EP0717784B1 - Aluminium-silicon alloy sheet for mechanical, aircraft and space applications - Google Patents

Aluminium-silicon alloy sheet for mechanical, aircraft and space applications Download PDF

Info

Publication number
EP0717784B1
EP0717784B1 EP95920993A EP95920993A EP0717784B1 EP 0717784 B1 EP0717784 B1 EP 0717784B1 EP 95920993 A EP95920993 A EP 95920993A EP 95920993 A EP95920993 A EP 95920993A EP 0717784 B1 EP0717784 B1 EP 0717784B1
Authority
EP
European Patent Office
Prior art keywords
sheet metal
metal according
alloys
manufacture
aircraft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Revoked
Application number
EP95920993A
Other languages
German (de)
French (fr)
Other versions
EP0717784A1 (en
Inventor
Pierre Sainfort
Denis Bechet
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Constellium Issoire SAS
Original Assignee
Pechiney Rhenalu SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=9464309&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0717784(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Pechiney Rhenalu SAS filed Critical Pechiney Rhenalu SAS
Publication of EP0717784A1 publication Critical patent/EP0717784A1/en
Application granted granted Critical
Publication of EP0717784B1 publication Critical patent/EP0717784B1/en
Anticipated expiration legal-status Critical
Revoked legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/02Alloys based on aluminium with silicon as the next major constituent
    • C22C21/04Modified aluminium-silicon alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • C22F1/043Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with silicon as the next major constituent

Definitions

  • the invention relates to the field of alloy sheets medium and high strength aluminum used in the mechanical, aeronautical and space engineering and in armament.
  • high-strength aluminum alloys have been used in aeronautical and space construction, essentially Al-Cu alloys of the 2000 series (according to the designation of the Aluminum Association in the USA), for example alloys 2014 , 2019 and 2024, and Al-Zn-Mg and Al-Zn-Mg-Cu alloys of the 7000 series, for example alloys 7020 and 7075.
  • alloys 2000 and 7000 have a much better temperature resistance than that of most alloys 2000 and 7000, and at least equivalent to that of alloys in these series specially studied for their temperature resistance, such as alloys 2019 and 2618.
  • Al-Si alloys are widely used for the production of molded parts. However, in this form, they have far lower mechanical strength, fatigue and toughness properties than the wrought and transformed alloys 2000 and 7000 used in structural parts. In rare cases, they can be used in laminated form, in particular for covering plated sheets intended for the manufacture of brazed heat exchangers. Alloys 4343, 4104, 4045 and 4047 are thus used, for example, the properties sought in this case being essentially a low melting temperature and good wettability.
  • Al-Si alloys can also be spun in the form of bars or profiles which, due to their good resistance to wear and temperature, are used in mechanical parts such as connecting rods, brake master cylinders, drive shafts , bearings and various components of motors and compressors.
  • One of the alloys used for this purpose is 4032.
  • French patent FR 2291284 describes the manufacture of AlSi alloy sheets containing 4 to 15% Si by continuous casting between two cooled cylinders. This casting mode is intended to increase the elongation at break, and therefore the formability. They are not high-strength sheets usable in structural applications, since the sheets are simply annealed and the elastic limits exemplified do not exceed not 220 MPa.
  • the subject of the invention is therefore sheets heat treated by dissolving, quenching and optionally tempering so as to obtain an elastic limit R 0.2 greater than 320 MPa, intended for mechanical, naval, aeronautical or space construction made of alloy of following composition (by weight): Yes 6.5 to 11% Mg 0.5 to 1.0% Cu ⁇ 0.8% Fe ⁇ 0.3% Mn ⁇ 0.5% and / or Cr ⁇ 0.5% Sr 0.008 to 0.025% Ti ⁇ 0.02% the total of the other elements being less than 0.2%, the rest being aluminum.
  • the silicon content is preferably between 6.5 and 8%, corresponding to that of the AS7G alloy.
  • Another object of the invention is the use of especially medium or thick sheets of this alloy for the undersides of aircraft wings, of particularly thin sheets for the coating of aircraft fuselages, of sheets for the manufacture of tanks cryogenic rockets, floors and skips of industrial vehicles and hulls or supersructures of boats.
  • Another object of the invention is the method of manufacturing sheets according to claim 9.
  • the sheets according to the invention have silicon contents generally corresponding to the fields of alloys AS7G and AS9G according to French standard NF A 57-702 or the designations A 357 and A 359 of the Aluminum Association.
  • Magnesium should not exceed 1% to avoid the formation of the insoluble intermetallic compound Mg 2 Si.
  • Copper must be limited to 0.8% to avoid the formation of insoluble phases Mg 2 Si and Q (AlMgSiCu). This content also makes it possible to limit the sensitivity to intercrystalline corrosion.
  • Iron is also limited to 0.3%, and preferably 0.08%, as it is in 7000 alloys for heavy plate, when good toughness and / or good elongation.
  • the presence of titanium is linked to the refining of the titanium plates, identical to that used for current medium and high strength alloys.
  • the sheets according to the invention can be obtained by vertical casting of plates, hot rolling up to 6 mm, optionally cold rolling in the case of thin sheets, dissolving between 545 and 555 ° C, quenching with cold water, maturation at room temperature and / or tempering between 6 and 24 hours at a temperature between 150 and 195 ° C.
  • Hot rolling can be preceded by homogenization between 530 and 550 ° C for a duration of less than 20 h, short enough to avoid a globalization of the fibrous eutectic and a marked coalescence of the manganese and / or chromium, when the alloy contains it.
  • a very fine, non-globular eutectic microstructure is obtained in the final state, which has a favorable effect on the toughness.
  • the alloy is weldable by conventional TIG or MIG processes, continuous or pulsed, depending on whether it is a thin or thick sheet, and its density is always lower than that of traditional 2000 and 7000 alloys.
  • Plates with a cross section of 380 x 120 mm of alloy of the following composition (by weight) were produced by vertical casting: Yes 6.77% Mg 0.59% Cu 0.24% Fe 0.06% Mn 0.31% Sr 0.016% Ti 0.01% the total of the other elements being less than 0.2% and the rest being aluminum.
  • the alloy was homogenized at 550 ° C for 8 hours, after a temperature rise of 4 hours, reheated for 2 hours at 500 ° C, then hot rolled up to 20 mm thick on a reversible rolling mill.
  • Cut sheets were placed in solution for 2 hours at 550 ° C, soaked in water and subjected to an income of 8 hours at 175 ° C, ie a state T651 according to the designations of the Aluminum Association.
  • the alloy has a density of 2,678 and a modulus of elasticity E of 74,100 MPa, or a specific module of 27,670 MPa, was measured on the sheet by the hysteresis loop method in tension. 2.770, 72,500 MPa and 26,175 MPa respectively for a sheet of the same thickness in 2024 alloy in the T351 state, an increase of 5.7% in the specific module. This increase is more than 9% higher compared to alloy 2219 for welded construction.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Laminated Bodies (AREA)
  • Continuous Casting (AREA)
  • Soft Magnetic Materials (AREA)
  • Coating With Molten Metal (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

PCT No. PCT/FR95/00693 Sec. 371 Date Jan. 22, 1996 Sec. 102(e) Date Jan. 22, 1996 PCT Filed May 29, 1995 PCT Pub. No. WO95/34691 PCT Pub. Date Dec. 21, 1995The invention relates to an aluminum alloy sheet heat treated by natural aging, quenching and possibly tempering so as to obtain a yield strength greater than 320 MPa, for use in mechanical, naval, aircraft, or spacecraft construction, with a composition (by weight) of: Si: 6.5 to 11% Mg: 0.5 to 1.0% Cu: <0.8% Fe: <0.

Description

DOMAINE DE L'INVENTIONFIELD OF THE INVENTION

L'invention concerne le domaine des tôles en alliages d'aluminium à moyenne et haute résistance utilisées dans la construction mécanique, aéronautique et spatiale et dans l'armement.The invention relates to the field of alloy sheets medium and high strength aluminum used in the mechanical, aeronautical and space engineering and in armament.

ART ANTERIEURPRIOR ART

Depuis de nombreuses années, on utilise dans la construction aéronautique et spatiale des alliages d'aluminium à haute résistance, essentiellement des alliages Al-Cu de la série 2000 (selon la désignation de l'Aluminum Association aux USA), par exemple les alliages 2014, 2019 et 2024, et des alliages Al-Zn-Mg et Al-Zn-Mg-Cu de la série 7000, par exemple les alliages 7020 et 7075.
Le choix d'un alliage et d'une gamme de transformation, en particulier de traitement thermique, résulte d'un compromis souvent délicat entre diverses propriétés d'emploi telles que les caractéristiques mécaniques statiques (résistance à la rupture, limite élastique, module d'élasticité, allongement), la résistance à la fatigue, importante pour des avions soumis à des cycles répétés de décollage-atterrissage, la tenacité, c'est-à-dire la résistance à la propagation de fissures, et la corrosion sous tension. Il faut en plus tenir compte de l'aptitude de l'alliage à être coulé, laminé et traité thermiquement dans de bonnes conditions, de sa densité et éventuellement de sa soudabilité.
Depuis plus de trente ans, des progrès continus ont été accomplis pour améliorer les propriétés des alliages 2000 et 7000 utilisés en tôles minces pour le fuselage des avions et en tôles moyennes et épaisses pour les voilures ou les réservoirs cryogéniques des lanceurs et missiles, dans le but, en particulier, d'alléger les structures sans compromettre les autres propriétés.
Un pas important dans l'allégement a été accompli avec le développement des alliages aluminium-lithium. Ainsi, un alliage 8090 à 2,6% de lithium conduit à un module spécifique (rapport du module d'élasticité à la densité) supérieur d'environ 20% à celui du 2024 et de 24% à celui du 7075. Les alliages à plus forte teneur en cuivre et à plus faible teneur en lithium, comme le 2095, ont été aussi developpés à cause de leur bon compromis entre la densité, le module d'élasticité et la soudabilité. Dans ce cas, le gain sur le module spécifique est d'environ 12% par rapport au 2219. Cependant, ces alliages restent encore peu utilisés, essentiellement en raison de leur coût de fabrication élevé.
For many years, high-strength aluminum alloys have been used in aeronautical and space construction, essentially Al-Cu alloys of the 2000 series (according to the designation of the Aluminum Association in the USA), for example alloys 2014 , 2019 and 2024, and Al-Zn-Mg and Al-Zn-Mg-Cu alloys of the 7000 series, for example alloys 7020 and 7075.
The choice of an alloy and a transformation range, in particular of heat treatment, results from an often delicate compromise between various properties of use such as static mechanical characteristics (resistance to rupture, elastic limit, modulus d (elasticity, elongation), resistance to fatigue, important for airplanes subjected to repeated cycles of takeoff-landing, toughness, that is to say resistance to the propagation of cracks, and corrosion under stress. In addition, the ability of the alloy to be cast, rolled and heat treated under good conditions, its density and possibly its weldability must be taken into account.
For more than thirty years, continuous progress has been made to improve the properties of the 2000 and 7000 alloys used in thin sheets for the fuselage of aircraft and in medium and thick sheets for the wings or cryogenic tanks of launchers and missiles, in the aim, in particular, to lighten the structures without compromising the other properties.
An important step in the reduction has been accomplished with the development of aluminum-lithium alloys. Thus, an alloy 8090 with 2.6% of lithium leads to a specific modulus (ratio of the modulus of elasticity to the density) higher by approximately 20% than that of 2024 and 24% than that of 7075. The alloys with higher copper content and lower lithium content, like 2095, have also been developed because of their good compromise between density, modulus of elasticity and solderability. In this case, the gain on the specific module is around 12% compared to 2219. However, these alloys are still little used, mainly because of their high manufacturing cost.

OBJET DE L'INVENTIONOBJECT OF THE INVENTION

La demanderesse, poursuivant ses recherches d'alliages pour alléger les structures des avions, s'est aperçu qu'une autre catégorie d'alliages utilisés habituellement sous forme moulée, les alliages Al-Si de la série 4000, permettait non seulement d'améliorer de manière sensible, entre 3 et 10%, le module spécifique par rapport aux alliages 2000 et 7000, mais présentait aussi un faisceau de propriétés en matière de tenacité, résistance à la fatigue et corrosion sous tension répondant aux exigences sévères de la construction aéronautique, sans poser de problème difficile à la coulée, au laminage et au traitement thermique. De plus, ces alliages présentent une soudabilité bien meilleure que la plupart des 2000 et 7000, et au moins équivalente aux alliages de ces séries spécialement dédiés au soudage, comme les alliages 2219 et 7020. Ils présentent enfin une résistance à la température bien meilleure que celle de la plupart des alliages 2000 et 7000, et au moins équivalente à celle d'alliages de ces séries spécialement étudiés pour leur tenue en température, tels que les alliages 2019 et 2618.
Les alliages Al-Si sont utilisés très largement pour la fabrication de pièces moulées. Ils présentent cependant, sous cette forme, des propriétés de résistance mécanique, de fatigue et de tenacité bien inférieures à celles des alliages 2000 et 7000 corroyés et transformés utilisés en pièces de structure. Dans de rares cas, ils peuvent être utilisés sous forme laminée, notamment pour la couverture de tôles plaquées destinées à la fabrication d'échangeurs thermiques brasés. On utilise ainsi, par exemple, les alliages 4343, 4104, 4045 et 4047, les propriétés recherchées dans ce cas étant essentiellement une température de fusion faible et une bonne mouillabilité.
Les alliages Al-Si peuvent également être filés sous forme de barres ou profilés qui, en raison de leur bonne résistance à l'usure et la température, sont utilisés dans des pièces mécaniques telles que bielles, maítres-cylindres de freins, arbres de transmission, paliers et divers composants de moteurs et de compresseurs. Un des alliages utilisé à cette fin est le 4032.
Le brevet français FR 2291284 décrit la fabrication de tôles en alliage AlSi contenant de 4 à 15% de Si par coulée continue entre deux cylindres refroidis. Ce mode de coulée est destiné à accroítre l'allongement à la rupture, et donc la formabilité.Il ne s'agit pas de tôles à haute résistance utilisables dans des applications structurales, puisque les tôles sont simplement recuites et les limites élastiques exemplifiées ne dépassent pas 220 MPa.
Mais jamais personne jusqu'à présent n'a eu l'idée d'élaborer, grâce à un choix judicieux de la composition et une gamme de traitement thermique appropriée, des tôles en alliages Al-Si à haute résistance mécanique utilisables pour des applications structurales, notamment en construction mécanique, navale ou aéronautique, par assemblages mécaniques ou soudés.
L'invention a ainsi pour objet des tôles traitées thermiquement par mise en solution, trempe et éventuellement revenu de manière à obtenir une limite élastique R0,2 supérieure à 320 MPa, destinées à la construction mécanique, navale, aéronautique ou spatiale en alliage de composition suivante (en poids): Si 6,5 à 11% Mg 0,5 à 1,0% Cu < 0,8% Fe < 0,3% Mn < 0,5% et/ou Cr < 0,5% Sr 0,008 à 0,025% Ti < 0,02% le total des autres éléments étant inférieur à 0,2%, le reste étant l'aluminium.
La teneur en silicium est, de préférence, comprise entre 6,5 et 8%, correspondant à celle de l'alliage AS7G.
Un autre objet de l'invention est l'utilisation de tôles notamment moyennes ou épaisses de cet alliage pour les intrados d'ailes d'avions, de tôles notamment minces pour le revêtement de fuselages d'avions, de tôles pour la fabrication de réservoirs cryogéniques de fusées, de planchers et bennes de véhicules industriels et de coques ou supersructures de bateaux.
The Applicant, continuing its research into alloys to lighten the structures of aircraft, has noticed that another category of alloys usually used in molded form, Al-Si alloys of the 4000 series, not only makes it possible to improve significantly, between 3 and 10%, the specific modulus compared to alloys 2000 and 7000, but also had a bundle of properties in terms of toughness, resistance to fatigue and corrosion under stress meeting the severe requirements of aeronautical construction, without causing difficult problems in casting, rolling and heat treatment. In addition, these alloys have a much better weldability than most of the 2000 and 7000, and at least equivalent to the alloys of these series specially dedicated to welding, such as alloys 2219 and 7020. Finally, they have a much better temperature resistance than that of most alloys 2000 and 7000, and at least equivalent to that of alloys in these series specially studied for their temperature resistance, such as alloys 2019 and 2618.
Al-Si alloys are widely used for the production of molded parts. However, in this form, they have far lower mechanical strength, fatigue and toughness properties than the wrought and transformed alloys 2000 and 7000 used in structural parts. In rare cases, they can be used in laminated form, in particular for covering plated sheets intended for the manufacture of brazed heat exchangers. Alloys 4343, 4104, 4045 and 4047 are thus used, for example, the properties sought in this case being essentially a low melting temperature and good wettability.
Al-Si alloys can also be spun in the form of bars or profiles which, due to their good resistance to wear and temperature, are used in mechanical parts such as connecting rods, brake master cylinders, drive shafts , bearings and various components of motors and compressors. One of the alloys used for this purpose is 4032.
French patent FR 2291284 describes the manufacture of AlSi alloy sheets containing 4 to 15% Si by continuous casting between two cooled cylinders. This casting mode is intended to increase the elongation at break, and therefore the formability. They are not high-strength sheets usable in structural applications, since the sheets are simply annealed and the elastic limits exemplified do not exceed not 220 MPa.
But no one until now has had the idea of developing, thanks to a judicious choice of composition and an appropriate range of heat treatment, sheets of Al-Si alloys with high mechanical resistance usable for structural applications , in particular in mechanical, naval or aeronautical construction, by mechanical or welded assemblies.
The subject of the invention is therefore sheets heat treated by dissolving, quenching and optionally tempering so as to obtain an elastic limit R 0.2 greater than 320 MPa, intended for mechanical, naval, aeronautical or space construction made of alloy of following composition (by weight): Yes 6.5 to 11% Mg 0.5 to 1.0% Cu <0.8% Fe <0.3% Mn <0.5% and / or Cr <0.5% Sr 0.008 to 0.025% Ti <0.02% the total of the other elements being less than 0.2%, the rest being aluminum.
The silicon content is preferably between 6.5 and 8%, corresponding to that of the AS7G alloy.
Another object of the invention is the use of especially medium or thick sheets of this alloy for the undersides of aircraft wings, of particularly thin sheets for the coating of aircraft fuselages, of sheets for the manufacture of tanks cryogenic rockets, floors and skips of industrial vehicles and hulls or supersructures of boats.

Un autre objet de l'invention est le procédé de fabrication de tôles selon la revendicaiton 9.Another object of the invention is the method of manufacturing sheets according to claim 9.

DESCRIPTION DE L'INVENTIONDESCRIPTION OF THE INVENTION

Les tôles selon l'invention ont des teneurs en silicium correspondant globalement aux domaines des alliages AS7G et AS9G selon la norme française NF A 57-702 ou les désignations A 357 et A 359 de l'Aluminum Association.
Le magnésium ne doit pas dépasser 1% pour éviter la formation de composé intermétallique Mg2Si insoluble. Le cuivre doit être limité à 0,8% pour éviter la formation de phases insolubles Mg2Si et Q (AlMgSiCu). Cette teneur permet également de limiter la sensibilité à la corrosion intercristalline.
Le fer est également limité à 0,3%, et de préférence à 0,08%, comme il l'est dans les alliages 7000 pour tôles fortes, lorsqu'on a besoin d'une bonne tenacité et/ou d'un bon allongement. La présence de titane est liée à l'affinage des plaques au titane, identique à celui qui est pratiqué pour les alliages actuels à moyenne et haute résistance.
The sheets according to the invention have silicon contents generally corresponding to the fields of alloys AS7G and AS9G according to French standard NF A 57-702 or the designations A 357 and A 359 of the Aluminum Association.
Magnesium should not exceed 1% to avoid the formation of the insoluble intermetallic compound Mg 2 Si. Copper must be limited to 0.8% to avoid the formation of insoluble phases Mg 2 Si and Q (AlMgSiCu). This content also makes it possible to limit the sensitivity to intercrystalline corrosion.
Iron is also limited to 0.3%, and preferably 0.08%, as it is in 7000 alloys for heavy plate, when good toughness and / or good elongation. The presence of titanium is linked to the refining of the titanium plates, identical to that used for current medium and high strength alloys.

Comme cela se fait habituellement pour les alliages de moulage de qualité, il est nécessaire de modifier l'alliage pour éviter la formation de silicium primaire et obtenir une structure eutectique fibrée finement dispersée. Pour cette opération, le strontium est préférable au sodium qui pourrait engendrer une fragilité à chaud à la transformation.
Les tôles selon l'invention peuvent être obtenues par coulée verticale de plaques, un laminage à chaud jusqu'à 6 mm, éventuellement un laminage à froid dans le cas de tôles minces, une mise en solution entre 545 et 555°C, une trempe à l'eau froide, une maturation à température ambiante et/ou un revenu entre 6 et 24 h à une température comprise entre 150 et 195°C.
On peut faire précéder le laminage à chaud d'une homogénéisation entre 530 et 550°C d'une durée inférieure à 20 h, suffisamment courte pour éviter une globulisation de l'eutectique fibreux et une coalescence marquée des dispersoïdes au manganèse et/ou au chrome, lorsque l'alliage en contient. En l'absence d'homogénéisation, on obtient à l'état final une microstructure eutectique très fine et non globulisée, qui a un effet favorable sur la tenacité.
On peut ainsi obtenir à l'état T6 une limite élastique supérieure à 320 et même 340 MPa, un allongement supérieur à 6 % dans le sens TL et 9% dans le sens L, et une tenacité, mesurée par le facteur critique d'intensité de contraintes K1c, supérieure à 20 MPaVm.
Dans ces conditions, l'alliage est soudable par des procédés conventionnels TIG ou MIG, continus ou pulsés, selon qu'il s'agit d'une tôle mince ou épaisse, et sa densité est toujours inférieure à celle des alliages 2000 et 7000 traditionnels ainsi qu'aux alliages Al-Li à teneur en lithium inférieure à 1%
As is usually the case with quality molding alloys, it is necessary to modify the alloy to avoid the formation of primary silicon and to obtain a finely dispersed fibered eutectic structure. For this operation, strontium is preferable to sodium which could cause hot fragility during processing.
The sheets according to the invention can be obtained by vertical casting of plates, hot rolling up to 6 mm, optionally cold rolling in the case of thin sheets, dissolving between 545 and 555 ° C, quenching with cold water, maturation at room temperature and / or tempering between 6 and 24 hours at a temperature between 150 and 195 ° C.
Hot rolling can be preceded by homogenization between 530 and 550 ° C for a duration of less than 20 h, short enough to avoid a globalization of the fibrous eutectic and a marked coalescence of the manganese and / or chromium, when the alloy contains it. In the absence of homogenization, a very fine, non-globular eutectic microstructure is obtained in the final state, which has a favorable effect on the toughness.
One can thus obtain in the state T6 an elastic limit higher than 320 and even 340 MPa, an elongation higher than 6% in the direction TL and 9% in the direction L, and a tenacity, measured by the critical factor of intensity of constraints K1c, greater than 20 MPaVm.
Under these conditions, the alloy is weldable by conventional TIG or MIG processes, continuous or pulsed, depending on whether it is a thin or thick sheet, and its density is always lower than that of traditional 2000 and 7000 alloys. as well as Al-Li alloys with a lithium content of less than 1%

EXEMPLESEXAMPLES Exemple 1: tôle homogénéiséeExample 1: homogenized sheet

On a élaboré par coulée verticale des plaques de section 380 x 120 mm d'alliage de composition suivante (en poids): Si 6,77% Mg 0,59% Cu 0,24% Fe 0,06% Mn 0,31% Sr 0,016% Ti 0,01% le total des autres éléments étant inférieur à 0,2% et le reste étant de l'aluminium.
L'alliage a été homogénéisé à 550°C pendant 8h, après une montée en température de 4h, réchauffé pendant 2 h à 500°C, puis laminé à chaud jusqu'à 20 mm d'épaisseur sur un laminoir réversible. Des tôles découpées ont été mises en solution 2 h à 550°C, trempées à l'eau et soumises à un revenu de 8h à 175°C, soit un état T651 selon les désignations de l'Aluminum Association.
L'alliage a une densité de 2,678 et on a mesuré sur la tôle par la méthode de la boucle d'hystérésis en traction, un module d'élasticité E de 74100 MPa, soit un module spécifique de 27670 MPa, à comparer avec les valeurs respectives de 2,770, 72500 MPa et 26175 MPa pour une tôle de même épaisseur en alliage 2024 à l'état T351, soit une augmentation de 5,7% du module spécifique. Cette augmentation est supérieure de plus de 9% par rapport à l'alliage 2219 pour construction soudée.
Les caractéristiques mécaniques, comparées à celles d'une tôle en 2024 T351, sont les suivantes: alliage sens R0,2 MPa Rm MPa A % sens K1c MPavm invention L 358 386 9,4 L-T 20 " TL 350 386 6,6 T-L 19 2024 L 350 485 18,0 L-T 35 " TL 345 489 17,1 T-L 32
Plates with a cross section of 380 x 120 mm of alloy of the following composition (by weight) were produced by vertical casting: Yes 6.77% Mg 0.59% Cu 0.24% Fe 0.06% Mn 0.31% Sr 0.016% Ti 0.01% the total of the other elements being less than 0.2% and the rest being aluminum.
The alloy was homogenized at 550 ° C for 8 hours, after a temperature rise of 4 hours, reheated for 2 hours at 500 ° C, then hot rolled up to 20 mm thick on a reversible rolling mill. Cut sheets were placed in solution for 2 hours at 550 ° C, soaked in water and subjected to an income of 8 hours at 175 ° C, ie a state T651 according to the designations of the Aluminum Association.
The alloy has a density of 2,678 and a modulus of elasticity E of 74,100 MPa, or a specific module of 27,670 MPa, was measured on the sheet by the hysteresis loop method in tension. 2.770, 72,500 MPa and 26,175 MPa respectively for a sheet of the same thickness in 2024 alloy in the T351 state, an increase of 5.7% in the specific module. This increase is more than 9% higher compared to alloy 2219 for welded construction.
The mechanical characteristics, compared to those of a sheet in 2024 T351, are as follows: alloy meaning R 0.2 MPa R m MPa AT % meaning K 1c MPavm invention L 358 386 9.4 LT 20 " TL 350 386 6.6 TL 19 2024 L 350 485 18.0 LT 35 " TL 345 489 17.1 TL 32

Exemple 2: tôle non homogénéiséeExample 2: non-homogenized sheet

Avec le même alliage que dans l'exemple 1, on réalise les mêmes opérations, sauf que la plaque ne subit pas d'homogénéisation avant le réchauffage précédant le laminage à chaud. On mesure sur la tôle de 20 mm d'épaisseur un module d'élasticité de 74170 MPa, soit une augmentation de 5,7% du module spécifique par rapport au 2024 T351.
Les caractéristiques mécaniques mesurées sur la tôle de 20 mm sont les suivantes: sens R0,2 MPa Rm MPa A % sens K1c MPavm L 359 384 10,0 L-T 22,1 TL 346 383 6,9 T-L 19,1
With the same alloy as in Example 1, the same operations are carried out, except that the plate does not undergo homogenization before the reheating preceding the hot rolling. A modulus of elasticity of 74,170 MPa is measured on the 20 mm thick sheet, an increase of 5.7% in the specific module compared to the 2024 T351.
The mechanical characteristics measured on the 20 mm sheet are as follows: meaning R 0.2 MPa R m MPa AT % meaning K 1c MPavm L 359 384 10.0 LT 22.1 TL 346 383 6.9 TL 19.1

On constate que l'absence d'homogénéisation a un effet favorable sur l'allongement et sur la tenacité. Un examen micrographique comparé montre que la taille moyenne des particules au silicium, qui était de l'ordre de 7 microns pour la tôle homogénéisée, devient inférieure à 4 microns pour la tôle non homogénéisée.We find that the absence of homogenization has an effect favorable on elongation and tenacity. An exam compared micrographic shows that the average size of silicon particles, which was around 7 microns for the homogenized sheet becomes less than 4 microns for the non-homogenized sheet.

Claims (11)

  1. High strength aluminum alloy sheet metal heat treated by solution heat treating, quenching and possibly ageing to obtain a yield strength R0.2 greater than 320 MPa, for use in mechanical construction, shipbuilding, and the aeronautic and space industries, with composition (by weight) Si 6.5 to 11% Mg 0.5 to 1.0% Cu < 0.8% Fe < 0.3% Mn < 0.5% and/or Cr: 0.5% Sr 0.008 to 0.025% Ti < 0.02% total other elements 0.2% the remainder aluminum.
  2. Sheet metal according to claim 1, characterized in that the Si content is between 6.5 and 8%.
  3. Sheet metal according to one of claims 1 and 2, characterized in that the iron content is less than 0.08%.
  4. Use of sheet metal according to one of claims 1 to 3 for the manufacture of aircraft lower wing skins.
  5. Use of sheet metal according to claims 1 to 3 for the skin of aircraft fuselages.
  6. Use of sheet metal according to one of claims 1 to 3 for the manufacture of rocket cryogenic tanks.
  7. Use of sheet metal according to one of claims 1 to 3, for the manufacture of industrial vehicle floors or bins.
  8. Use of sheet metal according to one of claims 1 to 3 for the manufacture of ship hulls and superstructures.
  9. Process for manufacturing sheet metal according to one of claims 1 to 3, comprising the following steps:
    cast a slab
    reheat to between 480 and 520°C
    hot and possibly cold rolling
    solution heat treat between 545 and 555°C
    quench in cold water
    and natural and/or artificial ageing
  10. Process according to claim 9, characterized in that it includes homogenization between 530 and 550°C for not more than 20 h, before reheating.
  11. Process according to one of claims 9 and 10, characterized in that it comprises 6h to 24h of ageing at between 150 and 195°C.
EP95920993A 1994-06-13 1995-05-29 Aluminium-silicon alloy sheet for mechanical, aircraft and space applications Revoked EP0717784B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR9407405A FR2721041B1 (en) 1994-06-13 1994-06-13 Aluminum-silicon alloy sheet intended for mechanical, aeronautical and space construction.
FR9407405 1994-06-13
PCT/FR1995/000693 WO1995034691A1 (en) 1994-06-13 1995-05-29 Aluminium-silicon alloy sheet for mechanical, aircraft and space applications

Publications (2)

Publication Number Publication Date
EP0717784A1 EP0717784A1 (en) 1996-06-26
EP0717784B1 true EP0717784B1 (en) 1998-09-16

Family

ID=9464309

Family Applications (1)

Application Number Title Priority Date Filing Date
EP95920993A Revoked EP0717784B1 (en) 1994-06-13 1995-05-29 Aluminium-silicon alloy sheet for mechanical, aircraft and space applications

Country Status (8)

Country Link
US (1) US5837070A (en)
EP (1) EP0717784B1 (en)
JP (1) JPH09501988A (en)
AT (1) ATE171222T1 (en)
CA (1) CA2168946A1 (en)
DE (1) DE69504802T2 (en)
FR (1) FR2721041B1 (en)
WO (1) WO1995034691A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006032699A1 (en) * 2006-07-14 2008-01-17 Bdw Technologies Gmbh & Co. Kg Aluminum alloy and its use for a cast component, in particular a motor vehicle
DE102009024190A1 (en) * 2008-06-10 2010-02-18 GM Global Technology Operations, Inc., Detroit Sequential outsourcing of aluminum-silicon casting alloys
RU2659514C1 (en) * 2017-08-17 2018-07-02 Общество с ограниченной ответственностью "Объединенная Компания РУСАЛ Инженерно-технологический центр" Casting aluminum-silicon alloy

Families Citing this family (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL1002334C2 (en) * 1996-02-14 1997-08-15 Hoogovens Aluminium Nv Wear-resistant aluminum alloy with good corrosion resistance.
US6168067B1 (en) * 1998-06-23 2001-01-02 Mcdonnell Douglas Corporation High strength friction stir welding
US6146477A (en) 1999-08-17 2000-11-14 Johnson Brass & Machine Foundry, Inc. Metal alloy product and method for producing same
JP4356851B2 (en) * 1999-09-03 2009-11-04 本田技研工業株式会社 Aluminum die-casting material for ships
JP2002144018A (en) * 2000-11-02 2002-05-21 Yorozu Corp Method for producing light weight and high strength member
CN1237195C (en) * 2001-07-09 2006-01-18 克里斯铝轧制品有限公司 Weldable high strength Al-Mg-Si alloy product
US20030143102A1 (en) * 2001-07-25 2003-07-31 Showa Denko K.K. Aluminum alloy excellent in cutting ability, aluminum alloy materials and manufacturing method thereof
CA2454509A1 (en) * 2001-07-25 2003-02-06 Showa Denko K.K. Aluminum alloy excellent in machinability, and aluminum alloy material and method for production thereof
FR2832913B1 (en) * 2001-12-03 2004-01-16 Pechiney Rhenalu ALUMINUM ALLOY FOR ENAMELLED AND / OR PTFE COATED UTENSILS
US20100282061A1 (en) * 2001-12-31 2010-11-11 Asher Peretz Anti-terror lightweight armor plates and a method of producing same
US6773666B2 (en) * 2002-02-28 2004-08-10 Alcoa Inc. Al-Si-Mg-Mn casting alloy and method
US20040166245A1 (en) * 2002-07-29 2004-08-26 Unionsteel Manufacturing Co., Ltd. Production method for aluminum alloy coated steel sheet
DE10331990A1 (en) * 2003-07-14 2005-02-24 Eads Deutschland Gmbh Welded aluminum structural component with metallic induced cracking
FR2879115B1 (en) * 2004-12-15 2007-03-16 Pechiney Softal Soc Par Action PULSE MIG PULSE TYPE WELDING METHOD FOR ALUMINUM ALLOYS
US8083871B2 (en) 2005-10-28 2011-12-27 Automotive Casting Technology, Inc. High crashworthiness Al-Si-Mg alloy and methods for producing automotive casting
JP5300118B2 (en) 2007-07-06 2013-09-25 日産自動車株式会社 Aluminum alloy casting manufacturing method
JP4719731B2 (en) * 2007-11-22 2011-07-06 住友電気工業株式会社 Aluminum alloy rolled material with excellent machinability and method for producing the same
CN102312137B (en) * 2011-09-09 2016-06-22 深圳市中兴康讯电子有限公司 Aluminum-silicon-magnesium Cast aluminium alloy gold and casting technique
US9284636B1 (en) * 2011-12-21 2016-03-15 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Impact toughness and heat treatment for cast aluminum
CN103008345B (en) * 2012-12-03 2015-06-10 三门峡圣辉新型材料有限公司 Continuous roll-casting production process of aluminum alloy
WO2015151369A1 (en) * 2014-03-31 2015-10-08 アイシン軽金属株式会社 Aluminum alloy and die casting method
US10113218B2 (en) * 2014-03-31 2018-10-30 Hitachi Metals, Ltd. Cast Al—Si—Mg-based aluminum alloy having excellent specific rigidity, strength and ductility, and cast member and automobile road wheel made thereof
CN107109543B (en) * 2014-10-31 2019-07-16 株式会社Uacj Aluminium alloy base plate for magnetic disk
WO2016145644A1 (en) * 2015-03-19 2016-09-22 GM Global Technology Operations LLC Alloy composition
MX2018001765A (en) * 2015-08-13 2018-11-22 Alcoa Usa Corp Improved 3xx aluminum casting alloys, and methods for making the same.
FR3044326B1 (en) * 2015-12-01 2017-12-01 Constellium Neuf-Brisach HIGH-RIGIDITY THIN SHEET FOR AUTOMOTIVE BODYWORK
CN105695816A (en) * 2016-03-16 2016-06-22 杜生龙 Zinc-magnesium-aluminum alloy used for manufacturing supporting frame and preparation method thereof
WO2018161311A1 (en) 2017-03-09 2018-09-13 GM Global Technology Operations LLC Aluminum alloys
US11149333B2 (en) 2018-08-14 2021-10-19 Johnson Brass & Machine Foundry, Inc. Clean aluminum alloys
US11597987B2 (en) 2018-08-14 2023-03-07 Johnson Brass & Machine Foundry, Inc. Clean aluminum alloys and methods for forming such alloys
DE102019120862A1 (en) 2019-08-01 2021-02-04 Benteler Automobiltechnik Gmbh Process for manufacturing a plate heat exchanger and plate heat exchanger
CN110964957A (en) * 2019-12-26 2020-04-07 北京工业大学 Cryogenic rolling and aging treatment process for high-strength Al-Zn-Mg alloy
FR3114448A1 (en) 2020-09-23 2022-03-25 Constellium Neuf-Brisach BATTERY BOTTOM FOR ELECTRIC VEHICLES
CN114672674B (en) * 2022-02-28 2024-03-15 中国第一汽车股份有限公司 Casting-rolling high-strength high-toughness aluminum-silicon alloy and preparation method thereof
CN115305391B (en) * 2022-08-10 2023-06-06 中南大学 Low-energy-consumption aluminum-silicon-magnesium alloy and preparation method thereof

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE241389C (en) *
US3400057A (en) * 1964-06-03 1968-09-03 Reynolds Metals Co Alloy and finishing system
DE1255928B (en) * 1966-01-13 1967-12-07 Metallgesellschaft Ag Process to achieve a long-lasting refining effect in aluminum-silicon alloys
US4897124A (en) * 1987-07-02 1990-01-30 Sky Aluminium Co., Ltd. Aluminum-alloy rolled sheet for forming and production method therefor
JPH02159338A (en) * 1988-12-12 1990-06-19 Kobe Steel Ltd Al-si alloy and its manufacture
JP3183545B2 (en) * 1991-10-09 2001-07-09 株式会社神戸製鋼所 High strength aluminum brazing material for brazing sheet
US5571347A (en) * 1994-04-07 1996-11-05 Northwest Aluminum Company High strength MG-SI type aluminum alloy

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006032699A1 (en) * 2006-07-14 2008-01-17 Bdw Technologies Gmbh & Co. Kg Aluminum alloy and its use for a cast component, in particular a motor vehicle
DE102006032699B4 (en) * 2006-07-14 2010-09-09 Bdw Technologies Gmbh & Co. Kg Aluminum alloy and its use for a cast component, in particular a motor vehicle
DE102009024190A1 (en) * 2008-06-10 2010-02-18 GM Global Technology Operations, Inc., Detroit Sequential outsourcing of aluminum-silicon casting alloys
US8728258B2 (en) 2008-06-10 2014-05-20 GM Global Technology Operations LLC Sequential aging of aluminum silicon casting alloys
RU2659514C1 (en) * 2017-08-17 2018-07-02 Общество с ограниченной ответственностью "Объединенная Компания РУСАЛ Инженерно-технологический центр" Casting aluminum-silicon alloy

Also Published As

Publication number Publication date
DE69504802D1 (en) 1998-10-22
CA2168946A1 (en) 1995-12-21
US5837070A (en) 1998-11-17
FR2721041A1 (en) 1995-12-15
JPH09501988A (en) 1997-02-25
FR2721041B1 (en) 1997-10-10
DE69504802T2 (en) 1999-03-25
WO1995034691A1 (en) 1995-12-21
EP0717784A1 (en) 1996-06-26
ATE171222T1 (en) 1998-10-15

Similar Documents

Publication Publication Date Title
EP0717784B1 (en) Aluminium-silicon alloy sheet for mechanical, aircraft and space applications
JP4115936B2 (en) Weldable high strength Al-Mg-Si alloy
JP7216200B2 (en) Method for producing 2xxx series aluminum alloy plate product with improved fatigue fracture resistance
JP4101749B2 (en) Weldable high strength Al-Mg-Si alloy
EP1114877B1 (en) Al-Cu-Mg alloy aircraft structural element
KR0153288B1 (en) Ultrahigh strength al-cu-li-mg alloy
FR2843754A1 (en) Balanced aluminum-copper-magnesium-silicon alloy product for fuselage sheet or lower-wing sheet of aircraft, contains copper, silicon, magnesium, manganese, zirconium, chromium, iron, and aluminum and incidental elements and impurities
FR2855834A1 (en) High strength aluminum alloy products with high fatigue resistance for use as the sheets and panels of aircraft structural components for the fuselage and wings
FR2902442A1 (en) ALLOY OF AA6XXX SERIES WITH HIGH DAMAGE TO AEROSPACE INDUSTRY
FR2843755A1 (en) High damage tolerant aluminum-copper 2xxx-series alloy rolled product for e.g. aircraft fuselage skin, contains magnesium, copper, zirconium, manganese, chromium, iron, silicon, and aluminum and incidental elements and impurities
FR2726007A1 (en) PROCESS FOR MANUFACTURING ALSIMGCU ALLOY PRODUCTS HAVING IMPROVED RESISTANCE TO INTERCRYSTAL CORROSION
FR2907796A1 (en) ALUMINUM ALLOY PRODUCTS OF THE AA7000 SERIES AND METHOD FOR MANUFACTURING THE SAME
JPH11507102A (en) Aluminum or magnesium alloy plate or extruded product
WO2015011346A1 (en) Extrados structural element made from an aluminium copper lithium alloy
EP3526358A1 (en) Thin sheets made of an aluminium-magnesium-scandium alloy for aerospace applications
FR2737225A1 (en) AL-CU-MG ALLOY WITH HIGH FLOW RESISTANCE
JP7369858B2 (en) Clad 2XXX series aerospace products
EP0375572B1 (en) Aluminium alloy for cupping, containing silicon, magnesium and copper
RU2783714C1 (en) Cladded product based on 2xxx series alloy for aerospace equipment
RU2785724C1 (en) CLAD PRODUCT BASED ON ALLOY OF 2xxx SERIES FOR AEROSPACE ENGINEERING
CN116065066B (en) Light high-strength corrosion-resistant aluminum alloy material and preparation method thereof
US11879167B2 (en) Clad 2XXX-series aerospace product
KR20220143933A (en) Clad 2XXX-Series Aerospace Products
FR2857377A1 (en) Aluminium alloy for rolled products with a high capacity of absorption of kinetic energy by plastic deformation, notably for motor vehicle components

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19960226

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT CH DE GB IT LI

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: PECHINEY RHENALU

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

17Q First examination report despatched

Effective date: 19971125

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT CH DE GB IT LI

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19980916

REF Corresponds to:

Ref document number: 171222

Country of ref document: AT

Date of ref document: 19981015

Kind code of ref document: T

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 69504802

Country of ref document: DE

Date of ref document: 19981022

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: WILLIAM BLANC & CIE CONSEILS EN PROPRIETE INDUSTRI

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19981214

PLBQ Unpublished change to opponent data

Free format text: ORIGINAL CODE: EPIDOS OPPO

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PLBF Reply of patent proprietor to notice(s) of opposition

Free format text: ORIGINAL CODE: EPIDOS OBSO

26 Opposition filed

Opponent name: HOOGOVENS ALUMINIUM WALZPRODUKTE GMBH

Effective date: 19990611

PLBF Reply of patent proprietor to notice(s) of opposition

Free format text: ORIGINAL CODE: EPIDOS OBSO

PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

R26 Opposition filed (corrected)

Opponent name: CORUS ALUMINIUM WALZPRODUKTE GMBH

Effective date: 19990611

RDAH Patent revoked

Free format text: ORIGINAL CODE: EPIDOS REVO

APAC Appeal dossier modified

Free format text: ORIGINAL CODE: EPIDOS NOAPO

APAC Appeal dossier modified

Free format text: ORIGINAL CODE: EPIDOS NOAPO

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20040421

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20040429

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20040503

Year of fee payment: 10

APAA Appeal reference recorded

Free format text: ORIGINAL CODE: EPIDOS REFN

APBU Appeal procedure closed

Free format text: ORIGINAL CODE: EPIDOSNNOA9O

APBU Appeal procedure closed

Free format text: ORIGINAL CODE: EPIDOSNNOA9O

RDAG Patent revoked

Free format text: ORIGINAL CODE: 0009271

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT REVOKED

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

27W Patent revoked

Effective date: 20050203

GBPR Gb: patent revoked under art. 102 of the ep convention designating the uk as contracting state

Free format text: 20050203

APAH Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOSCREFNO

PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO

R26 Opposition filed (corrected)

Opponent name: CORUS ALUMINIUM WALZPRODUKTE GMBH

Effective date: 19990611

PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO