EP0729389A1 - Magnetically separable catalysts - Google Patents

Magnetically separable catalysts

Info

Publication number
EP0729389A1
EP0729389A1 EP95900718A EP95900718A EP0729389A1 EP 0729389 A1 EP0729389 A1 EP 0729389A1 EP 95900718 A EP95900718 A EP 95900718A EP 95900718 A EP95900718 A EP 95900718A EP 0729389 A1 EP0729389 A1 EP 0729389A1
Authority
EP
European Patent Office
Prior art keywords
catalysts according
catalysts
weight
water
magnetizable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP95900718A
Other languages
German (de)
French (fr)
Inventor
Claudius Kormann
Thomas Wettling
Ekkehard Schwab
Jochem Henkelmann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BASF SE
Original Assignee
BASF SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BASF SE filed Critical BASF SE
Publication of EP0729389A1 publication Critical patent/EP0729389A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D301/00Preparation of oxiranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/33Electric or magnetic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0215Coating
    • B01J37/0221Coating of particles
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B35/00Reactions without formation or introduction of functional groups containing hetero atoms, involving a change in the type of bonding between two carbon atoms already directly linked
    • C07B35/02Reduction

Definitions

  • the object was to provide metal-containing catalysts for reactions in the liquid phase which can be separated from the reaction mixture in a technically simple manner.
  • the core of the catalysts according to the invention consists of a magnetizable particle.
  • Magnetizable particles are understood to mean those particles which become magnetic in an external magnetic field. Such substances generally have a saturation magnetization of 20 to 200 nTm 3 / g, preferably 30 to 100 nTm 3 / g.
  • the size of the magnetizable particles can be selected within wide limits. However, if permanent magnetization of these particles by an external magnetic field is to be avoided, it has proven to be advantageous to use particles with diameters of 5 to 1000 nm. Particles with diameters of 5 to 100 nm are particularly preferred. The size of particles with such diameters is determined by known methods, for example by electron microscopic methods, the values representing average values of the respective sample.
  • Such substances can be obtained in a manner known per se, for example by precipitation reactions of corresponding metal salts.
  • magnetite Fe 3 0 4 can be produced from solutions of Fe 2+ / Fe 3+ chlorides by precipitation with sodium hydroxide solution, for example DE-A 36 19 746, chromium dioxide by hydrothermal synthesis, see for example EP-A 27 640.
  • the metallic cores can by thermal decomposition of metal carbonyls (for example US Pat. No. 3,228,881) can be produced.
  • Preferred Materials for the magnetizable cores are magnetite, ⁇ -Fe 2 0, chromium dioxide and manganese-zinc ferrite.
  • the magnetizable cores generally have surfaces (determined according to DIN 66 132) of 1 to 300 m2 g.
  • the magnetizable cores can be reacted directly with metal compounds that bind adsorptively or chemically to the surface of the core. It is also possible to produce magnetizable cores, such as magnetite, which can be produced by precipitation in the presence of metal compounds, so that the active metals also co-precipitate or are adsorptively or chemically bound to the freshly precipitated magnetizable cores.
  • the magnetic core is preferably first coated with a binder. This binder should bind adsorptively or chemically to the magnetizable core and, at the same time, offer the possibility of binding adsorptively or chemically metal compounds which are directly or optionally after a chemical modification. decoration are catalytically active.
  • Amines such as pyridine or 4-pyridineethanesulfonic acid can be mentioned as monomeric binders.
  • Organic polymers which are water-soluble or water-dispersible are preferred as binders according to the invention, ie that in general at least 1 g can be dissolved or dispersed in 1 liter of water.
  • olefinically unsaturated compounds containing acid groups such as unsaturated carboxylic acids, for example acrylic acid, methacrylic acid, unsaturated sulfonic acids, for example vinylsulfonic acid, unsaturated phosphonic acids, such as vinylphosphoric acid, furthermore unsaturated anhydrides, such as maleic anhydride, monomers carrying amino groups, such as vinylla min, amide group-bearing monomers such as acrylamide, further vinyl pyrrolidine, vinyl pyrrolidone, vinyl pyridine, vinyl phenanthroline, vinyl imidazole and vinyl bipyridyl. Homopolymers and copolymers of the monomers mentioned can be used.
  • Polyvinylpyridine can also be used in partially oxidized form as polyvinylpyridine-polyvinylpyridine-N-oxide.
  • the polymers can contain further copolymerizable monomers, but the proportion of said monomers is preferably at least 50% by weight.
  • Homopolymers or copolymers of these compounds are commercially available or can be obtained, for example, by radical polymerization.
  • Polyesters such as polylactite are also suitable as binders.
  • Polyacrylic acids with an average molecular weight of 1,000 to 1,000,000 are preferred. Polymers which have up to 20% by weight of other monomers apart from acrylic acid are also suitable. Such products are commercially available.
  • the amount of the binder is generally such that at least one monolayer of the binder can form on the magnetizable core. This generally requires 0.1 to 5 mg of polymer per square meter of specific surface area of the magnetizable core, 0.3 to 1.5 mg being preferred.
  • the magnetizable material in a polar solvent such as water can be mixed with a solution of the binder in a polar solvent such as water.
  • the temperature is usually 10 to 100 ° C.
  • the components are generally stirred for 10 to 60 minutes, the solid so obtained is e.g. isolated by filtration or by applying a magnetic field and optionally dried.
  • the bound polymer content can be determined by elemental analysis.
  • the catalysts of the invention have metals or metal compounds on their surface. These are preferably the platinum metals ruthenium, rhodium, palladium, osmium, iridium and platinum, furthermore copper, silver, gold and rhenium, or compounds of these metals. Ruthenium, palladium and platinum are particularly preferred.
  • metal compounds which are dissolved or finely suspended in a polar solvent can be chemically or adsorptively bonded to the magnetizable cores, which are optionally coated with a binder. These metal compounds are, for example, salts of the metals, such as acetates and nitrates.
  • Examples include ruthenium chloride trihydrate, ruthenium oxide hydrate, palladium acetate, palladium chloride, rhodium chloride, platinum chloride, gold chloride, osmium tetraoxide, copper chloride, copper nitrate, silver nitrate and rhenium chloride.
  • the solvents include C 1 -C 4 alcohols such as methanol, ethanol, isopropanol and tert-butanol, ethers such as tetrahydrofuran, water, pyridine or mixtures of these solvents, but preferably water.
  • the metal compounds can be bound by interactions with, for example, carboxyl groups, amino groups or oxo groups.
  • an adsorptive bond can take place.
  • 0.1 to 20% by weight of the metal compound, based on the magnetizable core is reacted in solution with the magnetic particle which may contain a binder.
  • the reaction is carried out at room temperature, but it can also be carried out at 0 to 100 ° C. It usually ends after 1 to 6 hours.
  • Catalysts are used, but they can also be isolated first, cleaned if necessary and then fed to the reaction to be catalyzed.
  • the catalysts of the invention allow the catalysis of a variety of different reactions, e.g.
  • the catalysts can generally be used up to temperatures of up to 250 ° C., and the pressure in the reactions can be chosen as desired.
  • the catalysts of the invention are through a magnetic filter, such as e.g. in Journal of Magnetism and Magnetic Materials fiü (1990) 285, can be separated from the reaction mixtures.
  • a simple bar magnet has proven itself for the removal of small amounts of the catalyst.
  • the catalysts of the invention also have the advantage that they are not permanently magnetic after removal of the magnetic field used for the separation and thus do not agglomerate. This considerably facilitates the recycling of the catalysts into the reaction and their uniform distribution in the reaction mixture. Examples
  • Example 1 Magnetite Fe 3 0 was prepared as follows:
  • the magnetite was prepared tion according to DE-A 35 00 471 by a Klallungsreak ⁇ by adding a stoichiometric solution of Fe ⁇ 2+) / Fe (3+ was dropped) chlorides in water to a solution of sodium hydroxide 'in water. The precipitating magnetite was filtered and washed free of chloride. A filter cake with a magnetite content of 26% by weight was obtained.
  • the dried pigment was characterized by the following measured values: The specific BET surface area was measured in accordance with DIN 66 132. It was 51 m 2 / g. The magnetic properties were determined using a vibration magnetometer. The saturation magnetization was 85 nTm 3 / g.
  • a solution of 54.2 g FeCl 3 x 6H 2 0, 31.5 g FeCl 2 x 4H 2 0, 4.7 g PdCl and 110 ml water became a solution of 38.5 at 20 ° C within 19 minutes g of NaOH and 110 ml of water were added dropwise.
  • the suspension was heated to 70 ° C. in the course of 10 minutes and stirred at this temperature for one hour.
  • a pH of 9.1 was set by adding 1 g of 50% NaOH solution. After cooling to room temperature, the pH was again adjusted to pH 9 with 10% HCl solution. The suspension was then filtered under nitrogen and washed with water.
  • a solution was prepared by mixing 30 g of polyacrylate (35% by weight in water) with an average molecular weight of 250,000 with 5.7 g of NaOH and 15 g of water. This solution 25 had a pH of 6.8 and contained 27% by weight of sodium polyacrylate.
  • a mixture of 10.55 g of Pd (CH C0), 108 g of pyridine and 60 g of water was prepared at room temperature.
  • 53 g of magnetite which was characterized by a specific BET surface area of 74 m 2 / g and a saturation magnetization of 77 nTm 3 / g, was stirred into this to 102 g of water.
  • the mixture was evaporated to constant weight at 90 ° C. on a rotary evaporator under a water jet vacuum.
  • a pigment was obtained on which the following measurement results were determined: the specific BET surface area was 58 m 2 / g, the saturation magnetization was 66 nTm 3 / g.
  • Fe content 58% by weight
  • Pd content 5.8% by weight
  • Cl content 0.6% by weight
  • C content 5.3% by weight
  • N content 0.7% by weight.
  • 10 g of the above pigment were mixed with 30 g of 1% by weight AgNO 3 solution and then evaporated to constant weight at 90 ° C. on a rotary evaporator under a water jet vacuum.
  • This polymer solution was added to 100 g of a magnetite with a BET surface area of 59 m 2 / g and a saturation magnetization of 79 nTm 3 / g, stirred in, mixed with a further 400 g of water and then
  • coated magnetites according to Examples 8 to 10 could be converted into catalysts with rhodium as the active metal in analogy to Example 7. Review of the catalytic properties
  • the catalyst could be completely and easily separated from the reaction mixture using a magnet.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

Disclosed are catalysts based on: a) a magnetizable core which, b) can as needed be coated with a binder, and c) carries on its surface catalytically active metals or metallic compounds.

Description

Magnetism and Magnetic Materials £H (1990) 285) . Diese Methode ist aber auf magnetische Metalle beschränkt und hat zudem bei größeren Partikel die Schwierigkeit, daß die Teilchen durch per¬ manente Magnetisierung zu größeren Teilchen agglomerieren.Magnetism and Magnetic Materials £ H (1990) 285). However, this method is limited to magnetic metals and, in the case of larger particles, also has the difficulty that the particles agglomerate into larger particles by permanent magnetization.
Die Immobilisierung von Enzymen durch Anbindung an magnetische Teilchen ist z.B. in der EP-A 125995 beschrieben. Die Anwendung dieser Enzyme ist jedoch auf milde Reaktionsbedingungen be¬ schränkt, unter denen die so gebundenen Enzyme chemisch stabil sind.The immobilization of enzymes by binding to magnetic particles is e.g. described in EP-A 125995. However, the use of these enzymes is restricted to mild reaction conditions under which the enzymes bound in this way are chemically stable.
Es bestand die Aufgabe, metallhaltige Katalysatoren für Reak¬ tionen in der flüssigen Phase bereitzustellen, die in technisch einfacher Weise vom Reaktionsgemisch abtrennbar sind.The object was to provide metal-containing catalysts for reactions in the liquid phase which can be separated from the reaction mixture in a technically simple manner.
Demgemäß wurden die oben beschriebenen Katalysatoren gefunden. Weiterhin wurde ein Verfahren zu ihrer Herstellung, ihre Verwen¬ dung und ein Verfahren zur Abtrennung dieser Katalysatoren aus Reaktionsgemischen gefunden.Accordingly, the catalysts described above have been found. Furthermore, a process for their preparation, their use and a process for separating these catalysts from reaction mixtures were found.
Der Kern der erfindungsgemäßen Katalysatoren besteht aus einem magnetisierbaren Teilchen. Unter magnetisierbaren Teilchen sind solche Teilchen zu verstehen, die in einem äußerem Magnetfeld magnetisch werden. Im allgemeinen weisen solche Stoffe eine Sät- tigungsmagnetisierung von 20 bis 200 nTm3/g auf, bevorzugt 30 bis 100 nTm3/g. Die Größe der magnetisierbaren Teilchen ist in weiten Grenzen wählbar. Soll jedoch eine permanente Magnetisierung die¬ ser Teilchen durch ein äußeres Magnetfeld vermieden werden, hat es sich als vorteilhaft erwiesen, Teilchen mit Durchmessern von 5 bis 1000 nm zu verwenden. Besonders bevorzugt sind Teilchen mit Durchmessern von 5 bis 100 nm. Die Größe von Teilchen mit solchen Durchmessern wird nach bekannten Methoden, z.B. durch elektronen¬ mikroskopische Verfahren ermittelt, wobei die Werte Durch¬ schnittswerte der jeweiligen Probe wiedergeben.The core of the catalysts according to the invention consists of a magnetizable particle. Magnetizable particles are understood to mean those particles which become magnetic in an external magnetic field. Such substances generally have a saturation magnetization of 20 to 200 nTm 3 / g, preferably 30 to 100 nTm 3 / g. The size of the magnetizable particles can be selected within wide limits. However, if permanent magnetization of these particles by an external magnetic field is to be avoided, it has proven to be advantageous to use particles with diameters of 5 to 1000 nm. Particles with diameters of 5 to 100 nm are particularly preferred. The size of particles with such diameters is determined by known methods, for example by electron microscopic methods, the values representing average values of the respective sample.
Im einzelnen kommen folgende Stoffe als magnetisierbare Kerne in Betracht:The following substances can be considered as magnetizable cores:
Eisen, Nickel, Kobalt, Chromdioxid, Eisenoxide sowie kubische und hexagonale Ferrite wie mit Mangan-, Zink- und Cobaltionen sowie mit Magnesium-, Calcium-, Strontium- und Bariumionen dotierte Ferrite. Solche Stoffe sind in an sich bekannter Weise erhält¬ lich, z.B. durch Fällungsreaktionen entsprechender Metallsalze. So kann Magnetit Fe304 aus Lösungen von Fe2+/Fe3+-Chloriden durch Fällung mit Natronlauge hergestellt werden, z.B. DE-A 36 19 746, Chromdioxid durch Hydrothermalsynthese, s. z.B. EP-A 27 640. Die metallischen Kerne können durch thermische Zersetzung von Metall- carbonylen (z.B. US-A 3 228 881) hergestellt werden. Bevorzugte Stoffe für die magnetisierbaren Kerne sind Magnetit, γ-Fe20 , Chromdioxid und Mangan-Zinkferrit.Iron, nickel, cobalt, chromium dioxide, iron oxides as well as cubic and hexagonal ferrites such as with manganese, zinc and cobalt ions as well as ferrites doped with magnesium, calcium, strontium and barium ions. Such substances can be obtained in a manner known per se, for example by precipitation reactions of corresponding metal salts. For example, magnetite Fe 3 0 4 can be produced from solutions of Fe 2+ / Fe 3+ chlorides by precipitation with sodium hydroxide solution, for example DE-A 36 19 746, chromium dioxide by hydrothermal synthesis, see for example EP-A 27 640. The metallic cores can by thermal decomposition of metal carbonyls (for example US Pat. No. 3,228,881) can be produced. Preferred Materials for the magnetizable cores are magnetite, γ-Fe 2 0, chromium dioxide and manganese-zinc ferrite.
Entsprechend ihrer in der Regel kleinen Durchmesser weisen die magnetisierbaren Kerne im allgemeinen Oberflächen (bestimmt nach DIN 66 132) von 1 bis 300 m2 g auf.According to their generally small diameter, the magnetizable cores generally have surfaces (determined according to DIN 66 132) of 1 to 300 m2 g.
Die magnetisierbaren Kerne können direkt mit Metallverbindungen umgesetzt werden, die sich adsorptiv oder chemisch an die Ober- fläche des Kern binden. Es ist auch möglich, durch Fällung herstellbare magnetisierbare Kerne wie Magnetit in Gegenwart von Metallverbindungen herzustellen, so daß die aktiven Metalle di¬ rekt mitgefällt oder an die frisch gefällten magnetisierbaren Kerne adsorptiv oder chemisch gebunden werden. Bevorzugt wird je- doch der magnetische Kern zunächst mit einem Bindemittel überzo¬ gen. Dieses Bindemittel sollte sich adsorptiv oder chemisch an den magnetisierbaren Kern binden und gleichzeitig die Möglichkeit bieten, adsorptiv oder chemisch Metallverbindungen zu binden, welche direkt oder gegebenenfalls nach einer chemischen Modifi- zierung katalytisch aktiv sind.The magnetizable cores can be reacted directly with metal compounds that bind adsorptively or chemically to the surface of the core. It is also possible to produce magnetizable cores, such as magnetite, which can be produced by precipitation in the presence of metal compounds, so that the active metals also co-precipitate or are adsorptively or chemically bound to the freshly precipitated magnetizable cores. However, the magnetic core is preferably first coated with a binder. This binder should bind adsorptively or chemically to the magnetizable core and, at the same time, offer the possibility of binding adsorptively or chemically metal compounds which are directly or optionally after a chemical modification. decoration are catalytically active.
Als monomere Bindemittel sind Amine wie Pyridin oder 4-Pyridin- ethansulfonsäure zu nennen. Bevorzugt kommen als erfindungsgemäße Bindemittel organische Polymere in Betracht, welche wasserlöslich oder wasserdispergierbar sind, d.h. daß sich im allgemeinen min¬ destens 1 g in 1 1 Wasser lösen oder dispergieren lassen. Als Monomere für solche polymeren Bindemittel sind zu nennen: Säure- gruppenhaltige olefinisch ungesättigte Verbindungen wie ungesät¬ tigte Carbonsäuren, z.B. Acrylsäure, Methacrylsäure, ungesättigte Sulfonsäuren, z.B. Vinylsulfonsäure, ungesättigte Phosphonsäuren wie Vinylphosphorsäure, weiterhin ungesättigte Anhydride wie Maleinsäureanhydrid, Aminogruppen tragende Monomere wie Vinyla- min, amidgruppentragende Monomere wie Acrylamid, weiterhin Vinyl- pyrrolidin, Vinylpyrrolidon, Vinylpyridin, Vinylphenanthrolin, Vinylimidazol und Vinylbipyridyl. Es können Homo- und Copolymere der genannten Monomere eingesetzt werden. Polyvinylpyridin kann auch in teilweise oxidierter Form als Polyvinylpyridin-Polyvinyl- pyridin-N-oxid eingesetzt werden. Die Polymere können weitere co- polymerisierbare Monomere enthalten, bevorzugt jedoch beträgt der Anteil der genannten Monomere mindestens 50 Gew.-%. Homo- oder Copolymere dieser Verbindungen sind handelsüblich oder z.B. durch radikalische Polymerisation erhältlich. Auch Polyester wie Poly- lactit kommen als Bindemittel in Betracht. Bevorzugt werden Polyacrylsäuren mit einem mittleren Molekularge¬ wicht von 1000 bis 1000000. Es kommen auch solche Polymeren in Betracht, die bis zu 20 Gew.-% weitere Monomere außer Acrylsäure aufweisen. Solche Produkte sind im Handel erhältlich.Amines such as pyridine or 4-pyridineethanesulfonic acid can be mentioned as monomeric binders. Organic polymers which are water-soluble or water-dispersible are preferred as binders according to the invention, ie that in general at least 1 g can be dissolved or dispersed in 1 liter of water. The following may be mentioned as monomers for such polymeric binders: olefinically unsaturated compounds containing acid groups, such as unsaturated carboxylic acids, for example acrylic acid, methacrylic acid, unsaturated sulfonic acids, for example vinylsulfonic acid, unsaturated phosphonic acids, such as vinylphosphoric acid, furthermore unsaturated anhydrides, such as maleic anhydride, monomers carrying amino groups, such as vinylla min, amide group-bearing monomers such as acrylamide, further vinyl pyrrolidine, vinyl pyrrolidone, vinyl pyridine, vinyl phenanthroline, vinyl imidazole and vinyl bipyridyl. Homopolymers and copolymers of the monomers mentioned can be used. Polyvinylpyridine can also be used in partially oxidized form as polyvinylpyridine-polyvinylpyridine-N-oxide. The polymers can contain further copolymerizable monomers, but the proportion of said monomers is preferably at least 50% by weight. Homopolymers or copolymers of these compounds are commercially available or can be obtained, for example, by radical polymerization. Polyesters such as polylactite are also suitable as binders. Polyacrylic acids with an average molecular weight of 1,000 to 1,000,000 are preferred. Polymers which have up to 20% by weight of other monomers apart from acrylic acid are also suitable. Such products are commercially available.
Die Menge des Bindemittels ist in der Regel so bemessen, daß sich auf dem magnetisierbaren Kern mindestens eine Monolage des Binde¬ mittels ausbilden kann. Dazu sind im allgemeinen 0,1 bis 5 mg Po¬ lymer pro Quadratmeter spezifischer Oberfläche des magnetisierbä- ren Kerns erforderlich, bevorzugt werden 0,3 bis 1,5 mg.The amount of the binder is generally such that at least one monolayer of the binder can form on the magnetizable core. This generally requires 0.1 to 5 mg of polymer per square meter of specific surface area of the magnetizable core, 0.3 to 1.5 mg being preferred.
Zum Überziehen des magnetisierbaren Kerns mit einem Bindemittel kann das magnetisierbare Material in einem polaren Lösungsmittel wie Wasser mit einer Lösung des Bindemittels in einem polaren Lösungsmittel wie Wasser versetzt werden. Die Temperatur liegt dabei in der Regel bei 10 bis 100°C. Die Komponenten werden im allgemeinen 10 bis 60 Minuten gerührt, der so erhaltene Feststoff wird z.B. durch Filtration oder durch das Anlegen eines Magnet¬ felds isoliert und gegebenenfalls getrocknet. Der Gehalt an ge- bundenem Polymer kann elementaranalytisch festgestellt werden.To coat the magnetizable core with a binder, the magnetizable material in a polar solvent such as water can be mixed with a solution of the binder in a polar solvent such as water. The temperature is usually 10 to 100 ° C. The components are generally stirred for 10 to 60 minutes, the solid so obtained is e.g. isolated by filtration or by applying a magnetic field and optionally dried. The bound polymer content can be determined by elemental analysis.
Es ist weiterhin möglich, die so erhaltenen Feststoffe in einer solchen Weise weiterzubehandeln, daß reaktive Gruppen, die im Po¬ lymeren vorhanden sind, einer Reaktion unterworfen werden. Dabei können z.B. polare Carboxylgruppen in an sich bekannter Weise durch Verseifung mit einer Mineralbase aus im Bindemittel enthal¬ tenen Estergruppen freigesetzt werden.It is furthermore possible to further treat the solids thus obtained in such a way that reactive groups which are present in the polymer are subjected to a reaction. Here, e.g. polar carboxyl groups are released in a manner known per se by saponification with a mineral base from ester groups contained in the binder.
Die erfindungsgemäßen Katalysatoren tragen an ihrer Oberfläche Metalle oder Metallverbindungen. Dabei handelt es sich bevorzugt um die Platinmetalle Ruthenium, Rhodium, Palladium, Osmium, Iri¬ dium und Platin, weiterhin um Kupfer, Silber, Gold und Rhenium, bzw. um Verbindungen dieser Metalle. Besonders bevorzugt sind Ruthenium, Palladium und Platin. Zur Herstellung der erfindungs- gemäßen Katalysatoren können MetallVerbindungen, die in einem po¬ laren Lösungsmittel gelöst oder fein suspendiert sind, chemisch oder adsorptiv an die magnetisierbaren Kerne, die gegebenenfalls mit einem Bindemittel überzogen sind, gebunden werden. Bei diesen Metallverbindungen handelt es sich z.B. um Salze der Metalle, wie Acetate und Nitrate. Beispielhaft seien Rutheniumchloridtrihy- drat, Rutheniumoxidhydrat, Palladiumacetat, Palladiumchlorid, Rhodiumchlorid, Platinchlorid, Goldchlorid, Osmiumtetraoxid, Kupferchlorid, Kupfernitrat, Silbernitrat und Rheniumchlorid ge¬ nannt. Die Lösungsmittel umfassen Cι~ bis C4-Alkohole wie Metha- nol, Ethanol, Iso-Propanol und tert.-Butanol, Ether wie Tetra- hydrofuran, Wasser, Pyridin oder Gemische dieser Lösungsmittel, bevorzugt aber Wasser. Je nach den im Bindemittel vorhandenen po- laren Gruppen können die Metallverbindungen durch Wechselwirkun¬ gen mit z.B. Carboxylgruppen, Aminogruppen oder Oxogruppen gebun¬ den werden. Bei kolloidalen Metallverbindungen wie Rutheniumoxid¬ hydrat kann eine adsorptive Bindung erfolgen. In der Regel werden 0,1 bis 20 Gew.-% der Metallverbindung, bezogen auf den magneti¬ sierbaren Kern, in Lösung mit dem gegebenenfalls ein Bindemittel tragenden magnetischen Teilchen umgesetzt. Im allgemeinen wird die Reaktion bei Raumtemperatur vorgenommen, sie kann jedoch auch bei 0 bis 100°C vorgenommen werden. Sie ist in der Regel nach 1 bis 6 Stunden beendet.The catalysts of the invention have metals or metal compounds on their surface. These are preferably the platinum metals ruthenium, rhodium, palladium, osmium, iridium and platinum, furthermore copper, silver, gold and rhenium, or compounds of these metals. Ruthenium, palladium and platinum are particularly preferred. To produce the catalysts according to the invention, metal compounds which are dissolved or finely suspended in a polar solvent can be chemically or adsorptively bonded to the magnetizable cores, which are optionally coated with a binder. These metal compounds are, for example, salts of the metals, such as acetates and nitrates. Examples include ruthenium chloride trihydrate, ruthenium oxide hydrate, palladium acetate, palladium chloride, rhodium chloride, platinum chloride, gold chloride, osmium tetraoxide, copper chloride, copper nitrate, silver nitrate and rhenium chloride. The solvents include C 1 -C 4 alcohols such as methanol, ethanol, isopropanol and tert-butanol, ethers such as tetrahydrofuran, water, pyridine or mixtures of these solvents, but preferably water. Depending on the po- Laral groups, the metal compounds can be bound by interactions with, for example, carboxyl groups, amino groups or oxo groups. In the case of colloidal metal compounds such as ruthenium oxide hydrate, an adsorptive bond can take place. As a rule, 0.1 to 20% by weight of the metal compound, based on the magnetizable core, is reacted in solution with the magnetic particle which may contain a binder. In general, the reaction is carried out at room temperature, but it can also be carried out at 0 to 100 ° C. It usually ends after 1 to 6 hours.
Die so erhaltenen Produkte können direkt in Lösung alsThe products thus obtained can be used directly in solution
Katalysatoren eingesetzt werden, sie können aber auch zunächst isoliert, gegebenenfalls gereinigt und dann der zu katalysieren- den Reaktion zugeführt werden.Catalysts are used, but they can also be isolated first, cleaned if necessary and then fed to the reaction to be catalyzed.
Die erfindungsgemäßen Katalysatoren erlauben die Katalyse einer Vielzahl verschiedener Reaktionen, z.B.The catalysts of the invention allow the catalysis of a variety of different reactions, e.g.
- Hydrierung aromatischer Kerne in Gegenwart weiterer reduzier¬ baren Gruppen mit Ruthenium-haltigen Katalysatoren, Hydroformylierung von Olefinen mit Rhodium-haltigen Katalysatoren, Umvinylidierungen von Vinylethern mit Palladium-haltigen Katalysatoren, selektive Hydrierung von Kohlenstoff-Kohlenstoff-Dreifachbin¬ dungen zu Doppelbindungen mit Palladium-haltigen Katalysato¬ ren.- Hydrogenation of aromatic nuclei in the presence of further reducible groups with ruthenium-containing catalysts, hydroformylation of olefins with rhodium-containing catalysts, transvinylidation of vinyl ethers with palladium-containing catalysts, selective hydrogenation of carbon-carbon triple bonds to double bonds with palladium containing catalysts.
Die Katalysatoren sind im allgemeinen bis Temperaturen bis zu 250°C einsetzbar, wobei der Druck in den Reaktionen beliebig ge¬ wählt werden kann. Die erfindungsgemäßen Katalysatoren sind durch einen Magnetfilter, wie er z.B. in Journal of Magnetism and Magnetic Materials fiü (1990) 285 beschrieben ist, aus den Reakti- onsgemischen abtrennbar. Für die Abtrennung geringer Mengen des Katalysators hat sich ein einfacher Stabmagnet bewährt.The catalysts can generally be used up to temperatures of up to 250 ° C., and the pressure in the reactions can be chosen as desired. The catalysts of the invention are through a magnetic filter, such as e.g. in Journal of Magnetism and Magnetic Materials fiü (1990) 285, can be separated from the reaction mixtures. A simple bar magnet has proven itself for the removal of small amounts of the catalyst.
Die erfindungsgemäßen Katalysatoren bieten weiterhin den Vorteil, daß sie nach Entfernen des zur Abtrennung benutzten Magnetfeldes nicht permanent magnetisch sind und somit nicht agglomerieren. Das erleichtert die Rückführung der Katalysatoren in die Reaktion und ihre gleichmäßige Verteilung im Reaktionsgemisch erheblich. BeispieleThe catalysts of the invention also have the advantage that they are not permanently magnetic after removal of the magnetic field used for the separation and thus do not agglomerate. This considerably facilitates the recycling of the catalysts into the reaction and their uniform distribution in the reaction mixture. Examples
Herstellung der magnetisierbaren TeilchenProduction of the magnetizable particles
Beispiel 1 Magnetit Fe30 wurde folgendermaßen hergestellt:Example 1 Magnetite Fe 3 0 was prepared as follows:
Das Magnetit wurde gemäß DE-A 35 00 471 durch eine Fällungsreak¬ tion hergestellt, indem eine stöchiometrische Lösung von Fe<2+)/Fe(3+)-Chloriden in Wasser zu einer Lösung von Natronlauge' in Wasser getropft wurde. Der Fällungsmagnetit wurde filtriert und chloridfrei gewaschen. Es entstand ein Filterkuchen mit einem Magnetitgehalt von 26 Gew.-%. Das getrocknete Pigment wurde durch folgende Meßwerte charakterisiert: Die spezifische BET-Oberflache wurde gemäß DIN 66 132 gemessen. Sie betrug 51 m2/g. Die magneti- sehen Eigenschaften wurden mit einem Schwingmagnetometer ermit¬ telt. Die Sättigungsmagnetisierung betrug 85 nTm3/g.The magnetite was prepared tion according to DE-A 35 00 471 by a Fällungsreak¬ by adding a stoichiometric solution of Fe <2+) / Fe (3+ was dropped) chlorides in water to a solution of sodium hydroxide 'in water. The precipitating magnetite was filtered and washed free of chloride. A filter cake with a magnetite content of 26% by weight was obtained. The dried pigment was characterized by the following measured values: The specific BET surface area was measured in accordance with DIN 66 132. It was 51 m 2 / g. The magnetic properties were determined using a vibration magnetometer. The saturation magnetization was 85 nTm 3 / g.
Herstellung erfindungsgemäßer KatalysatorenProduction of catalysts according to the invention
Beispiel 2 (Fe-Pd-Katalysator)Example 2 (Fe-Pd catalyst)
Eine Lösung aus 54,2 g FeCl3 x 6H20, 31,5 g FeCl2 x 4H20, 4,7 g PdCl und 110 ml Wasser wurde bei 20°C innerhalb von 19 Minuten zu einer Lösung von 38,5 g NaOH und 110 ml Wasser getropft. Die Sus- pension wurde innerhalb von 10 Minuten auf 70°C aufgeheizt und eine Stunde lang bei dieser Temperatur gerührt. Durch Zugabe von 1 g 50 %iger NaOH Lösung wurde ein pH 9,1 eingestellt. Nach dem Abkühlen auf Raumtemperatur wurde der pH erneut mit 10 %iger HCI Lösung auf pH 9 eingestellt. Anschließend wurde die Suspension unter Stickstoff filtriert und mit Wasser gewaschen. Nach dem Trocknen wurde ein Pigment mit folgenden Eigenschaften erhalten: Fe-Gehalt: 61 Gew.-%, Pd-Gehalt: 6,5 Gew.-%, Cl-Gehalt: 0,04 Gew.-%. Die spezifische BET-Oberflache betrug 95 m2/g, die Sättigungsmagnetisierung 52 nTm3/g.A solution of 54.2 g FeCl 3 x 6H 2 0, 31.5 g FeCl 2 x 4H 2 0, 4.7 g PdCl and 110 ml water became a solution of 38.5 at 20 ° C within 19 minutes g of NaOH and 110 ml of water were added dropwise. The suspension was heated to 70 ° C. in the course of 10 minutes and stirred at this temperature for one hour. A pH of 9.1 was set by adding 1 g of 50% NaOH solution. After cooling to room temperature, the pH was again adjusted to pH 9 with 10% HCl solution. The suspension was then filtered under nitrogen and washed with water. After drying, a pigment with the following properties was obtained: Fe content: 61% by weight, Pd content: 6.5% by weight, Cl content: 0.04% by weight. The specific BET surface area was 95 m 2 / g, the saturation magnetization 52 nTm 3 / g.
Beispiel 3 (Ru-Katalysator)Example 3 (Ru catalyst)
3.1 Herstellung von Rutheniumoxidhydrat als katalytisch aktive MetallVerbindung3.1 Production of ruthenium oxide hydrate as a catalytically active metal compound
Die Umsetzung wurde gemäß Beispiel 1 aus der DE-A 2132547 vorge¬ nommen. Das Rutheniumoxidhydrat wurde in Form eines feuchten Fil¬ terkuchens mit einem Gehalt von 8,4 Gew.-% Ruthenium für die fol¬ genden Versuche eingesetzt. 3.2 Herstellung des erfindungsgemäßen KatalysatorsThe reaction was carried out according to Example 1 from DE-A 2132547. The ruthenium oxide hydrate was used in the form of a moist filter cake with a content of 8.4% by weight of ruthenium for the following experiments. 3.2 Preparation of the catalyst according to the invention
230 g Filterkuchen mit 60 g der nach Beispiel 1 hergestellten ma¬ gnetisierbaren Teilchen und 71,3 g des nach Beispiel 3.1 herge- 5 stellten Filterkuchens wurden 15 Minuten in 200 g Wasser durch starkes Rühren dispergiert. Anschließend wurde eine Lösung von 1,8 g Polyacrylsäure mit einem mittleren Molekulargewicht von 250.000 in 3,3 g Wasser zugesetzt. Der pH-Wert wurde durch Zugabe von 13,4 g einer 5 gew.-%igen Natronlauge auf 7,9 eingestellt.230 g of filter cake with 60 g of the magnetizable particles produced according to Example 1 and 71.3 g of the filter cake produced according to Example 3.1 were dispersed in 200 g of water by vigorous stirring for 15 minutes. A solution of 1.8 g of polyacrylic acid with an average molecular weight of 250,000 in 3.3 g of water was then added. The pH was adjusted to 7.9 by adding 13.4 g of a 5% strength by weight sodium hydroxide solution.
10 Nach 15 Minuten wurde der Feststoff abfiltriert und mit Wasser chloridfrei gewaschen. Anschließend wurde der Filterkuchen mit Tetrahydrofuran THF gewaschen und das Wasser weitgehend durch THF ausgetauscht. Der so erhaltene Filterkuchen wurde wie folgt cha¬ rakterisiert: Rutheniumgehalt: 2,1 Gew.-%. Feststoffgehalt (be-10 After 15 minutes the solid was filtered off and washed free of chloride with water. The filter cake was then washed with tetrahydrofuran THF and the water was largely replaced by THF. The filter cake obtained in this way was characterized as follows: ruthenium content: 2.1% by weight. Solids content (
15 stimmt durch Trocknung bei 70°C im Vakuum) : 22 Gew.-%, BET-Ober¬ fläche 86 qm/g.15 is correct by drying at 70 ° C. in a vacuum): 22% by weight, BET surface area 86 m 2 / g.
Beispiel 4 (Fe-Pd-Katalysator)Example 4 (Fe-Pd Catalyst)
20 4.1 Herstellung des polymeren Bindemittels20 4.1 Production of the polymeric binder
Es wurde eine Lösung durch Mischen von 30 g Polyacrylat (35 Gew.-% in Wasser) mit einem mittleren Molekulargewicht von 250.000 mit 5,7 g NaOH und 15 g Wasser hergestellt. Diese Lösung 25 hatte einen pH von 6,8 und enthielt 27 Gew.-% Natriumpolyacrylat.A solution was prepared by mixing 30 g of polyacrylate (35% by weight in water) with an average molecular weight of 250,000 with 5.7 g of NaOH and 15 g of water. This solution 25 had a pH of 6.8 and contained 27% by weight of sodium polyacrylate.
4.2 Beschichtung von Magnetit mit Polymer4.2 Coating magnetite with polymer
Es wurden 20 g Magnetitpigment, welches durch eine spezifische 30 BET-Oberfläche von 80 m2/g und eine Sättigungsmagnetisierung von 72 nTm3/g charakterisiert war, in 54 g Wasser und 2,2 g der Lösung nach Beispiel 4.1 mit 200 g Wasser eine Stunde lang unter Stick¬ stoff und unter Kühlung auf Raumtemperatur intensiv dispergiert. Es wurden 375 g Suspension mit pH 8,5 erhalten.20 g of magnetite pigment, which was characterized by a specific 30 BET surface area of 80 m 2 / g and a saturation magnetization of 72 nTm 3 / g, in 54 g of water and 2.2 g of the solution according to Example 4.1 with 200 g of water dispersed intensively for one hour under nitrogen and with cooling to room temperature. 375 g of pH 8.5 suspension were obtained.
3535
4.3 Beschichtung mit Palladium4.3 Coating with palladium
187 g der Suspension nach Beispiel 4.2 wurden innerhalb von 50 Minuten unter Rühren mit einer Lösung von 1,67 g PdCl2 und 23 g 40 10 %iger HCl in 400 g Wasser vermischt. Durch gleichmäßige Zugabe von 5 Gew.-%iger NaOH Lösung wurde der pH im Bereich 6,0 bis 8,6 gehalten.187 g of the suspension according to Example 4.2 were mixed with a solution of 1.67 g of PdCl 2 and 23 g of 40 10% HCl in 400 g of water within 50 minutes with stirring. The pH was kept in the range 6.0 to 8.6 by uniform addition of 5% by weight NaOH solution.
Die Suspension wurde filtriert, mit 150 ml Wasser gewaschen und 45 bei 70°C am Wasserstrahlvakuum getrocknet. Es wurden 11,9 g Fest¬ stoff erhalten, der folgendermaßen charakterisiert war: Die spe- zifische BET-Oberfläche betrug 78 m2/g. Fe-Gehalt: 60 Gew.-%, Pd- Gehalt: 8 Gew.-%, Cl-Gehalt: 0,5 Gew.-%, C-Gehalt: 1 Gew.-%.The suspension was filtered, washed with 150 ml of water and dried at 70 ° C. in a water jet vacuum. 11.9 g of solid were obtained, which was characterized as follows: Specific BET surface area was 78 m 2 / g. Fe content: 60% by weight, Pd content: 8% by weight, Cl content: 0.5% by weight, C content: 1% by weight.
Beispiel 5 (Fe-Pd-Katalysator)Example 5 (Fe-Pd Catalyst)
Zu einer Lösung von 2 g Polyvinylpyrrolidon (K-Wert: 27-32, Mole¬ kulargewicht 44 000 - 54 000) in 400 g Wasser wurden 1,67 g PdCl2 und 31 g Pyridin gegeben. Der pH-Wert betrug 8,65. Anschließend wurden 20 g Magnetitpigment, welches durch eine spezifische BET- Oberfläche von 76 m2/g und eine Sättigungsmagnetisierung von 73 nTm3/g charakterisiert war, in 29 g Wasser zugegeben und 3 h bei Raumtemperatur gerührt. Die Suspension wurde bei 80 bis 95°C am Rotationsverdampfer unter Wasserstrahlvakuum bis zur Gewichts¬ konstanz eingedampft. Es wurden 28 g Pigment erhalten, an dem folgende Meßergebnisse festgestellt wurden: Die spezifische BET- Oberfläche betrug 21 m2/g, die Sättigungsmagnetisierung betrug 6,5 nTm3/g. Fe-Gehalt: 55 Gew.-%, Pd-Gehalt: 3,6 Gew.-%, Cl-Ge¬ halt: 3,1 Gew.-%, C-Gehalt: 8 Gew.-%, N-Gehalt: 1,8 Gew.-%.1.67 g of PdCl 2 and 31 g of pyridine were added to a solution of 2 g of polyvinylpyrrolidone (K value: 27-32, molecular weight 44,000-54,000) in 400 g of water. The pH was 8.65. 20 g of magnetite pigment, which was characterized by a specific BET surface area of 76 m 2 / g and a saturation magnetization of 73 nTm 3 / g, were then added in 29 g of water and the mixture was stirred at room temperature for 3 h. The suspension was evaporated to constant weight at 80 to 95 ° C. on a rotary evaporator under a water jet vacuum. 28 g of pigment were obtained, on which the following measurement results were determined: the specific BET surface area was 21 m 2 / g, the saturation magnetization was 6.5 nTm 3 / g. Fe content: 55% by weight, Pd content: 3.6% by weight, Cl content: 3.1% by weight, C content: 8% by weight, N content: 1.8% by weight.
Beispiel 6 (Fe-Pd-Ag-Katalysator)Example 6 (Fe-Pd-Ag catalyst)
Bei Raumtemperatur wurde eine Mischung aus 10,55 g Pd(CH C0 ) , 108 g Pyridin und 60 ςf Wasser hergestellt. Zu dieser wurde 53 g Magnetitpgiment, welches durch eine spezifische BET-Oberfläche von 74 m2/g und eine Sättigungsmagnetisierung von 77 nTm3/g cha¬ rakterisiert war, in 102 g Wasser gerührt. Die Mischung wurde bei 90°C am Rotationsverdampfer unter Wasserstrahlvakuum bis zur Gewichtskonstanz eingedampft. Es wurde ein Pigment erhalten, an dem folgende Meßergebnisse festgestellt wurden: Die spezifische BET-Oberfläche betrug 58 m2/g, die Sättigungsmagnetisierung betrug 66 nTm3/g. Fe-Gehalt: 58 Gew.-%, Pd-Gehalt: 5,8 Gew.-%, Cl-Gehalt: 0,6 Gew.-%, C-Gehalt: 5,3 Gew.-%, N-Gehalt: 0,7 Gew.-%. 10 g Gramm des vorstehenden Pigments wurden mit 30 g 1 gew.-%iger AgN03 Lösung vermischt und anschließend bei 90°C am Rotationsverdampfer unter Wasserstrahlvakuum bis zur Gewichtskonstanz eingedampft.A mixture of 10.55 g of Pd (CH C0), 108 g of pyridine and 60 g of water was prepared at room temperature. 53 g of magnetite, which was characterized by a specific BET surface area of 74 m 2 / g and a saturation magnetization of 77 nTm 3 / g, was stirred into this to 102 g of water. The mixture was evaporated to constant weight at 90 ° C. on a rotary evaporator under a water jet vacuum. A pigment was obtained on which the following measurement results were determined: the specific BET surface area was 58 m 2 / g, the saturation magnetization was 66 nTm 3 / g. Fe content: 58% by weight, Pd content: 5.8% by weight, Cl content: 0.6% by weight, C content: 5.3% by weight, N content: 0.7% by weight. 10 g of the above pigment were mixed with 30 g of 1% by weight AgNO 3 solution and then evaporated to constant weight at 90 ° C. on a rotary evaporator under a water jet vacuum.
Beispiel 7 (Rh-Katalysator)Example 7 (Rh catalyst)
Es wurde eine Lösung von 10 g Poly-4-vinylpyridin/Poly-4-vinylpy- ridin-N-Oxid mit einem Oxidationsgrad von 67 % und einem K-Wert (1 %ig in NaCl 5 %ig) von 14,2 in 250 g Wasser durch Zugabe von 37 g 5 %iger NaOH-Lösung auf pH 9,6 gebracht. Diese Polymerlösung wurde zu 100 g eines Magnetits mit einer BET-Oberfläche von 59 m2/g und einer Sättigungsmagnetisierung von 79 nTm3/g gegeben, untergerührt, mit weiteren 400 g Wasser versetzt und sodannA solution of 10 g of poly-4-vinylpyridine / poly-4-vinylpyridine-N-oxide with an oxidation degree of 67% and a K value (1% in NaCl 5%) of 14.2 in 250 g of water brought to pH 9.6 by adding 37 g of 5% NaOH solution. This polymer solution was added to 100 g of a magnetite with a BET surface area of 59 m 2 / g and a saturation magnetization of 79 nTm 3 / g, stirred in, mixed with a further 400 g of water and then
1 Stunde lang intensiv unter Stickstoffabdeckung und Eiskühlung homogenisiert. In der Mischung wurde ein pH 6,5 gemessen, der durch Zugabe von 49 g 5 %iger NaOH-Lösung auf pH 7,6 erhöht wurde.Homogenized intensively for 1 hour under nitrogen blanket and ice cooling. A pH of 6.5 was measured in the mixture was increased to pH 7.6 by adding 49 g of 5% NaOH solution.
Zu dieser Suspension wurde eine Lösung von 280 Milligramm Rh(N03)3 in 30 g Wasser gegeben. Es wurde weitere 15 Minuten lang disper¬ giert. Es wurde ein pH-Wert von 7,3 gemessen. Die Suspension wurde sodann bei 80°C am Rotationsverdampfer und am Wasserstrahl- vakuum getrocknet und zuletzt zu Staub zerrieben. Der magnetische Staub wurde untersucht: Die BET-Oberfläche betrug 30 m2/g. Die Sättigungsmagnetisierung betrug 79 nTm3/g.A solution of 280 milligrams of Rh (NO 3 ) 3 in 30 g of water was added to this suspension. The mixture was dispersed for a further 15 minutes. A pH of 7.3 was measured. The suspension was then dried at 80 ° C. on a rotary evaporator and in a water-jet vacuum and finally ground to dust. The magnetic dust was examined: the BET surface area was 30 m 2 / g. The saturation magnetization was 79 nTm 3 / g.
Beschichtung von Magnetit mit einem BindemittelCoating magnetite with a binder
Beispiel 8Example 8
237 g Filterkuchen mit 100 g Magnetit wie in Beispiel 7 wurden mit einer Lösung von 10 g (4-)Pyridinethansulfonsäure und 2 g NaOH in 538 g Wasser versetzt und 1 Stunde lang intensiv unter Stickstoffabdeckung und Eiskühlung homogenisiert. In der Mischung wurde nach Zugabe von 15 g 5 %iger NaOH Lösung ein pH 7,3 gemes¬ sen. Die Suspension wurde bei 90°C am Rotationsverdampfer und am Wasserstrahlvakuum getrocknet und zuletzt zu Staub zerrieben. Der magnetische Staub wurde untersucht: Die BET-Oberfläche betrug 46 m2/g. Die Sättigungsmagnetisierung betrug 78 nTm3/g, die Rema- nenz 6 nTm3/g.237 g of filter cake with 100 g of magnetite as in Example 7 were mixed with a solution of 10 g of (4-) pyridineethanesulfonic acid and 2 g of NaOH in 538 g of water and homogenized intensively for 1 hour with nitrogen blanketing and ice cooling. After the addition of 15 g of 5% NaOH solution, a pH of 7.3 was measured in the mixture. The suspension was dried at 90 ° C. on a rotary evaporator and in a water jet vacuum and finally ground to dust. The magnetic dust was examined: the BET surface area was 46 m 2 / g. The saturation magnetization was 78 nTm 3 / g, the remanence 6 nTm 3 / g.
Beispiel 10Example 10
237 g Filterkuchen mit 100 g Magnetit wie in Beispiel 7 wurden mit einer Lösung von 10 g Poly-4-Vinylpyridin-N-oxid (Oxidations- grad: 50 %, K-Wert= 22,4) in 250 g Wasser versetzt, mit insgesamt 40 g 5 %iger NaOH versetzt und 1 Stunde lang intensiv unter Stickstoffabdeckung und Eiskühlung homogenisiert. In der Mischung wurde der pH 7,5 gemessen. Die Suspension wurde bei 90°C am Rota- tionsverdampfer und am Wasserstrahlvakuum getrocknet und zuletzt zu Staub zerrieben. Der magnetische Staub wurde untersucht: Die BET-Oberfläche betrug 39 m2/g. Die Sättigungsmagnetisierung betrug 77 nTm3/g, die Remanenz 6 nTm3/g.237 g of filter cake with 100 g of magnetite as in Example 7 were mixed with a solution of 10 g of poly-4-vinylpyridine-N-oxide (degree of oxidation: 50%, K value = 22.4) in 250 g of water a total of 40 g of 5% NaOH were added and the mixture was homogenized intensively for 1 hour under nitrogen blanket and ice-cooling. The pH of the mixture was measured at 7.5. The suspension was dried at 90 ° C on a rotary evaporator and in a water jet vacuum and finally ground to dust. The magnetic dust was examined: the BET surface area was 39 m 2 / g. The saturation magnetization was 77 nTm 3 / g, the remanence 6 nTm 3 / g.
Die beschichteteten Magnetite gemäß den Beispielen 8 bis 10 konn¬ ten in Analogie zu Beispiel 7 zu Katalysatoren mit Rhodium als aktivem Metall umgesetzt werden. Überprüfung der katalytischen EigenschaftenThe coated magnetites according to Examples 8 to 10 could be converted into catalysts with rhodium as the active metal in analogy to Example 7. Review of the catalytic properties
Beispiel 11Example 11
Selektive Hydrierung mit einem Ru-KatalysatorSelective hydrogenation with an Ru catalyst
In einem Autoklav wurden 70 g Bisphenol-F-bisglycidylether (her¬ gestellt durch Kondensation von Formaldehyd und 2 Äquivalenten Phenol sowie anschließende Umsetzung mit Epichlorhydrin) und 10 g des nach Beispiel 3 erhaltenen Ruthenium-Katalysators (entspre¬ chend 3 Gew.-Vo Ru bezogen auf den Bisglycidylether) mit THF auf ein Gesamtgewicht von 150 g aufgefüllt. Anschließend wurde bei einem Wasserstoffdruck von 100 bar 7 Stunden auf 50 bis 67°C er¬ wärmt. Der Gesamtumsatz betrug 94 %. Der Epoxiäquivalentwert be- trug 192.70 g of bisphenol-F-bisglycidyl ether (produced by condensation of formaldehyde and 2 equivalents of phenol and subsequent reaction with epichlorohydrin) and 10 g of the ruthenium catalyst obtained according to Example 3 (corresponding to 3% by weight Ru.) based on the bisglycidyl ether) with THF to a total weight of 150 g. The mixture was then heated at 50 to 67 ° C. for 7 hours at a hydrogen pressure of 100 bar. The total turnover was 94%. The epoxy equivalent was 192.
Dieser Wert entspricht Epoxiäquivalentwerten, wie sie nach den Stand der Technik, z.B. EP-A 402 743, erhältlich sind.This value corresponds to epoxy equivalent values as used in the prior art, e.g. EP-A 402 743 are available.
Der Katalysator konnte mittels eines Magneten problemlos und vollständig vom Reaktionsgemisch abgetrennt werden.The catalyst could be completely and easily separated from the reaction mixture using a magnet.
Beispiel 12Example 12
Umvinylierung mit einem Fe-Pd-KatalysatorUmvinylierung with an Fe-Pd catalyst
12.1Vinyl-2-ethylhexylether12.1 vinyl 2-ethylhexyl ether
130,2 g (1 mol) 2-Ethylhexanol und 500 g (5 mol) Vinylisobutyl- ether wurden mit 3 g Katalysator nach Beispiel 2 versetzt und 4 Stunden bei 83°C gerührt. Nach Ende der Reaktionszeit betrug der Umsatz (bezogen auf 2-Ethylhexanol) 72 %, die Selektivität bzgl. Wertprodukt lag bei 95 %. Die Reaktionsmischung wurde nach Ab¬ trennung des Katalysators (über ein Magnetfilter) fraktioniert destilliert, wobei der überschüssige Vinylisobutylether und das nicht umgesetzte 2-Ethylhexanol zurückgewonnen wurden. Man er¬ hielt 101,5 g C-90,2 %, bezogen auf umgesetzten 2-Ethylhexanol) Vinyl-2-ethylhexylether.3 g of catalyst according to Example 2 were added to 130.2 g (1 mol) of 2-ethylhexanol and 500 g (5 mol) of vinyl isobutyl ether, and the mixture was stirred at 83 ° C. for 4 hours. At the end of the reaction time, the conversion (based on 2-ethylhexanol) was 72%, the selectivity with regard to the product of value was 95%. After the catalyst had been separated off, the reaction mixture was subjected to fractional distillation (using a magnetic filter), the excess vinyl isobutyl ether and the unreacted 2-ethylhexanol being recovered. 101.5 g of C-90.2% were obtained, based on the converted 2-ethylhexanol) vinyl 2-ethylhexyl ether.
12.2Analog zu Beispiel 12.1, jedoch mit 3 g des Katalysators nach Beispiel 412.2 Analog to Example 12.1, but with 3 g of the catalyst according to Example 4
Man erhielt bei einem Umsatz von 74 % und einer Selektivität von 94 % nach destillativer Aufarbeitung 106,5 g (92 %) Vinyl-2-ethylhexylether. 12.3Analog Beispiel 12.1, jedoch mit einem Katalysator nach Bei¬ spiel 5 mit 3 h Reaktionszeit Umsatz 76 %, Selektivität 98 % Ausbeute: 110 g (94,5 %)106.5 g (92%) of vinyl 2-ethylhexyl ether were obtained with a conversion of 74% and a selectivity of 94% after working up by distillation. 12.3 Analogue Example 12.1, but with a catalyst according to Example 5 with a reaction time of 3 hours, conversion 76%, selectivity 98% yield: 110 g (94.5%)
Beispiel 13Example 13
VinyloxypivalinsäuremethylesterVinyloxypivalinsäuremethylester
198,4 g (1,5 mol) Hydroxypivalinsäuremethylether und 750 g (7,5 mol) Vinylisobutylether wurden mit 3 g Katalysator nach Bei¬ spiel 5 versetzt und 8 h bei 70°C gerührt. Nach 8 h betrug der Umsatz bzgl. Hydroxypivalinsäuremethylester 70 %. Nach Abtrennung des Katalysators über ein Magnetfilter und nach destillativer Aufarbeitung erhielt man 164 g (69,1 %) Wertprodukt. 198.4 g (1.5 mol) of hydroxypivalic acid methyl ether and 750 g (7.5 mol) of vinyl isobutyl ether were mixed with 3 g of catalyst according to Example 5 and stirred at 70 ° C. for 8 h. After 8 hours, the conversion with respect to methyl hydroxypivalate was 70%. After removal of the catalyst using a magnetic filter and after working up by distillation, 164 g (69.1%) of valuable product were obtained.

Claims

Patentansprüche claims
1. Katalysatoren, aufgebaut aus1. Catalysts made up of
a) einem magnetisierbaren Kern, b) welcher gegebenenfalls mit einem Bindemittel überzogen ist, und c) welcher an seiner Oberfläche katalytisch aktive Metalle ' oder Metallverbindungen trägt.a) a magnetizable core, b) which optionally coated with a binder, and transmits c) which catalytically active metals on its surface 'or metal compounds.
2. Katalysatoren nach Anspruch 1, in denen der magnetisierbare Kern aus einem Eisenoxid, Chromdioxid oder einem Mangan-Zink¬ ferrit besteht.2. Catalysts according to claim 1, in which the magnetizable core consists of an iron oxide, chromium dioxide or a manganese-zinc ferrite.
3. Katalysatoren nach Anspruch 1 oder 2, in denen der magneti¬ sierbare Kern 5 bis 1000 nm Durchmesser hat.3. Catalysts according to claim 1 or 2, in which the magnetisable core has a diameter of 5 to 1000 nm.
4. Katalysatoren nach den Ansprüchen 1 bis 3, in denen die kata- lytisch aktiven Metalle oder Metallverbindungen aus der4. Catalysts according to claims 1 to 3, in which the catalytically active metals or metal compounds from the
Gruppe der Platinmetalle sowie Kupfer, Silber, Gold und Rhe¬ nium ausgewählt sind.Group of platinum metals as well as copper, silver, gold and rhenium are selected.
5. Katalysatoren nach den Ansprüchen 1 bis 4, in denen das Bin- demittel eine Polyacrylsäure mit einem mittleren Molekularge¬ wicht von 1000 bis 1000000 ist.5. Catalysts according to claims 1 to 4, in which the binding agent is a polyacrylic acid with an average molecular weight of 1000 to 1,000,000.
6. Katalysatoren nach den Ansprüchen 1 bis 3, in denen die kata¬ lytisch aktive Metallkomponente Rutheniumoxidhydrat ist .6. Catalysts according to claims 1 to 3, in which the catalytically active metal component is ruthenium oxide hydrate.
7. Katalysatoren nach den Ansprüchen 1 bis 3, in denen das ak¬ tive Metall Palladium(II) ist.7. Catalysts according to claims 1 to 3, in which the active metal is palladium (II).
8. Verfahren zur Herstellung von Katalysatoren gemäß Anspruch 1, dadurch gekennzeichnet, daß man magnetisierbare Teilchen, ge¬ gebenenfalls nach Versetzen mit einer Lösung, welche ein Bin¬ demittel enthält, das sich adsorptiv oder chemisch an das magnetisierbare Teilchen bindet, mit einer sich an seine Oberfläche adsorptiv oder chemisch bindenden Metallverbindung umsetzt.8. A process for the preparation of catalysts according to claim 1, characterized in that magnetizable particles, if appropriate after being mixed with a solution which contains a binder which binds adsorptively or chemically to the magnetizable particles, with one converts its surface adsorptively or chemically binding metal compound.
9. Verwendung von Katalysatoren gemäß Anspruch 6 zur Kern¬ hydrierung von aromatische Ringe enthaltenden Bisglycidyl- ethern. 9. Use of catalysts according to claim 6 for Kern¬ hydrogenation of aromatic rings containing bisglycidyl ethers.
10. Verwendung von Katalysatoren gemäß Anspruch 7 zur Synthese von Vinylethern durch Transvinylierung.10. Use of catalysts according to claim 7 for the synthesis of vinyl ethers by transvinylation.
11. Verfahren zur Abtrennung von Katalysatoren gemäß Anspruch 1 aus Reaktionslösungen, dadurch gekennzeichnet, daß man die Katalysatoren durch Anlegen eines magnetischen Feldes ent¬ fernt. 11. A process for the separation of catalysts according to claim 1 from reaction solutions, characterized in that the catalysts are removed by applying a magnetic field.
EP95900718A 1993-11-16 1994-11-11 Magnetically separable catalysts Withdrawn EP0729389A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE4339139 1993-11-16
DE4339139A DE4339139A1 (en) 1993-11-16 1993-11-16 Magnetically separable catalysts
PCT/EP1994/003747 WO1995013874A1 (en) 1993-11-16 1994-11-11 Magnetically separable catalysts

Publications (1)

Publication Number Publication Date
EP0729389A1 true EP0729389A1 (en) 1996-09-04

Family

ID=6502744

Family Applications (1)

Application Number Title Priority Date Filing Date
EP95900718A Withdrawn EP0729389A1 (en) 1993-11-16 1994-11-11 Magnetically separable catalysts

Country Status (5)

Country Link
US (1) US5929260A (en)
EP (1) EP0729389A1 (en)
JP (1) JPH09504991A (en)
DE (1) DE4339139A1 (en)
WO (1) WO1995013874A1 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19608559A1 (en) * 1996-03-06 1997-09-11 Basf Ag Process for the preparation of amines by simultaneous hydroformulation and hydrogenating amination
WO2000029108A1 (en) * 1998-11-12 2000-05-25 Abb Lummus Global Inc. Attrition resistant thin film catalyst and method of preparation
WO2001098208A1 (en) * 2000-06-16 2001-12-27 The Penn State Research Foundation Method and apparatus for producing carbonaceous articles
EP1270633B1 (en) * 2001-06-25 2007-12-05 Mitsubishi Chemical Corporation Alicylic epoxy compounds and their preparation process, alicylic epoxy resin composition, and encapsulant for light-emitting diode
DE102005030229A1 (en) * 2005-06-29 2007-01-04 Forschungszentrum Karlsruhe Gmbh Heterogeneous catalyst in granulate form, comprises a resin, which is embedded into a catalytically active metal, where the resins are dispersed in magnetic particles
JP4604934B2 (en) * 2005-09-22 2011-01-05 トヨタ自動車株式会社 Method and apparatus for recovering catalyst for fuel cell
EP2522426B1 (en) * 2011-05-12 2014-02-12 King Saud University Method for preparing carboxylic acids
EP3138892A1 (en) * 2015-09-03 2017-03-08 Synthopetrol Use of multifunctional magnetic catalysts for the transformation of biomass
JP7404663B2 (en) * 2019-06-06 2023-12-26 Toppanホールディングス株式会社 Method for manufacturing catalyst particles

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US29419A (en) * 1860-07-31 Nail-brush
US3228881A (en) * 1963-01-04 1966-01-11 Chevron Res Dispersions of discrete particles of ferromagnetic metals
US4309290A (en) * 1976-11-25 1982-01-05 Kernforschungsanlage Julich Gesellschaft Mit Beschrankter Haftung Magnetically supported particle matrix for accumulating or affecting substances dissolved or finally dispersed in liquids or gas
DE2653551C2 (en) * 1976-11-25 1979-02-01 Kernforschungsanlage Juelich Gmbh, 5170 Juelich Arrangement of magnetic particles intended to interact with substances in a solution or in a gas
EP0021854A1 (en) * 1979-07-02 1981-01-07 Exxon Research And Engineering Company Process for reforming hydrocarbons in a magnetically stabilized bed of fluidized, magnetizable reforming catalyst, and reformed hydrocarbon product
US4247987A (en) * 1979-09-26 1981-02-03 Exxon Research & Engineering Co. Continuous countercurrent fluid-solids contacting process stabilized by a magnetic field
DE2942646A1 (en) * 1979-10-22 1981-04-30 Basf Ag, 6700 Ludwigshafen METHOD FOR PRODUCING FERROMAGNETIC CHROMDIOXIDE
US4382982A (en) * 1979-12-07 1983-05-10 Ici Australia Limited Process for protecting magnetic particles with chromium oxide
US4536380A (en) * 1982-12-15 1985-08-20 Exxon Research And Engineering Co. Process for conducting reactions using a circulating magnetically stabilized bed to control reaction temperature profile
US4554088A (en) * 1983-05-12 1985-11-19 Advanced Magnetics Inc. Magnetic particles for use in separations
DE3619746A1 (en) * 1986-06-12 1987-12-17 Basf Ag SUPER PARAMAGNETIC SOLID PARTICLES
DE3629632A1 (en) * 1986-08-30 1988-03-03 Basf Ag METHOD FOR PRODUCING 2,2-DI- (P-GLYCIDOXI-CYCLOHEXYL) PROPANE
FR2624873B1 (en) * 1987-12-18 1992-01-10 Rhone Poulenc Chimie MAGNETISABLE COMPOSITE PARTICLES BASED ON CROSSLINKED ORGANOPOLYSILOXANE, THEIR PREPARATION PROCESS AND THEIR APPLICATION IN BIOLOGY
US5217810A (en) * 1988-12-23 1993-06-08 Basf Aktiengesellschaft Magnetic recording medium having a magnetic layer containing chromium dioxide particles and linolenic acid
DE3919228A1 (en) * 1989-06-13 1990-12-20 Basf Ag METHOD FOR PRODUCING DI- (P-GLYCIDOXICYCLOHEXYL) METHANE
FR2656317B1 (en) * 1989-12-27 1994-02-04 Rhone Poulenc Chimie MAGNETISABLE MICROSPHERES BASED ON POLYSILSESQUIOXANE, THEIR PREPARATION PROCESS AND THEIR APPLICATION IN BIOLOGY.
US5172842A (en) * 1991-12-13 1992-12-22 Emhart, Inc. Tool for breaking and removing tang of an inserted wire coil insert

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9513874A1 *

Also Published As

Publication number Publication date
US5929260A (en) 1999-07-27
JPH09504991A (en) 1997-05-20
WO1995013874A1 (en) 1995-05-26
DE4339139A1 (en) 1995-05-24

Similar Documents

Publication Publication Date Title
DE3832268C2 (en) Carrier consisting of metal compounds with ultrafine gold particles immobilized on the carrier, process for its production and its use
EP1242642B1 (en) method for production of powder mixture or composite powder
WO1995013874A1 (en) Magnetically separable catalysts
DE1767202A1 (en) Method of making a catalyst
KR860000485B1 (en) Process for producing ferromagnetic metallic particles
EP0176919A2 (en) Process for the preparation of fine isotropical ferrite powder having a spinel structure
EP0237944B1 (en) Process for the preparation of acicular alpha-iron-iii oxide
DE3312243C2 (en)
DE2738421C2 (en) Process for producing magnetic metallic powder
DE2705967C2 (en) Process for the production of acicular cobalt-containing magnetic iron oxide
EP1133447A1 (en) Water-soluble nanostructured metal-oxide colloids and method for preparing the same
GB2064502A (en) Chromium oxide protected magnetic particles
Rathore et al. Nanoparticle-supported and magnetically recoverable organic–inorganic hybrid copper (II) nanocatalyst: a selective and sustainable oxidation protocol with a high turnover number
EP0045028B1 (en) Process for the preparation of magnetic iron oxides
DE3344299C2 (en)
EP0792256B1 (en) Aldehyde preparation process
EP0105110A2 (en) Process for producing acicular ferromagnetic metal particles essentially consisting of iron
DE60221443T2 (en) FISCHER-TROPSCH CATALYST MANUFACTURED WITH HIGH-PURITY IRON EQUIPMENT AND MANUFACTURING METHOD
EP0875066B1 (en) Ferromagnetic pigments
DE68905620T2 (en) Fine iron carbide particles and process for their production.
EP0237943B1 (en) Process for the preparation of acicular alpha-iron-iii oxide
WO1997032840A1 (en) Process for preparing amines by simultaneous hydroformylation and hydrogenating amination
DE2419800A1 (en) COBALT-MODIFIED IRON OXIDES
DE2003438A1 (en) Process for the production of ferrites
DE3743039A1 (en) NADELFOERMIGE, FERROMAGNETIC METAL PARTICLES EXISTING EFFICIENTLY OF IRON, AND METHOD FOR THE PRODUCTION THEREOF

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19960420

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): BE CH DE ES FR GB IT LI NL

17Q First examination report despatched

Effective date: 19970710

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

18W Application withdrawn

Withdrawal date: 19991229