EP0743351B1 - Verfahren zur Herstellung von Basisschmierölen - Google Patents
Verfahren zur Herstellung von Basisschmierölen Download PDFInfo
- Publication number
- EP0743351B1 EP0743351B1 EP19960201338 EP96201338A EP0743351B1 EP 0743351 B1 EP0743351 B1 EP 0743351B1 EP 19960201338 EP19960201338 EP 19960201338 EP 96201338 A EP96201338 A EP 96201338A EP 0743351 B1 EP0743351 B1 EP 0743351B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- catalyst
- stage
- process according
- hydroconversion
- metal component
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000000034 method Methods 0.000 title claims description 39
- 239000002199 base oil Substances 0.000 title claims description 23
- 230000001050 lubricating effect Effects 0.000 title claims description 18
- 238000002360 preparation method Methods 0.000 title claims description 5
- 239000003054 catalyst Substances 0.000 claims description 104
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims description 33
- 229910052751 metal Inorganic materials 0.000 claims description 29
- 239000002184 metal Substances 0.000 claims description 29
- 239000003921 oil Substances 0.000 claims description 23
- 229910000510 noble metal Inorganic materials 0.000 claims description 20
- 229930195733 hydrocarbon Natural products 0.000 claims description 18
- 150000002430 hydrocarbons Chemical class 0.000 claims description 18
- 239000004215 Carbon black (E152) Substances 0.000 claims description 16
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 claims description 15
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 14
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 claims description 13
- RWSOTUBLDIXVET-UHFFFAOYSA-N Dihydrogen sulfide Chemical compound S RWSOTUBLDIXVET-UHFFFAOYSA-N 0.000 claims description 12
- 229910021536 Zeolite Inorganic materials 0.000 claims description 12
- 239000010457 zeolite Substances 0.000 claims description 12
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 claims description 11
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 claims description 11
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 10
- 239000001257 hydrogen Substances 0.000 claims description 10
- 229910052739 hydrogen Inorganic materials 0.000 claims description 10
- 230000000694 effects Effects 0.000 claims description 8
- 238000005984 hydrogenation reaction Methods 0.000 claims description 7
- 239000000377 silicon dioxide Substances 0.000 claims description 7
- 239000011651 chromium Substances 0.000 claims description 6
- 229910052804 chromium Inorganic materials 0.000 claims description 5
- 239000007788 liquid Substances 0.000 claims description 5
- 229910052721 tungsten Inorganic materials 0.000 claims description 5
- 229910052763 palladium Inorganic materials 0.000 claims description 4
- 229910052697 platinum Inorganic materials 0.000 claims description 4
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 claims description 4
- 239000010937 tungsten Substances 0.000 claims description 4
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 claims description 3
- 229910021529 ammonia Inorganic materials 0.000 claims description 3
- 239000010687 lubricating oil Substances 0.000 claims 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 14
- 239000005864 Sulphur Substances 0.000 description 13
- 150000001875 compounds Chemical class 0.000 description 11
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 10
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 9
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 8
- 239000002904 solvent Substances 0.000 description 8
- 229910000069 nitrogen hydride Inorganic materials 0.000 description 7
- 238000004519 manufacturing process Methods 0.000 description 6
- PFRUBEOIWWEFOL-UHFFFAOYSA-N [N].[S] Chemical compound [N].[S] PFRUBEOIWWEFOL-UHFFFAOYSA-N 0.000 description 5
- 229910000323 aluminium silicate Inorganic materials 0.000 description 5
- 239000003795 chemical substances by application Substances 0.000 description 5
- 239000000047 product Substances 0.000 description 5
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 4
- 238000009835 boiling Methods 0.000 description 4
- 238000004821 distillation Methods 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 229910052757 nitrogen Inorganic materials 0.000 description 4
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- 150000001491 aromatic compounds Chemical class 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 238000004517 catalytic hydrocracking Methods 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 229910017052 cobalt Inorganic materials 0.000 description 3
- 239000010941 cobalt Substances 0.000 description 3
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 229910052809 inorganic oxide Inorganic materials 0.000 description 3
- 150000002739 metals Chemical class 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 229910052750 molybdenum Inorganic materials 0.000 description 3
- 229910052759 nickel Inorganic materials 0.000 description 3
- 239000001993 wax Substances 0.000 description 3
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 2
- 125000003118 aryl group Chemical group 0.000 description 2
- 230000003197 catalytic effect Effects 0.000 description 2
- 239000000295 fuel oil Substances 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 238000011065 in-situ storage Methods 0.000 description 2
- 239000011733 molybdenum Substances 0.000 description 2
- 150000003568 thioethers Chemical class 0.000 description 2
- 101100442776 Mus musculus Decr2 gene Proteins 0.000 description 1
- 229910003294 NiMo Inorganic materials 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- -1 VIB metals Chemical class 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 239000011959 amorphous silica alumina Substances 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- WHDPTDWLEKQKKX-UHFFFAOYSA-N cobalt molybdenum Chemical compound [Co].[Co].[Mo] WHDPTDWLEKQKKX-UHFFFAOYSA-N 0.000 description 1
- 239000010779 crude oil Substances 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- LVTYICIALWPMFW-UHFFFAOYSA-N diisopropanolamine Chemical compound CC(O)CNCC(C)O LVTYICIALWPMFW-UHFFFAOYSA-N 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000011066 ex-situ storage Methods 0.000 description 1
- 239000012013 faujasite Substances 0.000 description 1
- 229910001657 ferrierite group Inorganic materials 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 238000005461 lubrication Methods 0.000 description 1
- DDTIGTPWGISMKL-UHFFFAOYSA-N molybdenum nickel Chemical compound [Ni].[Mo] DDTIGTPWGISMKL-UHFFFAOYSA-N 0.000 description 1
- 229910052680 mordenite Inorganic materials 0.000 description 1
- MOWMLACGTDMJRV-UHFFFAOYSA-N nickel tungsten Chemical compound [Ni].[W] MOWMLACGTDMJRV-UHFFFAOYSA-N 0.000 description 1
- 229910017464 nitrogen compound Inorganic materials 0.000 description 1
- 150000002830 nitrogen compounds Chemical class 0.000 description 1
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 238000007086 side reaction Methods 0.000 description 1
- 238000005292 vacuum distillation Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G65/00—Treatment of hydrocarbon oils by two or more hydrotreatment processes only
- C10G65/02—Treatment of hydrocarbon oils by two or more hydrotreatment processes only plural serial stages only
- C10G65/04—Treatment of hydrocarbon oils by two or more hydrotreatment processes only plural serial stages only including only refining steps
- C10G65/08—Treatment of hydrocarbon oils by two or more hydrotreatment processes only plural serial stages only including only refining steps at least one step being a hydrogenation of the aromatic hydrocarbons
Definitions
- the present invention relates to a process for the preparation of a lubrication base oil, which process involves two successive hydroconversion stages.
- first stage catalysts normally comprise a Group VIII non-noble metal component and a Group VIB metal component on a refractory oxide support.
- Suitable second stage catalysts comprise a Group VIII noble metal component, optionally together with a Group VIB metal component, on an refractory oxide support.
- platinum and/or palladium either in elemental form or as oxide or sulphide, are disclosed to be useful.
- refractory oxide support aluminosilicates (zeolitic materials) as well as inorganic oxides (such as e.g. silica, alumina and amorphous silica-alumina) or mixtures thereof may be applied.
- zeolitic materials zeolitic materials
- inorganic oxides such as e.g. silica, alumina and amorphous silica-alumina
- the first stage operating temperature leaves room for improvement. Due to the relatively high operating temperature applied in the first hydroconversion stage, namely, the formation of polynuclear aromatic compounds in this first stage is favoured. These polynuclear aromatic compounds formed must then be removed in the second stage, which implies that hydroconversion conditions in this second stage should be sufficiently severe to hydrogenate and/or hydrocrack said polynuclear polyaromatic compounds. On the other hand, decreasing the first stage operating temperature will result in less conversion of the feedstock into valuable products, which is undesired from an economic perspective.
- the present invention aims to provide a two stage hydroconversion process for preparing lubricating base oils, whereby the first stage can be operated at a lower operating temperature than conventionally applied, whilst still obtaining products having an excellent viscosity index at a commercially attractive yield. It will be evident that such a process will put less stringent demands on the equipment to be used and hence can be operated at lower operating costs, whilst still maintaining a commercially attractive yield. Moreover, less formation of polynuclear aromatic species also implies that less of these species will remain in the final base oil, which is desired from both environmental and base oil quality considerations. Thus, the present invention aims to provide an improved two stage hydroconversion process for preparing lubricating base oils. More specifically, the present invention aims to provide a process for the preparation of a lubricating base oil, which process allows the production of high viscosity index lubricating base oils at less demanding operating conditions, whilst still having a commercially attractive yield.
- the present invention relates to a process for the preparation of a lubricating base oil comprising the steps of:
- Suitable hydrocarbon oil feeds to be employed in step (a) of the process according to the present invention are mixtures of high-boiling hydrocarbons, such as for instance heavy oil fractions.
- Particularly those heavy oil fractions having a boiling range which is at least partly above the boiling range of lubricating base oils are suitable as hydrocarbon oil feeds for the purpose of the present invention.
- the boiling range of such a vacuum distillate fraction is usually between 300 and 620 °C, suitably between 350 and 550 °C.
- deasphalted residual oil fractions including both deasphalted atmospheric residues and deasphalted vacuum residues
- synthetic waxy raffinates Fischer-Tropsch waxy raffinates
- slack waxes particularly those obtained from the dewaxing of hydrotreated waxy distillates- and hydrocracker bottom fractions (hydrowax) are also suitable feedstocks to be used in the process according to the present invention.
- Suitable hydrowaxes are those having an effective cutpoint of 320 °C or higher, preferably of 370 °C or higher.
- the catalyst to be used in the first hydroconversion stage is a Group VIII noble metal-based catalyst. If a hydrocarbon oil feed is used which is not substantially free of sulphur- and nitrogen-containing compounds, this catalyst should be sulphided prior to operation in order to attain optimum catalyst activity and in order to ensure that the catalyst is sufficiently tolerant towards the sulphur- and nitrogen-containing compounds present in the feed. If the catalyst would not be sulphided in this case, its sulphur-tolerance would be too low under the operating conditions and the catalyst would consequently be rapidly poisoned when contacted with the hydrocarbon oil feed under the operating conditions.
- Sulphiding of the catalyst can be achieved by methods known in the art, such as for instance from European patent applications Nos. 0,181,254; 0,329,499; 0448,435 and 0,564,317 and from International patent applications Nos. WO 93/02793 and WO 94/25157.
- Sulphiding can be performed either ex situ or in situ by contacting the unsulphided catalyst with a suitable sulphiding agent, such as hydrogen sulphide.
- a suitable sulphiding agent such as hydrogen sulphide.
- a hydrocarbon oil containing a substantial amount of sulphur-containing compounds may also be used as the sulphiding agent. Such oil is then contacted with the catalyst at a temperature which is gradually increased from ambient temperature to a temperature of between 150 and 250 °C.
- the catalyst is to be maintained at this temperature for between 10 and 20 hours. Subsequently, the temperature is to be raised gradually to the operating temperature. Still another option is to use the hydrocarbon oil feed, which usually contains a significant amount of sulphur-containing compounds, as the sulphiding agent. In this case the unsulphided catalyst may be contacted with the feed under conditions less severe than the operating conditions, thus causing the catalyst to become sulphided.
- the hydrocarbon oil feed should comprise at least 0.5% by weight of sulphur- containing compounds, said weight percentage indicating the amount of elemental sulphur relative to the total amount of feedstock, in order to be useful as a sulphiding agent. From a cost and efficiency perspective, it is generally preferred to sulphide the catalyst in situ, i.e. first loading the unsulphided catalyst into a reactor and thereafter contacting it with the sulphiding agent(s) under appropriate sulphiding conditions.
- the refractory oxide support of the first stage hydrotreating catalyst may be any inorganic oxide, aluminosilicate or combination of these, optionally in combination with an inert binder material.
- suitable refractory oxides include inorganic oxides, such as alumina, silica, titania, zirconia, boria, silica-alumina, fluorided alumina, fluorided silica-alumina and mixtures of two or more of these.
- an acidic carrier such as alumina, silica-alumina or fluorided alumina is used as the refractory oxide carrier.
- the refractory oxide support may also be an aluminosilicate.
- aluminosilicates Both synthetic and naturally occurring aluminosilicates may be used. Examples are zeolite beta, faujasite and zeolite Y. A preferred aluminosilicate to be applied is alumina- or silica-bound zeolite Y.
- the Group VIII noble metal component of the first stage hydroconversion catalyst suitably is a platinum (Pt) and/or a palladium (Pd) component. If the catalyst is sulphided prior to operation, the noble metal component will usually be present as a sulphide during normal operation, but part of it may very well be present in elemental and/or oxide form. Beside the Group VIII noble metal component, a non-noble Group VIII metal component and/or a Group VIB metal component may be present as well on the catalyst. Accordingly, nickel (Ni), cobalt (Co) and/or chromium (Cr), molybdenum (Mo) or tungsten (W) -suitably in their sulphide form- may also be present on the catalyst.
- Ni nickel
- Co cobalt
- Cr chromium
- Mo molybdenum
- W tungsten
- tungsten and chromium are preferred.
- first stage catalysts are those noble metal based-catalysts disclosed in European Patent Application No. 0,653,242 and International Patent Application No. WO 96/03208.
- suitable catalysts include PdCr and PdW on silica-bound zeolite Y, on alumina-bound zeolite Y, on fluorided alumina-bound zeolite Y, on silica-alumina or on fluorided alumina.
- Pt on silica-alumina PtPd on silica-bound zeolite Y
- PtPd on alumina-bound zeolite Y and PtPd on silica-alumina All catalysts mentioned preferably are sulphided prior to operation.
- Particularly preferred first stage catalysts are sulphided PdW on silica- or alumina-bound zeolite Y, sulphided PdW on silica-alumina and sulphided PdW on fluorided alumina.
- the second hydroconversion stage, i.e. step (b), of the process according to the present invention may involve hydrogenation, hydrodesulphurisation, hydrodenitrogenation, hydroisomerisation of paraffinic molecules and any combination of two or more of these processes, depending on the type of hydroconversion catalyst used. Hydrocracking of paraffinic molecules may also occur in step (b), but only as a (minor) side reaction to one or more of the hydroconversion reactions mentioned above. Accordingly, the hydroconversion catalyst to be used in step (b) will not be a catalyst specifically suited for hydrocracking of paraffinic molecules.
- the hydroconversion catalyst used in step (b) of the process according to the present invention i.e. the second stage catalyst, in principle may be any catalyst known to be active in the hydrogenation, hydrodesulphurisation, hydrodenitrogenation and/or hydroisomerisation of the relevant hydrocarbons with the purpose of manufacturing lubricating base oils.
- a first class of suitable second stage catalysts are the hydrogenation catalysts comprising at least one Group VIII metal component and optionally at least one Group VIB metal component as the hydrogenating component(s).
- Such catalysts have hydrogenation activity and may also have hydrodesulphurisation and/or hydrodenitrogenation activity. Usually they do not possess any relevant hydroisomerisation activity.
- Suitable Group VIII metal components include both noble and non-noble metals and/or compounds thereof, usually oxides and/or sulphides.
- the second stage catalyst may accordingly comprise one or more of the non-noble Group VIII metals nickel (Ni) or cobalt (Co) and/or one or more of the noble Group VIII metals Pt and Pd.
- this catalyst is suitably at least partly sulphided prior to operation in order to increase its sulphur tolerance. It will be understood that the extent of sulphidation depends on the sulphur content of the first stage effluent. At sufficiently low sulphur content of the first stage effluent, sulphidation of a second stage noble metal-based catalyst may be dispensed with.
- the second stage catalyst may also comprise a Group VIB metal component, which may be Cr, Mo and/or W in elemental, oxide and/or sulphide form.
- the second stage catalyst support also is an refractory oxide support and includes the same supports as listed above for the first stage catalyst.
- the second stage catalyst comprises a non-noble Group VIII metal, it may be advantageous to use phosphorus (P) as a promoter.
- suitable second stage catalysts include NiMo(P) on alumina or fluorided alumina, CoMo(P) on alumina, NiW on fluorided alumina, PdW on silica-alumina, fluorided alumina or silica-bound zeolite Y.
- a second class of suitable second stage catalysts are those catalysts having predominantly hydroisomerisation activity. These catalysts are used, if the main objective of step (b) is to lower the pour point of the first stage effluent, i.e. dewaxing.
- Hydroisomerisation catalysts are well known in the art and usually are based on an intermediate pore size zeolitic material, suitably comprising at least one Group VIII metal component, preferably Pt and/or Pd.
- Suitable zeolitic materials include ZSM-5, ZSM-22, ZSM-23, ZSM-35, SSZ-32, ferrierite, zeolite beta, mordenite and silica-aluminophosphates, such as SAPO-11 and SAPO-31.
- hydroisomerisation catalysts examples include, for instance, described in International Patent Application No. WO 92/01657. Since hydroisomerisation catalysts generally are relatively quickly poisoned by sulphur-containing compounds, the first stage effluent must have a low sulphur content prior to entry in the second stage.
- first and second stage catalyst may vary between wide limits.
- a Group VIII noble metal may suitably be present on first and second stage catalyst in an amount ranging from 0.1 to 10, preferably 0.2 to 5, percent by weight (% wt), which weight percentage indicates the amount of metal (calculated as element) relative to total weight of catalyst.
- a non-noble Group VIII metal may suitably be present on the second stage catalyst in an amount of from 1 to 25% wt, preferably 2 to 15% wt, calculated as element relative to total weight of catalyst.
- a Group VIB metal is suitably present on first and second stage in an amount of from 5 to 30% wt, preferably 10 to 25% wt, calculated as element relative to total weight of catalyst.
- Operating conditions in the first and second hydroconversion stage are those conventionally applied in the relevant hydroconversion operations. Accordingly, the operating temperature may range from 250 to 500 °C, the operating pressure may range from 10 to 250 bar, the weight hourly space velocity (WHSV) may range from 0.1 to 10 kg of oil per litre of catalyst per hour (kg/l.h), preferably from 0.5 to 5 kg/l.h, and the hydrogen to oil ratio is suitably in the range from 100 to 2,000 litres of hydrogen per litre of oil.
- WHSV weight hourly space velocity
- the first stage catalyst used in accordance with the present invention allows a lower first stage operating temperature, thus reducing the amount of polynuclear aromatic species formed in this first hydroconversion stage and hence allowing less severe conditions in the second hydroconversion stage.
- an activity gain in the first hydrotreatment stage of only three degrees Celsius may already significantly reduce the amount of polynuclear aromatics formed.
- the liquid effluent of the first stage may first be treated to remove undesired gaseous species, such as hydrogen sulphide (H 2 S) and ammonia (NH 3 ).
- H 2 S hydrogen sulphide
- NH 3 ammonia
- H 2 S may, for instance, be removed by absorption in an aqueous amine solution.
- a di-isopropanolamine solution is very useful in this respect.
- a preferred option is to remove H 2 S and NH 3 simultaneously from the first stage effluent by passing said effluent through a high pressure stripper prior to introduction into the second stage.
- the second stage catalyst suitably comprises a Pt and/or a Pd component as the Group VIII metal component.
- This catalyst may further comprise a Group VIB metal component, preferably based on W or Cr. In this mode of operation it may be advantageous to use the same noble metal-based catalyst in the first and second hydroconversion stage.
- H 2 S and NH 3 are not removed from the first stage effluent, whereas the feed used is not substantially free of any sulphur-and/or nitrogen-containing compounds, it is preferred to use a second stage catalyst comprising a nickel or cobalt component as the Group VIII metal component and a molybdenum or tungsten component as the Group VIB metal component. Suitable examples of any of these catalysts have already been described above.
- Step (c) Recovery of the lubricating base oil(s) in step (c) is usually attained by distillation of the second stage effluent. Each lubricating base oil is then recovered as a distillate fraction. Suitably the distillation is carried out under reduced pressure. However, atmospheric distillation may also be applied. The cutpoint(s) of the distillate fraction(s) is/are selected such that each base oil recovered has the desired viscosity.
- the second stage catalyst is a hydrogenation catalyst having no or hardly any hydroisomerisation activity
- a subsequent dewaxing step (d) is required to obtain lubricating base oils having sufficiently low pour points.
- Dewaxing can be achieved by catalytic dewaxing or solvent dewaxing. Both dewaxing techniques are well known in the art.
- suitable catalysts for use in catalytic dewaxing include catalysts based on ZSM-5, ZSM-23 or ZSM-35. Suitable dewaxing catalysts and dewaxing processes are for instance described in U.S. Patents Nos.
- Solvent dewaxing is also a well known dewaxing process.
- the most commonly applied solvent dewaxing process is the methyl ethyl ketone (MEK) solvent dewaxing route, wherein MEK is used as the dewaxing solvent, possibly in admixture with toluene.
- MEK methyl ethyl ketone
- step (c) If the second stage catalyst is a hydroisomerisation catalyst, then a separate dewaxing step after step (c) can be dispensed with.
- the lubricating base oil(s) obtained in step (c) in this case meet the specifications with respect to both viscosity index and pour point and accordingly no further pour point lowering treatment is necessary in that case.
- the first stage effluent must have a sufficiently low sulphur content before being contacted with a hydroisomerisation catalyst.
- step (a) If the hydrocarbon oil feed used in step (a) is a hydrowax or a synthetic waxy raffinate, which usually have low sulphur and nitrogen contents, then an interstage treatment for removing H 2 S and NH 3 can be dispensed with and the first stage effluent can be directly passed to step (b). If, on the other hand, the hydrocarbon oil feed used in step (a) has relatively high sulphur and nitrogen contents, such as in the case of vacuum distillates of atmospheric residues, then an interstage removal of H 2 S and NH 3 is required.
- the lubricating base oils eventually produced using the process according to the present invention have a viscosity index of at least 80, preferably at least 90 and more preferably at least 95, and a pour point of -6 °C or lower and preferably -9 °C or lower.
- a hydrocarbon oil vacuum distillate obtained by vacuum flashing of an atmospheric residue and having the properties as indicated in Table I was contacted in a first step with hydrogen in the presence of a presulphided catalyst comprising 4.3% wt Pd and 21.9% wt of W (both calculated as element relative to total weight of catalyst) on a fluorided alumina carrier (4.4% wt F, basis total carrier).
- the effluent of the first step was subsequently contacted in the second step with hydrogen in the presence of a conventional NiMoP/alumina catalyst (3.0% wt Ni, 13.0% wt Mo, 3.2% wt P, all calculated as element relative to total weight of catalyst).
- the process according to the present invention requires a lower temperature in the first step, wherein the noble metal-based catalyst is used, whilst still obtaining a product having better VI and viscosity at a higher yield.
Landscapes
- Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
- Catalysts (AREA)
Claims (12)
- Verfahren zur Herstellung eines Basisschmieröls, das die folgenden Stufen umfaßt:(a) Inkontaktbringen eines Kohlenwasserstofföleinsatzmaterials in einer ersten Stufe mit Wasserstoff in Gegenwart eines Katalysators, der wenigstens eine Gruppe VIII-Edelmetallkomponente und wenigstens eine Gruppe VIB-Metallkomponente auf einem feuerfesten Oxidträger umfaßt;(b) Inkontaktbringen des flüssigen Abstroms in einer zweiten Stufe mit Wasserstoff in Gegenwart eines wenigstens eine Gruppe VIII-Metallkomponente umfassenden Hydrokonversionskatalysators unter Hydrokonversionsbedingungen, und(c) Gewinnen wenigstens eines Basisschmieröls mit einem Viskositätsindex von wenigstens 80.
- Verfahren nach Anspruch 1, worin der Erststufenkatalysator eine Platin- und/oder Palladiumkomponente als die Gruppe VIII-Edelmetallkomponente umfaßt.
- Verfahren nach Anspruch 1 oder 2, worin der Erststufenkatalysator eine Wolfram- oder Chromkomponente als die Gruppe VIB-Metallkomponente umfaßt.
- Verfahren nach einem der Ansprüche 1 bis 3, worin der Erststufenkatalysator sulfidiert ist.
- Verfahren nach Anspruch 4, worin der Erststufenkatalysator ein sulfidiertes PdW auf Siliziumoxid oder aluminiumoxidgebundenem Zeolith Y, ein sulfidiertes PdW auf Siliziumoxid-Aluminiumoxid oder ein sulfidiertes PdW auf fluoriertem Aluminiumoxid ist.
- Verfahren nach einem der Ansprüche 1 bis 5, worin der in Stufe (b) verwendete Hydrokonversionskatalysator zusätzlich wenigstens eine Gruppe VIB-Metallkompontente umfaßt.
- Verfahren nach einem der Ansprüche 1 bis 6, worin der in Stufe (b) verwendete Hydrokonversionskatalysator ein Hydrierkatalysator ist, der keine oder kaum irgendeine Hydroisomerisationsaktivität aufweist und welches Verfahren zusätzlich die Stufe (d) der Ausführung einer Entwachsungsbehandlung an dem bzw. an den in Stufe (c) gewonnenen Schmieröl(en) umfaßt.
- Vefahren nach einem der Ansprüche 1 bis 6, worin der in Stufe (b) verwendete Hydrokonversionskatalysator ein Hydroisomerisationskatalysator ist.
- Verfahren nach einem der Ansprüche 1 bis 8, worin der flüssige Abstrom aus Stufe (a) zunächst zur Beseitigung von Schwefelwasserstoff und Ammoniak behandelt wird, bevor er in Stufe (b) mit Wasserstoff in Kontakt gebracht wird.
- Verfahren nach Anspruch 9, worin Schwefelwasserstoff und Ammoniak durch Durchleiten dieses Abstroms durch einen Hochdruckstripper abgetrennt werden.
- Verfahren nach einem der Ansprüche 1 bis 10, worin das Kohlenwasserstofföleinsatzmaterial eine von einem atmosphärischen Rückstand abgeleitete Vakuumdestillatfraktion ist.
- Verfahren nach einem der Ansprüche 1 bis 6, worin das Kohlenwasserstofföleinsatzmaterial ein Hydrowachs oder ein synthetisches wachsartiges Raffinat ist und der Abstrom aus Stufe (a) direkt zur Stufe (b) geführt wird, worin der Hydrokonversionskatalysator ein Hydroisomerisationskatalysator ist.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP19960201338 EP0743351B1 (de) | 1995-05-19 | 1996-05-15 | Verfahren zur Herstellung von Basisschmierölen |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP95401178 | 1995-05-19 | ||
EP95401178 | 1995-05-19 | ||
EP19960201338 EP0743351B1 (de) | 1995-05-19 | 1996-05-15 | Verfahren zur Herstellung von Basisschmierölen |
Publications (3)
Publication Number | Publication Date |
---|---|
EP0743351A2 EP0743351A2 (de) | 1996-11-20 |
EP0743351A3 EP0743351A3 (de) | 1997-01-22 |
EP0743351B1 true EP0743351B1 (de) | 2000-08-09 |
Family
ID=26140553
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP19960201338 Expired - Lifetime EP0743351B1 (de) | 1995-05-19 | 1996-05-15 | Verfahren zur Herstellung von Basisschmierölen |
Country Status (1)
Country | Link |
---|---|
EP (1) | EP0743351B1 (de) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8557106B2 (en) | 2010-09-30 | 2013-10-15 | Exxonmobil Research And Engineering Company | Hydrocracking process selective for improved distillate and improved lube yield and properties |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5976353A (en) * | 1996-06-28 | 1999-11-02 | Exxon Research And Engineering Co | Raffinate hydroconversion process (JHT-9601) |
EA000850B1 (ru) * | 1996-07-16 | 2000-06-26 | Шеврон Ю.Эс.Эй. Инк. | Способ получения базового компонента смазочного масла |
CA2262586A1 (en) * | 1996-08-01 | 1998-02-12 | Shell Internationale Research Maatschappij B.V. | Hydrotreating process |
US6096189A (en) * | 1996-12-17 | 2000-08-01 | Exxon Research And Engineering Co. | Hydroconversion process for making lubricating oil basestocks |
US6099719A (en) * | 1996-12-17 | 2000-08-08 | Exxon Research And Engineering Company | Hydroconversion process for making lubicating oil basestocks |
FR2805276B1 (fr) * | 2000-02-23 | 2004-10-22 | Inst Francais Du Petrole | Procede de conversion d'hydrocarbures sur catalyseur a acidite controlee |
US6569318B2 (en) | 2000-02-23 | 2003-05-27 | Institut Francais Du Petrole | Process for conversion of hydrocarbons on a catalyst with controlled acidity |
WO2014098820A1 (en) | 2012-12-19 | 2014-06-26 | Exxonmobil Research And Engineering Company | Mesoporous zeolite -y hydrocracking catalyst and associated hydrocracking processes |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3673078A (en) * | 1970-03-04 | 1972-06-27 | Sun Oil Co | Process for producing high ur oil by hydrogenation of dewaxed raffinate |
AU610671B2 (en) * | 1987-12-18 | 1991-05-23 | Exxon Research And Engineering Company | Process for the hydroisomerization of fischer-tropsch wax to produce lubricating oil |
EP0323724B1 (de) * | 1987-12-18 | 1992-09-09 | Exxon Research And Engineering Company | Verfahren zur Stabilisierung von Hydroisomeraten |
US5275719A (en) * | 1992-06-08 | 1994-01-04 | Mobil Oil Corporation | Production of high viscosity index lubricants |
-
1996
- 1996-05-15 EP EP19960201338 patent/EP0743351B1/de not_active Expired - Lifetime
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8557106B2 (en) | 2010-09-30 | 2013-10-15 | Exxonmobil Research And Engineering Company | Hydrocracking process selective for improved distillate and improved lube yield and properties |
US9487714B2 (en) | 2010-09-30 | 2016-11-08 | Exxonmobil Research And Engineering Company | Hydrocracking process selective for improved distillate and improved lube yield and properties |
Also Published As
Publication number | Publication date |
---|---|
EP0743351A3 (de) | 1997-01-22 |
EP0743351A2 (de) | 1996-11-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6051127A (en) | Process for the preparation of lubricating base oils | |
CA1196879A (en) | Hydrocracking process | |
EP3077485B1 (de) | Hydrocracken von gasölen mit erhöhter destillatausbeute | |
US5122257A (en) | Process for the manufacture of kerosene and/or gas oils | |
AU692574B2 (en) | Lubricating oil production with vi-selective catalyst | |
US7261808B2 (en) | Upgrading of pre-processed used oils | |
US4747932A (en) | Three-step catalytic dewaxing and hydrofinishing | |
EP0743351B1 (de) | Verfahren zur Herstellung von Basisschmierölen | |
US6444865B1 (en) | Process wherein a hydrocarbon feedstock is contacted with a catalyst | |
EP0400742B1 (de) | Verfahren zur Herstellung von Basisschmierölen | |
US7132043B1 (en) | Process to prepare a lubricating base oil | |
US7344633B2 (en) | Process to prepare a base oil having a high saturates content | |
CA2176844C (en) | Process for the preparation of lubricating base oils | |
KR20030020377A (ko) | 무색 투명 윤활성 기재 오일의 제조 방법 | |
CA2175020C (en) | Process for producing lubricating base oils | |
EP0744452B1 (de) | Verfahren zur Herstellung von Basisschmierölen | |
EP0958047A1 (de) | Katalysator, seine verwendung und verfahren zur herstellung | |
EP1762606A1 (de) | Verfahren zur Entschwefelung von Kohlenwasserstoffen | |
AU2002346933B2 (en) | Upgrading of pre-processed used oils | |
AU2002346933A1 (en) | Upgrading of pre-processed used oils |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): DE FR GB IT NL |
|
PUAL | Search report despatched |
Free format text: ORIGINAL CODE: 0009013 |
|
AK | Designated contracting states |
Kind code of ref document: A3 Designated state(s): DE FR GB IT NL |
|
17P | Request for examination filed |
Effective date: 19970609 |
|
17Q | First examination report despatched |
Effective date: 19990126 |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE FR GB IT NL |
|
ITF | It: translation for a ep patent filed | ||
REF | Corresponds to: |
Ref document number: 69609661 Country of ref document: DE Date of ref document: 20000914 |
|
ET | Fr: translation filed | ||
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
REG | Reference to a national code |
Ref country code: GB Ref legal event code: IF02 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20080528 Year of fee payment: 13 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20080526 Year of fee payment: 13 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20090423 Year of fee payment: 14 Ref country code: FR Payment date: 20090330 Year of fee payment: 14 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20090417 Year of fee payment: 14 |
|
NLV4 | Nl: lapsed or anulled due to non-payment of the annual fee |
Effective date: 20091201 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20091201 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20091201 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20100515 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20110131 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20100515 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20100531 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20100515 |