EP0713113A1 - Optical transmitting and receiving device - Google Patents

Optical transmitting and receiving device Download PDF

Info

Publication number
EP0713113A1
EP0713113A1 EP95116409A EP95116409A EP0713113A1 EP 0713113 A1 EP0713113 A1 EP 0713113A1 EP 95116409 A EP95116409 A EP 95116409A EP 95116409 A EP95116409 A EP 95116409A EP 0713113 A1 EP0713113 A1 EP 0713113A1
Authority
EP
European Patent Office
Prior art keywords
carrier
transmission
fiber
light
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP95116409A
Other languages
German (de)
French (fr)
Inventor
Roland Dr. Dipl.-Phys. Mueller-Fiedler
Klaus-Michael Dr. Mayer
Wolf-Henning Dr. Rech
Heiner Dipl.-Ing. Hauer
Albrecht Dr. Dr. Ing. Kuke
Thomas Dipl.-Ing. Schwander
Bernhard Dr. Dr. Ing. Schwaderer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bosch Telecom GmbH
Original Assignee
ANT Nachrichtentechnik GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ANT Nachrichtentechnik GmbH filed Critical ANT Nachrichtentechnik GmbH
Publication of EP0713113A1 publication Critical patent/EP0713113A1/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4204Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms
    • G02B6/4214Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms the intermediate optical element having redirecting reflective means, e.g. mirrors, prisms for deflecting the radiation from horizontal to down- or upward direction toward a device
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4246Bidirectionally operating package structures
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/43Arrangements comprising a plurality of opto-electronic elements and associated optical interconnections
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/4824Connecting between the body and an opposite side of the item with respect to the body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0225Out-coupling of light
    • H01S5/02251Out-coupling of light using optical fibres
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0225Out-coupling of light
    • H01S5/02255Out-coupling of light using beam deflecting elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/023Mount members, e.g. sub-mount members
    • H01S5/02325Mechanically integrated components on mount members or optical micro-benches
    • H01S5/02326Arrangements for relative positioning of laser diodes and optical components, e.g. grooves in the mount to fix optical fibres or lenses
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/068Stabilisation of laser output parameters
    • H01S5/0683Stabilisation of laser output parameters by monitoring the optical output parameters

Definitions

  • the invention relates to an optical transmitting and receiving device according to the preamble of patent claim 1.
  • a transmission fiber In an optical transmission and reception device, a transmission fiber must be coupled to a transmission element, usually a laser diode, and to a photodiode as the reception element.
  • the transmit and receive signals are simultaneously transmitted in the opposite direction in the transmission fiber.
  • the transmit and receive signals are separated at the same wavelength using a beam splitter and at different wavelengths using a wavelength-selective splitter.
  • the fiber In order to obtain the lowest possible coupling losses, the fiber must be optimally coupled to both the laser diode and the receiving diode.
  • a beam transformation To couple a laser to a single-mode fiber, a beam transformation must be carried out by both because of the different beam characteristics. An image with one or two lenses is usually used for this.
  • the required magnification ratio M is approximately three to five, depending on the ratio of the mode field diameters of the laser and the fiber. Tolerances in the position of the laser are compensated for by an active adjustment of the fiber.
  • the adjustment range required for this is larger in the lateral direction, ie transverse to the beam direction, by the factor M than the lateral tolerance range of the laser and in the axial direction by the factor M2.
  • the adjustment of the fiber to the laser also influences the adjustment of the fiber to the photodiode, so that, in particular, a small-area photodiode is used for higher frequencies is suitable, must also be actively adjusted to the fiber.
  • An adjustment in the plane lateral to the optical axis is achieved in that the optical waveguide and the optical transmitting or receiving element are fixed on different carriers, the carrier surfaces of which are displaceable on one another and that the light beam is reflected by two reflections each on a mirror plane on a carrier Optical fiber arrives at the optically active element or vice versa.
  • a lateral adjustment is carried out by moving the carrier.
  • the carrier which carries the transmitting or receiving element can consist of a substrate and a part applied thereon, which has a continuous opening through which the light beam passes.
  • the arrangement can be used in all transmission systems with optical fibers, in duplexers with light coupling in or out. In the case of coupling to a transmission element, a reception element can be provided on the carrier with the fiber.
  • an optical transmission and reception device in which only an active and automatable adjustment process is required, and in which the assembly of the optical components is considerably simplified by precise and inexpensive mounting structures.
  • FIG. 1 A first exemplary embodiment of the solution according to the invention is shown in FIG. 1.
  • a first carrier T1 which consists of monocrystalline silicon
  • anisotropic etching produces a depression V1 which has a flat bottom B1, on which a laser diode LD is mounted.
  • the laser diode is attached to the base lines of at least two side surfaces that are at right angles to each other.
  • One of these side surfaces S1 lies in front of the end surface of the laser with the light exit surface LA.
  • the side surface S1 is mirrored, so that the light bundle L1 emerging from the laser reflects obliquely upwards becomes.
  • a second carrier T2 is attached, which is transparent to the wavelength ⁇ 1 of the laser light.
  • this second carrier can also consist of silicon.
  • a lens Li is attached to the underside of the carrier T2 in the area in which the light bundle L1 strikes.
  • This lens can advantageously be a planar Fresnel lens or a holographic lens.
  • other types of lenses are also possible, for example a spherical lens which is seated in a micromechanically shaped depression, or a lens produced by dry etching.
  • a recess V2 is provided in the underside of the carrier T2, so that there remains space for bond wires Bd and conductor tracks Lb for contacting the laser diode LD and for further optical or optoelectronic components which are mounted on the top of the carrier T1.
  • a monitor diode MD is attached to control the laser power.
  • the lens Li converts the initially divergent light bundle L1 into a convergent bundle.
  • a further carrier T3 is attached there, which, like the carrier T1, likewise consists of single-crystal silicon.
  • Two wells V31 and V32 are anisotropically etched in this carrier T3.
  • the depression V31 is a V-groove for receiving the transmission fiber Fa.
  • the width of this V-groove is expediently so large that the bottom surface line of the fiber comes to lie just in the plane of the underside of T3.
  • the end face S3 of the V-groove is coated with a wavelength-selective filter Fi1. This filter is designed so that the transmission wavelength ⁇ 1 reflects and the reception wavelength ⁇ 2 is transmitted.
  • the transmitted light bundle L1 is reflected on the end face S31 inclined at the angle ⁇ again in the horizontal direction and coupled into the transmission fiber Fa.
  • the angle ⁇ 22 is smaller than ⁇ g , so that the light bundle L2 can emerge on the surface of the silicon carrier T3.
  • the receiving diode PD is mounted at the exit point of the light bundle L2. The position for the photodiode results from the above-mentioned angles, the distance between the two depressions V31 and V32 from one another and with little dependence on the thickness of the carrier T3.
  • the position of the light exit surface of L2 does not depend on the axial position of the fiber Fa in the V-groove V31.
  • the position of the light exit surface can therefore be identified by marks or stops relative to the micromechanically generated recesses V31 and V32. These marks or stops can be aligned very precisely with the depressions V31 and V32 using photolithographic technology. Lateral displacement of the carrier T3 relative to the carrier T2 enables a lateral adjustment of the fiber Fa relative to the pixel of the transmitted light bundle L1. A possibly necessary axial adjustment of the fiber by shifting the fiber in the V-groove V31 is possible without changing the position of the light exit surface of the received light beam L2.
  • Another advantage of the solution according to the invention is that a very high near crosstalk attenuation can be achieved.
  • a high near crosstalk attenuation is necessary so that the transmitted signal from the laser does not hit the receiving diode located near the transmitter due to insufficient directional separation and disturbs the reception of weak useful signals.
  • Filter layers generally have a limited ability to separate different wavelengths. Therefore, a small proportion of the transmitted light bundle L1 will also penetrate the filter layer S31.
  • the beam path of this stray light is shown in dashed lines as S1 '.
  • the filter Fi1 is designed such that a small part of the transmitted light still penetrates the filter while the largest part is reflected.
  • This light beam L1 'penetrating the filter is used according to the invention as a control signal.
  • the monitor diode MD ' is then not mounted on the carrier T1 but in a recess V33 on the carrier T2. This is shown in dashed lines in FIG. 1a.
  • the carrier T3 is expediently inserted in a metal flange Fl3, the edge surface of which is on the side wall Sw of a housing designed as a flange surface Fl1 G rests in which the supports T1 and T2 are mounted.
  • the flange surfaces Fl3 and Fl2 are fixed in their position relative to one another, for example by laser welding spots LS.
  • the carrier T2 can serve as a translucent, hermetically sealed cover of the housing G.
  • An additional hermetically sealed window Fe can also be used between the supports T2 and T3. (See Fig. 2).
  • the carrier T3 is not aligned with its underside but with its end face to the carrier T2.
  • the second exemplary embodiment according to the invention is shown in FIG. 3.
  • the carriers T1 and T2 are constructed as in the first exemplary embodiment.
  • the fiber Fa is again guided in a V-groove V31 in a carrier T3 and is also axially adjustable in this V-groove.
  • the end face S31 is also covered with a wavelength select filter layer Fi2.
  • the filter layer Fi2 is transparent for the transmission wavelength ⁇ 1 and reflective for the reception wavelength ⁇ 2.
  • FIG. 4 A third embodiment of the solution according to the invention is shown in FIG. 4.
  • the carrier T3 is constructed similarly to the first exemplary embodiment, however mirrored vertically and horizontally compared to the first embodiment.
  • the filter layer Fi2 must be transparent for the transmission wavelength and reflective for the reception wavelength.
  • the photodiode PD for the received signal is mounted in the region above the end face of the V-groove V31.
  • the advantage here is that the path between the end face of the fiber and the photodiode is very short, which results in a small beam expansion and therefore allows a very small-area photodiode that is suitable for high frequencies.
  • the direction angle ⁇ 12 of the beam in the carrier T2 is 5.5 ° for the carrier material silicon and the direction angle ⁇ 22 of the beam in the carrier T3 is 6.3 °.
  • the difference in angle of 0.8 ° results in a coupling loss of approx. 0.1 dB and is tolerable in most applications.
  • the angle ⁇ 12 can be corrected by the position of the lens center of the lens Li relative to the surface S1.
  • the longer light path in the carrier T3 for the transmitted light bundle compared to the first exemplary embodiment has to be compensated for by a corresponding thickness of the carrier T2.
  • a very important aspect regarding the costs of using laser diodes in transmitter modules or transmitter and receiver modules is that the laser diodes can be checked as early as possible during the manufacturing process. While electrical tests can be carried out before separation, optical tests can often only be carried out after installation on individual subsinks or even on the finished module.
  • the laser diodes can be tested for their optical functions at a very early stage and with great benefits.
  • the laser diodes are mounted in the depressions V1 of a carrier substrate T1 produced in large-scale use before this carrier substrate is separated into individual carriers. To this In this way, the optical properties for a large number of laser diodes can be tested together.
  • the carrier T2 with the lens Li is also produced in large-scale use for many individual modules and all lenses are assembled together with the lasers in a single adjustment and assembly process. Passive adjustment using marks or adjustment-free assembly using micromechanically structured stops is possible here.
  • the depressions V2 in the carrier T2 are designed so that the optoelectronic and electronic components such as the laser diode LD, the monitor diode MD or electronic modules (not shown here) for controlling the laser are hermetically sealed. After the common connection of the carrier substrates T1 and T2, these are separated by sawing or breaking at micromechanically generated predetermined breaking lines. The position of the sawing or breaking lines is such that the position of the depressions V1 and V2 and the lenses Li are not touched.
  • the monitor diode MD can also be mounted on the underside or top of the supports T2 or T3, with corresponding recesses being provided in the adjacent support.
  • a further lens Lim can be provided on the carrier T2 for coupling the monitor diode.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Couplings Of Light Guides (AREA)

Abstract

The transmission and reception device has a transmission element (LD) supported by a first carrier (T1), a reception element (PD) and a transmission fibre (Fs) supported by a third carrier (T3) and an intermediate carrier (T2) between the first and third carriers. The surfaces of the carriers are provided with recesses and V-grooves via anisotropic etching, with at least one mirror surface provided for each of the outer carriers. The third carrier is transparent to the light wavelength provided by the transmission element, with a monitoring diode (MD) provided at the surface of the first carrier located in a recess (V2) in the surface of the second carrier.

Description

Die Erfindung betrifft eine optische Sende- und Empfangseinrichtung nach dem Oberbegriff des Patentanspruches 1.The invention relates to an optical transmitting and receiving device according to the preamble of patent claim 1.

Bei einer optischen Sende- und Empfangseinrichtung muß eine Übertragungsfaser an ein Sendeelement, üblicherweise eine Laserdiode, und an eine Photodiode als Empfangselement angekoppelt werden. In der Übertragungsfaser werden gleichzeitig die Sende- und Empfangssignale in entgegengesetzter Richtung übertragen. Die Sende- und Empfangssignale werden bei gleicher Wellenlänge über einen Strahlteiler und bei unterschiedlichen Wellenlängen über einen wellenlängenselektiven Verzweiger getrennt. Um möglichst geringe Koppelverluste zu erhalten, muß die Faser sowohl an die Laserdiode als auch an die Empfangsdiode optimal angekoppelt werden. Zur Ankopplung eines Lasers an eine Einmodenfaser muß wegen der unterschiedlichen Strahlcharakteristiken von beiden eine Strahltransformation durchgeführt werden. Hierzu wird üblicherweise eine Abbildung mit einer oder zwei Linsen verwendet. Das erforderliche Vergrößerungsverhältnis M liegt entsprechend dem Verhältnis der Modenfelddurchmesser von Laser und Faser bei etwa drei bis fünf. Toleranzen in der Position des Lasers werden durch eine aktive Justage der Faser kompensiert. Der hierzu erforderliche Justagebereich ist in lateraler Richtung, d. h. quer zur Strahlrichtung um den Faktor M größer als der laterale Toleranzbereich des Lasers und in axialer Richtung um den Faktor M². Die Justage der Faser zum Laser beinflußt auch die Justage der Faser zur Photodiode, so daß insbesondere eine kleinflächige Photodiode, die für höhere Frequenzen geeignet ist, ebenfalls aktiv zur Faser justiert werden muß.In an optical transmission and reception device, a transmission fiber must be coupled to a transmission element, usually a laser diode, and to a photodiode as the reception element. The transmit and receive signals are simultaneously transmitted in the opposite direction in the transmission fiber. The transmit and receive signals are separated at the same wavelength using a beam splitter and at different wavelengths using a wavelength-selective splitter. In order to obtain the lowest possible coupling losses, the fiber must be optimally coupled to both the laser diode and the receiving diode. To couple a laser to a single-mode fiber, a beam transformation must be carried out by both because of the different beam characteristics. An image with one or two lenses is usually used for this. The required magnification ratio M is approximately three to five, depending on the ratio of the mode field diameters of the laser and the fiber. Tolerances in the position of the laser are compensated for by an active adjustment of the fiber. The adjustment range required for this is larger in the lateral direction, ie transverse to the beam direction, by the factor M than the lateral tolerance range of the laser and in the axial direction by the factor M². The adjustment of the fiber to the laser also influences the adjustment of the fiber to the photodiode, so that, in particular, a small-area photodiode is used for higher frequencies is suitable, must also be actively adjusted to the fiber.

Aus der DE 39 14 835 C1 ist eine Anordnung zur Ankopplung eines Lichtwellenleiters an ein optisches Sende- oder Empfangselement bekannt.From DE 39 14 835 C1 an arrangement for coupling an optical waveguide to an optical transmitting or receiving element is known.

Eine Justierung in der zur optischen Achse lateralen Ebene wird dadurch erreicht, daß Lichtwellenleiter und optisches Sende- oder Empfangselement auf verschiedenen Trägern fixiert sind, die mit ihren Trägeroberflächen verschiebbar aufeinander liegen und daß das Lichtbündel durch zweimalige Spiegelung an je einer auf einem Träger befindlichen Spiegelebene vom Lichtwellenleiter zum optisch aktiven Element oder umgekehrt gelangt. Durch Verschieben der Träger wird eine laterale Justierung durchgeführt. Der Träger, der das Sende- oder Empfangselement trägt, kann aus einem Substrat und einem darauf aufgebrachten Teil bestehen, das eine durchgehende Öffnung aufweist, durch die der Lichtstrahl tritt. Eine Anwendung der Anordnung in allen Übertragungssystemen mit Lichtwellenleitern, in Duplexern mit Lichtein- oder -auskopplung ist möglich. Für den Fall der Ankopplung an ein Sendeelement kann auf dem Träger mit der Faser ein Empfangselement vorgesehen sein.An adjustment in the plane lateral to the optical axis is achieved in that the optical waveguide and the optical transmitting or receiving element are fixed on different carriers, the carrier surfaces of which are displaceable on one another and that the light beam is reflected by two reflections each on a mirror plane on a carrier Optical fiber arrives at the optically active element or vice versa. A lateral adjustment is carried out by moving the carrier. The carrier which carries the transmitting or receiving element can consist of a substrate and a part applied thereon, which has a continuous opening through which the light beam passes. The arrangement can be used in all transmission systems with optical fibers, in duplexers with light coupling in or out. In the case of coupling to a transmission element, a reception element can be provided on the carrier with the fiber.

Ausgehend von diesem Stand der Technik ist es Aufgabe der Erfindung, eine optische Sende- und Empfangseinrichtung anzugeben, bei der der Justageaufwand verringert und die Montage vereinfacht ist.Starting from this prior art, it is an object of the invention to provide an optical transmitting and receiving device in which the adjustment effort is reduced and assembly is simplified.

Die Aufgabe wird durch eine Erfindung mit den Merkmalen der Patentansprüche 1 und 2 gelöst.
Vorteilhafte Weiterbildungen sind in den Unteransprüchen angegeben.
The object is achieved by an invention with the features of claims 1 and 2.
Advantageous further developments are specified in the subclaims.

Um den Justageaufwand zu verringern und die Montage zu vereinfachen wird eine optische Sende- und Empfangsvorrichtung vorgeschlagen, bei der nur ein aktiver und automatisierbarer Justageprozeß erforderlich ist, und bei welchem durch präzise und im Großnutzen kostengünstig hergestellte Halterungsstrukturen die Montage der optischen Bauelemente wesentlich vereinfacht wird.In order to reduce the adjustment effort and to simplify the assembly, an optical transmission and reception device is proposed, in which only an active and automatable adjustment process is required, and in which the assembly of the optical components is considerably simplified by precise and inexpensive mounting structures.

Ausführungsbeispiele der Erfindung werden anhand der Zeichnungen beschrieben. Es zeigen:

  • Fig. 1 einen Schnitt durch eine erfindungsgemäße Anordnung mit Monitordiode auf dem Träger der Laserdiode;
  • Fig. 1a einen Schnitt durch eine erfindungsgemäße Anordnung mit Monitordiode auf dem Träger der Übertragungsfaser;
  • Fig. 2 Aufbau zur Justage der Anordnung;
  • Fig. 3 erfindungsgemäße Anordnung, wobei der dritte Träger mit seiner Stirnseite zum ersten Träger ausgerichtet ist und
  • Fig. 4 erfindungsgemäße Anordnung, deren dritter Träger gegenüber der Anordnung nach Fig. 1 vertikal und horizontal gespiegelt ist.
Embodiments of the invention are described with reference to the drawings. Show it:
  • 1 shows a section through an arrangement according to the invention with a monitor diode on the carrier of the laser diode.
  • 1a shows a section through an arrangement according to the invention with a monitor diode on the carrier of the transmission fiber;
  • Fig. 2 structure for adjusting the arrangement;
  • Fig. 3 arrangement according to the invention, wherein the third carrier is aligned with its end face to the first carrier and
  • Fig. 4 arrangement according to the invention, the third carrier is mirrored vertically and horizontally compared to the arrangement of FIG. 1.

Ein erstes Ausführungbeispiel der erfindungsgemäßen Lösung ist in Fig. 1 dargestellt. In einem ersten Träger T1, der aus einkristallinem Silizium besteht, wird durch anisotropes Ätzen eine Vertiefung V1 erzeugt, die einen ebenen Boden B1 besitzt, auf welchem eine Laserdiode LD montiert ist. Die Seitenflächen der Vertiefung haben infolge des ansiotropen Ätzprozesses einen Neigungswinkel von α = arctan ( 2 ) = 54,7°

Figure imgb0001
. Zur Erleichterung der Positionierung wird die Laserdiode bei der Montage an die Fußlinien von mindestens zwei rechtwinklig zueinander liegenden Seitenflächen angelegt. Eine dieser Seitenflächen S1 liegt dabei vor der Stirnfläche des Lasers mit der Lichtaustrittsfläche LA. Die Seitenfläche S1 ist verspiegelt, so daß das aus dem Laser austretende Lichtbündel L1 schräg nach oben reflektiert wird. Der zunächst waagerecht austretende Mittenstrahl des Bündels schließt nach der Reflexion an der Seitenwand S1 einen Winkel γ 11 = 2*α - 90° = 19,5°
Figure imgb0002
mit der Normalen der Oberfläche des Trägers T1 ein. Über dem Träger T1 ist ein zweiter Träger T2 angebracht, der für die Wellenlänge λ₁ des Laserlichtes transparent ist.
Beispielsweise kann dieser zweite Träger ebenfalls aus Silizium bestehen. Es ist aber auch ein anderes transparentes Material möglich, das mikromechanisch strukturierbar ist wie beispielsweise ein photolitographisch strukturierbares Glas. Auf der Unterseite des Trägers T2 wird in dem Bereich, in dem das Lichtbündel L1 auftrifft eine Linse Li angebracht. Diese Linse kann vorteilhafterweise eine planar aufgebrachte Fresnellinse oder eine holographische Linse sein. Es sind aber auch andere Linsenarten möglich, wie zum Beispiel eine Kugellinse, die in einer mikromechanisch geformten Vertiefung sitzt, oder eine durch Trockenätzen erzeugt Linse. Außerdem ist in der Unterseite des Trägers T2 eine Vertiefung V2 angebracht, damit Platz bleibt für Bonddrähte Bd und Leiterbahnen Lb zur Kontaktierung der Laserdiode LD und für weitere optische oder optoelektronische Bauelemente, die auf der Oberseite des Trägers T1 montiert sind. Hier ist eine Monitordiode MD zur Kontrolle der Laserleistung angebracht.
Die Linse Li wandelt das zunächst divergente Lichtbündel L1 in ein konvergentes Bündel um. Infolge der Lichtbrechung an der Grenzfläche des Trägers T2 wird der Mittelstrahl des Lichtbündels unter dem Winkel γ 12 = arcsin((n o /n 2 )*sin(γ 11 ))
Figure imgb0003
gebrochen, wobei no der Brechungsindex im Raum der Vertiefung V1 und n₂ der Brechungsindex im Träger T2 ist.A first exemplary embodiment of the solution according to the invention is shown in FIG. 1. In a first carrier T1, which consists of monocrystalline silicon, anisotropic etching produces a depression V1 which has a flat bottom B1, on which a laser diode LD is mounted. The side surfaces of the depression have an inclination angle of owing to the anisotropic etching process α = arctan ( 2nd ) = 54.7 °
Figure imgb0001
. To facilitate positioning, the laser diode is attached to the base lines of at least two side surfaces that are at right angles to each other. One of these side surfaces S1 lies in front of the end surface of the laser with the light exit surface LA. The side surface S1 is mirrored, so that the light bundle L1 emerging from the laser reflects obliquely upwards becomes. The center beam of the bundle, which initially emerges horizontally, closes an angle after reflection on the side wall S1 γ 11 = 2 * α - 90 ° = 19.5 °
Figure imgb0002
with the normal of the surface of the carrier T1. Above the carrier T1, a second carrier T2 is attached, which is transparent to the wavelength λ₁ of the laser light.
For example, this second carrier can also consist of silicon. However, it is also possible to use a different transparent material that can be micromechanically structured, such as a photolithographically structured glass. A lens Li is attached to the underside of the carrier T2 in the area in which the light bundle L1 strikes. This lens can advantageously be a planar Fresnel lens or a holographic lens. However, other types of lenses are also possible, for example a spherical lens which is seated in a micromechanically shaped depression, or a lens produced by dry etching. In addition, a recess V2 is provided in the underside of the carrier T2, so that there remains space for bond wires Bd and conductor tracks Lb for contacting the laser diode LD and for further optical or optoelectronic components which are mounted on the top of the carrier T1. Here, a monitor diode MD is attached to control the laser power.
The lens Li converts the initially divergent light bundle L1 into a convergent bundle. As a result of the refraction of light at the interface of the carrier T2, the central beam of the light beam is at an angle γ 12th = arcsin ((n O / n 2nd ) * sin (γ 11 ))
Figure imgb0003
broken, where n o is the refractive index in the space of the depression V1 and n₂ is the refractive index in the carrier T2.

Ist der Träger T2 aus Silizium mit einem Brechungsindex n₂ = 3,4777 und no = 1 für Luft, so wird γ₁₂ = 5,5°.If the carrier T2 made of silicon with a refractive index n₂ = 3.4777 and n o = 1 for air, then γ₁₂ = 5.5 °.

Auf der Oberseite des Trägers T2 wird das Lichtbündel wieder in die ursprüngliche Richtung γ₂ zurückgebrochen. Dort ist ein weiterer Träger T3 angebracht, der wie der Träger T1 ebenfalls aus einkristallinem Silizium besteht. In diesem Träger T3 sind zwei Vertiefungen V31 und V32 anisotrop geätzt. Die Vertiefung V31 ist eine V-Nut zur Aufnahme der Übertragungsfaser Fa. Die Breite dieser V-Nut ist dabei zweckmäßigerweise so groß, daß die unterste Mantellinie der Faser gerade in der Ebene der Unterseite von T3 zu liegen kommt. Die Stirnseite S3 der V-Nut ist mit einem wellenlängenselektiven Filter Fi1 beschichtet. Dieses Filter ist so ausgelegt, daß die Sendewellenlänge λ₁ reflektiert und die Empfangswellenlänge λ₂ durchgelassen wird. Das Sendelichtbündel L1 wird an der unter dem Winkel α geneigten Stirnfläche S31 wieder in waagerechte Richtung reflektiert und in die Übertragungsfaser Fa eingekoppelt. Das aus der Übertragungsfaser austretende Empfangslichtbündel L2 mit der Wellenlänge λ₂ durchdringt das Filter Fi1 und wird an der Grenze zum Silizium unter dem Winkel γ 21 = α + β 3 ,

Figure imgb0004
wobei β₃ der Brechungswinkel an der Stirnfläche S31 mit β 3 = arcsin((n o /n 3 )*sin(90°-α))
Figure imgb0005
ist, gegen die Flächennormale der Substratoberfläche von T3 in das Silizium hineingebrochen. Dabei ist no der Brechungindex in der V-Nut V31 und n₃ = 3,4777 der Brechungsindex im Siliziumträger T3. Mit no = 1 für Luft erhält man β₃ = 9,6° und γ₂₁ = 64,3°. Das Lichtbündel L2 trifft auf die Seitenfläche S31 der Vertiefung V31 unter einem Einfallswinkel von α 3 = 180° -2*α - β 3 = 61,0°.
Figure imgb0006
On the top of the carrier T2, the light beam is broken back in the original direction γ₂. A further carrier T3 is attached there, which, like the carrier T1, likewise consists of single-crystal silicon. Two wells V31 and V32 are anisotropically etched in this carrier T3. The depression V31 is a V-groove for receiving the transmission fiber Fa. The width of this V-groove is expediently so large that the bottom surface line of the fiber comes to lie just in the plane of the underside of T3. The end face S3 of the V-groove is coated with a wavelength-selective filter Fi1. This filter is designed so that the transmission wavelength λ₁ reflects and the reception wavelength λ₂ is transmitted. The transmitted light bundle L1 is reflected on the end face S31 inclined at the angle α again in the horizontal direction and coupled into the transmission fiber Fa. The receiving light bundle L2 emerging from the transmission fiber with the wavelength λ₂ penetrates the filter Fi1 and becomes at the boundary to the silicon at an angle γ 21 = α + β 3rd ,
Figure imgb0004
where β₃ the angle of refraction on the end face S31 with β 3rd = arcsin ((n O / n 3rd ) * sin (90 ° -α))
Figure imgb0005
is broken into the silicon against the surface normal of the substrate surface of T3. Here, n o is the refractive index in the V-groove V31 and n₃ = 3.4777 the refractive index in the silicon carrier T3. With n o = 1 for air, one obtains β₃ = 9.6 ° and γ₂₁ = 64.3 °. The light bundle L2 strikes the side surface S31 of the depression V31 at an angle of incidence of α 3rd = 180 ° -2 * α - β 3rd = 61.0 °.
Figure imgb0006

Da dieser Winkel α₃ größer als der Grenzwinkel der Totalreflexion beim Übergang Silizium/Luft von α g = arcsin(n o /n 3 ) = 16,7°

Figure imgb0007
ist, wird das Lichtbündel L2 unter dem Winkel γ 22 = α 3 - α = 6,3°
Figure imgb0008
gegen die Flächennormale der Trägeroberfläche gebrochen. Der Winkel γ₂₂ ist kleiner als αg, so daß das Lichtbündel L2 auf der Oberfläche des Siliziumträgers T3 austreten kann. An der Austrittstelle des Lichtbündels L2 wird die Empfangsdiode PD montiert. Die Position für die Photodiode ergibt sich aus den oben genannten Winkeln, dem Abstand der beiden Vertiefungen V31 und V32 voneinander und mit geringer Abhängigkeit von der Dicke des Trägers T3. Die Position der Lichtaustrittsfläche von L2 hängt dagegen nicht von der axialen Position der Faser Fa in der V-Nut V31 ab. Die Position der Lichtaustrittsfläche kann daher relativ zu den mikromechanisch erzeugten Vertiefungen V31 und V32 durch Marken oder Anschläge gekennzeichnet werden. Diese Marken oder Anschläge können durch photolithographische Technik sehr genau zu den Vertiefungen V31 und V32 ausgerichtet werden. Durch laterale Verschiebung des Trägers T3 relativ zum Träger T2 ist eine laterale Justage der Faser Fa relativ zum Bildpunkt des Sendelichtbündels L1 möglich. Auch eine eventuell erforderliche axiale Justage der Faser durch Verschieben der Faser in der V-Nut V31 ist möglich, ohne daß die Position der Lichtaustrittsfläche des Empfangslichtbündels L2 dadurch geändert wird. Die Aufgabe, die Position der Photodiode zum Empfangslichtbündel unabhängig von der Justage der Faser zum Sendelichtbündel zu halten wird also durch die beschriebene erfindungsgemäße Anordnung erreicht. Dabei ist weiter sehr vorteilhaft, daß alle optoelektronischen Bauteile planar montiert werden können.Since this angle α₃ is greater than the critical angle of total reflection at the silicon / air transition from α G = arcsin (n O / n 3rd ) = 16.7 °
Figure imgb0007
is the light beam L2 at the angle γ 22 = α 3rd - α = 6.3 °
Figure imgb0008
broken against the surface normal of the carrier surface. The angle γ₂₂ is smaller than α g , so that the light bundle L2 can emerge on the surface of the silicon carrier T3. The receiving diode PD is mounted at the exit point of the light bundle L2. The position for the photodiode results from the above-mentioned angles, the distance between the two depressions V31 and V32 from one another and with little dependence on the thickness of the carrier T3. The position of the light exit surface of L2, however, does not depend on the axial position of the fiber Fa in the V-groove V31. The position of the light exit surface can therefore be identified by marks or stops relative to the micromechanically generated recesses V31 and V32. These marks or stops can be aligned very precisely with the depressions V31 and V32 using photolithographic technology. Lateral displacement of the carrier T3 relative to the carrier T2 enables a lateral adjustment of the fiber Fa relative to the pixel of the transmitted light bundle L1. A possibly necessary axial adjustment of the fiber by shifting the fiber in the V-groove V31 is possible without changing the position of the light exit surface of the received light beam L2. The task of keeping the position of the photodiode relative to the received light beam independent of the adjustment of the fiber relative to the transmitted light beam is thus achieved by the arrangement according to the invention described. It is also very advantageous that all optoelectronic components can be mounted planar.

Ein weiterer Vorteil der erfindungsgemäßen Lösung liegt darin, daß hierbei eine sehr hohe nahe Übersprechdämpfung erreicht werden kann. Eine hohe nahe Übersprechdämpfung ist erforderlich, damit das Sendesignal aus dem Laser nicht infolge ungenügender Richtungstrennung in die in der Nähe des Senders befindliche Empfangsdiode trifft und diese beim Empfang schwacher Nutzsignale stört. Filterschichten haben im allgemeinen nur eine begrenzte Fähigkeit zur Trennung verschiedener Wellenlängen. Daher wird ein kleiner Anteil des Sendelichtbündels L1 die Filterschicht S31 auch durchdringen. Der Strahlverlauf dieses Störlichtes ist als S1' gestrichelt dargestellt. Dieses Lichtbündel trifft aber unter dem Winkel γ 13 ' = α - β 3 = 45,2°

Figure imgb0009
gegen die Flächennormale auf die Oberfläche des Trägers T3 auf. Dieser Winkel ist aber größer als der Grenzwinkel der Totalreflexion αg = 16,7°, so daß das direkte Störlicht vom Sender nicht in die Empfangsdiode gelangen kann.Another advantage of the solution according to the invention is that a very high near crosstalk attenuation can be achieved. A high near crosstalk attenuation is necessary so that the transmitted signal from the laser does not hit the receiving diode located near the transmitter due to insufficient directional separation and disturbs the reception of weak useful signals. Filter layers generally have a limited ability to separate different wavelengths. Therefore, a small proportion of the transmitted light bundle L1 will also penetrate the filter layer S31. The beam path of this stray light is shown in dashed lines as S1 '. This light beam hits at an angle γ 13 '= α - β 3rd = 45.2 °
Figure imgb0009
against the surface normal on the surface of the carrier T3. However, this angle is larger than the critical angle of the total reflection α g = 16.7 °, so that the direct interference light from the transmitter cannot reach the receiving diode.

In einer Variante des ersten Ausführungsbeispiels wird das Filter Fi1 so ausgelegt, daß noch ein geringer Teil des Sendelichtes das Filter durchdringt, während der größte Teil reflektiert wird. Dieses das Filter durchdringende Lichtbündel L1' wird erfindungsgemäß als Regelsignal benutzt. Die Monitordiode MD' wird dann nicht auf dem Träger T1 sondern in einer Aussparung V33 auf dem Träger T2 montiert. Dies ist in der Fig. 1a gestrichelt dargestellt.In a variant of the first exemplary embodiment, the filter Fi1 is designed such that a small part of the transmitted light still penetrates the filter while the largest part is reflected. This light beam L1 'penetrating the filter is used according to the invention as a control signal. The monitor diode MD 'is then not mounted on the carrier T1 but in a recess V33 on the carrier T2. This is shown in dashed lines in FIG. 1a.

Zur lateralen aktiven Justage der Faser zum Sendelichtbündel L1 wird der Träger T3 zweckmäßigerweise in einem Metallflansch Fl3 eingesetzt, dessen Randfläche auf der als Flanschfläche Fl1 ausgebildeten Seitenwand Sw eines Gehäuses G aufliegt, in welchem die Träger T1 und T2 montiert sind. Nach Erreichen der optimalen Koppelposition werden die Flanschflächen Fl3 und Fl2 beispielsweise durch Laserschweißpunkte LS in ihrer Position zueinander fixiert. Der Träger T2 kann dabei als lichtdurchlässiger hermetisch dichter Deckel des Gehäuses G dienen. Ebenso kann auch ein zusätzliches hermetisch dichtes Fenster Fe zwischen den Trägern T2 und T3 eingesetzt werden. (Siehe Fig. 2).For the lateral active adjustment of the fiber to the transmitted light bundle L1, the carrier T3 is expediently inserted in a metal flange Fl3, the edge surface of which is on the side wall Sw of a housing designed as a flange surface Fl1 G rests in which the supports T1 and T2 are mounted. After the optimal coupling position has been reached, the flange surfaces Fl3 and Fl2 are fixed in their position relative to one another, for example by laser welding spots LS. The carrier T2 can serve as a translucent, hermetically sealed cover of the housing G. An additional hermetically sealed window Fe can also be used between the supports T2 and T3. (See Fig. 2).

In einem zweiten Ausführungsbeispiel der erfindungsgemäßen Lösung wird der Träger T3 nicht mit seiner Unterseite sondern mit seiner Stirnseite zum Träger T2 ausgerichtet.
Das zweite erfindungsgemäße Ausführungsbeispiel ist in der Fig. 3 dargestellt. Die Träger T1 und T2 sind wie im ersten Ausführungsbeispiel aufgebaut. Die Faser Fa wird auch hier wieder in einer V-Nut V31 in einem Träger T3 geführt und ist auch in dieser V-Nut axial justierbar. Die Stirnseite S31 ist ebenfalls mit einer wellenlängenselektien Filterschicht Fi2 belegt. Im Unterschied zur Filterschicht F11 im ersten Ausführungsbeispiel ist die Filterschicht Fi2 für die Sendewellenlänge λ₁ durchlässig und für die Empfangswellenlänge λ₂ reflektierend. Das unter einem Winkel von γ₁₁ = 19,5° aus dem Träger T2 austretende Lichtbündel L1 trifft auf die Seitenwand S31 einer von der entgegengesetzten Seite in den Träger T3 anisotrop geätzten Vertiefung V32, deren der Seitenwand S32 gegenüberliegender Teil, beispielsweise durch Sägen, entfernt worden ist. Da die beiden Seitenflächen S32 und S31 parallel zueinander sind, wird das Sendelichtbündel S1 durch die zweimalige Brechung parallel versetzt und trifft dann in die Übertragungfaser Fa. Der Träger T3 muß dabei unter dem Winkel γ₁₁ = 19,5° gegenüber der Flächennormalen des Trägers T2 geneigt sein. Hierzu wird er unter diesem Winkel in den Flansch F3 geneigt eingebaut.
In a second exemplary embodiment of the solution according to the invention, the carrier T3 is not aligned with its underside but with its end face to the carrier T2.
The second exemplary embodiment according to the invention is shown in FIG. 3. The carriers T1 and T2 are constructed as in the first exemplary embodiment. The fiber Fa is again guided in a V-groove V31 in a carrier T3 and is also axially adjustable in this V-groove. The end face S31 is also covered with a wavelength select filter layer Fi2. In contrast to the filter layer F11 in the first exemplary embodiment, the filter layer Fi2 is transparent for the transmission wavelength λ₁ and reflective for the reception wavelength λ₂. The emerging at an angle of γ₁₁ = 19.5 ° from the beam T2 light beam L1 strikes the side wall S31 an anisotropically etched from the opposite side in the carrier T3 depression V32, the part opposite the side wall S32, for example by sawing, has been removed is. Since the two side surfaces S32 and S31 are parallel to each other, the transmitted light bundle S1 is offset in parallel by the double refraction and then hits the transmission fiber Fa. The carrier T3 must be inclined at an angle γ₁₁ = 19.5 ° to the surface normal of the carrier T2 be. For this purpose, it is installed at an angle in the flange F3.

Ein drittes Ausführungsbeispiel der erfindungsgemäßen Lösung ist in der Fig. 4 dargestellt. Hier ist der Träger T3 ähnlich wie im ersten Ausführungsbeispiel aufgebaut aber gegenüber dem ersten Ausführungsbeispiel vertikal und horizontal gespiegelt. Die Filterschicht Fi2 muß wie im Ausführungsbeispiel 2 für die Sendewellenlänge transparent und für die Empfangswellenlänge reflektierend sein. Die Photodiode PD für das Empfangssignal wird wie beim Ausführungsbeispiel 2 im Bereich über der Stirnfläche der V-Nut V31 montiert. Wie im Ausführungsbeispiel 2 hat man auch hier den Vorteil, daß der Weg zwischen Faserstirnfläche und Photodiode sehr kurz ist, was eine geringe Strahlaufweitung zur Folge hat und daher eine sehr kleinflächige Photodiode, die für hohe Frequenzen geeignet ist, erlaubt. Der Richtungswinkel γ₁₂ des Strahlbündel im Träger T2 ist für das Trägermaterial Silizium 5,5° und der Richtungswinkel γ₂₂ des Strahlbündels im Träger T3 6,3°. Der Winkelunterschied von 0,8° ergibt einen Koppelverlust von ca. 0,1 dB und ist in den meisten Anwendungen tolerierbar. Der Winkel γ₁₂ läßt sich aber durch die Lage des Linsenmittelpunktes der Linse Li relativ zur Fläche S1 korrigieren. Der gegenüber dem ersten Ausführungsbeispiel hier längere Lichtweg im Träger T3 für das Sendelichtbündel muß durch eine entsprechende Dicke des Trägers T2 kompensiert werden.A third embodiment of the solution according to the invention is shown in FIG. 4. Here, the carrier T3 is constructed similarly to the first exemplary embodiment, however mirrored vertically and horizontally compared to the first embodiment. As in exemplary embodiment 2, the filter layer Fi2 must be transparent for the transmission wavelength and reflective for the reception wavelength. As in exemplary embodiment 2, the photodiode PD for the received signal is mounted in the region above the end face of the V-groove V31. As in embodiment 2, the advantage here is that the path between the end face of the fiber and the photodiode is very short, which results in a small beam expansion and therefore allows a very small-area photodiode that is suitable for high frequencies. The direction angle γ₁₂ of the beam in the carrier T2 is 5.5 ° for the carrier material silicon and the direction angle γ₂₂ of the beam in the carrier T3 is 6.3 °. The difference in angle of 0.8 ° results in a coupling loss of approx. 0.1 dB and is tolerable in most applications. The angle γ₁₂ can be corrected by the position of the lens center of the lens Li relative to the surface S1. The longer light path in the carrier T3 for the transmitted light bundle compared to the first exemplary embodiment has to be compensated for by a corresponding thickness of the carrier T2.

Ein sehr wichtiger Gesichtspunkt bezüglich der Kosten beim Einsatz von Laserdioden in Sendemodulen bzw. Sende- und Empfangsmodulen liegt darin, daß die Laserdioden so früh wie möglich während des Herstellungsprozesses geprüft werden können. Während elektrische Prüfungen schon vor dem Vereinzeln durchgeführt werden können, können optische Prüfungen oft erst nach der Montage auf einzelnen Subsenken oder gar erst am fertigen Modul durchgeführt werden. Beim erfindungsgemäßen Montageverfahren können die Laserdioden in einem sehr frühen Stadium und im Großnutzen auf ihre optischen Funktionen geprüft werden. Dazu werden die Laserdioden in die Vertiefungen V1 eines im Großnutzen hergestellten Trägersubstrates T1 montiert bevor dieses Trägersubstrat in einzelne Träger vereinzelt wird. Auf diese Weise können die Optischen Eigenschaften für eine große Anzahl von Laserdioden gemeinsam geprüft werden. Der Träger T2 mit den Linse Li wird ebenfalls im Großnutzen für viele Einzel-Module hergestellt und alle Linsen gemeinsam zu den Lasern in einem einzigen Justage- und Montageprozeß montiert. Hier ist eine passive Justage mittels Marken oder eine justagefreie Montage durch mikromechanisch strukturierte Anschläge möglich. Die Vertiefungen V2 im Träger T2 sind dabei so gestaltet, daß die optoelektonischen und elektronischen Bauelemente wie die Laserdiode LD, die Monitordiode MD oder hier nicht dargestellt elektronische Bausteine zur Ansteuerung des Lasers hermetisch dicht eingeschlossen sind. Nach der gemeinsamen Verbindung der Trägersubstrate T1 und T2 diese durch Sägen oder durch Brechen an mikromechanisch erzeugten Sollbruchlinien vereinzelt. Die Lage der Säge- bzw. Bruchlinien liegt dabei so, daß die Position der Vertiefungen V1 und V2 sowie der Linsen Li nicht berührt werden.A very important aspect regarding the costs of using laser diodes in transmitter modules or transmitter and receiver modules is that the laser diodes can be checked as early as possible during the manufacturing process. While electrical tests can be carried out before separation, optical tests can often only be carried out after installation on individual subsinks or even on the finished module. With the assembly method according to the invention, the laser diodes can be tested for their optical functions at a very early stage and with great benefits. For this purpose, the laser diodes are mounted in the depressions V1 of a carrier substrate T1 produced in large-scale use before this carrier substrate is separated into individual carriers. To this In this way, the optical properties for a large number of laser diodes can be tested together. The carrier T2 with the lens Li is also produced in large-scale use for many individual modules and all lenses are assembled together with the lasers in a single adjustment and assembly process. Passive adjustment using marks or adjustment-free assembly using micromechanically structured stops is possible here. The depressions V2 in the carrier T2 are designed so that the optoelectronic and electronic components such as the laser diode LD, the monitor diode MD or electronic modules (not shown here) for controlling the laser are hermetically sealed. After the common connection of the carrier substrates T1 and T2, these are separated by sawing or breaking at micromechanically generated predetermined breaking lines. The position of the sawing or breaking lines is such that the position of the depressions V1 and V2 and the lenses Li are not touched.

Die Monitordiode MD kann auch auf der Unterseite oder Oberseite der Träger T2 oder T3 montiert werden, wobei in dem jeweils benachbarten Träger entsprechende Aussparungen vorzusehen sind. Zur Ankopplung der Monitordiode kann auf dem Träger T2 eine weitere Linse Lim vorgesehen werden.The monitor diode MD can also be mounted on the underside or top of the supports T2 or T3, with corresponding recesses being provided in the adjacent support. A further lens Lim can be provided on the carrier T2 for coupling the monitor diode.

Claims (3)

Optische Sende- und Empfangseinrichtung mit einem Sendeelement (LD), das auf einem ersten Träger (T1) fixiert ist, mit einem Empfangselement (PD) und einer Übertragungsfaser (Fs), die auf einem dritten Träger (T3) fixiert sind und mit einem zweiten Träger (T2), der sich zwischen dem ersten und dem dritten Träger (T1, T3) befindet, mit V-Nuten und Vertiefungen in den Trägern (T1, T2, T3), die durch anisotropes Ätzen hergestellt sind, mit mindestens einer Spiegelfläche an jedem der äußeren Träger (T1, T3), dadurch gekennzeichnet, daß der dritte Träger (T3) für Licht mit der Wellenlänge des vom Sendeelement (LD) ausgesendeten Lichtes transparent ist, daß eine Monitordiode (MD) vorgesehen ist, die auf der Oberfläche des ersten Trägers (T1) in einer Aussparung des zweiten Trägers (T2) montiert ist.Optical transmission and reception device with a transmission element (LD), which is fixed on a first carrier (T1), with a receiving element (PD) and a transmission fiber (Fs), which are fixed on a third carrier (T3) and with a second Carrier (T2), which is located between the first and the third carrier (T1, T3), with V-grooves and depressions in the carriers (T1, T2, T3), which are produced by anisotropic etching, with at least one mirror surface each of the outer supports (T1, T3), characterized in that the third support (T3) is transparent to light with the wavelength of the light emitted by the transmitting element (LD), that a monitor diode (MD) is provided on the surface of the first carrier (T1) is mounted in a recess of the second carrier (T2). Optische Sende- und Empfangseinrichtung mit einem Sendeelement (LD), das auf einem ersten Träger (T1) fixiert ist, mit einem Empfangselement (PD) und einer Übertragungsfaser (Fs), die auf einem dritten Träger (T3) fixiert sind und mit einem zweiten Träger (T2), der sich zwischen dem ersten und dem dritten Träger (T1, T3) befindet, mit V-Nuten und Vertiefungen in den Trägern (T1, T2, T3), die durch anisotropes Ätzen hergestellt sind, mit mindestens einer Spiegelfläche an jedem der äußeren Träger (T1, T3), dadurch gekennzeichnet, daß der dritte Träger (T3) für Licht mit der Wellenlänge des vom Sendeelement (LD) ausgesendeten Lichtes transparent ist, daß eine Monitordiode (MD) vorgesehen ist, die auf der Oberfläche des zweiten Trägers (T2) in einer Aussparung des dritten Trägers (T3) montiert ist.Optical transmission and reception device with a transmission element (LD), which is fixed on a first carrier (T1), with a receiving element (PD) and a transmission fiber (Fs), which are fixed on a third carrier (T3) and with a second Carrier (T2), which is located between the first and the third carrier (T1, T3), with V-grooves and depressions in the carriers (T1, T2, T3), which are produced by anisotropic etching, with at least one mirror surface each of the outer supports (T1, T3), characterized in that the third support (T3) is transparent to light with the wavelength of the light emitted by the transmitting element (LD), that a monitor diode (MD) is provided on the surface of the second carrier (T2) is mounted in a recess of the third carrier (T3). Optische Sende- und Empfangseinrichtung nach Anspruch 1, dadurch gekennzeichnet, daß die optische Achse der Übertragungsfaser (Fa) einen Winkel im Bereich zwischen 50° und 90° mit der Oberfläche der Träger (T1, T2) einschließt.Optical transmitting and receiving device according to claim 1, characterized in that the optical axis of the transmission fiber (Fa) encloses an angle in the range between 50 ° and 90 ° with the surface of the carrier (T1, T2).
EP95116409A 1994-11-17 1995-10-18 Optical transmitting and receiving device Withdrawn EP0713113A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4440935A DE4440935A1 (en) 1994-11-17 1994-11-17 Optical transmitting and receiving device
DE4440935 1994-11-17

Publications (1)

Publication Number Publication Date
EP0713113A1 true EP0713113A1 (en) 1996-05-22

Family

ID=6533474

Family Applications (1)

Application Number Title Priority Date Filing Date
EP95116409A Withdrawn EP0713113A1 (en) 1994-11-17 1995-10-18 Optical transmitting and receiving device

Country Status (3)

Country Link
US (1) US5577142A (en)
EP (1) EP0713113A1 (en)
DE (1) DE4440935A1 (en)

Families Citing this family (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5911022A (en) * 1994-09-29 1999-06-08 Siemens Aktiengesellschaft Optical coupling arrangement
SE506991C2 (en) * 1996-01-26 1998-03-09 Ericsson Telefon Ab L M Method and apparatus for connecting a waveguide to a component
JPH09307134A (en) * 1996-05-13 1997-11-28 Fujitsu Ltd Light receiving element and its optical module and optical unit
JPH11311721A (en) * 1998-02-27 1999-11-09 Oki Electric Ind Co Ltd Optical coupling module and its manufacture
DE19844701C1 (en) * 1998-09-29 2000-07-06 Siemens Ag Method for adjusting an optoelectronic component and component
DE19845484C2 (en) * 1998-10-02 2002-09-26 Infineon Technologies Ag Micro-optical component and method for its production
JP2000227524A (en) * 1999-02-05 2000-08-15 Sony Corp Optical waveguide device and optical transmission and reception device, and manufacture thereof
DE19908599A1 (en) * 1999-02-27 2000-09-14 Bosch Gmbh Robert Assembly process
DE19932430C2 (en) * 1999-07-12 2002-03-14 Harting Elektrooptische Bauteile Gmbh & Co Kg Opto-electronic assembly and component for this assembly
JP4582489B2 (en) 2000-01-21 2010-11-17 住友電気工業株式会社 Light emitting device
US6848839B2 (en) * 2000-04-07 2005-02-01 Shipley Company, L.L.C. Methods and devices for coupling optoelectronic packages
US6866426B1 (en) 2000-04-07 2005-03-15 Shipley Company, L.L.C. Open face optical fiber array for coupling to integrated optic waveguides and optoelectronic submounts
EP1146570A1 (en) * 2000-04-14 2001-10-17 Infineon Technologies AG Semiconductor light emitting device and method for the manufacture of a carrier
DE10023221C2 (en) 2000-05-08 2002-03-14 Infineon Technologies Ag Optoelectronic coupling element and method for its production
US6362876B1 (en) * 2000-06-21 2002-03-26 Shian-Fu Lai Laser beam power detecting device for planar type semiconductor laser diode
US6788853B2 (en) * 2000-06-28 2004-09-07 Shipley Company, L.L.C. Method for cleaving integrated optic waveguides to provide a smooth waveguide endface
US6450699B1 (en) * 2000-12-19 2002-09-17 Intel Corporation Photonic and electronic components on a shared substrate
JP2003207694A (en) * 2002-01-15 2003-07-25 Nec Corp Optical module
US7343535B2 (en) * 2002-02-06 2008-03-11 Avago Technologies General Ip Dte Ltd Embedded testing capability for integrated serializer/deserializers
US6807218B1 (en) 2002-05-13 2004-10-19 Amkor Technology, Inc. Laser module and optical subassembly
KR100440256B1 (en) * 2002-10-02 2004-07-15 한국전자통신연구원 Module for transmitting light using silicon optical bench
US6969204B2 (en) * 2002-11-26 2005-11-29 Hymite A/S Optical package with an integrated lens and optical assemblies incorporating the package
DE10297846D2 (en) * 2002-12-04 2005-10-27 Infineon Technologies Ag Bidirectional transmitting and receiving module
DE10307763B4 (en) * 2003-02-14 2005-06-09 Infineon Technologies Ag Electro-optical module for transmitting and / or receiving optical signals of at least two optical data channels
US7520679B2 (en) * 2003-09-19 2009-04-21 Avago Technologies Fiber Ip (Singapore) Pte. Ltd. Optical device package with turning mirror and alignment post
US6982437B2 (en) * 2003-09-19 2006-01-03 Agilent Technologies, Inc. Surface emitting laser package having integrated optical element and alignment post
US6953990B2 (en) 2003-09-19 2005-10-11 Agilent Technologies, Inc. Wafer-level packaging of optoelectronic devices
US20050063431A1 (en) * 2003-09-19 2005-03-24 Gallup Kendra J. Integrated optics and electronics
DE10348675B3 (en) * 2003-10-15 2005-06-09 Infineon Technologies Ag Module for bidirectional optical signal transmission
US20050213995A1 (en) * 2004-03-26 2005-09-29 Myunghee Lee Low power and low jitter optical receiver for fiber optic communication link
US7045827B2 (en) * 2004-06-24 2006-05-16 Gallup Kendra J Lids for wafer-scale optoelectronic packages
US7316512B2 (en) * 2004-07-30 2008-01-08 General Electric Company Interconnect device
DE102005002874B3 (en) * 2005-01-21 2006-09-14 Forschungszentrum Karlsruhe Gmbh Optoelectronic component with integrated waveguide coupling for passive adjustment
US7537395B2 (en) * 2006-03-03 2009-05-26 Lockheed Martin Corporation Diode-laser-pump module with integrated signal ports for pumping amplifying fibers and method
US20080198890A1 (en) * 2007-02-21 2008-08-21 Ungar Jeffrey E Vertically emitting laser and method of making the same
DE102008014121A1 (en) * 2007-12-20 2009-06-25 Osram Opto Semiconductors Gmbh Method for producing semiconductor chips and semiconductor chip
JP5664905B2 (en) * 2011-01-18 2015-02-04 日立金属株式会社 Photoelectric conversion module
CN106842440A (en) * 2012-03-05 2017-06-13 纳米精密产品股份有限公司 The coupling device with structured reflecting surface for coupling optical fiber input/output
TWI561881B (en) * 2012-04-27 2016-12-11 Hon Hai Prec Ind Co Ltd Fiber optical transceiver
CN104508527B (en) * 2012-05-11 2017-10-13 安费诺富加宜(亚洲)私人有限公司 Optical couping device and optical communication system
US9484211B2 (en) * 2013-01-24 2016-11-01 Taiwan Semiconductor Manufacturing Company, Ltd. Etchant and etching process
US9864145B2 (en) 2015-08-12 2018-01-09 Nanoprecision Products, Inc. Multiplexer/demultiplexer using stamped optical bench with micro mirrors
US9880366B2 (en) 2015-10-23 2018-01-30 Nanoprecision Products, Inc. Hermetic optical subassembly
US11525967B1 (en) 2018-09-28 2022-12-13 Apple Inc. Photonics integrated circuit architecture
US11881678B1 (en) 2019-09-09 2024-01-23 Apple Inc. Photonics assembly with a photonics die stack
US11500154B1 (en) 2019-10-18 2022-11-15 Apple Inc. Asymmetric optical power splitting system and method
WO2022020257A1 (en) * 2020-07-20 2022-01-27 Apple Inc. Photonic integrated circuits with controlled collapse chip connections
US11914201B2 (en) 2021-09-23 2024-02-27 Apple Inc. Mechanisms that transfer light between layers of multi-chip photonic assemblies

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59121008A (en) * 1982-12-27 1984-07-12 Tokyo Inst Of Technol Three-dimensional optical integrated circuit
EP0366974A1 (en) * 1988-10-08 1990-05-09 Deutsche Aerospace AG Semiconductor circuit
DE3914835C1 (en) 1989-05-05 1990-07-26 Ant Nachrichtentechnik Gmbh, 7150 Backnang, De
WO1993021551A1 (en) * 1992-04-09 1993-10-28 Deutsche Aerospace Ag Method of manufacturing a microsystem and of producing a microsystem laser from it
DE4313493A1 (en) * 1992-11-25 1994-05-26 Ant Nachrichtentech Arrangement for coupling an optical waveguide to a light-emitting or receiving element
DE4313487A1 (en) * 1992-11-25 1994-05-26 Ant Nachrichtentech Arrangement for connecting at least one light-emitting element with at least one light-receiving element

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4897711A (en) * 1988-03-03 1990-01-30 American Telephone And Telegraph Company Subassembly for optoelectronic devices
US4904036A (en) * 1988-03-03 1990-02-27 American Telephone And Telegraph Company, At&T Bell Laboratories Subassemblies for optoelectronic hybrid integrated circuits
US5073003A (en) * 1988-12-23 1991-12-17 At&T Bell Laboratories Optoelectronic device package method and apparatus
US4969712A (en) * 1989-06-22 1990-11-13 Northern Telecom Limited Optoelectronic apparatus and method for its fabrication
ATE121248T1 (en) * 1990-09-14 1995-04-15 Siemens Ag BIDIRECTIONAL TELECOMMUNICATIONS SYSTEM.
NL9100103A (en) * 1991-01-23 1992-08-17 Philips Nv SEMICONDUCTOR DIODE LASER WITH MONITOR DIOD.
US5125054A (en) * 1991-07-25 1992-06-23 Motorola, Inc. Laminated polymer optical waveguide interface and method of making same
US5170448A (en) * 1992-01-06 1992-12-08 Motorola, Inc. Optical waveguide apparatus and method for partially collecting light
JP2797875B2 (en) * 1993-01-08 1998-09-17 日本電気株式会社 Optical substrate and optical connection element
JPH07104148A (en) * 1993-10-01 1995-04-21 Nippon Hoso Kyokai <Nhk> Optical parts
TW255015B (en) * 1993-11-05 1995-08-21 Motorola Inc
US5479540A (en) * 1994-06-30 1995-12-26 The Whitaker Corporation Passively aligned bi-directional optoelectronic transceiver module assembly

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59121008A (en) * 1982-12-27 1984-07-12 Tokyo Inst Of Technol Three-dimensional optical integrated circuit
EP0366974A1 (en) * 1988-10-08 1990-05-09 Deutsche Aerospace AG Semiconductor circuit
DE3914835C1 (en) 1989-05-05 1990-07-26 Ant Nachrichtentechnik Gmbh, 7150 Backnang, De
WO1993021551A1 (en) * 1992-04-09 1993-10-28 Deutsche Aerospace Ag Method of manufacturing a microsystem and of producing a microsystem laser from it
DE4313493A1 (en) * 1992-11-25 1994-05-26 Ant Nachrichtentech Arrangement for coupling an optical waveguide to a light-emitting or receiving element
DE4313487A1 (en) * 1992-11-25 1994-05-26 Ant Nachrichtentech Arrangement for connecting at least one light-emitting element with at least one light-receiving element

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 008, no. 248 (P - 313) 14 November 1984 (1984-11-14) *

Also Published As

Publication number Publication date
DE4440935A1 (en) 1996-05-23
US5577142A (en) 1996-11-19

Similar Documents

Publication Publication Date Title
EP0713113A1 (en) Optical transmitting and receiving device
DE4440976A1 (en) Optical transmitter and receiver with a surface emitting laser
EP0660467B1 (en) Optoelectronical element and method of making the same
EP0664585B1 (en) Transmitter and receiver module for bi-directional optical communication
DE60132056T2 (en) OPTICAL WAVE MODULATOR WITH OUTDOOR LIGHT MONITOR
EP0395854B1 (en) Arrangement for connecting a light wave conductor to an optical transmitter or receiver
DE19640423C1 (en) Optoelectronic module for bidirectional optical data transmission
DE10238741A1 (en) Planar optical component and coupling device for coupling light between a planar optical component and an optical component
DE19601955A1 (en) Optoelectronic transmitter module
DE69734559T2 (en) Optical coupler
DE4422322C1 (en) Laser module coupling semiconductor laser to optical fibre
DE10201127C2 (en) Arrangement for coupling and / or decoupling optical signals from at least one optical data channel into or out of an optical waveguide
DE19607107A1 (en) Light conductor to opto-electronic component coupling apparatus for optical communications
DE4301456C1 (en) Arrangement for coupling an optical fiber
EP0599212A1 (en) Device for coupling a light wave guide to a light emitting or receiving element
DE19640421A1 (en) Optoelectronic module for bidirectional optical data transmission
DE102004038530B3 (en) Method and device for producing an optical connection between an optoelectronic component and an optical waveguide
DE3737251C2 (en) Semiconductor carrier element for an electro-optical module
DE4313492C1 (en) Optical coupler for laser monitoring diode, esp. for semiconductor laser
DE3939723C1 (en) Optical or opto-electronic coupling - uses spherical lens received in frusto-pyramidal recess of one part and groove of other part
DE19810624A1 (en) Electro-optical module
EP0783715B1 (en) Optical coupling arrangement
DE19515688C1 (en) Optical transmission/reception module for bidirectional wavelength multiplex transmissions
DE4406335A1 (en) Optical device for beam splitting or wavelength selective branching or coupling of light
DE4301236C1 (en) Optical fibre coupling to opto-electrical transducer, e.g. photodiode - supports transducer parallel to angled end face of optical fibre at end of V-shaped reception groove for latter

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB IT

17P Request for examination filed

Effective date: 19961122

17Q First examination report despatched

Effective date: 20010628

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20011109