copolymer sheet
EP0610816B1 (en) Rigid foil based on cyclo-olefin copolymer
KR101863063B1 (en) Polypropylene film for capacitor
EP1141982B2 (en) Biaxially oriented sheeting for electrical insulation with improved shrinkage at elevated temperatures
EP2184312B1 (en) Biaxially oriented epoxidised fatty acid derivatives containing hydrolysis resistant polyester film and method for production of same and use of same
EP0497160B1 (en) Biaxially oriented polypropylene monolayer film
WO2008025796A1 (en) Biaxially oriented electrical insulating film
DE69829370T2 (en) Polymer film and layer capacitor
WO2008034694A1 (en) Biaxially oriented electrical insulating film
EP3615597A1 (en) Polyolefin film and use thereof
EP0318779B1 (en) Coextruded biaxially oriented multilayered film
EP0849073A2 (en) Oriented polyolefin multilayer film, sealable on both sides, its manufacture and its use
EP0622187B1 (en) Matt, biaxially oriented and highly-shrinkable multilayered polypropylene film, process for its manufacture and its use
MXPA96004964A (en) Metallized poliolef sheet
WO2002087877A1 (en) Polylactic acid (pla) film having good antistatic properties
EP0330019B1 (en) Raw materials and films with enhanced electrical properties made thereof
DE60114822T2 (en) PEN-PET-PEN-POLYMER FILM
EP0221450B1 (en) Process for making a long-life electrical capacitor
DE102020006588A1 (en) Capacitor containing biaxially stretched polypropylene cycloolefin polymer film as dielectric and use of this film
KR19990040267A (en) Exposure device

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): DE FR GB IT

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: TICONA GMBH

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: TICONA GMBH

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): CH DE ES FR GB IT LI NL

17P Request for examination filed

Effective date: 19990810

17Q First examination report despatched

Effective date: 20000714

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

RBV Designated contracting states (corrected)

Designated state(s): DE FR GB IT

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 59609324

Country of ref document: DE

Date of ref document: 20020718

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20020801

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: TICONA GMBH

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20030313

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20151022

Year of fee payment: 20

Ref country code: GB

Payment date: 20151021

Year of fee payment: 20

Ref country code: IT

Payment date: 20151028

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20151023

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 59609324

Country of ref document: DE

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20161009

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20161009