EP0758429B1 - Control system for an internal combustion engine - Google Patents

Control system for an internal combustion engine Download PDF

Info

Publication number
EP0758429B1
EP0758429B1 EP95916569A EP95916569A EP0758429B1 EP 0758429 B1 EP0758429 B1 EP 0758429B1 EP 95916569 A EP95916569 A EP 95916569A EP 95916569 A EP95916569 A EP 95916569A EP 0758429 B1 EP0758429 B1 EP 0758429B1
Authority
EP
European Patent Office
Prior art keywords
signal
control system
threshold value
value
difference
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP95916569A
Other languages
German (de)
French (fr)
Other versions
EP0758429A1 (en
Inventor
Hong Zhang
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP0758429A1 publication Critical patent/EP0758429A1/en
Application granted granted Critical
Publication of EP0758429B1 publication Critical patent/EP0758429B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D37/00Non-electrical conjoint control of two or more functions of engines, not otherwise provided for
    • F02D37/02Non-electrical conjoint control of two or more functions of engines, not otherwise provided for one of the functions being ignition
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1473Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the regulation method
    • F02D41/1475Regulating the air fuel ratio at a value other than stoichiometry

Definitions

  • the invention is based on a control system for an internal combustion engine according to the preamble of claim 1.
  • DE 41 03 419 A1 describes a control system for a Internal combustion engine known in which when falling below Threshold value depending on the efficiency of the machine The air / fuel mixture is enriched becomes. The efficiency is based on the cylinder pressure determined. The exhaust gas temperature has no influence on the calculated efficiency.
  • the invention has for its object an increase in the exhaust gas temperature to prevent impermissibly high values.
  • the invention according to the features defined in claim 1 has the advantage that components associated with the exhaust gas in heat contact, from damage due to overheating can be protected.
  • the air / fuel mixture is enriched with a signal. Especially It is advantageous that the degree of enrichment very precisely oriented to the actual requirements and an unnecessarily strong enrichment is avoided. This works beneficial to the consumption and exhaust gas balance of the Internal combustion engine.
  • a particularly high reliability of the invention can in particular can also be achieved in that an enrichment of the Air / fuel mixture only takes place if one or several constraints are met.
  • constraints for example the elapse of a time interval since Falling below the threshold of the efficiency Signal or exceeding a threshold value for the exhaust gas or the catalyst temperature.
  • FIG. 1 shows the technical environment in which the invention is used becomes.
  • An internal combustion engine 100 is operated via an intake tract 102 air / fuel mixture supplied and the exhaust gases released into an exhaust duct 104.
  • intake tract 102 are - seen in the direction of flow of the intake air - an air flow meter or air mass meter 106, for example a hot film air mass meter, a temperature sensor 108 for detecting the intake air temperature, a throttle valve 110 and at least one Injector 112 arranged.
  • In the exhaust duct 104 are - in the flow direction of the exhaust gas - an exhaust gas sensor 114 and a catalyst 116 arranged.
  • a Temperature sensor 118 for detecting the temperature of the internal combustion engine and a speed sensor 120 attached.
  • Farther internal combustion engine 100 has, for example, four spark plugs 122 to ignite the air / fuel mixture in the cylinders.
  • the output signals mL of the air flow meter or air mass meter 106, TAns of the temperature sensor 108, ⁇ of the exhaust gas sensor 114, TBKM of the temperature sensor 118 and n of the speed sensor 120 become a central control device 124 via corresponding Connection lines supplied.
  • the control unit 124 evaluates the Sensor signals and controls via further connecting lines the injector or injectors 112 and the spark plugs 122 at.
  • FIG. 2 shows a schematic diagram of the invention.
  • a map 200 in which a signal for the speed n of Internal combustion engine 100 and a signal for the load tL are fed will be a signal for the optimal firing angle ⁇ ZOpt determined.
  • the signal for the speed n is from the speed sensor 120 generated.
  • the signal for the load tL is from the Output signal mL of the air mass meter or air flow meter 106 determined.
  • the signal for the optimal ignition angle ⁇ Zopt is in a first input of a node 202 and a first input of a further node 204 fed.
  • a signal for an ignition angle threshold value ⁇ ZS is fed in, which is output by a map 206.
  • the map 206 has two inputs on which the signal for the speed n of the engine 100 and the signal for the load tL are present.
  • the node 202 forms the difference from the Signal for the optimal ignition angle ⁇ Zopt and the signal for the Ignition angle threshold value ⁇ ZS and provides them at its output.
  • the output of node 202 is with the input a characteristic curve 208 connected.
  • the characteristic curve 208 gives one Threshold ⁇ s for a signal that determines the efficiency of the Internal combustion engine 100 indicates directly or indirectly.
  • ⁇ s is fed into a first input of a node 210.
  • the second input of node 210 is with connected to the output of a characteristic curve 212, at the input of which Signal for the intake air temperature TAns is present.
  • the signal TAns is output by the temperature sensor 108.
  • the characteristic curve 212 determines a correction value depending on the intake air temperature TAns d ⁇ for the threshold ⁇ s.
  • Junction point 210 adds the threshold value ⁇ s and the correction value d ⁇ and sets the corrected threshold value ⁇ SK determined at its output ready.
  • the output of node 210 is a first input of a node 214 connected.
  • An actual value ⁇ is the signal indicating the efficiency.
  • This actual value ⁇ actual is output by a characteristic curve 216, the input of which the output of node 204 is connected.
  • At first Input of node 204 is the signal for the optimal Ignition angle ⁇ ZOpt on and at the second input Signal for the actual ignition angle value ⁇ ZIst, that of a block 218 is output.
  • characteristic curve 220 gives an enrichment factor FAnf for the air / fuel ratio.
  • the enrichment factor FAnf can be switched to a first via a switch 222 Input of a node 224 are forwarded.
  • A is located at the second input of node 224 Signal for the injection time te on. This signal te is in the Node 224 multiplied by the enrichment factor FAnf and with that provided at the exit of node 224
  • the injection nozzle 112 or the injection nozzles 112 are activated.
  • the switch 222 can be switched between two switch positions become. In a first switch position I connects the switch 222 the output of the characteristic curve 220 with the first Entry of node 224. In a second switch position II, switch 222 connects the output of a memory 228 with the first input of node 224.
  • Im Memory 228 is a fixed value for the enrichment factor FAnf stored, usually the value 1.
  • the switch is controlled 222 from block 230.
  • Block 230 tests one or more Conditions and controls switch 222 depending on the result this test either in switch position I or in Switch position II. The conditions are designed so that a unnecessary or undesirable enrichment of the air / fuel mixture is prevented.
  • a predeterminable time period t0 exceeds. With this condition it is ensured that there is a short-term and thus harmless Efficiency deterioration - for example at a brief ignition angle intervention - not an enrichment of the air / fuel mixture comes.
  • As further conditions can be queried whether the exhaust gas temperature is higher than a predefinable threshold or whether the catalyst temperature is higher is a predefinable threshold. Only if the corresponding one Threshold is already exceeded, there is a risk of Damage to the exhaust valves, the catalyst or other components of the exhaust system.
  • the exhaust gas temperature and / or the catalyst temperature can either use a temperature model be determined or measured.
  • Air / fuel mixture may be greased by the Injection time te at node 224 with an enrichment factor FAnf that has a value greater than or equal to 1 is multiplied becomes.
  • FAnf an enrichment factor
  • An essential aspect of the invention is in that the air / fuel mixture is then enriched, if the actual value ⁇ is the efficiency of the internal combustion engine 100 signal indicating the corrected threshold ⁇ SK falls below.
  • This approach is based on the knowledge that the more thermal energy is released into the exhaust gas the lower the efficiency of the internal combustion engine 100 is.
  • the comparison between the actual value ⁇ actual and the corrected Threshold value ⁇ SK takes place in node 214. There the difference between the two values is formed and into the Characteristic curve 220 fed. As long as the difference is negative, that is, as long as the actual value ⁇ actual is greater than the corrected one Threshold value ⁇ SK, characteristic curve 220 delivers the value 1, the is called the enrichment factor FAnf has the value 1 and it finds no enrichment instead.
  • characteristic curve 220 has an enrichment factor FAnf greater than 1.
  • the enrichment factor FAnf can then be linear, for example the difference increase. Depending on the application, it can also another functional relationship between FAnf and the difference come into use.
  • ⁇ SK is determined from the threshold ⁇ S.
  • the objective when specifying the threshold value ⁇ S is that a critical exhaust gas or catalytic converter temperature, above which damage can occur, is just achieved when the actual value ⁇ actual is equal to the threshold value ⁇ S at a given intake air temperature TAns.
  • the threshold value ⁇ S is determined as a function of the difference between the signal for the optimum ignition angle ⁇ Zopt and a signal for an ignition angle threshold value ⁇ ZS.
  • ⁇ Zopt is read from the map 200 as a function of the load tL and the speed n.
  • ⁇ ZS is read from the map 206 as a function of the load tL and the speed n.
  • the difference between ⁇ ZOpt and ⁇ ZS is formed in node 202.
  • the intake air temperature TAns to take into account which also the exhaust gas temperature influenced, the threshold value ⁇ S in node 210 with linked to the correction value d ⁇ .
  • d ⁇ is dependent on the Intake air temperature TAns read from characteristic curve 212. The Taking the intake air temperature TAns into account is an advantageous one Further development of the invention, d. H. they are too Embodiments without the node 210 and the Characteristic curve 212 is provided.
  • the actual value ⁇ actual is made from the deviation using the characteristic diagram 216 of the signal for the actual ignition angle value ⁇ ZIst from the signal determined for the optimal ignition angle ⁇ ZOpt. The stronger this the two signals differ from each other, the smaller the actual value ⁇ is.
  • the difference between the signals for ⁇ ZOpt and ⁇ ZIst is formed in node 204.
  • the signal for ⁇ ZOpt from the map 200 is dependent determined by the load tL and the speed n.
  • the signal for ⁇ ZIst is provided by block 218. Like block 218 the signal ⁇ ZIst generated in detail is for the invention not relevant and is therefore not explained in more detail.
  • FIG. 3a A possible course of the characteristic curve 208 is shown in FIG. 3a, that is, the threshold ⁇ S is above the difference the signals for the optimal ignition angle ⁇ ZOpt and the ignition angle threshold ⁇ ZS applied. If there is a difference of 0 the threshold value ⁇ S maximal and falls with increasing difference from.
  • FIG. 3b shows a possible course for the characteristic curve 216, that is, the actual value ⁇ actual is over the difference the signals for the optimal ignition angle ⁇ Zopt and the actual ignition angle value is applied. If there is a difference of 0, the Actual value ⁇ is maximum and decreases with increasing difference.
  • tie points 202, 204, 210, 214 and 224 each of which combines two input signals perform on an output signal.
  • the link is done by subtraction, addition or multiplication.
  • in a tie point or other link operations in several link points are performed as described in the text of FIG. 2 and other types of linking operations, e.g. B. the Division.
  • the signals involved in the link and the link operation must be coordinated, d. H. the stored values, characteristics and maps are in use corresponding to another link operation to interpret.
  • one or more each of the characteristic curves or characteristic diagrams shown in FIG be replaced by a predeterminable value and so the effort be reduced.
  • the enrichment factor FAnf as shown in Fig. 2 of the characteristic curve 220 can also be read out by multiplication the difference between the corrected threshold ⁇ SK and the actual value ⁇ Is determined with a constant. Is the If the difference is negative, the enrichment factor FAnf becomes 1 assigned.

Description

Stand der TechnikState of the art

Die Erfindung geht aus von einem Steuersystem für eine Brennkraftmaschine gemäß dem Oberbegriff des Anspruchs 1.The invention is based on a control system for an internal combustion engine according to the preamble of claim 1.

Bei der Steuerung einer Brennkraftmaschine kann es mitunter erforderlich sein, den Zündwinkel aus der Normallage in Richtung spät zu verschieben. Eine derartige Verschiebung des Zündwinkels kommt beispielsweise im Zusammenhang mit Verfahren zur Verringerung oder Vermeidung der klopfenden Verbrennung oder Verfahren zur Antriebsschlupfreduzierung in Betracht. In der Regel erhöht sich jedoch die Abgastemperatur, wenn der Zündwinkel nach spät verschoben wird. Eine zu hohe Abgastemperatur kann zu Schäden an den Auslaßventilen oder am Abgassystem, insbesondere am Abgaskatalysator, führen. Um eine unzulässig hohe Abgastemperatur zu vermeiden, wird bei bekannten Steuersystemen das der Brennkraftmaschine zugeführte Luft/Kraftstoff-Gemisch angefettet, falls ein Schwellwert für den Zündwinkel überschritten wird. Der Grad der Anfettung wird in der Regel abhängig vom Ausmaß der Überschreitung des Schwellwerts vorgegeben.It can sometimes be necessary to control an internal combustion engine be the ignition angle from the normal position in the direction postpone late. Such a shift in the ignition angle comes, for example, in connection with reduction procedures or avoiding knocking combustion or procedures to reduce traction slip. Usually increased however, the exhaust gas temperature when the ignition angle is late is moved. Excessively high exhaust gas temperatures can cause damage the exhaust valves or on the exhaust system, in particular on the exhaust gas catalytic converter, to lead. To an inadmissibly high exhaust gas temperature to avoid, that of the internal combustion engine in known control systems supplied air / fuel mixture enriched if a threshold value for the ignition angle is exceeded. The degree The enrichment is usually dependent on the extent of the overrun of the threshold value.

Aus der DE 41 03 419 A1 ist ein Steuersystem für eine Brennkraftmaschine bekannt, in dem bei Unterschreiten eines Schwellwertes eines vom Wirkungsgrad der Maschine abhängigen Signals eine Anfettung des Luft/Kraftstoff-Gemisches vorgenommen wird. Der Wirkungsgrad wird auf der Basis des Zylinderdrucks ermittelt. Die Abgastemperatur hat keinen Einfluß auf den berechneten Wirkungsgrad.DE 41 03 419 A1 describes a control system for a Internal combustion engine known in which when falling below Threshold value depending on the efficiency of the machine The air / fuel mixture is enriched becomes. The efficiency is based on the cylinder pressure determined. The exhaust gas temperature has no influence on the calculated efficiency.

Der Erfindung liegt die Aufgabe zugrunde, ein Ansteigen der Abgastemperatur auf unzulässig hohe Werte zu verhindern.The invention has for its object an increase in the exhaust gas temperature to prevent impermissibly high values.

Vorteile der ErfindungAdvantages of the invention

Die Erfindung gemäß den Merkmalen, die im Anspruch 1 definiert sind, hat den Vorteil, daß Komponenten, die mit dem Abgas in Wärmekontakt stehen, vor einer Beschädigung durch Überhitzung geschützt werden können.The invention according to the features defined in claim 1 has the advantage that components associated with the exhaust gas in heat contact, from damage due to overheating can be protected.

Bei einer Unterschreitung eines Schwellwerts für ein den Wirkungsgrad der Brennkraftmaschine mittelbar oder unmittelbar angebendes Signal wird das Luft/Kraftstoff-Gemisch angefettet. Besonders vorteilhaft ist dabei, daß sich der Grad der Anfettung sehr genau an den tatsächlichen Erfordernissen orientiert und somit eine unnötig starke Anfettung vermieden wird. Dies wirkt sich vorteilhaft auf die Verbrauchs- und die Abgasbilanz der Brennkraftmaschine aus.If the threshold for the efficiency is undershot the internal combustion engine directly or indirectly The air / fuel mixture is enriched with a signal. Especially It is advantageous that the degree of enrichment very precisely oriented to the actual requirements and an unnecessarily strong enrichment is avoided. This works beneficial to the consumption and exhaust gas balance of the Internal combustion engine.

Eine besonders hohe Zuverlässigkeit der Erfindung kann insbesondere auch dadurch erreicht werden, daß eine Anfettung des Luft/Kraftstoff-Gemisches nur dann erfolgt, wenn eine oder mehrere Nebenbedingungen erfüllt sind. Als Nebenbedingungen kommen beispielsweise das Verstreichen eines Zeitintervalls seit Unterschreiten des Schwellwerts des den Wirkungsgrad angebenden Signals oder das Überschreiten eines Schwellwerts für die Abgas- oder die Katalysatortemperatur in Betracht. A particularly high reliability of the invention can in particular can also be achieved in that an enrichment of the Air / fuel mixture only takes place if one or several constraints are met. Come as constraints for example the elapse of a time interval since Falling below the threshold of the efficiency Signal or exceeding a threshold value for the exhaust gas or the catalyst temperature.

Zeichnungdrawing

Die Erfindung wird nachstehend anhand der in der Zeichnung dargestellten Ausführungsbeispiele erläutert.The invention is described below with reference to the drawing Exemplary embodiments explained.

Es zeigenShow it

  • Figur 1 das technische Umfeld, in dem die Erfindung eingesetzt wird,Figure 1 shows the technical environment in which the invention is used becomes,
  • Figur 2 eine Prinzipdarstellung der Erfindung undFigure 2 is a schematic diagram of the invention and
  • Figur 3 den Verlauf zweier Kennlinien, die bei der Erfindung eingesetzt werden.Figure 3 shows the course of two characteristic curves in the invention be used.
  • Beschreibung der AusführungsbeispieleDescription of the embodiments

    Figur 1 zeigt das technische Umfeld, in dem die Erfindung eingesetzt wird. Einer Brennkraftmaschine 100 wird über einen Ansaugtrakt 102 Luft/Kraftstoff-Gemisch zugeführt und die Abgase werden in einen Abgaskanal 104 abgegeben. Im Ansaugtrakt 102 sind - in Stromrichtung der angesaugten Luft gesehen - ein Luftmengenmesser oder Luftmassenmesser 106, beispielsweise ein Heißfilm-Luftmassenmesser, ein Temperatursensor 108 zur Erfassung der Ansauglufttemperatur, eine Drosselklappe 110 und wenigstens eine Einspritzdüse 112 angeordnet. Im Abgaskanal 104 sind - in Stromrichtung des Abgases gesehen - ein Abgassensor 114 und ein Katalysator 116 angeordnet. An der Brennkraftmaschine 100 sind ein Temperatursensor 118 zur Erfassung der Temperatur der Brennkraftmaschine und ein Drehzahlsensor 120 angebracht. Weiterhin besitzt die Brennkraftmaschine 100 beispielsweise vier Zündkerzen 122 zur Zündung des Luft/Kraftstoff-Gemisches in den Zylindern.Figure 1 shows the technical environment in which the invention is used becomes. An internal combustion engine 100 is operated via an intake tract 102 air / fuel mixture supplied and the exhaust gases released into an exhaust duct 104. In intake tract 102 are - seen in the direction of flow of the intake air - an air flow meter or air mass meter 106, for example a hot film air mass meter, a temperature sensor 108 for detecting the intake air temperature, a throttle valve 110 and at least one Injector 112 arranged. In the exhaust duct 104 are - in the flow direction of the exhaust gas - an exhaust gas sensor 114 and a catalyst 116 arranged. On the internal combustion engine 100 are a Temperature sensor 118 for detecting the temperature of the internal combustion engine and a speed sensor 120 attached. Farther internal combustion engine 100 has, for example, four spark plugs 122 to ignite the air / fuel mixture in the cylinders.

    Die Ausgangssignale mL des Luftmengenmessers oder Luftmassenmessers 106, TAns des Temperatursensors 108, λ des Abgassensors 114, TBKM des Temperatursensors 118 und n des Drehzahlsensors 120 werden einem zentralen Steuergerät 124 über entsprechende Verbindungsleitungen zugeführt. Das Steuergerät 124 wertet die Sensorsignale aus und steuert über weitere Verbindungsleitungen die Einspritzdüse bzw. die Einspritzdüsen 112 und die Zündkerzen 122 an.The output signals mL of the air flow meter or air mass meter 106, TAns of the temperature sensor 108, λ of the exhaust gas sensor 114, TBKM of the temperature sensor 118 and n of the speed sensor 120 become a central control device 124 via corresponding Connection lines supplied. The control unit 124 evaluates the Sensor signals and controls via further connecting lines the injector or injectors 112 and the spark plugs 122 at.

    Figur 2 zeigt eine Prinzipdarstellung der Erfindung. M it Hilfe eines Kennfeldes 200, in das ein Signal für die Drehzahl n der Brennkraftmaschine 100 und ein Signal für die Last tL eingespeist werden, wird ein Signal für den optimalen Zündwinkel αZOpt ermittelt. Das Signal für die Drehzahl n wird vom Drehzahlsensor 120 erzeugt. Das Signal für die Last tL wird aus dem Ausgangssignal mL des Luftmassenmessers oder Luftmengenmessers 106 ermittelt. Das Signal für den optimalen Zündwinkel αZopt wird in einen ersten Eingang eines Verknüpfungspunktes 202 und einen ersten Eingang eines weiteren Verknüpfungspunktes 204 eingespeist. In den zweiten Eingang des Verknüpfungspunktes 202 wird ein Signal für einen Zündwinkel-Schwellwert αZS eingespeist, das von einem Kennfeld 206 ausgegeben wird. Das Kennfeld 206 besitzt zwei Eingänge, an denen das Signal für die Drehzahl n der Brennkraftmaschine 100 und das Signal für die Last tL anliegen. Der Verknüpfungspunkt 202 bildet die Differenz aus dem Signal für den optimalen Zündwinkel αZopt und dem Signal für den Zündwinkel-Schwellwert αZS und stellt sie an seinem Ausgang bereit. Der Ausgang des Verknüpfungspunktes 202 ist mit dem Eingang einer Kennlinie 208 verbunden. Die Kennlinie 208 gibt einen Schwellwert ηs für ein Signal aus, das den Wirkungsgrad der Brennkraftmaschine 100 mittelbar oder unmittelbar angibt. ηs wird in einen ersten Eingang eines Verknüpfungspunktes 210 eingespeist. Der zweite Eingang des Verknüpfungspunktes 210 ist mit dem Ausgang einer Kennlinie 212 verbunden, an deren Eingang das Signal für die Ansauglufttemperatur TAns anliegt. Das Signal TAns wird vom Temperatursensor 108 ausgegeben. Die Kennlinie 212 ermittelt abhängig von der Ansauglufttemperatur TAns einen Korrekturwert dη für den Schwellwert ηs. Der Verknüpfungspunkt 210 addiert den Schwellwert ηs und den Korrekturwert dη und stellt den so ermittelten korrigierten Schwellwert ηSK an seinem Ausgang bereit. Der Ausgang des Verknüpfungspunktes 210 ist mit einem ersten Eingang eines Verknüpfungspunktes 214 verbunden. Am zweiten Eingang des Verknüpfungspunktes 214 liegt ein Istwert ηIst des den Wirkungsgrad angebenden Signals an. Dieser Istwert ηIst wird von einer Kennlinie 216 ausgegeben, deren Eingang mit dem Ausgang des Verknüpfungspunktes 204 verbunden ist. Am ersten Eingang des Verknüpfungspunktes 204 liegt das Signal für den optimalen Zündwinkel αZOpt an und am zweiten Eingang liegt das Signal für den Zündwinkel-Istwert αZIst an, das von einem Block 218 ausgegeben wird.Figure 2 shows a schematic diagram of the invention. With help a map 200, in which a signal for the speed n of Internal combustion engine 100 and a signal for the load tL are fed will be a signal for the optimal firing angle αZOpt determined. The signal for the speed n is from the speed sensor 120 generated. The signal for the load tL is from the Output signal mL of the air mass meter or air flow meter 106 determined. The signal for the optimal ignition angle αZopt is in a first input of a node 202 and a first input of a further node 204 fed. In the second input of node 202 a signal for an ignition angle threshold value αZS is fed in, which is output by a map 206. The map 206 has two inputs on which the signal for the speed n of the engine 100 and the signal for the load tL are present. The node 202 forms the difference from the Signal for the optimal ignition angle αZopt and the signal for the Ignition angle threshold value αZS and provides them at its output. The output of node 202 is with the input a characteristic curve 208 connected. The characteristic curve 208 gives one Threshold ηs for a signal that determines the efficiency of the Internal combustion engine 100 indicates directly or indirectly. ηs is fed into a first input of a node 210. The second input of node 210 is with connected to the output of a characteristic curve 212, at the input of which Signal for the intake air temperature TAns is present. The signal TAns is output by the temperature sensor 108. The characteristic curve 212 determines a correction value depending on the intake air temperature TAns dη for the threshold ηs. Junction point 210 adds the threshold value ηs and the correction value dη and sets the corrected threshold value ηSK determined at its output ready. The output of node 210 is a first input of a node 214 connected. At the The second input of node 214 is an actual value ηis the signal indicating the efficiency. This actual value ηactual is output by a characteristic curve 216, the input of which the output of node 204 is connected. At first Input of node 204 is the signal for the optimal Ignition angle αZOpt on and at the second input Signal for the actual ignition angle value αZIst, that of a block 218 is output.

    Der Ausgang des Verknüpfungspunktes 214, an dem die Differenz aus dem Istwert ηIst und dem korrigierten Schwellwert ηSK anliegt, ist mit dem Eingang einer Kennlinie 220 verbunden. Die Kennlinie 220 gibt abhängig von dieser Differenz einen Anfettungsfaktor FAnf für das Luft/Kraftstoff-Verhältnis aus. Dieser Anfettungsfaktor FAnf kann über einen Schalter 222 an einen ersten Eingang eines Verknüpfungspunktes 224 weitergeleitet werden. Am zweiten Eingang des Verknüpfungspunktes 224 liegt ein Signal für die Einspritzzeit te an. Dieses Signal te wird im Verknüpfungspunkt 224 mit dem Anfettungsfaktor FAnf multipliziert und mit dem am Ausgang des Verknüpfungspunktes 224 bereitgestellten Signal wird letztendlich die Einspritzdüse 112 bzw. werden die Einspritzdüsen 112 angesteuert.The exit of node 214 at which the difference from the actual value ηactual and the corrected threshold value ηSK, is connected to the input of a characteristic curve 220. The Depending on this difference, characteristic curve 220 gives an enrichment factor FAnf for the air / fuel ratio. This The enrichment factor FAnf can be switched to a first via a switch 222 Input of a node 224 are forwarded. A is located at the second input of node 224 Signal for the injection time te on. This signal te is in the Node 224 multiplied by the enrichment factor FAnf and with that provided at the exit of node 224 The injection nozzle 112 or the injection nozzles 112 are activated.

    Der Schalter 222 kann zwischen zwei Schalterstellungen umgeschaltet werden. In einer ersten Schalterstellung I verbindet der Schalter 222 den Ausgang der Kennlinie 220 mit dem ersten Eingang des Verknüpfungspunktes 224. In einer zweiten Schalterstellung II verbindet der Schalter 222 den Ausgang eines Speichers 228 mit dem ersten Eingang des Verknüpfungspunktes 224. Im Speicher 228 ist ein fester Wert für den Anfettungsfaktor FAnf abgelegt, in der Regel der Wert 1. Gesteuert wird der Schalter 222 von einem Block 230. Der Block 230 prüft eine oder mehrere Bedingungen ab und steuert den Schalter 222 je nach Ergebnis dieser Prüfung entweder in die Schalterstellung I oder in die Schalterstellung II. Die Bedingungen sind so ausgelegt, daß eine unnötige oder unerwünschte Anfettung des Luft/Kraftstoff-Gemisches verhindert wird. In einer ersten Bedingung kann beispielsweise abgefragt werden, ob eine Zeitspanne t, seit der der Istwert ηIst kleiner ist als der korrigierte Schwellert ηSK, eine vorgebbare Zeitspanne t0 überschreitet. Mit dieser Bedingung wird sichergestellt, daß es bei einer kurzzeitigen und somit unschädlichen Wirkungsgrad-Verschlechterung - beispielsweise bei einem kurzzeitigen Zündwinkel-Eingriff - nicht zu einer Anfettung des Luft/Kraftstoff-Gemisches kommt. Als weitere Bedingungen kann abgefragt werden, ob die Abgastemperatur größer ist als eine vorgebbare Schwelle oder ob die Katalaysatortemperatur größer ist als eine vorgebbare Schwelle. Nur wenn die entsprechende Schwelle bereits überschritten ist, besteht die Gefahr einer Schädigung der Auslaßventile, des Katalysators oder anderer Komponenten des Abgassystems. Die Abgastemperatur und/oder die Katalysatortemperatur können entweder mit einem Temperaturmodell bestimmt werden oder gemessen werden.The switch 222 can be switched between two switch positions become. In a first switch position I connects the switch 222 the output of the characteristic curve 220 with the first Entry of node 224. In a second switch position II, switch 222 connects the output of a memory 228 with the first input of node 224. Im Memory 228 is a fixed value for the enrichment factor FAnf stored, usually the value 1. The switch is controlled 222 from block 230. Block 230 tests one or more Conditions and controls switch 222 depending on the result this test either in switch position I or in Switch position II. The conditions are designed so that a unnecessary or undesirable enrichment of the air / fuel mixture is prevented. In a first condition, for example be queried whether a period of time t since which the actual value η is less than the corrected threshold ηSK, a predeterminable time period t0 exceeds. With this condition it is ensured that there is a short-term and thus harmless Efficiency deterioration - for example at a brief ignition angle intervention - not an enrichment of the air / fuel mixture comes. As further conditions can be queried whether the exhaust gas temperature is higher than a predefinable threshold or whether the catalyst temperature is higher is a predefinable threshold. Only if the corresponding one Threshold is already exceeded, there is a risk of Damage to the exhaust valves, the catalyst or other components of the exhaust system. The exhaust gas temperature and / or the catalyst temperature can either use a temperature model be determined or measured.

    Die Wirkungsweise der in Figur 2 dargestellten Erfindung läßt sich folgendermaßen beschreiben:The mode of operation of the invention shown in FIG. 2 leaves describe themselves as follows:

    Um eine unzulässig hohe Abgastemperatur zu verhindern, wird das Luft/Kraftstoff-Gemisch gegebenenfalls angefettet, indem die Einspritzzeit te im Verknüpfungspunkt 224 mit einem Anfettungsfaktor FAnf, der einen Wert größer oder gleich 1 besitzt, multipliziert wird. Zur Ermittlung der Einspritzzeit te sind aus dem Stand der Technik eine Reihe von Verfahren bekannt, auf die hier nicht näher eingegangen wird. Es soll lediglich darauf hingewiesen werden, daß die Einspritzzeit te bereits mit Korrekturen und insbesonderre auch mit anderen Anfettungsfaktoren versehen sein kann, bevor sie in den Verknüpfungspunkt 224 eingespeist wird, beispielsweise infolge einer Warmlaufanfettung oder einer Vollastanfettung. Ein wesentlicher Aspekt der Erfindung besteht darin, daß dann eine Anfettung des Luft/Kraftstoff-Gemisches erfolgt, wenn der Istwert ηIst des den Wirkungsgrad der Brennkraftmaschine 100 angebenden Signals den korrigierten Schwellwert ηSK unterschreitet. Diese Vorgehensweise beruht auf der Erkenntnis, daß umso mehr Wärmeenergie in das Abgas abgegeben wird, je geringer der Wirkungsgrad der Brennkraftmaschine 100 ist. Der Vergleich zwischen dem Istwert ηIst und dem korrigierten Schwellwert ηSK findet im Verknüpfungspunkt 214 statt. Dort wird die Differenz aus den beiden Werten gebildet und in die Kennlinie 220 eingespeist. Solange die Differenz negativ ist, das heißt solange der Istwert ηIst größer ist als der korrigierte Schwellwert ηSK, liefert die Kennlinie 220 den Wert 1, das heißt der Anfettungsfaktor FAnf besitzt den Wert 1 und es findet keine Anfettung statt. Ist die Differenz jedoch positiv, so liefert die Kennlinie 220 einen Anfettungsfaktor FAnf größer als 1. Der Anfettungsfaktor FAnf kann dann beispielsweise linear mit der Differenz zunehmen. Je nach Anwendungsfall kann aber auch ein anderer funktionaler Zusammenhang zwischen FAnf und der Differenz zur Anwendung kommen.In order to prevent an inadmissibly high exhaust gas temperature, this is Air / fuel mixture may be greased by the Injection time te at node 224 with an enrichment factor FAnf that has a value greater than or equal to 1 is multiplied becomes. To determine the injection time te are from the State of the art a number of methods are known on the here is not discussed in more detail. It should only be pointed out be that the injection time te already with corrections and in particular also be provided with other enrichment factors can, before it is fed into node 224, for example, as a result of a warming up or a Full load enrichment. An essential aspect of the invention is in that the air / fuel mixture is then enriched, if the actual value η is the efficiency of the internal combustion engine 100 signal indicating the corrected threshold ηSK falls below. This approach is based on the knowledge that the more thermal energy is released into the exhaust gas the lower the efficiency of the internal combustion engine 100 is. The comparison between the actual value ηactual and the corrected Threshold value ηSK takes place in node 214. There the difference between the two values is formed and into the Characteristic curve 220 fed. As long as the difference is negative, that is, as long as the actual value ηactual is greater than the corrected one Threshold value ηSK, characteristic curve 220 delivers the value 1, the is called the enrichment factor FAnf has the value 1 and it finds no enrichment instead. However, if the difference is positive, then it delivers characteristic curve 220 has an enrichment factor FAnf greater than 1. The enrichment factor FAnf can then be linear, for example the difference increase. Depending on the application, it can also another functional relationship between FAnf and the difference come into use.

    Die Werte für ηIst und ηSK werden folgendermaßen ermittelt:
    ηSK wird aus dem Schwellwert ηS ermittelt. Die Zielsetzung bei der Vorgabe des Schwellwerts ηS besteht darin, daß eine kritische Abgas- oder Katalysatortemperatur, bei deren Überschreiten es zu Schädigungen kommen kann, gerade erreicht wird, wenn bei einer gegebenen Ansauglufttemperatur TAns der Istwert ηIst gleich dem Schwellwert ηS ist. Mit Hilfe des Kennfelds 208 wird der Schwellwert ηS in Abhängigkeit von der Differenz aus dem Signal für den optimalen Zündwinkel αZopt und einem Signal für einen Zündwinkel-Schwellwert αZS ermittelt. αZopt wird in Abhängigkeit von der Last tL und der Drehzahl n aus dem Kennfeld 200 ausgelesen. αZS wird in Abhängigkeit von der Last tL und der Drehzahl n aus dem Kennfeld 206 ausgelesen. Die Differenz aus αZOpt und αZS wird im Verknüpfungspunkt 202 gebildet.
    The values for ηact and ηSK are determined as follows:
    ηSK is determined from the threshold ηS. The objective when specifying the threshold value ηS is that a critical exhaust gas or catalytic converter temperature, above which damage can occur, is just achieved when the actual value ηactual is equal to the threshold value ηS at a given intake air temperature TAns. With the aid of the characteristic diagram 208, the threshold value ηS is determined as a function of the difference between the signal for the optimum ignition angle αZopt and a signal for an ignition angle threshold value αZS. αZopt is read from the map 200 as a function of the load tL and the speed n. αZS is read from the map 206 as a function of the load tL and the speed n. The difference between αZOpt and αZS is formed in node 202.

    Um neben der Last und der Drehzahl auch die Ansauglufttemperatur TAns zu berücksichtigen, die ja ebenfalls die Abgastemperatur beeinflußt, wird der Schwellwert ηS im Verknüpfungspunkt 210 mit dem Korrekturwert dη verknüpft. dη wird in Abhängigkeit von der Ansauglufttemperatur TAns aus der Kennlinie 212 ausgelesen. Die Berücksichtigung der Ansauglufttemperatur TAns stellt eine vorteilhafte Weiterbildung der Erfindung dar, d. h. es sind auch Ausführungsbeispiele ohne den Verknüpfungspunkt 210 und die Kennlinie 212 vorgesehen. In addition to the load and speed, the intake air temperature TAns to take into account, which also the exhaust gas temperature influenced, the threshold value ηS in node 210 with linked to the correction value dη. dη is dependent on the Intake air temperature TAns read from characteristic curve 212. The Taking the intake air temperature TAns into account is an advantageous one Further development of the invention, d. H. they are too Embodiments without the node 210 and the Characteristic curve 212 is provided.

    Der Istwert ηIst wird mit Hilfe des Kennfeldes 216 aus der Abweichung des Signals für den Zündwinkel-Istwert αZIst vom Signal für den optimalen Zündwinkel αZOpt ermittelt. Je stärker diese beiden Signale voneinander abweichen, desto kleiner ist der Istwert ηIst. Die Differenz aus den Signalen für αZOpt und αZIst wird im Verknüpfungspunkt 204 gebildet. Wie bereits oben erwähnt, wird das Signal für αZOpt aus dem Kennfeld 200 in Abhängigkeit von der Last tL und der Drehzahl n ermittelt. Das Signal für αZIst wird vom Block 218 bereitgestellt. Wie der Block 218 das Signal αZIst im einzelnen erzeugt, ist für die Erfindung nicht relevant und wird daher nicht näher erläutert.The actual value ηactual is made from the deviation using the characteristic diagram 216 of the signal for the actual ignition angle value αZIst from the signal determined for the optimal ignition angle αZOpt. The stronger this the two signals differ from each other, the smaller the actual value η is. The difference between the signals for αZOpt and αZIst is formed in node 204. As mentioned above, the signal for αZOpt from the map 200 is dependent determined by the load tL and the speed n. The signal for αZIst is provided by block 218. Like block 218 the signal αZIst generated in detail is for the invention not relevant and is therefore not explained in more detail.

    In Figur 3a ist ein möglicher Verlauf der Kennlinie 208 dargestellt, das heißt der Schwellwert ηS ist über der Differenz aus den Signalen für den optimalen Zündwinkel αZOpt und den Zündwinkel-Schwellwert αZS aufgetragen. Bei einer Differenz von 0 ist der Schwellwert ηS maximal und fällt mit zunehmender Differenz ab.A possible course of the characteristic curve 208 is shown in FIG. 3a, that is, the threshold ηS is above the difference the signals for the optimal ignition angle αZOpt and the ignition angle threshold αZS applied. If there is a difference of 0 the threshold value ηS maximal and falls with increasing difference from.

    In Figur 3b ist ein möglicher Verlauf für die Kennlinie 216 dargestellt, das heißt der Istwert ηIst ist über der Differenz aus den Signalen für den optimalen Zündwinkel αZopt und den Zündwinkel-Istwert αZIst aufgetragen. Bei einer Differenz von 0 ist der Istwert ηIst maximal und fällt mit zunehmender Differenz ab.FIG. 3b shows a possible course for the characteristic curve 216, that is, the actual value ηactual is over the difference the signals for the optimal ignition angle αZopt and the actual ignition angle value is applied. If there is a difference of 0, the Actual value η is maximum and decreases with increasing difference.

    Im Text zu Fig. 2 werden Verknüpfungspunkte 202, 204, 210, 214 und 224 beschrieben, die jeweils eine Verknüpfung zweier Eingangssignale zu einem Ausgangssignal durchführen. Die Verknüpfung erfolgt dabei durch Subtraktion, Addition oder Multiplikation. Als Variante können in einem Verknüpfungspunkt oder in mehreren Verknüpfungspunkten auch andere Verknüpfungsoperationen durchgeführt werden als im Text zu Fig. 2 beschrieben und es können auch andersartige Verknüpfungsoperationen, z. B. die Division, zum Einsatz kommen. Dabei ist allerdings zu beachten, daß die an der Verknüpfung beteiligten Signale und die Verknüpfungsoperation aufeinder abgestimmt sein müssen, d. h. die gespeicherten Werte, Kennlinien und Kennfelder sind bei Verwendung einer anderen Verknüpfungsoperation jeweils entsprechend auszulegen.In the text of FIG. 2, tie points 202, 204, 210, 214 and 224, each of which combines two input signals perform on an output signal. The link is done by subtraction, addition or multiplication. As a variant, in a tie point or other link operations in several link points are performed as described in the text of FIG. 2 and other types of linking operations, e.g. B. the Division. However, it should be noted that the signals involved in the link and the link operation must be coordinated, d. H. the stored values, characteristics and maps are in use corresponding to another link operation to interpret.

    In einem einfachen Ausführungsbeispiel können eine oder mehrere der in Fig. 2 dargestellten Kennlinien bzw. Kennfelder jeweils durch einen vorgebbaren Wert ersetzt werden und so der Aufwand reduziert werden.In a simple embodiment, one or more each of the characteristic curves or characteristic diagrams shown in FIG be replaced by a predeterminable value and so the effort be reduced.

    Statt den Anfettungsfaktor FAnf, wie in Fig. 2 dargestellt, aus der Kennlinie 220 auszulesen, kann er auch durch Multiplikation der Differenz aus dem korrigierten Schwellwert ηSK und dem Istwert ηIst mit einer Konstanten ermittelt werden. Ist die Differenz negativ, so wird dem Anfettungsfaktor FAnf der Wert 1 zugewiesen.Instead of the enrichment factor FAnf, as shown in Fig. 2 of the characteristic curve 220 can also be read out by multiplication the difference between the corrected threshold ηSK and the actual value ηIs determined with a constant. Is the If the difference is negative, the enrichment factor FAnf becomes 1 assigned.

    Claims (9)

    1. Control system for an internal combustion engine (100) in which the air/fuel mixture is enriched when a signal indirectly or directly indicating the efficiency of the internal combustion engine (100) drops below a threshold value (ηS), characterized in that the threshold value ηS of the signal indicating the efficiency is determined from a characteristic curve (208) as a function of the difference (αZOpt - αZS) formed between a signal for an optimum ignition angle αZopt and a signal for an ignition angle-threshold value (αZS).
    2. Control system according to Claim 1, characterized in that the enrichment of the air/fuel mixture depends on the difference ηS - ηAct formed between the threshold value (ηS) and an actual value ηAct of the signal indicating the efficiency.
    3. Control system according to Claim 2, characterized in that when there is a negative difference ηS - ηAct there is no enrichment of the air/fuel mixture and when there is a positive difference ηS - ηAct increasingly strong enrichment takes place as the difference ηS - ηAct increases.
    4. Control system according to one of the preceding claims, characterized in that the air/fuel mixture is enriched only if the time interval (t) since the signal indicating the efficiency dropped below the threshold value (ηS) is greater than a predefineable value (t0) and/or the exhaust-gas temperature is higher than a predefineable value and/or the catalytic converter temperature is higher than a predefineable value.
    5. Control system according to one of the preceding claims, characterized in that the threshold value (ηS) of the signal indicating the efficiency is provided with a correction value (dη) which depends on the intake air temperature (TAns).
    6. Control system according to Claim 2, characterized in that the actual value (ηAct) of the signal indicating the efficiency is determined from a characteristic curve (216) as a function of the difference (αZOpt - αZAct) of the signal for the optimum ignition angle (αZOpt) and a signal for an ignition-angle actual value.
    7. Control system according to Claim 1, characterized in that the signal for the optimum ignition angle (αZOpt) and the signal for the ignition-angle threshold value (αZS) are determined from a characteristic diagram (200, 206) in each case as a function of the load (tL) and the rotational speed (n) of the internal combustion engine (100).
    8. Control system according to one of the preceding claims, characterized in that the degree of enrichment is defined by means of an enrichment factor (FAnf) which is read out or calculated from a characteristic curve (220), as a function of the difference ηS - ηAct formed between the threshold value ηS and the actual value ηAct of the signal indicating the efficiency.
    9. Control system according to Claim 8, characterized in that, in order to enrich the air/fuel mixture, an injection time (te) is logically linked to the enrichment factor (FAnf).
    EP95916569A 1994-05-06 1995-04-27 Control system for an internal combustion engine Expired - Lifetime EP0758429B1 (en)

    Applications Claiming Priority (3)

    Application Number Priority Date Filing Date Title
    DE4415994A DE4415994A1 (en) 1994-05-06 1994-05-06 Control system for an internal combustion engine
    DE4415994 1994-05-06
    PCT/DE1995/000564 WO1995030827A1 (en) 1994-05-06 1995-04-27 Control system for an internal combustion engine

    Publications (2)

    Publication Number Publication Date
    EP0758429A1 EP0758429A1 (en) 1997-02-19
    EP0758429B1 true EP0758429B1 (en) 1999-04-14

    Family

    ID=6517451

    Family Applications (1)

    Application Number Title Priority Date Filing Date
    EP95916569A Expired - Lifetime EP0758429B1 (en) 1994-05-06 1995-04-27 Control system for an internal combustion engine

    Country Status (7)

    Country Link
    US (1) US5829247A (en)
    EP (1) EP0758429B1 (en)
    JP (1) JP3636723B2 (en)
    KR (1) KR100346968B1 (en)
    CN (1) CN1062640C (en)
    DE (2) DE4415994A1 (en)
    WO (1) WO1995030827A1 (en)

    Families Citing this family (10)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    DE4444416A1 (en) * 1994-12-14 1996-06-20 Bosch Gmbh Robert Method for influencing fuel metering in an internal combustion engine
    US6343596B1 (en) * 1997-10-22 2002-02-05 Pc/Rc Products, Llc Fuel delivery regulator
    DE10007242C2 (en) * 2000-02-17 2003-03-20 Daimler Chrysler Ag Method and device for protecting the catalytic converter of an internal combustion engine against overheating
    ES2382149T3 (en) * 2001-08-29 2012-06-05 Niigata Power Systems Co., Ltd. Engine, device for controlling engine exhaust temperature and control procedure
    JP4089244B2 (en) * 2002-03-01 2008-05-28 株式会社デンソー Injection amount control device for internal combustion engine
    CN1878947B (en) * 2003-09-10 2013-02-06 Pcrc产品有限公司 Apparatus and process for controlling operation of an internal combustion engine having an electronic fuel regulation system
    CN100510379C (en) * 2003-09-10 2009-07-08 Pcrc产品有限公司 Electronic fuel regulation system for small engines
    JP2006177241A (en) * 2004-12-22 2006-07-06 Nissan Motor Co Ltd Control device for internal combustion engine
    US8014938B2 (en) * 2005-12-29 2011-09-06 GM Global Technology Operations LLC Fuel efficiency determination for an engine
    DE102006005503A1 (en) 2006-02-07 2007-08-09 Robert Bosch Gmbh Method for operating internal combustion engine entails determining value of at least one parameter characterizing quality of combustion and comparing value with first predetermined threshold value

    Family Cites Families (6)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    JPS6258040A (en) * 1985-09-05 1987-03-13 Mazda Motor Corp Engine controller
    US4825836A (en) * 1986-11-28 1989-05-02 Toyota Jidosha Kabushiki Kaisha Internal combustion engine with turbo-charger and knocking control system
    JPH0270960A (en) * 1988-09-05 1990-03-09 Mitsubishi Electric Corp Control device for internal combustion engine
    JP2514446B2 (en) * 1989-12-25 1996-07-10 株式会社ユニシアジェックス Fuel supply control device for internal combustion engine with knocking control function
    JPH03233162A (en) * 1990-02-06 1991-10-17 Mitsubishi Electric Corp Combustion control device of internal combustion engine
    US5107815A (en) * 1990-06-22 1992-04-28 Massachusetts Institute Of Technology Variable air/fuel engine control system with closed-loop control around maximum efficiency and combination of otto-diesel throttling

    Also Published As

    Publication number Publication date
    CN1146231A (en) 1997-03-26
    JP3636723B2 (en) 2005-04-06
    WO1995030827A1 (en) 1995-11-16
    DE4415994A1 (en) 1995-11-09
    DE59505662D1 (en) 1999-05-20
    US5829247A (en) 1998-11-03
    KR970702963A (en) 1997-06-10
    CN1062640C (en) 2001-02-28
    EP0758429A1 (en) 1997-02-19
    KR100346968B1 (en) 2002-12-28
    JPH10500187A (en) 1998-01-06

    Similar Documents

    Publication Publication Date Title
    DE3633405C2 (en)
    DE102007045817B4 (en) A method and apparatus for controlling engine operation during regeneration of an exhaust aftertreatment system
    DE102017131256B4 (en) Control device for an internal combustion engine and an abnormality diagnosis system for a control device for an internal combustion engine
    DE4344137B4 (en) System for protecting a catalyst in the exhaust system of an internal combustion engine from overheating
    DE19645064A1 (en) Motor vehicle IC engine control system with improved catalytic converter exhaust gas cleaning efficiency
    DE19902209A1 (en) Combustion knock prevention device for operation of internal combustion, uses dynamic phase based correction
    DE3303350A1 (en) Control device for the charging pressure of an internal combustion engine with turbo charger
    DE4330997A1 (en) Method for monitoring the light-off performance of a catalytic converter system in a motor vehicle
    DE19749817A1 (en) Device and method for determining the start of injection or the combustion position
    DE102005061876A1 (en) Method and device for controlling an exhaust aftertreatment system
    EP0758429B1 (en) Control system for an internal combustion engine
    DE4323243A1 (en) Demand-oriented heating method for a catalytic converter in the exhaust gas system of an internal combustion engine
    DE102010000289A1 (en) Exhaust emission control system
    EP0885353B1 (en) Method and arrangement for controlling or regulating the power of a superchargeable internal combustion engine
    EP1085187B1 (en) Method and device for the increase of the torque in a direct injection internal-combustion engine with exhaust turbo-charger
    DE4341584B4 (en) Control system for an internal combustion engine
    DE3014680C2 (en) Method for controlling the ignition point of an internal combustion engine
    DE4410225C2 (en) Method for controlling an internal combustion engine
    EP0414781B1 (en) Multicylinder internal-combustion engine
    DE19812485B4 (en) Method and device for operating an internal combustion engine
    DE4022704C2 (en) System for controlling the ignition timing of an internal combustion engine
    DE10028886A1 (en) Method and device for monitoring the operation of an internal combustion engine
    WO2005059342A1 (en) Device for controlling an internal combustion engine
    EP1662106B1 (en) Exhaust system for an internal combustion engine
    DE10016123A1 (en) Heat-up method for vehicle combustion engine exhaust catalyst

    Legal Events

    Date Code Title Description
    PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

    Free format text: ORIGINAL CODE: 0009012

    17P Request for examination filed

    Effective date: 19961206

    AK Designated contracting states

    Kind code of ref document: A1

    Designated state(s): DE FR GB

    GRAG Despatch of communication of intention to grant

    Free format text: ORIGINAL CODE: EPIDOS AGRA

    17Q First examination report despatched

    Effective date: 19980720

    GRAG Despatch of communication of intention to grant

    Free format text: ORIGINAL CODE: EPIDOS AGRA

    GRAH Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOS IGRA

    GRAH Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOS IGRA

    GRAA (expected) grant

    Free format text: ORIGINAL CODE: 0009210

    AK Designated contracting states

    Kind code of ref document: B1

    Designated state(s): DE FR GB

    REF Corresponds to:

    Ref document number: 59505662

    Country of ref document: DE

    Date of ref document: 19990520

    ET Fr: translation filed
    GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

    Effective date: 19990624

    PLBE No opposition filed within time limit

    Free format text: ORIGINAL CODE: 0009261

    STAA Information on the status of an ep patent application or granted ep patent

    Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

    26N No opposition filed
    REG Reference to a national code

    Ref country code: GB

    Ref legal event code: IF02

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: FR

    Payment date: 20090420

    Year of fee payment: 15

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: GB

    Payment date: 20090424

    Year of fee payment: 15

    GBPC Gb: european patent ceased through non-payment of renewal fee

    Effective date: 20100427

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: ST

    Effective date: 20101230

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: GB

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20100427

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: FR

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20100430

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: DE

    Payment date: 20130627

    Year of fee payment: 19

    REG Reference to a national code

    Ref country code: DE

    Ref legal event code: R119

    Ref document number: 59505662

    Country of ref document: DE

    REG Reference to a national code

    Ref country code: DE

    Ref legal event code: R119

    Ref document number: 59505662

    Country of ref document: DE

    Effective date: 20141101

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: DE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20141101