EP0734963A2 - Bottle closure mechanism using a sliding shutter - Google Patents

Bottle closure mechanism using a sliding shutter Download PDF

Info

Publication number
EP0734963A2
EP0734963A2 EP96302195A EP96302195A EP0734963A2 EP 0734963 A2 EP0734963 A2 EP 0734963A2 EP 96302195 A EP96302195 A EP 96302195A EP 96302195 A EP96302195 A EP 96302195A EP 0734963 A2 EP0734963 A2 EP 0734963A2
Authority
EP
European Patent Office
Prior art keywords
shutter
holder
grommet
axis
bottle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP96302195A
Other languages
German (de)
French (fr)
Other versions
EP0734963B1 (en
EP0734963A3 (en
Inventor
James Danial Riall
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ortho Clinical Diagnostics Inc
Original Assignee
Johnson and Johnson Clinical Diagnostics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Johnson and Johnson Clinical Diagnostics Inc filed Critical Johnson and Johnson Clinical Diagnostics Inc
Publication of EP0734963A2 publication Critical patent/EP0734963A2/en
Publication of EP0734963A3 publication Critical patent/EP0734963A3/en
Application granted granted Critical
Publication of EP0734963B1 publication Critical patent/EP0734963B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L9/00Supporting devices; Holding devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/508Containers for the purpose of retaining a material to be analysed, e.g. test tubes rigid containers not provided for above
    • B01L3/5082Test tubes per se
    • B01L3/50825Closing or opening means, corks, bungs
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/10Devices for transferring samples or any liquids to, in, or from, the analysis apparatus, e.g. suction devices, injection devices
    • G01N35/1002Reagent dispensers

Definitions

  • This invention relates to a closure mechanism for plural reagent bottles in a bottle holder, such as is used in a clinical analyzer.
  • Analyzers supply liquid reagents in bottles. These bottles, though initially closed off, are necessarily penetrated by aspirator probes when reagents are needed. Such repeated penetrations produce substantial degradation to the reagents for the following reasons: first, it has been practically impossible to reseal the bottle after the first penetration. Attempts to avoid this have used such things as penetrable septums that are supposed to reseal after penetration, but repeated penetration more or less along the same line produces "coring" which leaves a permanent air passage in the septum, air degradation of the reagent and residual deposits of the reagent on the seal which can create carry-over and growth of molds.
  • the problem then that has long faced the wet assay analyzer is how to provide on-analyzer keeping of the liquid reagents more than one or two weeks, without having to constantly replace the bottles. That is, how can a large quantity of reagent be kept on-analyzer, for one or two months, without degradation due to contact with ambient air (evaporation) or foreign materials?
  • a combination comprising a bottle holder and a first and second bottle of liquid in the holder, each bottle comprising a container with an open mouth, the holder comprising support walls constructed to hold the bottles, a grommet having a through-aperture and disposed by the support walls at the mouth of each the container so as to close off the mouth except for the through-aperture, and a closure means for opening and closing the grommet apertures, and hence the container mouth, on demand, the closure means comprising a shutter, means in the bottle holder for mounting the shutter for sliding movement, in contact with and relative to the grommets, between a first and a second position, one of the positions being that which closes off at least one of the grommet apertures and the other of the positions that which opens the at least one grommet aperture, the shutter further including at least one
  • reagent bottles can be stored on-analyzer for much longer than has been heretofore possible, even for months, without degradation.
  • the invention is hereinafter described in connection with certain preferred embodiments, in which bottles of a preferred form are mounted in pairs in a preferred holder and a closure mechanism is mounted there-above to rotate about an axis that is in a preferred angular orientation with respect to the bottles.
  • the invention is useful regardless of the form of the bottles, so long as they are open-mouth bottles, whether they are in pairs or other numbers, and regardless of the form of the holder and whether the closure mechanism moves by rotation or some other mechanism. If rotation is used, the invention is also applicable regardless of the particular angular positioning of the axis of rotation with respect to the bottles present.
  • Orientations such as “above”, , “below”, “top”, “side” and the like refer to the orientation of the parts in their intended use.
  • a preferred bottle holder for use in the combination is that described in US-A-5,322,668.
  • a holder 10 is generally pie-shaped, Fig. 2, so as to slide in and out of a wet chemistry analyzer, as is conventional (not shown), generally in a circular arrangement of such holders.
  • Such a bottle holder 10 comprises, Fig. 1, a base 12, a top member 30, and a sidewall 60 extending between and joined to the base and top member.
  • base 12 comprises a platform having at lest one recess and preferably recesses 14 and 16, for each of two open mouth bottles B1 and B2 held by holder 10.
  • recesses 14 and 16 are disposed along the length of holder 10, which is the dimension that aligns with a radius of the circular arrangement of such holders in the analyzer (not shown) .
  • Recess 14 is partially defined by an upstanding lug 18.
  • Recess 16 is preferably defined by raised sidewalls.
  • Base 12 is joined to side wall 60 by any conventional means, for example by welding, by adhesive, by mechanical latches, and so forth Bottles B1 and B2 preferably hold two different reagent solutions.
  • Top member 30 comprises a generally flat plate 32 provided with grommets 34, and depending fingers 36 with snap latches 38 for locking under the rim of the mouth 40 of a bottle B1 or B2 with each grommet 34 in contact with a mouth 40. (Opposite ends 42 of the bottles are retained in recesses 14 and 16). Apertures 44 in grommets 34 are generally aligned with a center axis 46 of each of mouths 40. Each grommet has an exposed exterior surface 47. A side skirt 50 wraps partially around plate 32 and engages wall 60 using teeth 90.
  • Sidewall 60 can have any desired shape and thickness, but preferably it has a plurality of, for example, four cylindrical apertures 62, Fig. 2, extending the full height of the wall.
  • a stack of reaction cuvettes, not shown, preferably is mounted within each aperture.
  • the cuvettes are preferably shaped as cups or wells. They nest one inside the other, and the uppermost cuvette is preferably topped with a seal cap to seal off the stack from the atmosphere. The bottom of the stack is sealed within the aperture 62 by virtue of a friction fit between a flange of each cuvette, and the sidewall of the aperture 62.
  • Means 100 preferably comprises a shutter 102, Fig. 2, having at least one sealing lobe 104 that actively engages one of the grommets 34 (for bottle B1) , and cam 120 on the lobe, a cam 130 mounted to engage and disengage the cam follower, and means 150, Fig. 1, for activating cam 130.
  • the shutter 102 includes a stud 106 that is journalled within an opening 108 of cover 30, so that stud 106 and shutter 102 are preferably positioned, Figs. 2-3, for rotation about an axis 110 which is preferably substantially aligned with, or on, a line 112, extending from the approximate centers of mouths 44 of the grommets as determined by axes 46.
  • shutter 102 includes a second lobe 114 as well as first lobe 104.
  • lobe 114 is disposed 180° about axis 110, to actively engage the other grommet 44 (for bottle B2), Fig. 2.
  • actively engage what is meant herein is preferably a sliding movement of each lobe in frictional contact with the exterior surface 47 of the respective grommet, Fig. 1. In this manner, the shutter via its lobes opens and closes access to the interior of the grommet and therefore its respective bottle.
  • Cam followers 120 are provided, one for each lobe. Preferably they have an L-shape with an inner corner 122, and a shorter leg 124, a longer leg 126, extending from the corner. It is these legs 124,126 that are engaged by the cam 130, as shown in phantom, to force shutter 102 to rotate open, arrow 132, or closed, arrows 133, Fig. 3.
  • cam followers can have other shapes, for example, that of a 90° arc about an imaginary center 134, Fig. 2.
  • Cam 130 is driven by a suitable means 140, such as a drive shaft 142, Fig. 1, operated by a conventional stepper motor (not shown).
  • a suitable means 140 such as a drive shaft 142, Fig. 1, operated by a conventional stepper motor (not shown).
  • cam 130 can be rotated by a pulley or by a rack and pinion gear (not shown) with the pinion gear being located on the shaft 142.
  • a stop pin 150 preferably extends fixedly from the top surface 32 of cover 30, Figs. 3 and 4. This cooperates with a slot or groove 152 formed in shutter 102, the slot 152 having two opposed ends 154, 156 that cooperate with stop pin 150 to prevent over-rotation in either the open position, Fig. 3, or the closed position, Fig. 4
  • slot 152 need not be completely enclosed within shutter 102. Instead, portion 158 which completely encloses pin 150 can be removed along the dotted lines Fig. 4.
  • skirt 50 is only partially wrapped around to provide upstanding shoulders 51. That is, a cut-out 160 is provided in shoulders to allow access of cam 130 to the cam followers without raising the cam and lowering it - arrow 161, Fig. 2.
  • an aspirator probe P can be inserted by the analyzer in which holder 10 is placed, to aspirate out some of the contents of either bottle (shown as B2 in Fig. 1).
  • Grommets 34 preferably comprise an elastomer that provides a hardness of at least 45 durometers Shore A, is inert to the contents of bottles B1 and B2, does not outgas, deforms slightly without taking a "set", as is known in the art, and is non-sticky, that is, has a coefficient of friction of no greater than 0.5 when engaged with a polypropylene or polyethylene shutter 102.
  • hardnesses of 45, 60 and 75 durometers Shore A are considered useful, with 45 being most preferred. Any elastomer meeting these conditions will suffice.
  • the elastomer of choice is a silicone - modified thermoplastic elastomer such as that available under the trade name "C-Flex R70-081" from Concept Polymer Tech.
  • Another useful example is a polypropylene EPDM elastomer available under the trade name "Vista-flex” from Advanced Elastomer Systems.
  • the material of at least the under-surface 162 of shutter 102, Fig. 1, in contact with grommets 34 is preferably polypropylene or polyethylene.
  • other polymeric materials providing a very low moisture-vapor transmissibility (leakage) through the contacting under-surface 162, can be used, provided they also provide the same order of coefficient of frictional engagement with the grommet material as described above.
  • shutter 102 can be constructed to open one at a time, and close both together, Figs. 5-7. Parts similar to those previously described bear the same reference numerals, to which the distinguishing suffix "A" has been appended.
  • cover 30A has a skirt 50A, grommet 34A shown in phantom, and shutter 102A pivoted about an axis 110A by a cam 130A acting on cam followers 120A disposed on respective lobes 104A and 114A of shutter 102A, as before.
  • lobes 104A and 114A are disposed rotationally approximately 90° about axis 110A, and said axis is moved substantially away from line 112A connecting the approximate centers of grommets 34A.
  • axis 110A is located near one of the shoulders 51A formed by skirt 50A. Cut-outs 160A are then disposed to allow either lobe 104A or lobe 114A to move therethrough (shown in phantom), depending on which side (skirt 51A) axis 110A is located next to.
  • this construction allows shutter 102A to either close both grommets (of both bottles), as shown in solid on Fig. 5, to open only the grommet of bottle B1, Fig. 6, or to open only the grommet of bottle B2, Fig. 7, as actuated by cam 130A being rotated about axis 110A.
  • cover 30B has mounted therein grommets 34B which slideably and frictionally engage a shutter 102B comprising two lobes 104B, 114B, each with a cam followerg 120B engaged by a cam 130B, shutter 102B being restrained by stop pin 150B, as in the previous embodiments.
  • shutter 102B in this case is driven only linearly, arrow 300, in accordance with the linear movement of cam 130 (as driven, for example, by a rack and pinion gear (not shown) the rack gear being affixed to cam 130A).
  • An additional stop pin 150A' is added, along with additional slot 152B'. The result is that the grommets are both closed off, as shown in solid, or one or the other is opened, as shown by the 2 phantom positions of the respective lobes.

Landscapes

  • Health & Medical Sciences (AREA)
  • Clinical Laboratory Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Closures For Containers (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)
  • Sampling And Sample Adjustment (AREA)
  • Sealing Of Jars (AREA)

Abstract

There is disclosed a closure mechanism for two reagent bottles in a bottle holder of an analyzer, using a shutter that slideably and frictionally engages the top surface of grommets at the mouth of the bottles. The shutter slides to either an open or closed position of the bottles, either both in lock-step or with one bottle open, the other closed, and both closed together. The shutter is driven by a cam and cam followers, either rotationally or linearly.

Description

  • This invention relates to a closure mechanism for plural reagent bottles in a bottle holder, such as is used in a clinical analyzer.
  • Analyzers (so-called wet assay analyzers) supply liquid reagents in bottles. These bottles, though initially closed off, are necessarily penetrated by aspirator probes when reagents are needed. Such repeated penetrations produce substantial degradation to the reagents for the following reasons: first, it has been practically impossible to reseal the bottle after the first penetration. Attempts to avoid this have used such things as penetrable septums that are supposed to reseal after penetration, but repeated penetration more or less along the same line produces "coring" which leaves a permanent air passage in the septum, air degradation of the reagent and residual deposits of the reagent on the seal which can create carry-over and growth of molds. Alternatively, penetration of the septum causes a second problem, namely deposit of septum material into the reagent liquid being stored, and this, in turn, can degrade the reagent. Although this second problem is lessened by using seals such as "duck-bill" seals, those still have the first problem, namely inadequate resealing against air contamination.
  • The problem then that has long faced the wet assay analyzer is how to provide on-analyzer keeping of the liquid reagents more than one or two weeks, without having to constantly replace the bottles. That is, how can a large quantity of reagent be kept on-analyzer, for one or two months, without degradation due to contact with ambient air (evaporation) or foreign materials?
  • We have designed a closure of reagent bottles, since it is in fact a closure problem, that solves the aforesaid long-standing need. More specifically, in accord with the invention there is provided a combination comprising a bottle holder and a first and second bottle of liquid in the holder, each bottle comprising a container with an open mouth, the holder comprising support walls constructed to hold the bottles, a grommet having a through-aperture and disposed by the support walls at the mouth of each the container so as to close off the mouth except for the through-aperture, and a closure means for opening and closing the grommet apertures, and hence the container mouth, on demand, the closure means comprising a shutter, means in the bottle holder for mounting the shutter for sliding movement, in contact with and relative to the grommets, between a first and a second position, one of the positions being that which closes off at least one of the grommet apertures and the other of the positions that which opens the at least one grommet aperture, the shutter further including at least one sealing lobe shaped and sized to close off a grommet aperture when the shutter lobe is in one of the positions, the lobe being operatively disposed so as to move into and out of the positions in response to movement of the shutter.
  • Accordingly, it is an advantageous feature of the invention that reagent bottles can be stored on-analyzer for much longer than has been heretofore possible, even for months, without degradation.
  • It is a related advantageous feature that such storage is possible using a closure mechanism that is simple in construction, and yet ensures reclosure after each usage without contaminating the bottle with foreign material, and without contacting the seal with bottle reagent.
  • Other advantageous features will become apparent upon reference to the following detailed description when read in light of the attached drawings.
    • Fig. 1 is a side elevational view in section of the combination of the invention when used with a preferred bottle holder, showing the shutter mechanism in its open position;
    • Fig. 2 is a section view taken generally along the line II-II of Fig. 1, except that the shutter has been rotated to its closed position;
    • Fig. 3 is a fragmentary perspective view of the combination shown in Fig. 1, from the opposite side, and with the activating cam in phantom only;
    • Fig. 4 is a view similar to that of Fig. 3, but of the shutter rotated into its closed position as shown in Fig. 2;
    • Fig. 5 is a plan view in section similar to that of Fig. 2, but of an alternate embodiment;
    • Figs. 6 and 7 are schematic plan views showing the operation of the embodiment of Fig. 5 so that either bottle, but not both, is open for access; and
    • Fig. 8 is a plan view similar to that of Fig. 5, but of yet another embodiment.
  • The invention is hereinafter described in connection with certain preferred embodiments, in which bottles of a preferred form are mounted in pairs in a preferred holder and a closure mechanism is mounted there-above to rotate about an axis that is in a preferred angular orientation with respect to the bottles. In addition, the invention is useful regardless of the form of the bottles, so long as they are open-mouth bottles, whether they are in pairs or other numbers, and regardless of the form of the holder and whether the closure mechanism moves by rotation or some other mechanism. If rotation is used, the invention is also applicable regardless of the particular angular positioning of the axis of rotation with respect to the bottles present.
  • Orientations such as "above", , "below", "top", "side" and the like refer to the orientation of the parts in their intended use.
  • Thus, a preferred bottle holder for use in the combination is that described in US-A-5,322,668. Such a holder 10 is generally pie-shaped, Fig. 2, so as to slide in and out of a wet chemistry analyzer, as is conventional (not shown), generally in a circular arrangement of such holders. Such a bottle holder 10 comprises, Fig. 1, a base 12, a top member 30, and a sidewall 60 extending between and joined to the base and top member.
  • More precisely, base 12 comprises a platform having at lest one recess and preferably recesses 14 and 16, for each of two open mouth bottles B1 and B2 held by holder 10. As is apparent, recesses 14 and 16 are disposed along the length of holder 10, which is the dimension that aligns with a radius of the circular arrangement of such holders in the analyzer (not shown) . Recess 14 is partially defined by an upstanding lug 18. Recess 16 is preferably defined by raised sidewalls. Base 12 is joined to side wall 60 by any conventional means, for example by welding, by adhesive, by mechanical latches, and so forth Bottles B1 and B2 preferably hold two different reagent solutions.
  • Top member 30 comprises a generally flat plate 32 provided with grommets 34, and depending fingers 36 with snap latches 38 for locking under the rim of the mouth 40 of a bottle B1 or B2 with each grommet 34 in contact with a mouth 40. (Opposite ends 42 of the bottles are retained in recesses 14 and 16). Apertures 44 in grommets 34 are generally aligned with a center axis 46 of each of mouths 40. Each grommet has an exposed exterior surface 47. A side skirt 50 wraps partially around plate 32 and engages wall 60 using teeth 90.
  • Sidewall 60 can have any desired shape and thickness, but preferably it has a plurality of, for example, four cylindrical apertures 62, Fig. 2, extending the full height of the wall. A stack of reaction cuvettes, not shown, preferably is mounted within each aperture. The cuvettes are preferably shaped as cups or wells. They nest one inside the other, and the uppermost cuvette is preferably topped with a seal cap to seal off the stack from the atmosphere. The bottom of the stack is sealed within the aperture 62 by virtue of a friction fit between a flange of each cuvette, and the sidewall of the aperture 62.
  • In accordance with the invention, a closure means 100 is provided for apertures 44, that avoids the problems noted above for prior bottle holders. Means 100 preferably comprises a shutter 102, Fig. 2, having at least one sealing lobe 104 that actively engages one of the grommets 34 (for bottle B1) , and cam 120 on the lobe, a cam 130 mounted to engage and disengage the cam follower, and means 150, Fig. 1, for activating cam 130.
  • Considering first the shutter 102, it includes a stud 106 that is journalled within an opening 108 of cover 30, so that stud 106 and shutter 102 are preferably positioned, Figs. 2-3, for rotation about an axis 110 which is preferably substantially aligned with, or on, a line 112, extending from the approximate centers of mouths 44 of the grommets as determined by axes 46.
  • More specifically, preferably shutter 102 includes a second lobe 114 as well as first lobe 104. In the embodiment of Figs. 1-4, lobe 114 is disposed 180° about axis 110, to actively engage the other grommet 44 (for bottle B2), Fig. 2. By "actively engage", what is meant herein is preferably a sliding movement of each lobe in frictional contact with the exterior surface 47 of the respective grommet, Fig. 1. In this manner, the shutter via its lobes opens and closes access to the interior of the grommet and therefore its respective bottle. Because lobes 104 and 114 are 180° apart, about axis 110, and because axis 110 is substantially on lines 112, both grommets and bottles B1,B2 end up being open at the same time, Fig. 3, and closed at the same time, Fig. 2, as will be readily apparent.
  • Cam followers 120 are provided, one for each lobe. Preferably they have an L-shape with an inner corner 122, and a shorter leg 124, a longer leg 126, extending from the corner. It is these legs 124,126 that are engaged by the cam 130, as shown in phantom, to force shutter 102 to rotate open, arrow 132, or closed, arrows 133, Fig. 3.
  • Alternatively, cam followers can have other shapes, for example, that of a 90° arc about an imaginary center 134, Fig. 2.
  • Cam 130, in turn, is driven by a suitable means 140, such as a drive shaft 142, Fig. 1, operated by a conventional stepper motor (not shown). Alternatively, cam 130 can be rotated by a pulley or by a rack and pinion gear (not shown) with the pinion gear being located on the shaft 142.
  • To further guide shutter 102 on its rotational movement, a stop pin 150 preferably extends fixedly from the top surface 32 of cover 30, Figs. 3 and 4. This cooperates with a slot or groove 152 formed in shutter 102, the slot 152 having two opposed ends 154, 156 that cooperate with stop pin 150 to prevent over-rotation in either the open position, Fig. 3, or the closed position, Fig. 4
  • Alternatively, slot 152 need not be completely enclosed within shutter 102. Instead, portion 158 which completely encloses pin 150 can be removed along the dotted lines Fig. 4.
  • As noted above, skirt 50 is only partially wrapped around to provide upstanding shoulders 51. That is, a cut-out 160 is provided in shoulders to allow access of cam 130 to the cam followers without raising the cam and lowering it - arrow 161, Fig. 2.
  • As is readily apparent, when shutter 102 is in the position shown in Figs. 1 and 3, an aspirator probe P can be inserted by the analyzer in which holder 10 is placed, to aspirate out some of the contents of either bottle (shown as B2 in Fig. 1).
  • It has been further determined that optimal performance in the active engagement of grommets 34 by shutter 102, occurs when the following materials are utilized:
  • Grommets 34 preferably comprise an elastomer that provides a hardness of at least 45 durometers Shore A, is inert to the contents of bottles B1 and B2, does not outgas, deforms slightly without taking a "set", as is known in the art, and is non-sticky, that is, has a coefficient of friction of no greater than 0.5 when engaged with a polypropylene or polyethylene shutter 102. Thus, hardnesses of 45, 60 and 75 durometers Shore A are considered useful, with 45 being most preferred. Any elastomer meeting these conditions will suffice. Most preferably, the elastomer of choice is a silicone - modified thermoplastic elastomer such as that available under the trade name "C-Flex R70-081" from Concept Polymer Tech. Another useful example is a polypropylene EPDM elastomer available under the trade name "Vista-flex" from Advanced Elastomer Systems.
  • As will be readily apparent from the foregoing, the material of at least the under-surface 162 of shutter 102, Fig. 1, in contact with grommets 34, is preferably polypropylene or polyethylene. In addition, other polymeric materials providing a very low moisture-vapor transmissibility (leakage) through the contacting under-surface 162, can be used, provided they also provide the same order of coefficient of frictional engagement with the grommet material as described above.
  • It is not essential that the lobes of shutter 102 open and close both bottles simultaneously. Alternatively, shutter 102 can be constructed to open one at a time, and close both together, Figs. 5-7. Parts similar to those previously described bear the same reference numerals, to which the distinguishing suffix "A" has been appended.
  • Thus, Fig. 5, cover 30A has a skirt 50A, grommet 34A shown in phantom, and shutter 102A pivoted about an axis 110A by a cam 130A acting on cam followers 120A disposed on respective lobes 104A and 114A of shutter 102A, as before. However, in this embodiment, lobes 104A and 114A are disposed rotationally approximately 90° about axis 110A, and said axis is moved substantially away from line 112A connecting the approximate centers of grommets 34A. More precisely, axis 110A is located near one of the shoulders 51A formed by skirt 50A. Cut-outs 160A are then disposed to allow either lobe 104A or lobe 114A to move therethrough (shown in phantom), depending on which side (skirt 51A) axis 110A is located next to.
  • As is schematically illustrated in the three figures, this construction allows shutter 102A to either close both grommets (of both bottles), as shown in solid on Fig. 5, to open only the grommet of bottle B1, Fig. 6, or to open only the grommet of bottle B2, Fig. 7, as actuated by cam 130A being rotated about axis 110A.
  • Still further, there is no need for the sliding engagement of shutter 102 or 102A to be one of rotation against the grommets. Linear translation is also useful, as is shown in Fig. 8. Parts similar to those previously described bear the same reference numeral to which the distinguishing suffix "B" is appended.
  • Thus, cover 30B has mounted therein grommets 34B which slideably and frictionally engage a shutter 102B comprising two lobes 104B, 114B, each with a cam followerg 120B engaged by a cam 130B, shutter 102B being restrained by stop pin 150B, as in the previous embodiments. However, shutter 102B in this case is driven only linearly, arrow 300, in accordance with the linear movement of cam 130 (as driven, for example, by a rack and pinion gear (not shown) the rack gear being affixed to cam 130A). An additional stop pin 150A' is added, along with additional slot 152B'. The result is that the grommets are both closed off, as shown in solid, or one or the other is opened, as shown by the 2 phantom positions of the respective lobes.

Claims (10)

  1. A bottle holder, for holding a first and second bottle of liquid, each bottle comprising a container with an open mouth, the holder comprising: support walls constructed to hold the bottles; a grommet having a through-aperture and disposed by the support walls for location adjacent the mouth of each container for closing off the mouth except for the through-aperture; and a closure means for opening and closing the grommet apertures, and hence the container mouth, on demand,
    the closure means comprising a shutter, means in the bottle holder for mounting the shutter for sliding movement, in contact with and relative to the grommets, between a first and a second position, one of the positions being that which closes off at least one of the grommet apertures and the other of the positions that which opens the at least one grommet aperture, the shutter further including at least one sealing lobe shaped and sized to close off a grommet aperture when the shutter lobe is in one of the positions, the lobe being operatively disposed so as to move into and out of the positions in response to movement of the shutter.
  2. The holder of claim 1, wherein the closure means further comprises a cam follower on the shutter, a cam mounted for movement above the shutter into and out of contact with the cam follower, and means for moving the cam into and out of the contact.
  3. The holder of claim 1 or claim 2, wherein the mounting means for the shutter is constructed to mount the shutter for linear translation between the positions.
  4. The holder of claim 1 or claim 2, wherein the mounting means for the shutter is constructed to mount the shutter for rotation about an axis between the positions.
  5. The holder of claim 4 when dependent on claim 2, wherein the cam is mounted for rotation about the axis.
  6. The holder of claim 4 or claim 5, wherein the shutter comprises two lobes angularly disposed from each other about the rotational axis so that one is 90° from the other, and the axis is located substantially away from a line extending between the approximate centers of the grommet apertures, so that when one grommet aperture is closed by one of the lobes, the other can be open.
  7. The holder of claim 4 or claim 5, wherein the shutter comprises two lobes angularly disposed from each other about the rotational axis so that one is 180° from the other, and the axis is located substantially on a line extending between the approximate centers of the grommet apertures, so that when one grommet aperture is closed by one of the lobes, the other is also closed.
  8. The holder of any one of claim 4 to 7, wherein the axis is located outside of a line drawn between the approximate centers of the grommet apertures.
  9. The holder of any one of claims 1 to 8, wherein the grommet apertures are preformed so that they do not produce particles that fall into the reagent upon penetration of the an aspirator.
  10. The holder of any one of claims 1 to 9, wherein each of the grommets comprises an elastomer, such as a silicone-modified thermoplastic elastomer, that provides a hardness of at least 45 durometers Shore A, is inert to the contents of the bottles, does not outgas, deforms slightly without taking a "set", and has a coefficient of friction no greater than 0.5 when engaged by a shutter comprising polypropylene or polyethylene.
EP96302195A 1995-03-29 1996-03-28 Bottle closure mechanism using a sliding shutter Expired - Lifetime EP0734963B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US08/412,423 US5582222A (en) 1995-03-29 1995-03-29 Bottle closure mechanism using a sliding shutter
US412423 1995-03-29

Publications (3)

Publication Number Publication Date
EP0734963A2 true EP0734963A2 (en) 1996-10-02
EP0734963A3 EP0734963A3 (en) 1997-03-05
EP0734963B1 EP0734963B1 (en) 1998-11-25

Family

ID=23632909

Family Applications (1)

Application Number Title Priority Date Filing Date
EP96302195A Expired - Lifetime EP0734963B1 (en) 1995-03-29 1996-03-28 Bottle closure mechanism using a sliding shutter

Country Status (7)

Country Link
US (1) US5582222A (en)
EP (1) EP0734963B1 (en)
JP (1) JP3029592U (en)
AT (1) ATE173654T1 (en)
AU (1) AU694616B2 (en)
CA (1) CA2172012C (en)
DE (1) DE69601005T2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1707966A1 (en) * 2005-03-30 2006-10-04 Ortho Clinical Diagnostics Inc. Apparatus for opening and closing a container
US8684433B2 (en) 2012-04-26 2014-04-01 Baxter International Inc. Packaging for multiple medical containers
US9632103B2 (en) 2013-03-15 2017-04-25 Abbott Laboraties Linear track diagnostic analyzer
USD886611S1 (en) 2018-10-03 2020-06-09 Baxalta GmbH Container unit

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5881922A (en) * 1996-10-15 1999-03-16 The Coca-Cola Company Coupler switchable among multiple apertures
US5948691A (en) * 1998-04-10 1999-09-07 Abbott Laboratories Carrier and method of use
US5945071A (en) * 1998-04-10 1999-08-31 Abbott Laboratories Carrier for cuvettes
US7846395B2 (en) * 2003-07-16 2010-12-07 Ortho-Clinical Diagnostics, Inc. Container closure and device to install and remove closure
JP4202891B2 (en) * 2003-10-31 2008-12-24 株式会社吉野工業所 Liquid ejector
DE102004043883B4 (en) * 2004-09-10 2007-04-19 Bartec Gmbh Sample bottles and methods for sampling
JP4861787B2 (en) * 2006-10-10 2012-01-25 シスメックス株式会社 Reagent container and reagent container holder
US8728413B2 (en) * 2007-02-08 2014-05-20 Biokit, S.A. Reagent container pack
US7793678B2 (en) * 2007-10-31 2010-09-14 Lancer Partnership, Ltd Method and apparatus for converter valve
EP2760757A2 (en) * 2011-09-27 2014-08-06 The Board of Regents of The University of Texas System Robotic infusion mixer and transportable cartridge
JP6096187B2 (en) * 2012-06-25 2017-03-15 協和メデックス株式会社 Container opening and closing device
US9513303B2 (en) 2013-03-15 2016-12-06 Abbott Laboratories Light-blocking system for a diagnostic analyzer
US9993820B2 (en) 2013-03-15 2018-06-12 Abbott Laboratories Automated reagent manager of a diagnostic analyzer system
MY206362A (en) 2015-06-19 2024-12-12 Takeda Pharmaceuticals Co Pooling device for single or multiple containers
US10252897B2 (en) * 2017-05-18 2019-04-09 Travis Thompson Self-sealing bottle holder
WO2020072230A2 (en) 2018-10-03 2020-04-09 Baxalta GmbH Pooling device for single or multiple medical containers
USD893046S1 (en) 2018-10-03 2020-08-11 Baxalta GmbH Container unit
CN113015510B (en) 2018-10-03 2025-01-10 武田药品工业株式会社 Packaging for multiple containers
USD890358S1 (en) 2018-10-03 2020-07-14 Baxalta GmbH Container unit

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2159978A (en) * 1938-07-30 1939-05-30 Winfred T Parkin Container closure
US2554444A (en) * 1947-03-06 1951-05-22 Scovill Manufacturing Co Two-walled cap for container of granular material with sifter closure mounted between said two walls for rotation about longitudinal container axis
US2878829A (en) * 1956-03-16 1959-03-24 Union Tank Car Co Valve mechanism
US3337082A (en) * 1965-01-13 1967-08-22 Henri J Dorgelys Containers and storage facilities therefor
US4224958A (en) * 1977-12-19 1980-09-30 Kaplan Stephen J Valve device for diverting and combining fluid flows
US5039615A (en) * 1987-04-11 1991-08-13 Kabushiki Kaisha Kyoto Daiichi Kagaku Method for chemically analyzing a test piece
US4844872A (en) * 1987-07-17 1989-07-04 Fisher Scientific Company Fluid handling
US5064086A (en) * 1991-01-31 1991-11-12 Mcentee James E Container lid
US5322668A (en) * 1993-07-01 1994-06-21 Eastman Kodak Company Locked bottle holder
US5542575A (en) * 1993-07-09 1996-08-06 Dade Interantional Inc. Liquid reagent container having a primary and secondary closure mechanism
US5398846A (en) * 1993-08-20 1995-03-21 S. C. Johnson & Son, Inc. Assembly for simultaneous dispensing of multiple fluids

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1707966A1 (en) * 2005-03-30 2006-10-04 Ortho Clinical Diagnostics Inc. Apparatus for opening and closing a container
US7569189B2 (en) 2005-03-30 2009-08-04 Ortho-Clinical Diagnostics, Inc. Opening and closing a container
US8684433B2 (en) 2012-04-26 2014-04-01 Baxter International Inc. Packaging for multiple medical containers
US9632103B2 (en) 2013-03-15 2017-04-25 Abbott Laboraties Linear track diagnostic analyzer
USD886611S1 (en) 2018-10-03 2020-06-09 Baxalta GmbH Container unit

Also Published As

Publication number Publication date
EP0734963B1 (en) 1998-11-25
AU694616B2 (en) 1998-07-23
AU4824996A (en) 1996-10-10
ATE173654T1 (en) 1998-12-15
DE69601005D1 (en) 1999-01-07
DE69601005T2 (en) 1999-04-29
JP3029592U (en) 1996-10-01
CA2172012A1 (en) 1996-09-30
US5582222A (en) 1996-12-10
EP0734963A3 (en) 1997-03-05
CA2172012C (en) 2006-12-12

Similar Documents

Publication Publication Date Title
EP0734963B1 (en) Bottle closure mechanism using a sliding shutter
US6866820B1 (en) Closure appliance for reagent containers
US8529847B2 (en) Reagent kit for analyzing apparatus
US6705482B2 (en) Ball and socket closure
JP3996711B2 (en) Cap for reagent container
US10137451B2 (en) Reaction vessel and apparatus and method for opening and closing a reaction vessel
US7897123B2 (en) Reagent vessel cap and method for collecting reagent
US7648037B2 (en) Lid structure of reagent container
JP3019213B2 (en) Ball and socket lid for sample collection container
KR20040077527A (en) System for automatic opening of reagent vessels
US5681743A (en) Plate assembly useful for microbiological laboratory procedures
JPWO2021171722A5 (en)
US8613893B2 (en) Sealing member, cap for reagent container, and reagent container
HK1173216B (en) Reagent kit for analyzing apparatus
CA2037551A1 (en) Vial seal
HK1114668A (en) Seal member, cap of reagent container, and reagent container

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH DE DK FR GB GR IT LI MC NL SE

AX Request for extension of the european patent

Free format text: SI PAYMENT 960415

RAX Requested extension states of the european patent have changed

Free format text: SI PAYMENT 960415

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

RHK1 Main classification (correction)

Ipc: B01L 9/00

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH DE DK FR GB GR IT LI MC NL SE

AX Request for extension of the european patent

Free format text: SI PAYMENT 960415

17P Request for examination filed

Effective date: 19970811

17Q First examination report despatched

Effective date: 19971007

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE DK FR GB GR IT LI MC NL SE

AX Request for extension of the european patent

Free format text: SI PAYMENT 960415

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 19981125

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19981125

Ref country code: GR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19981125

Ref country code: BE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19981125

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19981125

REF Corresponds to:

Ref document number: 173654

Country of ref document: AT

Date of ref document: 19981215

Kind code of ref document: T

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: E. BLUM & CO. PATENTANWAELTE

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 69601005

Country of ref document: DE

Date of ref document: 19990107

ET Fr: translation filed
ITF It: translation for a ep patent filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19990225

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990930

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

REG Reference to a national code

Ref country code: CH

Ref legal event code: PFA

Owner name: JOHNSON & JOHNSON CLINICAL DIAGNOSTICS, INC.

Free format text: JOHNSON & JOHNSON CLINICAL DIAGNOSTICS, INC.#100 INDIGO CREEK DRIVE#ROCHESTER, NEW YORK 14650-0880 (US) -TRANSFER TO- JOHNSON & JOHNSON CLINICAL DIAGNOSTICS, INC.#100 INDIGO CREEK DRIVE#ROCHESTER, NEW YORK 14650-0880 (US)

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20080313

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20080311

Year of fee payment: 13

Ref country code: DE

Payment date: 20080407

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20080402

Year of fee payment: 13

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20090328

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20091130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090331

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091001

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090328

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091123

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20140310

Year of fee payment: 19

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150328