EP0718800B1 - Franking machine with a spare memory - Google Patents
Franking machine with a spare memory Download PDFInfo
- Publication number
- EP0718800B1 EP0718800B1 EP19940120219 EP94120219A EP0718800B1 EP 0718800 B1 EP0718800 B1 EP 0718800B1 EP 19940120219 EP19940120219 EP 19940120219 EP 94120219 A EP94120219 A EP 94120219A EP 0718800 B1 EP0718800 B1 EP 0718800B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- memory
- franking machine
- reserve
- data
- voltage
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 230000015654 memory Effects 0.000 title claims description 121
- 230000003068 static effect Effects 0.000 claims description 13
- 238000000034 method Methods 0.000 claims description 7
- 238000011084 recovery Methods 0.000 claims description 6
- 230000003936 working memory Effects 0.000 claims description 5
- 238000012545 processing Methods 0.000 claims description 3
- 238000012544 monitoring process Methods 0.000 description 5
- 238000005516 engineering process Methods 0.000 description 4
- 239000003990 capacitor Substances 0.000 description 3
- 230000006870 function Effects 0.000 description 3
- 230000010287 polarization Effects 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 230000003213 activating effect Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 238000013500 data storage Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 230000002452 interceptive effect Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000009897 systematic effect Effects 0.000 description 1
- 238000012549 training Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G07—CHECKING-DEVICES
- G07B—TICKET-ISSUING APPARATUS; FARE-REGISTERING APPARATUS; FRANKING APPARATUS
- G07B17/00—Franking apparatus
- G07B17/00185—Details internally of apparatus in a franking system, e.g. franking machine at customer or apparatus at post office
- G07B17/00362—Calculation or computing within apparatus, e.g. calculation of postage value
-
- G—PHYSICS
- G07—CHECKING-DEVICES
- G07B—TICKET-ISSUING APPARATUS; FARE-REGISTERING APPARATUS; FRANKING APPARATUS
- G07B17/00—Franking apparatus
- G07B17/00185—Details internally of apparatus in a franking system, e.g. franking machine at customer or apparatus at post office
- G07B17/00314—Communication within apparatus, personal computer [PC] system, or server, e.g. between printhead and central unit in a franking machine
-
- G—PHYSICS
- G07—CHECKING-DEVICES
- G07B—TICKET-ISSUING APPARATUS; FARE-REGISTERING APPARATUS; FRANKING APPARATUS
- G07B17/00—Franking apparatus
- G07B17/00185—Details internally of apparatus in a franking system, e.g. franking machine at customer or apparatus at post office
- G07B17/00314—Communication within apparatus, personal computer [PC] system, or server, e.g. between printhead and central unit in a franking machine
- G07B2017/00346—Power handling, e.g. power-down routine
-
- G—PHYSICS
- G07—CHECKING-DEVICES
- G07B—TICKET-ISSUING APPARATUS; FARE-REGISTERING APPARATUS; FRANKING APPARATUS
- G07B17/00—Franking apparatus
- G07B17/00185—Details internally of apparatus in a franking system, e.g. franking machine at customer or apparatus at post office
- G07B17/00362—Calculation or computing within apparatus, e.g. calculation of postage value
- G07B2017/00395—Memory organization
-
- G—PHYSICS
- G07—CHECKING-DEVICES
- G07B—TICKET-ISSUING APPARATUS; FARE-REGISTERING APPARATUS; FRANKING APPARATUS
- G07B17/00—Franking apparatus
- G07B17/00185—Details internally of apparatus in a franking system, e.g. franking machine at customer or apparatus at post office
- G07B17/00362—Calculation or computing within apparatus, e.g. calculation of postage value
- G07B2017/00395—Memory organization
- G07B2017/00411—Redundant storage, e.g. back-up of registers
Definitions
- the invention relates to a franking machine with an electronic Controller accessing a first memory in which security-relevant data is stored and from which these data are available again, and with at least one non-volatile reserve memory, in the event of a power failure the data of the first memory are stored and after Power recovery returns the data of the reserve memory are readable.
- a franking machine with a Voltage monitoring circuit known that the sinking and the return of the operating voltage is detected.
- the franking machine has a non-volatile reserve memory, in the data from the working memory when the operating voltage drops can be saved by copying. If the operating voltage rises again, the im will not volatile memory stored data back into memory transferred to the franking machine.
- a franking machine is from US-A-4,564,922 known with two reserve memories.
- One of these stores is one non-volatile read-only memory while the other Memory works as a so-called shadow work memory, that has two memory sections.
- a first storage section serves as a volatile memory
- a second Memory section provided as a non-volatile memory is.
- data is stored in the shadow RAM from the volatile memory section to the non volatile memory section transferred by a copy operation. After the voltage returns, data stored in the non-volatile memory section of the shadow memory were saved to a computer unit and with non-volatile data from the read-only memory Matched.
- a franking machine is known from EP-A-0 572 019 has at least two non-volatile memories.
- the Operating voltage will be safety relevant data in both non-volatile memory inscribed.
- the data from the two memories is replaced by a Transfer the copying process to the computer of the franking machine and checked for identity there.
- the known devices and methods copy each an entire data set on voltage drop and on voltage recovery. This means that a large number of data must be transferred between the memories. At this Transmission read and write errors can occur which affect the reliability of the franking machine. Multiple storage in non-volatile memories and the subsequent comparison of the data records with each other increases the data security for franking machines, however when interference signals occur, for example caused by voltage induction or by voltage peaks be the data from different stores get to the computer when transferring data, in the same way affected, causing a systematic data error can come up with an identity of different records is faked.
- a franking machine is known from EP-A-0 550 994, which has two memories contains which by a controller as static non-volatile memory or can be operated as dynamic volatile memories.
- the two stores serve both for storing security-relevant data and as working memory. Depending on the level of the supply voltage, the two memories are in switched to static or dynamic operation.
- the reserve memory is not as static volatile memory operable; another time than dynamic volatile memory. In static operation, they are stored in the reserve memory stored data quasi frozen, whereby in this state of the reserve memory no further power supply needed more. When the voltage returns, the Reserve memory cells set to dynamic state, in the continuous refresh cycles for the memory content required are.
- a ferroelectric memory is provided.
- Ferroelectric memory cells Material as a storage medium.
- the data are called states stored by storage capacitors. These storage capacitors form the memory cells of the ferroelectric Memory.
- the data In the static mode, the data is through defines the polarization state of the memory cells; in the dynamic operating mode, the data is considered the state of charge of the Memory cells mapped.
- the use of a ferroelectric Memory in connection with common other technologies for memory and non-volatile memory, for example battery-backed memory has the advantage that the simultaneous occurrence of write and read errors interfering signals due to different storage technologies is avoided.
- a further development of the invention is characterized in that a Area of the reserve memory for storing a control program is provided.
- the reserve memory serves in this Case as read-only memory, which in this application at least partially replaced the usual ROM module. Through this training, the hardware effort for the Franking machine reduced. It is also possible to create an area of the reserve memory as working memory for the control to provide.
- the controller 10 is the in a block diagram Postage meter shown. It contains a microprocessor 12 with a data bus 16 and an address bus 14 with a decoding unit 18, a working memory 20, a EPROM designed program memory 22, one as EEPROM trained memory for fixed data, a clock module 16 with a battery-backed first non-volatile memory 26, also as a battery-backed second non-volatile memory 28, as a ferroelectric reserve memory 30 trained third non-volatile memories, a further decoding unit 32, an interface module 34 for external units and an interface module 36 for a display and for input means electrical connected is.
- the two decoding units 18 and 32 are in summarized a customer-specific ASIC module 40.
- the Decoding unit 32 has lines 46, 46a, 46b which are connected to the Chip select inputs CS of the reserve memory 30, the memory 28 and the memory 26 are connected. Over these lines 46, 46a, 46b the memories 30, 28, 26 are selected, to read and write data.
- An output portl of the microprocessor 12 is via a control line 48 to the input D / NV of the reserve memory 30 connected. Depending on the signal on the control line 48, the reserve memory 30 in the operating mode "dynamic memory” or "static memory” switched.
- first, second and third non-volatile memories 26, 28, 30 security-relevant data of the franking machine, for example the still available postage amount and the Postage amount already issued, each saved.
- the three non-volatile memories 26, 28, 30 operate according to different ones Technologies, so that high storage security also possible under unfavorable operating conditions is.
- the microprocessor 12 compares at certain time intervals those stored in the three memories 26, 28, 30 security-relevant data among each other. If the An error signal is generated from data from each other or it is causes an error correction, as for example in European patent application EP-A-0 572 019 is.
- the microprocessor 12 is connected to a voltage monitoring module 42, which monitors the operating voltage U B on the line 44.
- the ferroelectric reserve memory 30 is operated with the same operating voltage U B as the other components of the control system 10.
- the operation of the franking machine for franking mail using the components shown in FIG. 1 is known per se to the person skilled in the art and must be here not explained in more detail.
- FIG. 2 shows in a flowchart the function of the reserve memory 30 when a drop in the supply voltage occurs and when the voltage returns.
- the voltage monitoring module 42 reports to the microprocessor 12 that the operating voltage U B has been reached , and in the subsequent step 52 the microprocessor 12 and the structural units connected to it are initialized, including the safety-relevant ones Data in memories 26 and 28 are compared for agreement. If it is determined in step 54 that the security-relevant data do not match, a branch is made to a further program in step 56, in which the error is corrected if necessary.
- the method described in EP-A-0 572 019 can be used here.
- interrupts Events to which the microprocessor 12 responds and control functions triggers
- the processing of interrupts interrupted in order to keep the Change the operating mode of the reserve memory 30 to be able to.
- the reserve memory 30 is activated via the chip select line 46 by the decoding unit 32, and the microprocessor 12 sends a signal via the control line 48 to the input D / NV of the memory 30 to put it into the dynamic operating state to switch.
- the data 30 stored in the memory are continuously renewed.
- the renewal energy is supplied by the supply voltage U B.
- So-called dummy read cycles are subsequently stored in the memory carried out. These cycles are necessary for data storage, i.e. the polarization or charging of the Memory cells depending on the control signal 48 present to change.
- step 64 the lock for the interrupt handling canceled.
- the microprocessor samples the signal of the voltage monitoring module 42. If not Power failure in step 66 becomes normal Postage meter operation (step 68) branches, and the usual Control functions are carried out.
- step 66 branches to program part A, the sequence of which is shown in FIG. 3.
- step 70 the interrupt processing by the microprocessor 12 is blocked in the subsequent step 72.
- the memory 30 is selected via the decoding module 32 and the line 46, and the microprocessor 12 outputs the signal for activating the non-volatile mode of operation of the memory 30 via the control line 48, so that this memory 30 switches to its static mode.
- the dummy read cycles already mentioned are carried out in the subsequent step 76.
- the data in the memory 30 are stored statically. In this state, the memory 30 does not require a voltage supply. It is therefore possible to supply the memory 30 solely from the supply voltage U B , from which the franking machine, with the exception of the battery-buffered memories 26, 28, also draw its electrical energy.
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Mathematical Physics (AREA)
- Theoretical Computer Science (AREA)
- Computer Hardware Design (AREA)
- General Engineering & Computer Science (AREA)
- Techniques For Improving Reliability Of Storages (AREA)
- Devices For Checking Fares Or Tickets At Control Points (AREA)
Description
Die Erfindung betrifft eine Frankiermaschine mit einer elektronischen Steuerung, die auf einen ersten Speicher zugreift, in welchem sicherheitsrelevante Daten gespeichert und aus dem diese Daten wieder abrufbar sind, und mit mindestens einem nicht flüchtigen Reservespeicher, in dem bei Spannungsausfall die Daten des ersten Speichers gespeichert sind und nach Spannungswiederkehr die Daten des Reservespeichers wieder auslesbar sind.The invention relates to a franking machine with an electronic Controller accessing a first memory in which security-relevant data is stored and from which these data are available again, and with at least one non-volatile reserve memory, in the event of a power failure the data of the first memory are stored and after Power recovery returns the data of the reserve memory are readable.
Aus der US-A-4,306,299 ist eine Frankiermaschine mit einer Spannungsüberwachungsschaltung bekannt, welche das Absinken und das Wiederkehren der Betriebsspannung erfaßt. Die Frankiermaschine hat einen nicht flüchtigen Reservespeicher, in dem beim Abfall der Betriebsspannung Daten aus dem Arbeitsspeicher durch einen Kopiervorgang abgespeichert werden. Wenn die Betriebsspannung wieder ansteigt, werden die im nicht flüchtigen Speicher gespeicherten Daten wieder in den Arbeitsspeicher der Frankiermaschine übertragen.From US-A-4,306,299 is a franking machine with a Voltage monitoring circuit known that the sinking and the return of the operating voltage is detected. The franking machine has a non-volatile reserve memory, in the data from the working memory when the operating voltage drops can be saved by copying. If the operating voltage rises again, the im will not volatile memory stored data back into memory transferred to the franking machine.
Weiterhin ist aus der US-A-4,564,922 eine Frankiermaschine mit zwei Reservespeichern bekannt. Einer dieser Speicher ist ein nicht flüchtiger Festwertspeicher, während der andere Speicher als sogenannter Schattenarbeitsspeicher arbeitet, der zwei Speicherabschnitte hat. Ein erster Speicherabschnitt dient als flüchtiger Arbeitsspeicher, während ein zweiter Speicherabschnitt als nicht flüchtiger Speicher vorgesehen ist. Bei einem Spannungsabfall werden Daten im Schattenarbeitspeicher vom flüchtigen Speicherabschnitt in den nicht flüchtigen Speicherabschnitt durch einen Kopiervorgang transferiert. Nach Wiederkehr der Spannung werden Daten, die im nicht flüchtigen Speicherabschnitt des Schattenarbeitsspeichers gespeichert waren an eine Computereinheit ausgelesen und mit nicht flüchtigen Daten des Festwertspeichers auf Übereinstimmung verglichen.Furthermore, a franking machine is from US-A-4,564,922 known with two reserve memories. One of these stores is one non-volatile read-only memory while the other Memory works as a so-called shadow work memory, that has two memory sections. A first storage section serves as a volatile memory, while a second Memory section provided as a non-volatile memory is. In the event of a voltage drop, data is stored in the shadow RAM from the volatile memory section to the non volatile memory section transferred by a copy operation. After the voltage returns, data stored in the non-volatile memory section of the shadow memory were saved to a computer unit and with non-volatile data from the read-only memory Matched.
Aus der EP-A-0 572 019 ist eine Frankiermaschine bekannt, die mindestens zwei nicht flüchtige Speicher hat. Bei Abfall der Betriebsspannung werden sicherheitsrelevante Daten in beide nicht flüchtige Speicher eingeschrieben. Nach Spannungswiederkehr werden die Daten aus den beiden Speichern durch einen Kopiervorgang zum Computer der Frankiermaschine übertragen und dort auf Identität überprüft.A franking machine is known from EP-A-0 572 019 has at least two non-volatile memories. When the Operating voltage will be safety relevant data in both non-volatile memory inscribed. After voltage recovery the data from the two memories is replaced by a Transfer the copying process to the computer of the franking machine and checked for identity there.
Die bekannten Einrichtungen und Verfahren kopieren jeweils einen gesamten Datensatz bei Spannungsabfall und bei Spannungswiederkehr. Dies bedeutet, daß eine große Anzahl von Daten zwischen den Speichern übertragen werden müssen. Bei dieser Übertragung können Lese- und Schreibfehler auftreten, welche die Zuverlässigkeit der Frankiermaschine beeinträchtigen. Das mehrfache Abspeichern in nicht flüchtigen Speichern und der nachfolgende Vergleich der Datensätze untereinander erhöht zwar die Datensicherheit für Frankiermaschinen, jedoch werden beim Auftreten von Störsignalen, die beispielsweise durch Spannungsinduktion oder durch Spannungsspitzen hervorgerufen werden, die Daten, die von verschiedenen Speichern beim Datentransfer zum Computer gelangen, auf gleiche Weise beeinflußt, so daß es zu einem systematischen Datenfehler kommen kann, bei dem eine Identität der verschiedenen Datensätze vorgetäuscht wird. The known devices and methods copy each an entire data set on voltage drop and on voltage recovery. This means that a large number of data must be transferred between the memories. At this Transmission read and write errors can occur which affect the reliability of the franking machine. Multiple storage in non-volatile memories and the subsequent comparison of the data records with each other increases the data security for franking machines, however when interference signals occur, for example caused by voltage induction or by voltage peaks be the data from different stores get to the computer when transferring data, in the same way affected, causing a systematic data error can come up with an identity of different records is faked.
Aus der EP-A-0 550 994 ist eine Frankiermaschine bekannt, die zwei Speicher enthält, welche durch eine Steuerung alss statische nicht flüchtige Speicher oder als dynamische flüchtige Speicher betreibbar sind. Die beiden Speicher dienen sowohl zum Speichern sicherheitsrelevanter Daten als auch als Arbeitsspeicher. Abhängig von der Höhe der Versorgungsspannung werden die beiden Speicher in den statischen Betrieb oder in den dynamischen Betrieb geschaltet.A franking machine is known from EP-A-0 550 994, which has two memories contains which by a controller as static non-volatile memory or can be operated as dynamic volatile memories. The two stores serve both for storing security-relevant data and as working memory. Depending on the level of the supply voltage, the two memories are in switched to static or dynamic operation.
Es ist Aufgabe der Erfindung, eine Frankiermaschine anzugeben, die bei Spannungsausfall und bei Spannungswiederkehr die Speicherung sicherheitsrelevanter Daten ohne zusätzliche Hilfsenergie zuverlässig ausführt. It is an object of the invention to provide a franking machine which is used in the event of a power failure and storage of safety-relevant data when voltage returns Executes data reliably without additional auxiliary energy.
Diese Aufgabe wird durch die Merkmale des Anspruchs 1 gelöst.This object is solved by the features of
Die Erfindung geht von der Überlegung aus, den beim bekannten Stand der Technik erforderlichen Kopiervorgang entfallen zu lassen. Die während einer Datenübertragung auftretenden Fehler können dann vermieden werden. Demgemäß sind bei der Erfindung für den Reservespeicher zwei Betriebsweisen vorgesehen. Einmal ist der Reservespeicher als statischer nicht flüchtiger Speicher betreibbar; ein andermal als dynamischer flüchtiger Speicher. Im statischen Betrieb werden die im Reservespeicher gespeicherten Daten quasi eingefroren, wobei in diesem Zustand der Reservespeicher keine weitere Spannungsversorgung mehr benötigt. Bei Spannungswiederkehr werden die Zellen des Reservespeichers in den dynamischen Zustand versetzt, bei dem fortlaufend Erneuerungszyklen für den Speicherinhalt erforderlich sind.The invention is based on the consideration in the known The copying process required in the prior art is eliminated to let. The errors that occur during a data transfer can then be avoided. Accordingly, in the invention two operating modes are provided for the reserve memory. First, the reserve memory is not as static volatile memory operable; another time than dynamic volatile memory. In static operation, they are stored in the reserve memory stored data quasi frozen, whereby in this state of the reserve memory no further power supply needed more. When the voltage returns, the Reserve memory cells set to dynamic state, in the continuous refresh cycles for the memory content required are.
Es muß also bei der Erfindung kein Kopiervorgang zwischen verschiedenen Speichern oder zwischen Speicherabschnitten eines Speichers durchgeführt werden, wodurch die Daten im Reservespeicher selbst bei hohem Störsignalpegel sicher sind. Zwar werden bei der Umschaltung vom statischen Betrieb in den dynamischen Betrieb und umgekehrt die Speicherzellen belastet, so daß ihre Lebensdauer eingeschränkt ist. Ferner wird die Lebensdauer des Reservespeichers durch Lesevorgänge beeinträchtigt, bei denen die einzelnen Speicherzellen jeweils gelöscht und ihr ursprünglicher Wert neu eingeschrieben werden muß. Jedoch ist für Anwendungen in einer Frankiermaschine diese Art von Reservespeicher möglich, wenn man sich auf wenige Schreib- und Lesezyklen beschränkt, beispielsweise auf das Absspeichern sicherheitsrelevanter Daten, für die die Anzahl an Lese- und Schreibzyklen abhängig vom Portoverbrauch relativ klein ist.So there must be no copying between the invention different memories or between sections of memory Memory are performed, which saves the data in the reserve memory are safe even at high interference signal levels. When switching from static operation to dynamic operation and vice versa the memory cells are loaded, so that their lifespan is limited. Furthermore, the lifespan of the reserve memory is impaired by read operations, where the individual memory cells each deleted and their original value re-registered got to. However, for applications in a franking machine this kind of reserve storage is possible if you look at a few Write and read cycles limited, for example to the storage of security-relevant data for which the number on read and write cycles depending on postage usage is relatively small.
Bei der Erfindung ist als Reservespeicher ein ferroelektrischer Speicher vorgesehen. Bei dieser Technologie enthalten die Speicherzellen ferroelektrisches Material als Speichermedium. Die Daten werden als Zustände von Spicherkondensatoren gespeichert. Diese Speicherkondensatoren bilden die Speicherzellen des ferroelektrischen Speichers. In der statischen Betriebsart sind die Daten durch den Polarisationszustand der Speicherzellen definiert; in der dynamischen Betriebsart werden die Daten als Ladezustände der Speicherzellen abgebildet. Die Verwendung eines ferroelektrischen Speichers in Verbindung mit üblichen anderen Technologien für Arbeitsspeicher und nicht flüchtige Speicher, beispielsweise batteriegepufferte Speicher, hat den Vorteil, daß das gleichzeitige Auftreten von Schreib- und Lesefehlern bei einwirkenden Störsignalen aufgrund unterschiedlicher Speichertechnologien vermieden wird.In the invention is as a reserve memory a ferroelectric memory is provided. At this Technology contain ferroelectric memory cells Material as a storage medium. The data are called states stored by storage capacitors. These storage capacitors form the memory cells of the ferroelectric Memory. In the static mode, the data is through defines the polarization state of the memory cells; in the dynamic operating mode, the data is considered the state of charge of the Memory cells mapped. The use of a ferroelectric Memory in connection with common other technologies for memory and non-volatile memory, for example battery-backed memory has the advantage that the simultaneous occurrence of write and read errors interfering signals due to different storage technologies is avoided.
Eine Weiterbildung der Erfindung ist dadurch gekennzeichnet, daß ein Bereich des Reservespeichers für die Speicherung eines Steuerprogramms vorgesehen ist. Der Reservespeicher dient in diesem Fall als Festwertspeicher, der bei diesem Anwendungsfall den sonst üblichen ROM-Baustein zumindest teilweise ersetzt. Durch diese Weiterbildung wird der Hardware-Aufwand für die Frankiermaschine verringert. Auch ist es möglich, einen Bereich des Reservespeichers als Arbeitsspeicher für die Steuerung vorzusehen.A further development of the invention is characterized in that a Area of the reserve memory for storing a control program is provided. The reserve memory serves in this Case as read-only memory, which in this application at least partially replaced the usual ROM module. Through this training, the hardware effort for the Franking machine reduced. It is also possible to create an area of the reserve memory as working memory for the control to provide.
Um zu vermeiden, daß beim Schreiben in den Reservespeicher, in welchem neben den sicherheitsrelevanten Daten auch das Steuerprogramm abgespeichert ist, in nicht erlaubten Bereichen Daten eingeschrieben werden, die das Steuerprogramm zerstören könnten, werden bestimmte Bereiche des Reservespeichers schreibgeschützt. In diesem schreibgeschützten Bereichen können das Steuerprogramm oder weitere nicht veränderbare Daten abgelegt werden.In order to avoid that when writing to the reserve memory, in which, in addition to the security-relevant data, the Control program is stored in prohibited areas Data is written that destroy the control program could be certain areas of the reserve memory read-only. In this read-only areas can the control program or other non-changeable Data are stored.
Ein Ausführungsbeispiel der Erfindung wird im folgenden anhand der Zeichnung erläutert. Darin zeigt:
Figur 1- die Steuerung einer Frankiermaschine in einer Blockdarstellung, sowie
- Figuren 2 und 3
- die Ablaufschritte beim Einschalten des dynamischen Betriebs bzw. des statischen Betriebs des Reservespeichers.
- Figure 1
- the control of a franking machine in a block representation, and
- Figures 2 and 3
- the process steps when switching on dynamic operation or static operation of the reserve memory.
In Figur 1 ist in einem Blockschaltbild die Steuerung 10 der
Frankiermaschine dargestellt. Sie enthält einen Mikroprozessor
12, der über einen Datenbus 16 und einen Adreßbus 14 mit
einer Decodiereinheit 18, einem Arbeitsspeicher 20, einem als
EPROM ausgebildeten Programmspeicher 22, einem als EEPROM
ausgebildeten Speicher für Festdaten, einem Uhrenbaustein 16
mit einem batteriegepufferten ersten nicht flüchtigen Speicher
26, einem ebenfalls als batteriegepufferten zweiten
nicht flüchtigen Speicher 28, einem als ferroelektrischen Reservespeicher
30 ausgebildeten dritten nicht flüchtigen Speicher,
einer weiteren Decodiereinheit 32, einem Schnittstellenbaustein
34 für externe Einheiten sowie einem Interfacebaustein
36 für eine Anzeige und für Eingabemittel elektrisch
verbunden ist. Die beiden Decodiereinheiten 18 und 32 sind in
einem kundenspezifischen ASIC-Baustein 40 zusammengefaßt. Die
Decodiereinheit 32 hat Leitungen 46, 46a, 46b, die mit den
Chip-Select-Eingängen CS des Reservespeichers 30, des Speichers
28 und des Speichers 26 verbunden sind. Über diese Leitungen
46, 46a, 46b werden die Speicher 30, 28, 26 angewählt,
um Daten zu lesen und zu schreiben. Ein Ausgang Portl des Mikroprozessors
12 ist über eine Steuerleitung 48 mit dem Eingang
D/NV des Reservespeichers 30 verbunden. Abhängig vom Signal
auf der Steuerleitung 48 wird der Reservespeicher 30 in
die Betriebsart "dynamischer Speicher" oder "statischer Speicher"
geschaltet.In Figure 1, the
Im ersten, zweiten und dritten nicht flüchtigen Speicher 26,
28, 30 werden sicherheitsrelevante Daten der Frankiermaschine,
beispielsweise der noch verfügbare Portobetrag und der
bereits ausgegebene Portobetrag, jeweils abgespeichert. Die
drei nicht flüchtigen Speicher 26, 28, 30 arbeiten nach unterschiedlichen
Technologien, so daß eine hohe Speichersicherheit
auch unter ungünstigen Betriebszuständen möglich
ist. Der Mikroprozessor 12 vergleicht in bestimmten Zeitabständen
die in den drei Speichern 26, 28, 30 abgespeicherten
sicherheitsrelevanten Daten untereinander. Bei Abweichung der
Daten voneinander wird ein Fehlersignal erzeugt oder es wird
eine Fehlerkorrektur veranlaßt, wie dies beispielsweise in
der europäischen Patentanmeldung EP-A-0 572 019 beschrieben
ist.In the first, second and third
Der Mikroprozessor 12 ist mit einem Spannungsüberwachungsbaustein
42 verbunden, welcher die Betriebsspannung UB auf der
Leitung 44 überwacht. Der ferroelektrische Reservespeicher 30
wird beim Betrieb der Frankiermaschine mit derselben Betriebsspannung
UB betrieben, wie die weiteren Bausteine der
Steuerung 10. Der Betrieb der Frankiermaschine zum Frankieren
von Postgut unter Verwendung der in der Figur 1 gezeigten
Bausteinen ist dem Fachmann an sich bekannt und muß hier
nicht näher erläutert werden.The
Figur 2 zeigt in einem Ablaufdiagramm die Funktion des Reservespeichers
30 beim Auftreten eines Abfalls der Versorgungsspannung
und bei Spannungswiederkehr. Beim Einschalten der
Frankiermaschine bzw. bei Wiederkehr der Versorgungsspannung
im Schritt 50 meldet der Spannungsüberwachungsbaustein 42 dem
Mikroprozessor 12 das Erreichen der Betriebsspannung UB, und
es erfolgt im nachfolgenden Schritt 52 eine Initialisierung
des Mikroprozessors 12 und der an ihn angeschlossenen Baueinheiten,
wobei auch die sicherheitsrelevanten Daten in den
Speichern 26 und 28 auf Übereinstimmung miteinander verglichen
werden. Falls im Schritt 54 festgestellt wird, daß die
sicherheitsrelevanten Daten nicht übereinstimmen, so wird zu
einem weiteren Programm im Schritt 56 verzweigt, in welchem
der Fehler gegebenenfalls korrigiert wird. Beispielsweise
kann hierbei das in der EP-A-0 572 019 beschriebene Verfahren
eingesetzt werden.FIG. 2 shows in a flowchart the function of the
Wenn die sicherheitsrelevanten Daten fehlerfrei sind, so wird
im nachfolgenden Schritt 58 die Bearbeitung von Interrupts
(Ereignisse, auf die der Mikroprozessor 12 reagiert und Steuerfunktionen
auslöst) unterbrochen, um ohne Unterbrechung den
Wechsel der Betriebsart des Reservespeichers 30 durchführen
zu können.If the security-relevant data is error-free, then
in the
Im nachfolgenden Schritt 60 wird der Reservespeicher 30 über
die Chip-Select-Leitung 46 durch die Decodiereinheit 32 aktiv
geschaltet, und der Mikroprozessor 12 sendet über die Steuerleitung
48 ein Signal an den Eingang D/NV des Speichers 30,
um diesen in den dynamischen Betriebszustand zu schalten. In
diesem dynamischen Betriebszustand werden die im Speicher gespeicherten
Daten 30 fortlaufend erneuert. Die Erneuerungsenergie
wird durch die Versorgungsspannung UB geliefert.In the
Nachfolgend werden im Speicher 30 sogenannte Dummy-Lese-Zyklen
durchgeführt. Diese Zyklen sind erforderlich, um die Datenspeicherung,
d.h. die Polarisierung oder Aufladung der
Speicherzellen abhängig vom anliegenden Steuersignal 48 zu
ändern.So-called dummy read cycles are subsequently stored in the memory
carried out. These cycles are necessary for data storage,
i.e. the polarization or charging of the
Memory cells depending on the
Im nachfolgenden Schritt 64 wird die Sperre für die Interruptbehandlung
aufgehoben. Der Mikroprozessor tastet das Signal
des Spannungsüberwachungsbausteins 42 ab. Falls kein
Spannungsausfall im Schritt 66 vorliegt, wird zum normalen
Frankiermaschinenbetrieb (Schritt 68) verzweigt, und die üblichen
Steuerfunktionen werden ausgeführt.In the
Falls der Spannungsüberwachungsbaustein 42 ein Abfallen der
Versorgungsspannung UB signalisiert, so wird im Schritt 66
zum Programmteil A verzweigt, dessen Ablaufschritte in Figur
3 dargestellt sind. Nach dem Ausschalten der Maschine oder
einem Versorgungsspannungsausfall (Schritt 70) wird im nachfolgenden
Schritt 72 die Interruptbehandlung durch den Mikroprozessor
12 gesperrt. Mit der noch verbleibenden, beispielsweise
in einem Kondensator gepufferten elektrischen Energie,
wird über den Decodierbaustein 32 und die Leitung 46 der
Speicher 30 angewählt, und der Mikroprozessor 12 gibt über
die Steuerleitung 48 das Signal zum Aktivieren der nicht
flüchten Betriebsart des Speichers 30 ab, so daß dieser Speicher
30 in seinen statischen Betrieb umschaltet. Zum Festlegen
des Speicherinhalts des Speichers 30 werden im nachfolgenden
Schritt 76 die bereits erwähnten Dummy-Lese-Zyklen
durchgeführt. Nach dem endgültigen Spannungszusammenbruch im
Schritt 78 sind die Daten des Speichers 30 statisch gespeichert.
In diesem Zustand benötigt der Speicher 30 keine Spannungsversorgung.
Es ist also möglich, den Speicher 30 alleine
aus der Versorgungsspannung UB zu speisen, aus der auch die
Frankiermaschine mit Ausnahme der batteriegepufferten Speicher
26, 28 ihre elektrische Energie entnehmen.If the
Claims (7)
- Franking machine with an electronic controller (10) which accesses a first non-volatile memory (26, 28), in which safety-relevant data is stored and from which this data can be retrieved again,having at least one reserve memory (30),wherein with voltage failure the data of the first memory (26, 28) is stored in the reserve memory (30) and after voltage recovery this data can be read again from the reserve memory (30),the reserve memory is constructed as a ferroelectric memory (30) which can be operated selectively as static non-volatile memory or as dynamic volatile memory,the reserve memory (30) and the franking machine are supplied from a common supply voltage (UB),and wherein the controller (10), upon drop of the supply voltage (UB) to a specified value, sets the reserve memory (30) to the static operation and, with voltage recovery, to the dynamic operation, wherein to detect the drop of the supply voltage (UB) a voltage monitor module (42) is provided, which compares the supply voltage (UB) with a specified comparison value, and if it falls below the comparison value the module generates a signal for the controller (10) which switches the reserve memory (30) into the static operation by means of the emission of a control signal,the first memory (26, 28) and the reserve memory (30) operate according to different techniques,in that the signal is an interrupt signal,in that the voltage monitor module (42) generates upon voltage recovery another interrupt signal for the controller (10) which switches the reserve memory (30) into the dynamic operation by means of a control signal,and in that before the connection of the static operation and the dynamic operation for the reserve memory (30) the processing of further interrupts is blocked.
- Franking machine according to claim 1, characterized in that an area of the reserve memory (30) is provided for the storing of a control program.
- Franking machine according to one of the preceding claims, characterized in that another area of the reserve memory (30) is provided as working memory for the controller (10).
- Franking machine according to one of the preceding claims, characterized in that predetermined areas of the reserve memory (30) are write-protected.
- Franking machine according to claim 4, characterized in that the memory area allocated to the control program is write-protected.
- Franking machine according to one of the preceding claims, characterized in that the first memory (26 or 28) has a memory technique where it is voltage-backed by a battery or an accumulator.
- Franking machine according to one of the preceding claims, characterized in that postage data of the franking machine, preferably the postage amount still available and the postage amount already issued, is stored in the reserve memory as safety-relevant data.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP19940120219 EP0718800B1 (en) | 1994-12-20 | 1994-12-20 | Franking machine with a spare memory |
DE59408216T DE59408216D1 (en) | 1994-12-20 | 1994-12-20 | Franking machine with a reserve memory |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP19940120219 EP0718800B1 (en) | 1994-12-20 | 1994-12-20 | Franking machine with a spare memory |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0718800A1 EP0718800A1 (en) | 1996-06-26 |
EP0718800B1 true EP0718800B1 (en) | 1999-05-06 |
Family
ID=8216548
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP19940120219 Expired - Lifetime EP0718800B1 (en) | 1994-12-20 | 1994-12-20 | Franking machine with a spare memory |
Country Status (2)
Country | Link |
---|---|
EP (1) | EP0718800B1 (en) |
DE (1) | DE59408216D1 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7152049B2 (en) * | 2001-10-05 | 2006-12-19 | Pitney Bowes Inc. | Method and system for dispensing virtual stamps |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4564922A (en) * | 1983-10-14 | 1986-01-14 | Pitney Bowes Inc. | Postage meter with power-failure resistant memory |
US4706215A (en) * | 1984-08-22 | 1987-11-10 | Pitney Bowes Inc. | Data protection system for electronic postage meters having multiple non-volatile multiple memories |
US5187798A (en) * | 1989-03-06 | 1993-02-16 | Pitney Bowes Inc. | Electronic postage meter having separate funds charge registers and recredits funds register in predetermined amount when funds fall to predetermined level |
GB9126998D0 (en) * | 1991-12-19 | 1992-02-19 | Alcatel Business Machines Limi | Franking machine |
-
1994
- 1994-12-20 DE DE59408216T patent/DE59408216D1/en not_active Expired - Fee Related
- 1994-12-20 EP EP19940120219 patent/EP0718800B1/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
EP0718800A1 (en) | 1996-06-26 |
DE59408216D1 (en) | 1999-06-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE69323225T2 (en) | Data handling in a processor system to control access to a plurality of data storage disks | |
DE2523414C3 (en) | Hierarchical storage arrangement with more than two storage levels | |
DE2400161C2 (en) | ||
DE69125078T2 (en) | Semiconductor storage system | |
EP0163096A1 (en) | Apparatus for saving a calculator status | |
EP0195885B1 (en) | Method and device for the non-volatile memorizing of the counting state of an electronic counter circuit | |
DE2741886A1 (en) | DATA TRANSFER DEVICE | |
DE2225841C3 (en) | Method and arrangement for systematic error checking of a monolithic semiconductor memory | |
DE2715751B2 (en) | Memory arrangement with defective modules | |
DE2054830C3 (en) | Information processing system with means for accessing memory data fields of variable length | |
DE2210325A1 (en) | Data processing system | |
DE3128729A1 (en) | SEMICONDUCTOR STORAGE SYSTEM | |
DE2317576A1 (en) | DEVICE FOR FAILURE REORDERING OF MEMORY MODULES IN A DATA PROCESSING SYSTEM | |
DE3209679A1 (en) | SEMICONDUCTOR STORAGE DEVICE | |
DE2450468C2 (en) | Error correction arrangement for a memory | |
DE2554502C3 (en) | Method and arrangement for addressing a memory | |
DE3514079A1 (en) | FAILURE CONTROL CIRCUIT FOR A CONTROL SYSTEM | |
DE69927571T2 (en) | Data processor and method for processing data | |
EP2063432B1 (en) | Method for testing a working memory | |
DE4302553A1 (en) | High security binary counting method for chip card - offsetting final state of binary number w.r.t. sequence such that contents of counter never represents number smaller than previous value | |
EP0718800B1 (en) | Franking machine with a spare memory | |
DE4404131A1 (en) | Battery-free data buffering | |
DE2817757A1 (en) | DATA PROCESSING SYSTEM | |
DE60128596T2 (en) | INTERRUPT CONTROL FOR A MICROPROCESSOR | |
DE2823457C2 (en) | Circuit arrangement for error monitoring of a memory of a digital computer system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): CH DE FR GB IT LI |
|
AX | Request for extension of the european patent |
Free format text: SI |
|
RAX | Requested extension states of the european patent have changed |
Free format text: SI |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: FRANCOTYP-POSTALIA AKTIENGESELLSCHAFT & CO. |
|
RBV | Designated contracting states (corrected) |
Designated state(s): CH DE FR GB IT LI |
|
17P | Request for examination filed |
Effective date: 19961223 |
|
17Q | First examination report despatched |
Effective date: 19970730 |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): CH DE FR GB IT LI |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: NV Representative=s name: ROTTMANN, ZIMMERMANN + PARTNER AG Ref country code: CH Ref legal event code: EP |
|
REF | Corresponds to: |
Ref document number: 59408216 Country of ref document: DE Date of ref document: 19990610 |
|
ET | Fr: translation filed | ||
ITF | It: translation for a ep patent filed | ||
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 19990707 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
REG | Reference to a national code |
Ref country code: GB Ref legal event code: IF02 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20051013 Year of fee payment: 12 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20051110 Year of fee payment: 12 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 20051130 Year of fee payment: 12 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20051208 Year of fee payment: 12 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20061231 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20061231 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20061231 Year of fee payment: 13 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20070703 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20061220 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20070831 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20061220 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20070102 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20071220 |