EP0767290A1 - Process for operating a power plant - Google Patents

Process for operating a power plant Download PDF

Info

Publication number
EP0767290A1
EP0767290A1 EP96810597A EP96810597A EP0767290A1 EP 0767290 A1 EP0767290 A1 EP 0767290A1 EP 96810597 A EP96810597 A EP 96810597A EP 96810597 A EP96810597 A EP 96810597A EP 0767290 A1 EP0767290 A1 EP 0767290A1
Authority
EP
European Patent Office
Prior art keywords
steam
turbine
heat exchange
stage
gas turbine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP96810597A
Other languages
German (de)
French (fr)
Other versions
EP0767290B1 (en
Inventor
Hans Ulrich Frutschi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alstom SA
Original Assignee
ABB Asea Brown Boveri Ltd
Asea Brown Boveri AB
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ABB Asea Brown Boveri Ltd, Asea Brown Boveri AB filed Critical ABB Asea Brown Boveri Ltd
Publication of EP0767290A1 publication Critical patent/EP0767290A1/en
Application granted granted Critical
Publication of EP0767290B1 publication Critical patent/EP0767290B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/10Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle
    • F01K23/106Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle with water evaporated or preheated at different pressures in exhaust boiler

Definitions

  • the present invention relates to a method for operating a power plant according to the preamble of claim 1.
  • a power plant which consists of a gas turbine group, a downstream heat recovery steam generator and a subsequent steam circuit
  • a maximum efficiency to provide a supercritical steam process in the steam circuit has become known from CH-480 535.
  • a mass flow of the gas turbine cycle medium is branched off and used recuperatively in the gas turbine for the purpose of optimal utilization of waste heat from the gas turbine group in the lower temperature range of the heat recovery steam generator.
  • Both the gas turbine and steam processes have sequential combustion.
  • this configuration leads to an undesirable complication in terms of design.
  • the invention seeks to remedy this.
  • the invention is based on the task of maximizing the steam circuit-side heat absorption in the lower temperature range of the heat recovery steam generator in a power plant of the type mentioned, in connection with a single-shaft gas turbine.
  • Fig. 1 shows a power plant, which consists of a gas turbine group I., a downstream of the gas turbine group I. Heat recovery steam generator II., And a heat recovery steam generator II. Downstream. consists.
  • the present gas turbine group I is based on sequential combustion.
  • the provision of the fuel necessary for operating the various combustion chambers, which cannot be seen in FIG. 1, can be accomplished, for example, by coal gasification cooperating with the gas turbine group.
  • the present gas turbine group which can also act as an autonomous unit, consists of a compressor 1, a first combustion chamber 2 connected downstream of the compressor, a first turbine 3 connected downstream of this combustion chamber 2, a second combustion chamber 4 connected downstream of this turbine 3 and a second combustion chamber 4 connected downstream of this Turbine 5.
  • the flow machines 1, 3, 5 mentioned have a uniform rotor shaft 39.
  • This rotor shaft 39 itself is preferably mounted on two bearings which are not visible in the figure and which are placed on the head side of the compressor 1 and downstream of the second turbine 5.
  • the compressor 1 can be divided into two or more partial compressors, not shown.
  • an intercooler is then connected downstream of the first partial compressor and upstream of the second partial compressor, in which the partially compressed air is intercooled becomes.
  • the heat generated in this intercooler which is also not shown, is returned to the process in an optimal, useful manner.
  • the sucked-in air 6 flows as compressed air 7 into a housing (not shown in any more detail) which includes the compressor outlet and the first turbine 3.
  • the first combustion chamber 2, which is preferably designed as a coherent annular combustion chamber, is also accommodated in this housing.
  • the compressed air 7 can be supplied to the first combustion chamber 2 from an air storage system, not shown.
  • the annular combustion chamber 2 has, on the head side, distributed over the circumference, a number of burners, not shown, which are preferably designed as premix burners. Diffusion burners can also be used here.
  • premix burners can also be used here.
  • premix burners in the circumferential direction of the annular combustion chamber 2 are concerned, such a one can deviate from the usual configuration of the same burners if necessary, and premix burners of different sizes can be used instead .
  • This is preferably done in such a way that a small premix burner of the same configuration is arranged between two large premix burners.
  • the large premix burners which have the function of main burners, are related to the small premix burners, which are the pilot burners of this combustion chamber, in terms of the size of the burner air flowing through them, i.e. the compressed air from the compressor 1, which is determined on a case-by-case basis .
  • the pilot burners work as independent premix burners in the entire load range of the combustion chamber, whereby the air ratio remains almost constant.
  • the Zuoder The main burner is switched off according to certain system-specific specifications. Because the pilot burners can be operated with the ideal mixture in the entire load range, the NOx emissions are very low even at partial load. With such a constellation, the circulating streamlines in the front area of the annular combustion chamber 2 come very close to the vortex centers of the pilot burners, so that ignition is only possible with these pilot burners.
  • the amount of fuel that is supplied via the pilot burner is increased until it is controlled, ie until the full amount of fuel is available.
  • the configuration is chosen so that this point corresponds to the respective load shedding conditions of the gas turbine group.
  • the main burners are also fully controlled. Because the configuration of "small" hot vortex centers between the "big” cooler vortex centers originating from the main burners, which is initiated by the pilot burners, turns out to be extremely unstable, even with main burners operated lean in the part-load range, a very good burnout is achieved with low CO and in addition to NOx emissions UHC emissions reached, ie the hot swirls of the pilot burner immediately penetrate the small swirls of the main burner.
  • the annular combustion chamber 2 can consist of a number of individual tubular combustion chambers, which are also arranged in an inclined ring, sometimes also helically, around the rotor axis.
  • This annular combustion chamber 2 regardless of its design, is and can be arranged geometrically so that it has practically no influence on the rotor length.
  • the hot gases 8 from this annular combustion chamber 2 act on the immediately downstream first turbine 3, whose caloric relaxing effect on the hot gases is deliberately kept to a minimum, ie this turbine 3 will therefore consist of no more than two rows of moving blades. In such a turbine 3 it will be necessary to equalize the pressure on the end faces for the purpose of stabilization of the axial thrust.
  • the hot gases 9, which are partially relaxed in the turbine 3 and flow directly into the second combustion chamber 4 have a very high temperature for the reasons explained, preferably it should be designed for the specific operation so that it is still around 1000 ° C.
  • This second combustion chamber 4 has essentially the shape of a coherent annular axial or quasi-axial ring cylinder.
  • This combustion chamber 4 can of course also consist of a number of axially, quasi-axially or helically arranged and self-contained combustion chambers.
  • a plurality of fuel lances not shown in the figure are arranged in the circumferential direction and radially of this annular cylinder.
  • This combustion chamber 4 has no burner: The combustion of a fuel 13 injected into the partially released hot gases 9 coming from the turbine 3 takes place here by self-ignition, provided the temperature level permits such an operating mode.
  • the outlet temperature of the partially released hot gases 9 from the turbine 3 must still be very high, as set out above around 1000 ° C., and of course also under part-load operation , which plays a causal role in the design of this turbine 2.
  • a number of elements are provided in this combustion chamber 4, preferably arranged in the circumferential direction on the inner and outer walls, which are preferably placed upstream of the fuel lances in the axial direction.
  • the task of these elements is to create vortices which induce a backflow zone, analogous to that in the premixing burners already mentioned. Since this is Combustion chamber 4, due to the axial arrangement and the overall length, is a high-speed combustion chamber in which the average speed of the working gases is greater than approximately 60 m / s, the vortex-generating elements must be designed to conform to the flow. On the inflow side, these should preferably consist of a tetrahedral shape with inclined surfaces.
  • the vortex generating elements can either be placed on the outer surface and / or on the inner surface. Of course, the vortex-generating elements can also be axially displaced from one another.
  • the outflow-side surface of the vortex-generating elements is essentially radial, so that a backflow zone is established from there.
  • the auto-ignition in the combustion chamber 4 must also be ensured in the transient load areas and in the partial-load area of the gas turbine group, i.e. auxiliary measures must be taken to ensure auto-ignition in the combustion chamber 4 even if the temperature of the gases in the area flexes the injection of the fuel should stop.
  • auxiliary measures In order to ensure reliable self-ignition of the gaseous fuel injected into the combustion chamber 4, a small amount of another fuel with a lower ignition temperature is added to it.
  • fuel oil is very suitable as an "auxiliary fuel”.
  • the liquid auxiliary fuel fulfills the task of acting as a fuse, so to speak, and enables self-ignition in the combustion chamber 4 even when the partially released hot gases 9 from the first turbine 3 have a temperature below the desired optimal level of 1000 ° C should.
  • This precautionary measure to provide fuel oil to ensure auto-ignition, is of course always particularly appropriate when the gas turbine group is operated with a greatly reduced load.
  • This precaution also makes a decisive contribution to the combustion chamber 4 being able to have a minimal axial length.
  • the short overall length of the combustion chamber 4, the effect of Swirl-generating elements for flame stabilization and the continuous guarantee of auto-ignition are therefore responsible for ensuring that the combustion takes place very quickly and that the fuel stays in the area of the hot flame front to a minimum.
  • the second combustion chamber 4, which runs between the outflow plane of the first turbine 3 and the inflow plane of the second turbine 5, has a minimal length. Furthermore, since the expansion of the hot gases in the first turbine 3 takes place over a few rows of moving blades for the reasons set out, a gas turbine group can be provided whose rotor shaft 39 can be supported on two bearings in a technically perfect manner due to its minimized length.
  • the power output of the turbomachines takes place via a generator 15 coupled to the compressor, which can also serve as a starter motor.
  • the exhaust gases 11, which still have a high caloric potential flow through a waste heat steam generator 15, in which steam is generated in various ways in heat exchange processes, which steam then forms the working medium of the steam circuit connected downstream.
  • the calorificly used exhaust gases then flow into the open as flue gases 38.
  • the feed water 34 which has a temperature of approximately 60 ° C. and a pressure of approximately 300 bar, is introduced into the waste heat steam generator 15 in A and is there to be thermally upgraded to steam of approximately 540 ° C.
  • the feed water heated to approx. 300 ° C in the economizer 15a is divided into two partial flows in point B.
  • the one, here larger, partial water flow of 100% is thermally processed in the subsequent tube bundle 15b to supercritical high-pressure steam 27.
  • the main part of the thermal energy is extracted from the exhaust gases 11 between the points G and H, which symbolize the effective distance of the tube bundle 15b mentioned.
  • a smaller partial water flow 35 is branched off in the area from point B and fed via a throttle element 25 to an evaporation bottle 26, the pressure level of which corresponds to the saturated steam pressure of 150-200 ° C.
  • the resulting steam 37 is fed to the medium-pressure steam turbine 17 at a suitable point.
  • the still hot residual water 36 which is only used as a heat carrier for the evaporation, is passed via a further control element 24 into a feed water tank and degasser 22, in which, in addition to the preheating of the condensate, another steam 33 is developed, which the low-pressure steam turbine 18 at a suitable point is fed.
  • the ultimately expanded steam 31a, 31b from this low-pressure steam turbine 18 is condensed in a water- or air-cooled condenser 20.
  • a condensate pump 21 acting downstream of this condenser 20 the condensate 32 is conveyed into the feed water tank and degasser 22 already mentioned, from where the circuit already described begins anew.
  • this can be done in more than two stages.
  • a separate one can of course be used in the heat recovery steam generator 15 Steam generating device are integrated, the steam either in the steam circuit III. managed, or in work in a separate expansion machine.
  • a partial flow of the exhaust gases can also be branched off and used in a separate waste heat boiler.
  • an ammonia / water mixture can preferably be used instead of water.
  • other fluids such as freon, propane, etc. can also be used.
  • a certain improvement in the use of the exhaust gases from the turbine down to a lower level can also be achieved in that the temperature level at the inlet of the waste heat steam generator is raised by an additional firing (not shown). However, this measure does not bring about any improvement in terms of the attainable efficiency.
  • FIG. 2 shows the H / T diagram, ie the course and the significant points of the feed water preheating and steam generation and steam superheating of a supercritical steam turbine process that have already been recognized in FIG. 1.
  • the respective reference symbols of this figure are described in more detail in the list of reference symbols below.
  • Fig. 1 which are related to the reproduction of this diagram, the following is added.
  • the feed water is introduced into A at, for example, 60 ° C at 300 bar, and it is to be thermally upgraded to F in steam of 540 ° C by means of gas turbine waste heat.
  • the solid line 40 shows the resulting course of the heat absorption and the temperature. Assuming that the exhaust gases from the last gas turbine have a temperature of 620 ° C, and under the condition of a minimum temperature jump of 20 ° C for the heat transfer, these exhaust gases could reach point J, ie in this example only to 200 ° C be usefully cooled. In order to remedy this disadvantage, between points A and B increases the quantity of feed water so far, in the example to 180%, that the cooling curve 11/38 of the exhaust gases at point H experiences a kink as resultant 41 and extends up to I, ie up to 100 ° C. This additional feed water flow is taken off at B and fed to an evaporation cascade (cf. FIG. 1) in such a way that the steam produced can be fed to the medium and low-pressure part of the steam turbine, as can also be seen in FIG. 1. The assessment of the remaining points is also evident from the description of FIG. 1.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

A power plant comprises a gas turbine group followed by a waste heat steam generator and then a steam circuit. The gas turbine group has at least one compressor, burner, turbine and generator. In one of the heat-exchanger stages of the waste heat steam generator (15) that operates in the lower temperature regime, a water quantity of more than 100% circulates. The excess above 100% branches off at the end of this stage and is evaporated in at least one pressure stage (26). The steam (37) is passed to a turbine (17). The still hot water (36) from the pressure stage goes to a feed water reservoir and deaerator (22), whence further steam arising is passed to another turbine (18).

Description

Technisches GebietTechnical field

Die vorliegende Erfindung betrifft ein Verfahren zum Betrieb einer Kraftwerksanlage gemäss Oberbegriff des Anspruchs 1.The present invention relates to a method for operating a power plant according to the preamble of claim 1.

Stand der TechnikState of the art

Bei einer Kraftwerksanlage, welche aus einer Gasturbogruppe, einem nachgeschalteten Abhitzedampferzeuger und einem anschliessenden Dampfkreislauf besteht, ist es zur Erzielung eines Maximums an Wirkungsgrad vorteilhaft, im Dampfkreislauf einen überkritischen Dampfprozess vorzusehen.
Eine solche Schaltung ist aus CH-480 535 bekanntgeworden. In dieser Schaltung wird zum Zweck einer optimalen Abwärmenutzung der Gasturbogruppe im unteren Temperaturbereich des Abhitzedampferzeugers ein Massenstrom des Gasturbinenkreislaufmittels abgezweigt und in der Gasturbine rekuperativ genutzt. Sowohl der Gasturbinen- als auch der Dampfprozess weisen eine sequentielle Verbrennung auf. Diese Konfiguration führt aber im Falle von modernen, vorzugsweise einwellig ausgelegten Gasturbinen zu einer unerwünschten Komplikation im konstruktiver Hinsicht.
In a power plant, which consists of a gas turbine group, a downstream heat recovery steam generator and a subsequent steam circuit, it is advantageous to achieve a maximum efficiency to provide a supercritical steam process in the steam circuit.
Such a circuit has become known from CH-480 535. In this circuit, a mass flow of the gas turbine cycle medium is branched off and used recuperatively in the gas turbine for the purpose of optimal utilization of waste heat from the gas turbine group in the lower temperature range of the heat recovery steam generator. Both the gas turbine and steam processes have sequential combustion. However, in the case of modern, preferably single-shaft, gas turbines, this configuration leads to an undesirable complication in terms of design.

Darstellung der ErfindungPresentation of the invention

Hier will die Erfindung Abhilfe schaffen. Der Erfindung, wie sie in den Ansprüchen gekennzeichnet ist, liegt die Aufgabe zugrunde bei einer Kraftwerksanlage der eingangs genannten Art die dampfkreislaufseitige Wärmeaufnahme im unteren Temperaturbereich des Abhitzedampferzeugers zu maximieren, dies im Zusammenhang mit einer einwelligen Gasturbine.The invention seeks to remedy this. The invention, as characterized in the claims, is based on the task of maximizing the steam circuit-side heat absorption in the lower temperature range of the heat recovery steam generator in a power plant of the type mentioned, in connection with a single-shaft gas turbine.

Die wesentlichen Vorteile der Erfindung sind darin zu sehen, dass trotz einfachster konstruktiver Auslegung eine bessere Nutzung der Abgase aus der letzten Turbine bis hinunter auf 100°C und tiefer bewerkstelligt wird, indem die dampfkreislaufseitige Wärmeaufnahme innerhalb einer ersten Wärmetauschstufe im unteren Temperaturbereich des Abhitzedampferzeugers, geläufig als Economizer bekannt, erhöht wird.The main advantages of the invention can be seen in the fact that, despite the simplest design, a better use of the exhaust gases from the last turbine down to 100 ° C and lower is achieved by the steam circuit side heat absorption within a first heat exchange stage in the lower temperature range of the heat recovery steam generator, common known as the economizer.

Vorteilhafte und zweckmässige Weiterbildungen der erfindungs-gemässen Aufgabenlösung sind in den weiteren Ansprüchen gekennzeichnet.Advantageous and expedient developments of the task solution according to the invention are characterized in the further claims.

Im folgenden wird anhand der Zeichnungen ein Ausführungsbeispiel der Erfindung näher erläutert. Alle für das unmittelbare Verständnis der Erfindung nicht erforderlichen Elemente sind fortgelassen worden. Die Strömungsrichtung der Medien ist mit Pfeilen angegeben. Gleiche Elemente sind in den verschiedenen Figuren mit den gleichen Bezugszeichen versehen.An exemplary embodiment of the invention is explained in more detail below with reference to the drawings. All elements not necessary for the immediate understanding of the invention have been omitted. The direction of flow of the media is indicated by arrows. Identical elements are provided with the same reference symbols in the various figures.

Kurze Beschreibung der ZeichnungenBrief description of the drawings

Es zeigt:

  • Fig. 1 eine Schaltung einer Kraftwerksanlage und
  • Fig. 2 ein H/T-Diagramm dieser Schaltung gemäss Fig. 1.
It shows:
  • Fig. 1 shows a circuit of a power plant and
  • FIG. 2 shows an H / T diagram of this circuit according to FIG. 1.

Wege zur Ausführung der Erfindung, gewerbliche VerwertbarkeitWays of carrying out the invention, commercial usability

Fig. 1 zeigt eine Kraftwerksanlage, welche aus einer Gasturbogruppe I., einem der Gasturbogruppe I. nachgeschalteten Abhitzedampferzeuger II., und einem diesem Abhitzedampferzeuger II. nachgeschalteten Dampfkreislauf III. besteht.Fig. 1 shows a power plant, which consists of a gas turbine group I., a downstream of the gas turbine group I. Heat recovery steam generator II., And a heat recovery steam generator II. Downstream. consists.

Die vorliegenden Gasturbogruppe I. ist auf einer sequentiellen Verbrennung aufgebaut. Die in Fig. 1 nicht ersichtliche Bereitstellung des zum Betrieb der verschiedenen Brennkammern notwendigen Brennstoffes kann beispielsweise durch eine mit der Gasturbogruppe zusammenwirkende Kohlenvergasung bewerkstelligt werden. Selbstverständlich ist es auch möglich, den zum Einsatz gelangenden Brennstoff aus einem Primärnetz zu beziehen. Wird die Versorgung eines gasförmigen Brennstoffes zum Betrieb der Gasturbogruppe über eine Pipeline bereitgestellt, so kann das Potential aus der Druck- und/oder Temperaturdifferenz zwischen Primärnetz und Verbrauchernetz für die Belange der Gasturbogruppe, oder allgemein der Schaltung, rekuperiert werden. Die vorliegende Gasturbogruppe, die auch als autonome Einheit wirken kann, besteht aus einem Verdichter 1, einer dem Verdichter nachgeschalteten ersten Brennkammer 2, einer dieser Brennkammer 2 nachgeschalteten ersten Turbine 3, einer dieser Turbine 3 nachgeschalteten zweiten Brennkammer 4 und einer dieser Brennkammer 4 nachgeschalteten zweiten Turbine 5. Die genannten Strömungsmaschinen 1, 3, 5 weisen eine einheitliche Rotorwelle 39 auf. Diese Rotorwelle 39 selbst ist vorzugsweise auf zwei in der Figur nicht ersichtlichen Lagern gelagert, welche kopfseitig des Verdichters 1 und stromab der zweiten Turbine 5 plaziert sind. Der Verdichter 1 kann je nach Auslegung, beispielsweise um die spezifische Leistung zu erhöhen, in zwei oder mehrere nicht gezeigte Teilverdichter unterteilt werden. Bei einer solchen Konstellation wird dann stromab des ersten Teilverdichters und stromauf des zweiten Teilverdichters ein Zwischenkühler geschaltet, in welchem die teilverdichtete Luft zwischengekühlt wird. Die in diesem ebenfalls nicht gezeigten Zwischenkühler anfallende Wärme wird optimal, also nutzbringend, in den Prozess rückgeführt. Die angesaugte Luft 6 strömt als verdichtete Luft 7 in ein nicht näher gezeigtes Gehäuse, das in sich den Verdichteraustritt und die erste Turbine 3 einschliesst. In diesem Gehäuse ist auch die erste Brennkammer 2 untergebracht, welche vorzugsweise als zusammenhängende Ringbrennkammer ausgebildet ist. Selbsverständlich kann die verdichtete Luft 7 zur ersten Brennkammer 2 aus einer nicht gezeigten Luftspeicheranlage beigestellt werden. Die Ringbrennkammer 2 weist kopfseitig, auf den Umfang verteilt, eine Anzahl von nicht näher gezeigten Brennern auf, welche vorzugsweise als Vormischbrenner ausgelegt sind. An sich können hier auch Diffusionsbrenner zum Einsatz gelangen. Im Sinne einer Reduzierung der Schadstoff-Emissionen aus dieser Verbrennung, insbesondere was die NOx-Emissionen betrifft, ist es indessen vorteilhaft, eine Anordnung von Vormischbrennern gemäss EP-PS-0 321 809 vorzusehen, wobei der Erfindungsgegenstand aus der genannten Druckschrift integrierender Bestandteil dieser Beschreibung ist, darüber hinaus auch die dort beschriebene Art der Zuführung eines Brennstoffes 12. Was die Anordnung der Vormischbrenner in Umfangsrichtung der Ringbrennkammer 2 anbelangt, so kann eine solche bei Bedarf von der üblichen Konfiguration gleicher Brenner abweichen, und stattdessen können unterschiedlich grosse Vormischbrenner zum Einsatz kommen. Dies geschieht vorzugsweise so, dass jeweils zwischen zwei grossen Vormischbrennern ein kleiner Vormischbrenner gleicher Konfiguration disponiert ist. Die grossen Vormischbrenner, welche die Funktion von Hauptbrennern zu erfüllen haben, stehen zu den kleinen Vormischbrennern, welche die Pilotbrenner dieser Brennkammer sind, bezüglich der sie durchströmenden Brennerluft, also der verdichteten Luft aus dem Verdichter 1, in einem Grössenverhältnis zueinander, das fallweise festgelegt wird. Im gesamten Lastbereich der Brennkammer arbeiten die Pilotbrenner als selbstgängige Vormischbrenner, wobei die Luftzahl fast konstant bleibt. Die Zuoder Abschaltung der Hauptbrenner erfolgt nach bestimmten anlagespezifischen Vorgaben. Weil die Pilotbrenner im ganzen Lastbereich bei idealem Gemisch gefahren werden können, sind die NOx-Emissionen auch bei Teillast sehr gering. Bei einer solchen Konstellation kommen die umlaufenden Stromlinien im Frontbereich der Ringbrennkammer 2 sehr nahe an die Wirbelzentren der Pilotbrenner heran, so dass eine Zündung an sich nur mit diesen Pilotbrennern möglich ist. Beim Hochfahren wird die Brennstoffmenge, die über die Pilotbrenner zugeführt wird, soweit gesteigert, bis diese ausgesteuert sind, d.h. bis die volle Brennstoffmenge zur Verfügung steht. Die Konfiguration wird so gewählt, dass dieser Punkt der jeweiligen Lastabwurfbedingungen der Gasturbogruppe entspricht. Die weitere Leistungssteigerung erfolgt dann über die Hauptbrenner. Bei der Spitzenlast der Gasturbogruppe sind sonach auch die Hauptbrenner voll ausgesteuert. Weil die durch die Pilotbrenner initiierte Konfiguration "kleiner" heisser Wirbelzentren zwischen den von den Hauptbrennern stammenden "grossen" kühleren Wirbelzentren extrem instabil ausfällt, wird auch bei mager betriebenen Hauptbrennern im Teillastbereich ein sehr guter Ausbrand mit zusätzlich zu den NOx-Emissionen niedrigen CO- und UHC-Emissionen erreicht, d.h. die heissen Wirbel der Pilotbrenner dringen sofort in die kleinen Wirbel der Hauptbrenner ein. Selbstverständlich kann die Ringbrennkammer 2 aus einer Anzahl einzelner rohrförmiger Brennräume bestehen, welche ebenfalls schrägringförmig, bisweilen auch schraubenförmig, um die Rotorachse angeordnet sind. Diese Ringbrennkammer 2, unabhängig von ihrer Auslegung, wird und kann geometrisch so angeordnet werden, dass sie auf die Rotorlänge praktisch keinen Einfluss ausübt. Die Heissgasen 8 aus dieser Ringbrennkammer 2 beaufschlagen die unmittelbar nachgeschaltete erste Turbine 3, deren kalorisch entspannende Wirkung auf die Heissgase bewusst minimal gehalten wird, d.h. diese Turbine 3 wird demnach aus nicht mehr als zwei Laufschaufelreihen bestehen. Bei einer solchen Turbine 3 wird nötig sein, einen Druckausgleich an den Stirnflächen zwecks Stabilisierung des Axialschubes vorzusehen. Die in der Turbine 3 teilentspannten Heissgase 9, welche unmittelbar in die zweite Brennkammer 4 strömen, weisen aus dargelegten Gründen eine recht hohe Temperatur auf, vorzugsweise ist sie betriebsspezifisch so auszulegen, dass sie sicher noch um 1000°C beträgt. Diese zweite Brennkammer 4 hat im wesentlichen die Form eines zusammenhängenden ringförmigen axialen oder quasi-axialen Ringzylinders. Diese Brennkammer 4 kann selbstverständlich auch aus einer Anzahl axial, quasi-axial oder schraubenförmig angeordneten und in sich abgeschlossenen Brennräumen bestehen. Was die Konfiguration der ringförmigen, aus einem einzigen Brennraum bestehenden Brennkammer 4 betrifft, so sind in Umfangsrichtung und radial dieses ringförmigen Zylinders mehrere in der Figur nicht näher gezeigte Brennstofflanzen disponiert. Diese Brennkammer 4 weist keinen Brenner auf: Die Verbrennung eines in die aus der Turbine 3 kommenden teilentspannten Heissgase 9 eingedüsten Brennstoffes 13 geschieht hier durch Selbstzündung, soweit freilich das Temperaturniveau eine solche Betriebsart zulässt. Ausgehend davon, dass die Brennkammer 4 mit einem gasförmigen Brennstoff, also beispielsweise Erdgas, betrieben wird, muss die Austrittstemperatur der teilentspannten Heissgase 9 aus der Turbine 3 noch sehr hoch sein, wie oben dargelegt um die 1000°C, und dies selbstverständlich auch bei Teillastbetrieb, was auf die Auslegung dieser Turbine 2 eine ursächliche Rolle spielt. Um die Betriebssicherheit und einen hohen Wirkungsgrad bei einer auf Selbstzündung ausgelegten Brennkammer zu gewährleisten, ist es eminent wichtig, dass die Flammenfront ortsmässig stabil bleibt. Zu diesem Zweck werden in dieser Brennkammer 4, vorzugsweise an der Innen- und Aussenwand in Umfangsrichtung disponiert, eine Reihe von nicht näher gezeigten Elementen vorgesehen, welche in axialer Richtung vorzugsweise stromauf der Brennstofflanzen plaziert sind. Die Aufgabe dieser Elemente besteht darin, Wirbel zu erzeugen, welche eine Rückströmzone, analog derjenige in den bereits erwähnten Vormischbrennern, induzieren. Da es sich bei dieser Brennkammer 4, aufgrund der axialen Anordnung und der Baulänge, um eine Hochgeschwindigkeitsbrennkammer handelt, bei welcher die mittlere Geschwindigkeit der Arbeitsgase grösser ca. 60 m/s ist, müssen die wirbelerzeugenden Elemente strömungskonform ausgebildet werden. Anströmungsseitig sollen diese vorzugsweise aus einer tetraederförmigen Form mit anströmungsschiefen Flächen bestehen. Die wirbelerzeugenden Elemente können entweder an der Aussenfläche und/oder an der Innenfläche plaziert sein. Selbstverständlich können die wirbelerzeugenden Elemente auch axial zueinander verschoben sein. Die abströmungsseitige Fläche der wirbelerzeugenden Elemente ist im wesentlichen radial ausgebildet, so dass sich ab dort eine Rückströmzone einstellt. Die Selbstzündung in der Brennkammer 4 muss indessen auch in den transienten Lastbereichen sowie im Teillastbereich der Gasturbogruppe gesichert bleiben, d.h., es müssen Hilfsvorkehrungen vorgesehen werden, welche die Selbstzündung in der Brennkammer 4 auch dann sicherstellen, wenn sich eine Flexion der Temperatur der Gase im Bereich der Eindüsung des Brennstoffes einstellen sollte. Um eine sichere Selbstzündung des in die Brennkammer 4 eingedüsten gasförmigen Brennstoffes zu gewährleisten, wird diesem eine kleine Menge eines anderen Brennstoffes mit einer niedrigeren Zündtemperatur beigegeben. Als "Hilfsbrennstoff" eignet sich hier beispielsweise Brennöl sehr gut. Der flüssige Hilfsbrennstoff, entsprechend eingedüst, erfüllt die Aufgabe, sozusagen als Zündschnur zu wirken, und ermöglicht auch dann eine Selbstzündung in der Brennkammer 4, wenn die teilentspannten Heissgase 9 aus der ersten Turbine 3 eine Temperatur unterhalb des angestrebten optimalen Niveaus von 1000°C aufweisen sollten. Diese Vorkehrung, Brennöl zur Sicherstellung einer Selbstzündung vorzusehen, erweist sich freilich immer dann als besonders angebracht, wenn die Gasturbogruppe mit stark reduzierter Last betrieben wird. Diese Vorkehrung trägt des weiteren entscheidend dazu bei, dass die Brennkammer 4 eine minimale axiale Länge aufweisen kann. Die kurze Baulänge der Brennkammer 4, die Wirkung der wirbelerzeugenden Elemente zur Flammenstabilisierung sowie die fortwährende Sicherstellung der Selbstzündung sind demnach dafür verantwortlich, dass die Verbrennung sehr rasch erfolgt, und die Verweilzeit des Brennstoffes im Bereich der heissen Flammenfront minimal bleibt. Eine unmittelbar verbrennungsspezifisch messbare Wirkung hieraus betrifft die NOx-Emissionen, welche eine Minimierung erfahren, dergestalt, dass sie nunmehr kein Thema mehr bilden. Diese Ausgangslage ermöglicht ferner, den Ort der Verbrennung klar zu definieren, was sich in einer optimierten Kühlung der Strukturen dieser Brennkammer 4 niederschlägt. Die in der Brennkammer 4 aufbereiteten Heissgase 10 beaufschlagen anschliessend eine nachgeschaltete zweite Turbine 5. Die thermodynamischen Kennwerte der Gasturbogruppe können so ausgelegt werden, dass die Abgase 11 aus der zweiten Turbine 5 noch soviel kalorisches Potential aufweisen, um damit eine hier anhand eines Abhitzedampferzeugers 15 dargestellte Dampferzeugungsstufe II. und Dampfkreislauf III. zu betreiben. Wie bereits bei der Beschreibung der Ringbrennkammer 2 hingewiesen wurde, ist diese geometrisch so angeordnet, dass sie auf die Rotorlänge der Gasturbogruppe praktisch keinen Einfluss ausübt. Des weiteren ist feststellbar, dass die zweite zwischen Abströmungsebene der ersten Turbine 3 und Anströmungsebene der zweiten Turbine 5 verlaufende Brennkammer 4 eine minimale Länge aufweist. Da ferner die Entspannung der Heissgase in der ersten Turbine 3, aus dargelegten Gründen, über wenige Laufschaufelreihen erfolgt, lässt sich eine Gasturbogruppe bereitstellen, deren Rotorwelle 39 aufgrund ihrer minimierten Länge technisch einwandfrei auf zwei Lagern abstützbar ist. Die Leistungsabgabe der Strömungsmaschinen geschieht über einen verdichterseitig angekoppelten Generator 15, der auch als Anwurfmotor dienen kann. Nach Entspannung in der Turbine 5 durchströmen die noch mit einem hohen kalorischen Potential versehenen Abgase 11 einen Abhitzedampferzeuger 15, in welchem in Wärmetauschverfahren verschiedentlich Dampf erzeugt wird, der dann das Arbeitsmedium des nachgeschalteten Dampfkreislaufes bildet. Die kalorisch ausgenutzten Abgase strömen anschliessend als Rauchgase 38 ins Freie.The present gas turbine group I is based on sequential combustion. The provision of the fuel necessary for operating the various combustion chambers, which cannot be seen in FIG. 1, can be accomplished, for example, by coal gasification cooperating with the gas turbine group. Of course, it is also possible to obtain the fuel used from a primary network. If the supply of a gaseous fuel for operating the gas turbine group is provided via a pipeline, the potential from the pressure and / or temperature difference between the primary network and the consumer network can be recuperated for the needs of the gas turbine group, or in general the circuit. The present gas turbine group, which can also act as an autonomous unit, consists of a compressor 1, a first combustion chamber 2 connected downstream of the compressor, a first turbine 3 connected downstream of this combustion chamber 2, a second combustion chamber 4 connected downstream of this turbine 3 and a second combustion chamber 4 connected downstream of this Turbine 5. The flow machines 1, 3, 5 mentioned have a uniform rotor shaft 39. This rotor shaft 39 itself is preferably mounted on two bearings which are not visible in the figure and which are placed on the head side of the compressor 1 and downstream of the second turbine 5. Depending on the design, for example to increase the specific output, the compressor 1 can be divided into two or more partial compressors, not shown. In such a constellation, an intercooler is then connected downstream of the first partial compressor and upstream of the second partial compressor, in which the partially compressed air is intercooled becomes. The heat generated in this intercooler, which is also not shown, is returned to the process in an optimal, useful manner. The sucked-in air 6 flows as compressed air 7 into a housing (not shown in any more detail) which includes the compressor outlet and the first turbine 3. The first combustion chamber 2, which is preferably designed as a coherent annular combustion chamber, is also accommodated in this housing. Of course, the compressed air 7 can be supplied to the first combustion chamber 2 from an air storage system, not shown. The annular combustion chamber 2 has, on the head side, distributed over the circumference, a number of burners, not shown, which are preferably designed as premix burners. Diffusion burners can also be used here. In order to reduce the pollutant emissions from this combustion, particularly as far as the NOx emissions are concerned, it is, however, advantageous to provide an arrangement of premix burners in accordance with EP-PS-0 321 809, the subject matter of the invention from the cited publication being an integral part of this description is also the way of supplying a fuel 12 described there. As far as the arrangement of the premix burners in the circumferential direction of the annular combustion chamber 2 is concerned, such a one can deviate from the usual configuration of the same burners if necessary, and premix burners of different sizes can be used instead . This is preferably done in such a way that a small premix burner of the same configuration is arranged between two large premix burners. The large premix burners, which have the function of main burners, are related to the small premix burners, which are the pilot burners of this combustion chamber, in terms of the size of the burner air flowing through them, i.e. the compressed air from the compressor 1, which is determined on a case-by-case basis . The pilot burners work as independent premix burners in the entire load range of the combustion chamber, whereby the air ratio remains almost constant. The Zuoder The main burner is switched off according to certain system-specific specifications. Because the pilot burners can be operated with the ideal mixture in the entire load range, the NOx emissions are very low even at partial load. With such a constellation, the circulating streamlines in the front area of the annular combustion chamber 2 come very close to the vortex centers of the pilot burners, so that ignition is only possible with these pilot burners. When starting up, the amount of fuel that is supplied via the pilot burner is increased until it is controlled, ie until the full amount of fuel is available. The configuration is chosen so that this point corresponds to the respective load shedding conditions of the gas turbine group. The further increase in output then takes place via the main burner. At the peak load of the gas turbine group, the main burners are also fully controlled. Because the configuration of "small" hot vortex centers between the "big" cooler vortex centers originating from the main burners, which is initiated by the pilot burners, turns out to be extremely unstable, even with main burners operated lean in the part-load range, a very good burnout is achieved with low CO and in addition to NOx emissions UHC emissions reached, ie the hot swirls of the pilot burner immediately penetrate the small swirls of the main burner. Of course, the annular combustion chamber 2 can consist of a number of individual tubular combustion chambers, which are also arranged in an inclined ring, sometimes also helically, around the rotor axis. This annular combustion chamber 2, regardless of its design, is and can be arranged geometrically so that it has practically no influence on the rotor length. The hot gases 8 from this annular combustion chamber 2 act on the immediately downstream first turbine 3, whose caloric relaxing effect on the hot gases is deliberately kept to a minimum, ie this turbine 3 will therefore consist of no more than two rows of moving blades. In such a turbine 3 it will be necessary to equalize the pressure on the end faces for the purpose of stabilization of the axial thrust. The hot gases 9, which are partially relaxed in the turbine 3 and flow directly into the second combustion chamber 4, have a very high temperature for the reasons explained, preferably it should be designed for the specific operation so that it is still around 1000 ° C. This second combustion chamber 4 has essentially the shape of a coherent annular axial or quasi-axial ring cylinder. This combustion chamber 4 can of course also consist of a number of axially, quasi-axially or helically arranged and self-contained combustion chambers. As far as the configuration of the annular combustion chamber 4 consisting of a single combustion chamber is concerned, a plurality of fuel lances not shown in the figure are arranged in the circumferential direction and radially of this annular cylinder. This combustion chamber 4 has no burner: The combustion of a fuel 13 injected into the partially released hot gases 9 coming from the turbine 3 takes place here by self-ignition, provided the temperature level permits such an operating mode. Assuming that the combustion chamber 4 is operated with a gaseous fuel, for example natural gas, the outlet temperature of the partially released hot gases 9 from the turbine 3 must still be very high, as set out above around 1000 ° C., and of course also under part-load operation , which plays a causal role in the design of this turbine 2. In order to ensure operational safety and a high degree of efficiency in a combustion chamber designed for self-ignition, it is extremely important that the flame front remains locally stable. For this purpose, a number of elements (not shown in detail) are provided in this combustion chamber 4, preferably arranged in the circumferential direction on the inner and outer walls, which are preferably placed upstream of the fuel lances in the axial direction. The task of these elements is to create vortices which induce a backflow zone, analogous to that in the premixing burners already mentioned. Since this is Combustion chamber 4, due to the axial arrangement and the overall length, is a high-speed combustion chamber in which the average speed of the working gases is greater than approximately 60 m / s, the vortex-generating elements must be designed to conform to the flow. On the inflow side, these should preferably consist of a tetrahedral shape with inclined surfaces. The vortex generating elements can either be placed on the outer surface and / or on the inner surface. Of course, the vortex-generating elements can also be axially displaced from one another. The outflow-side surface of the vortex-generating elements is essentially radial, so that a backflow zone is established from there. However, the auto-ignition in the combustion chamber 4 must also be ensured in the transient load areas and in the partial-load area of the gas turbine group, i.e. auxiliary measures must be taken to ensure auto-ignition in the combustion chamber 4 even if the temperature of the gases in the area flexes the injection of the fuel should stop. In order to ensure reliable self-ignition of the gaseous fuel injected into the combustion chamber 4, a small amount of another fuel with a lower ignition temperature is added to it. For example, fuel oil is very suitable as an "auxiliary fuel". The liquid auxiliary fuel, appropriately injected, fulfills the task of acting as a fuse, so to speak, and enables self-ignition in the combustion chamber 4 even when the partially released hot gases 9 from the first turbine 3 have a temperature below the desired optimal level of 1000 ° C should. This precautionary measure, to provide fuel oil to ensure auto-ignition, is of course always particularly appropriate when the gas turbine group is operated with a greatly reduced load. This precaution also makes a decisive contribution to the combustion chamber 4 being able to have a minimal axial length. The short overall length of the combustion chamber 4, the effect of Swirl-generating elements for flame stabilization and the continuous guarantee of auto-ignition are therefore responsible for ensuring that the combustion takes place very quickly and that the fuel stays in the area of the hot flame front to a minimum. An effect that can be measured directly in terms of combustion relates to NOx emissions, which are minimized in such a way that they are no longer an issue. This starting position also enables the location of the combustion to be clearly defined, which is reflected in an optimized cooling of the structures of this combustion chamber 4. The hot gases 10 processed in the combustion chamber 4 then act on a downstream second turbine 5. The thermodynamic characteristics of the gas turbine group can be designed so that the exhaust gases 11 from the second turbine 5 still have so much caloric potential so that they are shown here using a heat recovery steam generator 15 Steam generation stage II. And steam cycle III. to operate. As was already pointed out in the description of the annular combustion chamber 2, it is arranged geometrically in such a way that it has practically no influence on the rotor length of the gas turbine group. It can also be determined that the second combustion chamber 4, which runs between the outflow plane of the first turbine 3 and the inflow plane of the second turbine 5, has a minimal length. Furthermore, since the expansion of the hot gases in the first turbine 3 takes place over a few rows of moving blades for the reasons set out, a gas turbine group can be provided whose rotor shaft 39 can be supported on two bearings in a technically perfect manner due to its minimized length. The power output of the turbomachines takes place via a generator 15 coupled to the compressor, which can also serve as a starter motor. After expansion in the turbine 5, the exhaust gases 11, which still have a high caloric potential, flow through a waste heat steam generator 15, in which steam is generated in various ways in heat exchange processes, which steam then forms the working medium of the steam circuit connected downstream. The calorificly used exhaust gases then flow into the open as flue gases 38.

Unter der Annahme, dass die Abgase 11, die bei G in den Abhitzedampferzeuger 15 gelangen, dessen Funktionsweise weiter unten beschrieben wird, wobei zum besseren Verständnis der Weg des in den Abhitzedampferzeuger 15 einströmenden und von einer Pumpe 23 geförderten Speisewassers 34 verfolgt wird, eine Temperatur von ca. 620°C aufweisen, und unter der Bedingung eines minimalen Temperatursprunges von 20°C für den Wärmeübergang, könnten diese Abgase nur bis auf 200°C nutzbringend abgekühlt werden. Um hier diesen Nachteil zu beheben, wird zwischen den Punkten A, nämlich Eingang des Speisewasser 34 in den Abhitzedampferzeuger 15, und B, Abzweigung am Ende der Behandlung innerhalb einer Economizerstufe 15a, die Menge des Speisewassers 34 soweit erhöht, im Beispiel auf 180%, dass die Abkühlungsgerade (Vgl. Fig. 2, Pos 11/38) der Abgase im Punkt H, nämlich unmittelbar vor der Abzweigung B, als Resultante einen Knick erfährt (Vgl. Fig. 2, Pos. 41), der bis auf 100°C reicht. Im Zusammenhang mit der prozentualen Menge des Speisewassers gilt die Relation, dass 100% jene Nennwassermenge fixiert, die in Abhängigkeit zu der von den Abgasen 11 angebotenen Energie steht.Assuming that the exhaust gases 11, which reach the waste heat steam generator 15 at G, the mode of operation of which is described below, the path of the feed water 34 flowing into the waste heat steam generator 15 and being conveyed by a pump 23 being tracked, a temperature of approximately 620 ° C, and under the condition of a minimal temperature jump of 20 ° C for heat transfer, these exhaust gases could only be cooled to 200 ° C in a useful way. In order to remedy this disadvantage here, the amount of feed water 34 is increased so far between points A, namely entry of feed water 34 into heat recovery steam generator 15, and B, branching off at the end of treatment within an economizer stage 15 a, in the example to 180%, that the cooling line (see FIG. 2, item 11/38) of the exhaust gases at point H, namely immediately before the branch B, experiences a kink as a result (see FIG. 2, item 41), which is up to 100 ° C is enough. In connection with the percentage amount of feed water, the relation applies that 100% fixes the nominal amount of water that is dependent on the energy offered by the exhaust gases 11.

Das Speisewasser 34, das eine Temperatur von ca. 60°C bei einem Druck von ca. 300 bar aufweist, wird in A in den Abhitzedampferzeuger 15 eingeleitet und soll dort zu Dampf von ca. 540°C thermisch aufgewertet werden. Die im Economizer 15a auf ca. 300°C aufgeheizte Speisewasser wird in Punkt B in zwei Teilströme aufgeteilt. Der eine, hier grössere Teilwasserstrom von 100% wird im darauffolgenden Rohrbündel 15b zu überkritischem Hochdruckdampf 27 thermisch aufbereitet. Dadurch wird den Abgasen 11 zwischen den Punkten G und H, welche die Wirkungsstrecke des genannten Rohrbündels 15b versinnbildlichen, der Hauptteil der Wärmeenergie entzogen. Nach einer ersten Expansion in einer Hochdruckdampfturbine 16 wird dieser Dampf 28 mit der verbliebenen Energie zwischen den Punkten D und E, welche die Wirkungsstrecke eines weiteren Rohrbündels 15c im Abhitzedampferzeuger 15 versinnbildlicht, zwischenüberhitzt und als Mitteldruckdampf 29 einer Mitteldruckdampfturbine 17 zugeführt. Die Restexpansion des Abdampfes 30 aus der Mitteldruckdampfturbine 17 erfolgt dann in einer Niederdruckdampfturbine 18, welche mit einem weiteren Generator 19 gekoppelt ist. Es ist auch möglich, durch Ankopplung an die Welle 39 die Leistung auf den Generator 14 zu übertragen.The feed water 34, which has a temperature of approximately 60 ° C. and a pressure of approximately 300 bar, is introduced into the waste heat steam generator 15 in A and is there to be thermally upgraded to steam of approximately 540 ° C. The feed water heated to approx. 300 ° C in the economizer 15a is divided into two partial flows in point B. The one, here larger, partial water flow of 100% is thermally processed in the subsequent tube bundle 15b to supercritical high-pressure steam 27. As a result, the main part of the thermal energy is extracted from the exhaust gases 11 between the points G and H, which symbolize the effective distance of the tube bundle 15b mentioned. After a first expansion in a high pressure steam turbine 16 this steam 28 with the remaining energy between points D and E, which symbolizes the effective distance of a further tube bundle 15c in the waste heat steam generator 15, reheated and fed as medium pressure steam 29 to a medium pressure steam turbine 17. The residual expansion of the exhaust steam 30 from the medium-pressure steam turbine 17 then takes place in a low-pressure steam turbine 18, which is coupled to a further generator 19. It is also possible to transmit the power to the generator 14 by coupling to the shaft 39.

Ein kleinerer Teilwasserstrom 35 wird im Bereich von Punkt B abgezweigt, und über ein Drosselorgan 25 einer Ausdampfflasche 26 zugeführt, deren Druckniveau dem Sattdampfdruck von 150-200°C entspricht. Der hievon entstandene Dampf 37 wird der Mitteldruckdampfturbine 17 an passender Stelle zugeführt. Das lediglich als Wärmeträger für die Ausdampfung gediente noch heisse Restwasser 36 wird über ein weiteres Regelorgan 24 in einen Speisewasserbehälter und Entgaser 22 geleitet, in welchem es neben der Vorwärmung des Kondensats auch noch ein weiteres Dampf 33 entwickelt wird, der der Niderdruckdampfturbine 18 an geeigneter Stelle zugeführt wird.A smaller partial water flow 35 is branched off in the area from point B and fed via a throttle element 25 to an evaporation bottle 26, the pressure level of which corresponds to the saturated steam pressure of 150-200 ° C. The resulting steam 37 is fed to the medium-pressure steam turbine 17 at a suitable point. The still hot residual water 36, which is only used as a heat carrier for the evaporation, is passed via a further control element 24 into a feed water tank and degasser 22, in which, in addition to the preheating of the condensate, another steam 33 is developed, which the low-pressure steam turbine 18 at a suitable point is fed.

Der schlussendlich entspannte Dampf 31a, 31b aus dieser Niederdruckdampfturbine 18 wird in einem wasser- oder luftgekühlten Kondensator 20 kondensiert. Durch eine stromab dieses Kondensators 20 wirkende Kondensatpumpe 21 wird das Kondensat 32 in den bereits genannten Speisewasserbehälter und Entgaser 22 gefördert, von wo aus der bereits beschriebenen Kreislauf von Neuem anfängt.The ultimately expanded steam 31a, 31b from this low-pressure steam turbine 18 is condensed in a water- or air-cooled condenser 20. By means of a condensate pump 21 acting downstream of this condenser 20, the condensate 32 is conveyed into the feed water tank and degasser 22 already mentioned, from where the circuit already described begins anew.

Zur verbesserten Exergienutzung der beschriebenen Ausdampfkaskade kann diese in mehr als zwei Stufen erfolgen.To improve the use of exergy in the evaporation cascade described, this can be done in more than two stages.

Um eine gute Nutzung der Abgase 11 zu erzielen, kann selbstverständlich im Abhitzedampferzeuger 15 eine separate Dampferzeugungseinrichtung integriert werden, deren Dampf entweder in den Dampfkreislauf III. geleitet, oder in einer separaten Expansionsmaschine in Arbeit umgesetzt wird. Es kann aber auch ein Teilstrom der Abgase abgezweigt und in einem separaten Abhitzekessel verwertet werden. Statt Wasser kann in diesem Fall vorzugsweise ein Ammoniak/Wasser-Gemisch zur Anwendung gelangen. Aber auch andere Fluide , wie beispielsweise Freon, Propan, etc. sind einsetzbar. Eine gewisse Verbesserung der Nutzung der Abgase aus der Turbine bis zu einem tieferen Niveau ist auch dadurch realisierbar, dass durch eine nicht näher gezeigte Zusatzfeuerung im Abhitzedampferzeuger das Temperaturniveau an dessen Eintritt angehoben wird. Diese Massnahme bringt aber hinsichtlich des erreichbaren Wirkungsgrades keine Verbesserung mit sich.In order to achieve a good use of the exhaust gases 11, a separate one can of course be used in the heat recovery steam generator 15 Steam generating device are integrated, the steam either in the steam circuit III. managed, or in work in a separate expansion machine. However, a partial flow of the exhaust gases can also be branched off and used in a separate waste heat boiler. In this case, an ammonia / water mixture can preferably be used instead of water. However, other fluids such as freon, propane, etc. can also be used. A certain improvement in the use of the exhaust gases from the turbine down to a lower level can also be achieved in that the temperature level at the inlet of the waste heat steam generator is raised by an additional firing (not shown). However, this measure does not bring about any improvement in terms of the attainable efficiency.

Fig. 2 zeigt das H/T-Diagramm, d.h. den Verlauf und die in Fig. 1 bereits gewürdigten signifikanten Punkten der Speisewasservorwärmung und Dampferzeugung sowie Dampfzwischenüberhitzung eines überkritischen Dampfturbinenprozesses. In der nachfolgenden Bezugszeichenliste werden die jeweiligen Bezugszeichen dieser Figur näher umschrieben. In Ergänzung zu den Ausführungen unter Fig. 1, die im Zusammenhang mit der Wiedergabe dieses Diagramms stehen, wird noch folgendes ergänzt. Das Speisewasser wird in A mit beispielsweise 60°C bei 300 bar eingeleitet, und es soll bis F in Dampf von 540°C mittels Gasturbinenabwärme thermisch aufgewertet werden. nach einer ersten Expansionsstufe in der Hochdruckdampfturbine,' welche bis auf 300°C führt, soll eine Zwischenüberhitzung von D nach E, also auch auf 540°C erfolgen. Die durchzogene Linie 40 zeigt den resultierenden Verlauf der Wärmeaufnahme und der Temperatur. Unter Annahme, dass die Abgase aus der letzten Gasturbine eine Temperatur von 620°C aufweisen, und unter der bedingung eines minimalen Temperatursprunges von 20°C für den Wärmeübergang, könnten diese Abgase bis zum Punkt J, d.h. hier im Beipiel nur auf 200°C nutzbringend abgekühlt werden. Um diesen Nachteil zu beheben, wird zwischen den Punkten A und B die Speisewassermenge soweit erhöht, im Beispiel auf 180%, dass die Abkühlungskurve 11/38 der Abgase im Punkt H als Resultante 41 einen Knick erfährt, und bis zu I, d.h. bis auf 100°C reicht. Dieser zusätzliche Speisewasserstrom wird bei B abgenommen und einer Ausdampfkaskade (Vgl. Fig. 1) so zugeleitet, dass der enstehende Dampf dem Mittel- und Niederdruckteil der Dampfturbine zugeführt werden kann, wie dies ebenfalls aus Fig. 1 hervorgeht. Die Würdigung der restlichen Punkte geht ebenfalls aus der Beschreibung von Fig. 1 hervor.FIG. 2 shows the H / T diagram, ie the course and the significant points of the feed water preheating and steam generation and steam superheating of a supercritical steam turbine process that have already been recognized in FIG. 1. The respective reference symbols of this figure are described in more detail in the list of reference symbols below. In addition to the explanations under Fig. 1, which are related to the reproduction of this diagram, the following is added. The feed water is introduced into A at, for example, 60 ° C at 300 bar, and it is to be thermally upgraded to F in steam of 540 ° C by means of gas turbine waste heat. After a first expansion stage in the high-pressure steam turbine, which leads up to 300 ° C, there should be an intermediate overheating from D to E, i.e. also to 540 ° C. The solid line 40 shows the resulting course of the heat absorption and the temperature. Assuming that the exhaust gases from the last gas turbine have a temperature of 620 ° C, and under the condition of a minimum temperature jump of 20 ° C for the heat transfer, these exhaust gases could reach point J, ie in this example only to 200 ° C be usefully cooled. In order to remedy this disadvantage, between points A and B increases the quantity of feed water so far, in the example to 180%, that the cooling curve 11/38 of the exhaust gases at point H experiences a kink as resultant 41 and extends up to I, ie up to 100 ° C. This additional feed water flow is taken off at B and fed to an evaporation cascade (cf. FIG. 1) in such a way that the steam produced can be fed to the medium and low-pressure part of the steam turbine, as can also be seen in FIG. 1. The assessment of the remaining points is also evident from the description of FIG. 1.

BezugszeichenlisteReference list

I.I.
GasturbogruppeGas turbine group
II.II.
DampferzeugungsstufeSteam generation stage
III.III.
DampfkreislaufSteam cycle
11
Verdichtercompressor
22nd
Erste BrennkammerFirst combustion chamber
33rd
Erste TurbineFirst turbine
44th
Zweite BrennkammerSecond combustion chamber
55
Zweite TurbineSecond turbine
66
AnsaugluftIntake air
77
Verdichtete LuftCompressed air
88th
HeissgaseHot gases
99
Teilenspannte HeissgasePartial clamping hot gases
1010th
HeissgaseHot gases
1111
AbgaseExhaust gases
1212th
Brennstofffuel
1313
Brennstofffuel
1414
Generatorgenerator
1515
AbhitzedampferzeugerHeat recovery steam generator
15a15a
Economizer, im unt. Temp.-Bereich op. WärmetauschstufeEconomizer, in the lower temp. Area op. Heat exchange level
15b15b
Rohrbündel für überkritischen HochdruckdampfPipe bundle for supercritical high pressure steam
15c15c
Rohrbündel für zwischenüberhitzten MitteldruckdampfPipe bundle for reheated medium pressure steam
1616
HochdruckdampfturbineHigh pressure steam turbine
1717th
MitteldruckdampfturbineMedium pressure steam turbine
1818th
NiederdruckdampfturbineLow pressure steam turbine
1919th
Generatorgenerator
2020th
Kondensatorcapacitor
2121
FörderpumpeFeed pump
2222
Speisewasserbehälter und EntgaserFeed water tank and degasser
2323
FörderpumpeFeed pump
2424th
RegelorganGoverning body
2525th
RegelorganGoverning body
2626
AusdampfflascheEvaporation bottle
2727
Ueberkritischer HochdruckdampfSupercritical high pressure steam
2828
Expandierter Dampf aus 16Expanded steam from 16th
2929
Zwischenüberhitzter MitteldruckdampfReheated medium pressure steam
3030th
Abdampf aus 17 in 18Evaporation from 17 in 18
31a31a
Entspannter Dampf aus 18Relaxed steam from 18
31b31b
Entspannter Dampf aus 18Relaxed steam from 18
3232
Kondensatcondensate
3333
Dampf aus 22 in 18Steam from 22 in 18
3434
SpeisewasserFeed water
3535
Kleiner TeilwasserstromSmall partial water flow
3636
Heisses Restwasser von 26 in 22Hot residual water from 26 in 22
3737
Dampf aus 26Steam from 26
3838
RauchgaseFlue gases
3939
RotorwelleRotor shaft
4040
Ueberkritische DampferzeugungskurveSupercritical steam generation curve
4141
ResultanteResultant
11/3811/38
AbkühlungskurveCooling curve
AA
Speisewasser nach 22Feed water after 22
BB
Entnahmestelle Druckwasser zu 26Tapping point for pressurized water to 26
B-CB-C
Summe von B-F + D-E, Ueberhitzung und Zwischenüberh.Sum of B-F + D-E, overheating and intermediate overheating
D-ED-E
Zwischenüberhitzung in 15cReheat in 15c
FF
Stelle überkritischer HochdruckdampfPlace supercritical high pressure steam
GG
Eintritt Abgase in 15Entry of exhaust gases in 15
HH
Rauchgastemperatur an Entnahmestelle BFlue gas temperature at extraction point B
II.
Austritt Abgase aus 15 = RauchgaseExhaust gases from 15 = flue gases
JJ
Fiktiver Rauchgasendwert ohne Entnahme in BFictitious final flue gas value without withdrawal in B
A-BFROM
Allgemein über 100%, im Beispiel 180% WasserstromGenerally over 100%, in the example 180% water flow
B-FB-F
100% Wasserstrom100% water flow

Claims (6)

Verfahren zum Betrieb einer Kraftwerksanlage, im wesentlichen bestehend aus einer Gasturbogruppe, einer der Gasturbogruppe nachgeschalteten Abhitzedampferzeuger und einem dem Abhitzedampferzeuger nachgeschalteten Dampfkreislauf, wobei die Gasturbogruppe aus mindestens einer Verdichtereinheit, mindestens einer Brennkammer, mindestens einer Turbine und mindestens einem Generator besteht, wobei die Abgase aus der letzten Turbine den Abhitzedampferzeuger durchströmen, in welchem die Erzeugung mindestens eines Dampfes zum Betreiben mindestens einer Dampfturbine des Dampfkreislaufs vonstatten geht, dadurch gekennzeichnet, dass in einer im unteren Temperaturbereich operierenden Wärmetauschstufe (15a) des Abhitzedampferzeugers (15) eine über 100% erhöhte Flüssigkeitsmenge zirkuliert, dass der Anteil über 100% dieser Flüssigkeitsmenge am Ende dieser Wärmetauschstufe (15a) abgezweigt und in mindestens einer Druckstufe (26) ausgedampft wird, dass ein hierin entstandener Dampf (37) einer Dampfturbine (17) an passender Stelle zugeführt wird, dass eine noch heisse Flüssigkeitsmenge (36) aus der Druckstufe (26) einem Speisewasserbehälter und Entgaser (22) zugeleitet wird, und dass ein hierin entstandener Dampf (33) einer weiteren Dampfturbine (18) an passender Stelle zugeleitet wird.Method for operating a power plant, essentially consisting of a gas turbine group, a heat recovery steam generator downstream of the gas turbine group and a steam circuit downstream of the heat recovery steam generator, the gas turbine group consisting of at least one compressor unit, at least one combustion chamber, at least one turbine and at least one generator, the exhaust gases consisting of flow through the heat recovery steam generator in the last turbine, in which the generation of at least one steam for operating at least one steam turbine of the steam cycle takes place, characterized in that a heat exchange stage (15a) of the heat recovery steam generator (15) operating in the lower temperature range circulates an over 100% increased amount of liquid that the portion over 100% of this amount of liquid is branched off at the end of this heat exchange stage (15a) and evaporated in at least one pressure stage (26), that a vapor (37) of a D Ampfturbine (17) is supplied at a suitable point, that a still hot amount of liquid (36) from the pressure stage (26) is fed to a feed water tank and degasser (22), and that a steam (33) generated therein to another steam turbine (18) appropriate place is forwarded. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die Gasturbogruppe (I.) mit einer sequentiellen Verbrennung betrieben wird.A method according to claim 1, characterized in that the gas turbine group (I.) is operated with a sequential combustion. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die 100%ige Flüssigkeitsmenge in einer unmittelbar der Wärmetauschstufe (15a) folgenden Wärmetauschstufe (15b) zu überkritischem Dampf (27) aufbereitet wird, der eine weitere Dampfturbine (16) beaufschlagt, dass der in dieser Dampfturbine (16) expandierte Dampf (28) in den Abhitzedampferzeuger (15) rückgeführt wird, dergestalt, dass er dort in einer weiteren Wärmetauschstufe (15c) zu zwischenüberhitztem Dampf (29) aufbereitet wird, der anschliessend eine entsprechende Druckstufe einer nachgeschalteten Dampfturbine (17) beaufschlägt.A method according to claim 1, characterized in that the 100% amount of liquid in a direct heat exchange stage (15a) following the heat exchange stage (15b) is processed into supercritical steam (27), which acts on a further steam turbine (16) in such a way that the steam (28) expanded in this steam turbine (16) is returned to the waste heat steam generator (15), that it is processed there in a further heat exchange stage (15c) to superheated steam (29), which then acts on a corresponding pressure stage of a downstream steam turbine (17). Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass der Speisewasserbehälter und Entgaser (22) als alleinige Ausdampfstufe des Dampfkreislaufes (III.) betrieben wird.A method according to claim 1, characterized in that the feed water tank and degasser (22) is operated as the sole evaporation stage of the steam circuit (III.). Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass der Anteil über 100% der Flüssigkeitsmenge in einem separaten Wärmetauschelement parallel und/oder in reihe gegenüber der Wärmetauschstufe (15a) im unteren Temperaturbereich geleitet wird.A method according to claim 1, characterized in that the portion over 100% of the amount of liquid in a separate heat exchange element in parallel and / or in series with the heat exchange stage (15a) in the lower temperature range. Verfahren nach Anspruch 5, dadurch gekennzeichnet, dass der Anteil über 100% der Flüssigkeitsmenge sich von dem im Dampfkreislauf (III.) expandierenden Fluid unterscheidet, und dass dessen durch die Wärmetauschung entstandene thermische Energie in einer separaten Arbeitsmaschine genutzt wird.A method according to claim 5, characterized in that the proportion over 100% of the amount of liquid differs from the fluid expanding in the steam circuit (III.), And that the thermal energy generated by the heat exchange is used in a separate working machine.
EP96810597A 1995-10-02 1996-09-09 Process for operating a power plant Expired - Lifetime EP0767290B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19536839A DE19536839A1 (en) 1995-10-02 1995-10-02 Process for operating a power plant
DE19536839 1995-10-02

Publications (2)

Publication Number Publication Date
EP0767290A1 true EP0767290A1 (en) 1997-04-09
EP0767290B1 EP0767290B1 (en) 2002-05-29

Family

ID=7773918

Family Applications (1)

Application Number Title Priority Date Filing Date
EP96810597A Expired - Lifetime EP0767290B1 (en) 1995-10-02 1996-09-09 Process for operating a power plant

Country Status (4)

Country Link
US (1) US5839269A (en)
EP (1) EP0767290B1 (en)
JP (1) JP3974208B2 (en)
DE (2) DE19536839A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0789134A3 (en) * 1996-02-09 1999-07-21 Asea Brown Boveri Ag Process for operating a power plant
US7089743B2 (en) 1998-02-25 2006-08-15 Alstom Method for operating a power plant by means of a CO2 process
WO2013105071A1 (en) * 2012-01-13 2013-07-18 Alstom Technology Ltd A supercritical heat recovery steam generator reheater and supercritical evaporator arrangement

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6202782B1 (en) * 1999-05-03 2001-03-20 Takefumi Hatanaka Vehicle driving method and hybrid vehicle propulsion system
GB2382847A (en) 2001-12-06 2003-06-11 Alstom Gas turbine wet compression
GB2382848A (en) 2001-12-06 2003-06-11 Alstom Gas turbine wet compression
AU2002347121A1 (en) * 2002-01-07 2003-07-24 Alstom Technology Ltd. Method for operating a gas turbine group
DE10256193A1 (en) 2002-12-02 2004-06-09 Alstom Technology Ltd Method for controlling the liquid injection into an inflow channel of an engine or machine
JP4478674B2 (en) * 2006-12-26 2010-06-09 カワサキプラントシステムズ株式会社 Cement firing plant waste heat power generation system
CA2679811C (en) * 2007-03-22 2013-02-12 Nooter/Eriksen, Inc. High efficiency feedwater heater
US8943836B2 (en) * 2009-07-10 2015-02-03 Nrg Energy, Inc. Combined cycle power plant
CN102374514B (en) * 2011-07-18 2013-11-27 成都昊特新能源技术股份有限公司 Flue gas waste heat based dual-pressure power generation system
JP5897302B2 (en) * 2011-10-28 2016-03-30 川崎重工業株式会社 Steam turbine power generation system
CN104254673A (en) 2012-03-21 2014-12-31 阿尔斯通技术有限公司 Combined cycle power plant
FI20210068A1 (en) * 2021-11-10 2023-05-11 Loeytty Ari Veli Olavi Method and apparatus for improving energy efficiency in current gas turbine combi plants

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0410111A1 (en) * 1989-07-27 1991-01-30 Siemens Aktiengesellschaft Heat recovery boiler for a gas and steam turbine plant
EP0515911A1 (en) * 1991-05-27 1992-12-02 Siemens Aktiengesellschaft Method of operating a gas and steam turbine plant and corresponding plant
EP0516995A1 (en) * 1991-06-01 1992-12-09 Asea Brown Boveri Ag Combined gas-steam power plant
EP0588392A1 (en) * 1992-07-13 1994-03-23 N.V. Kema Steam and gas turbine power plant using moistened natural gas
DE4237665A1 (en) * 1992-11-07 1994-05-11 Asea Brown Boveri Method for operating a combination system
DE4409811C1 (en) * 1994-03-22 1995-05-18 Siemens Ag Method of driving heat steam producer partic. for gas and steam turbine installation

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH480535A (en) * 1968-03-06 1969-10-31 Escher Wyss Ag Thermal power plant for utilizing the heat generated in a nuclear reactor, with a combined gas turbine and steam turbine plant
EP0062932B1 (en) * 1981-04-03 1984-12-05 BBC Aktiengesellschaft Brown, Boveri & Cie. Combined steam and gas turbine power plant
US4501233A (en) * 1982-04-24 1985-02-26 Babcock-Hitachi Kabushiki Kaisha Heat recovery steam generator
CH674561A5 (en) * 1987-12-21 1990-06-15 Bbc Brown Boveri & Cie
EP0582898A1 (en) * 1992-08-10 1994-02-16 Siemens Aktiengesellschaft Method of operating a steam and gas turbine system and system for carrying out the method
DE4321081A1 (en) * 1993-06-24 1995-01-05 Siemens Ag Process for operating a gas and steam turbine plant and a combined cycle gas plant

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0410111A1 (en) * 1989-07-27 1991-01-30 Siemens Aktiengesellschaft Heat recovery boiler for a gas and steam turbine plant
EP0515911A1 (en) * 1991-05-27 1992-12-02 Siemens Aktiengesellschaft Method of operating a gas and steam turbine plant and corresponding plant
EP0516995A1 (en) * 1991-06-01 1992-12-09 Asea Brown Boveri Ag Combined gas-steam power plant
EP0588392A1 (en) * 1992-07-13 1994-03-23 N.V. Kema Steam and gas turbine power plant using moistened natural gas
DE4237665A1 (en) * 1992-11-07 1994-05-11 Asea Brown Boveri Method for operating a combination system
DE4409811C1 (en) * 1994-03-22 1995-05-18 Siemens Ag Method of driving heat steam producer partic. for gas and steam turbine installation

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0789134A3 (en) * 1996-02-09 1999-07-21 Asea Brown Boveri Ag Process for operating a power plant
US7089743B2 (en) 1998-02-25 2006-08-15 Alstom Method for operating a power plant by means of a CO2 process
WO2013105071A1 (en) * 2012-01-13 2013-07-18 Alstom Technology Ltd A supercritical heat recovery steam generator reheater and supercritical evaporator arrangement
KR101536988B1 (en) * 2012-01-13 2015-07-16 알스톰 테크놀러지 리미티드 A supercritical heat recovery steam generator reheater and supercritical evaporator arrangement

Also Published As

Publication number Publication date
DE19536839A1 (en) 1997-04-30
EP0767290B1 (en) 2002-05-29
DE59609255D1 (en) 2002-07-04
US5839269A (en) 1998-11-24
JPH09125910A (en) 1997-05-13
JP3974208B2 (en) 2007-09-12

Similar Documents

Publication Publication Date Title
EP0915232B1 (en) Process for operating a power plant
EP0731255B1 (en) Powerplant system
EP0795685B1 (en) Multi-staged gas-turbine with steam cooling and feeding into the combustor
EP0768449B1 (en) Process for operating a power plant
EP0808994B1 (en) Method of operating a combined power plant
EP0620362B1 (en) Gasturbine
EP1432889B1 (en) Method and device for the starting of emission-free gas turbine power stations
EP0778397B1 (en) Method of operating a combined power plant with a waste heat boiler and a steam user
EP0767290B1 (en) Process for operating a power plant
DE10041413B4 (en) Method for operating a power plant
EP0750718B1 (en) Method of operating a gas and steam turbine installation and installation operating according to said method
EP0674099A1 (en) Cooling method for the thermically charged components of a gasturbine powerplant
EP0789134B1 (en) Process for operating a power plant
EP2368021B1 (en) Waste heat steam generator and method for improved operation of a waste heat steam generator
WO1992005344A1 (en) Combined gas and steam turbine plant
EP0773349A1 (en) Cooling-air cooling unit for power plants
DE102009044088A1 (en) Peak load management through combined cycle energy boost using peak cycle exhaust heat recovery
DE19535228C2 (en) Process for operating a power plant
EP0709561B1 (en) Power plant
EP0978635B1 (en) Process for cooling the thermally stressed structures of a power plant
EP1425079B1 (en) Method and device for thermal de-gassing of the active substance of a two-phase process
EP0899438B1 (en) Gas turbine with heat recovery generator of superheated steam for injecting into the combustion chamber and of saturated steam of cooling then injecting into the combustion chamber
DE19961383A1 (en) Process for operating a power plant
EP0887539A2 (en) Fan jet engine
DE19961385A1 (en) Process for operating a power plant

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB NL

17P Request for examination filed

Effective date: 19970910

17Q First examination report despatched

Effective date: 20000803

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ALSTOM

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB NL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20020529

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 59609255

Country of ref document: DE

Date of ref document: 20020704

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20020725

ET Fr: translation filed
NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20030303

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 59609255

Country of ref document: DE

Representative=s name: RUEGER, BARTHELT & ABEL, DE

Effective date: 20120621

Ref country code: DE

Ref legal event code: R082

Ref document number: 59609255

Country of ref document: DE

Representative=s name: ROESLER, UWE, DIPL.-PHYS.UNIV., DE

Effective date: 20120621

Ref country code: DE

Ref legal event code: R081

Ref document number: 59609255

Country of ref document: DE

Owner name: ALSTOM TECHNOLOGY LTD., CH

Free format text: FORMER OWNER: ALSTOM, PARIS, FR

Effective date: 20120621

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20120802 AND 20120808

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

Owner name: ALSTOM TECHNOLOGY LTD., CH

Effective date: 20121008

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20150917

Year of fee payment: 20

Ref country code: DE

Payment date: 20150922

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20150922

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 59609255

Country of ref document: DE

Representative=s name: RUEGER ABEL PATENTANWAELTE PARTGMBB, DE

Ref country code: DE

Ref legal event code: R082

Ref document number: 59609255

Country of ref document: DE

Representative=s name: RUEGER, BARTHELT & ABEL, DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 59609255

Country of ref document: DE

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20160908

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20160908

REG Reference to a national code

Ref country code: FR

Ref legal event code: CD

Owner name: ALSTOM TECHNOLOGY LTD, CH

Effective date: 20161124