EP0701705A1 - Splicing aged optical fibers - Google Patents
Splicing aged optical fibersInfo
- Publication number
- EP0701705A1 EP0701705A1 EP95914663A EP95914663A EP0701705A1 EP 0701705 A1 EP0701705 A1 EP 0701705A1 EP 95914663 A EP95914663 A EP 95914663A EP 95914663 A EP95914663 A EP 95914663A EP 0701705 A1 EP0701705 A1 EP 0701705A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- fiber
- segment
- silica
- splicing
- aged
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/24—Coupling light guides
- G02B6/25—Preparing the ends of light guides for coupling, e.g. cutting
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/24—Coupling light guides
- G02B6/255—Splicing of light guides, e.g. by fusion or bonding
- G02B6/2551—Splicing of light guides, e.g. by fusion or bonding using thermal methods, e.g. fusion welding by arc discharge, laser beam, plasma torch
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/24—Coupling light guides
- G02B6/255—Splicing of light guides, e.g. by fusion or bonding
- G02B6/2552—Splicing of light guides, e.g. by fusion or bonding reshaping or reforming of light guides for coupling using thermal heating, e.g. tapering, forming of a lens on light guide ends
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S359/00—Optical: systems and elements
- Y10S359/90—Methods
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Plasma & Fusion (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Mechanical Coupling Of Light Guides (AREA)
Abstract
Description
SPLICING AGED OPTICAL FIBERS TECHNICAL FIELD The present invention relates to a method and a device for splicing an aged optical silica fiber to another fiber, e. g. to a new optical fiber for repair purposes. BACKGROUND OF THE INVENTION It is well-known that optical fibers based on silica corrodes in a humid environment. Further, substantially all optical fibers which are installed for ordinary telecommunication in national networks are exposed to moisture to a larger or smaller extent. Naturally, the surface of a silica fiber is in particular exposed to corrosion attacks. The attacks cause that the tensile strength of the fiber is reduced and that the fiber gets more brittle. The deterioration of the mechanical characteristics of fibers is a large problem when repairing e. g. a fiber which is installed below ground level and has been cut off in some digging operation. Installed, aged fiber can be so brittle that it may be difficult to handle it and it can even be impossible to splice the fiber to other fibers. Up to now, for failures such as breaks or ruptures of old fibers, it has often been necessary to replace whole fiber lengths which is naturally very costly. It has been observed previously that the rupture and tensile strength of glass fibers and wave guides can be increased by heating the fibers or waveguides to temperatures in the vicinity of the softening temperature, see the German patent applications made available to the public DE-A1 28 17 651 for Siemens AG and DE-A1 40 41 150 for kabelmetal electro GmbH. The methods and devices disclosed are conceived to be used on ordinary fibers, before the practical use thereof. DESCRIPTION OF THE INVENTION It is an object of the invention to provide a method and device by means of which an aged optical silica fiber can be given improved properties in order to splice the fiber to another optical fiber. This object is achieved by the invention, the characteristics of which are set out in the appended claims. For improving mechanical properties of a segment of an aged optical fiber to allow the handling thereof which is required for a splicing process, the segment is heated to a high temperature near the softening temperature or the melt temperature of the glass material in the fiber. Hereby, the corrosion attacks resulting from a moist environment can be"healed", i. e. microcracks, resulting from the moisture, are melted together by the heat. The heating power can be provided from a light beam of a laser. The light beam is focused over a cross section of the optical fiber and this heated cross-sectional area is made to be displaced along a segment of the fiber. The light beam power and the displacement velocity are chosen so that the temperature on the surface of the fiber achieves a temperature near the melt temperature. Practically it is visible by the fact that the surface of the fiber gets a"smooth"or"shiny"appearance. Other possibilities for the heating is e. g. heating in a gas flame, by means of a heating spiral element (resistive heat element) or by means of an electric arc of the type used for a melt-fusioning in splicing optical glass fibers. Thus the steps for splicing an aged optical fiber to another optical fiber generally comprise that first the polymer protective sleeve on the aged fiber is removed over a segment of the fiber for exposing the surface of the fiber cladding which is supposed to be of some glass or silica material. The surface of at least a portion of the segment of the aged fiber, where the cladding is exposed, is then heated to a high temperature in the vicinity of or essentially the melt temperature of the material If in the fiber cladding. In particular the temperature may be chosen to such a high value that the surface of the silica fiber < melts somewhat during the heating. The fiber is cut off at a place within the segment to produce an end surface, which is then spliced as an ordinary optical fiber to another one, that is this end surface is placed adjacent to an end surface of another optical fiber and these end surfaces are coupled optically to each other, by e. g. welding the fiber ends to each other. A device for performing the above steps for splicing an aged silica optical fiber to another optical fiber will then comprise movable retainer means for clamping a fiber at both sides of a segment of the fiber to maintain the segment in an essentially straight condition, the movable retainer means generally comprising a detachable retainer box attached to a movable slide. Further there are heating means for heating at least the surface of a short region of the segment, as seen in a longitudinal direction of the segment, in particular a region having a length corresponding to a few fiber diameters at most, to a high temperature in the vicinity of or essentially the melt temperature of the material of the silica fiber. Actuator means are arranged for moving the retainer means in a direction parallel to the longitudinal direction of the segment. Finally there are the conventional splicing means such as cutting-off means for cutting the fiber at a place within the segment to provide a heat treated end portion, and attachment means for positioning fixedly the end surface of the heat treated end portion of the segment at an end surface of another optical fiber. DESCRIPTION OF THE DRAWINGS The invention will now be described in more detail with reference to a not limiting embodiment and with reference to the accompanying drawing in which: -Figure 1 schematically shows a device for restoration of mechanical properties of a fiber. DESCRIPTION OF THE PREFERRED EMBODIMENT In Fig. 1 an installation is illustrated for splicing and for heat treatment of an optical aged optical fiber 1. The device is preferably a modified conventional fiber splicer unit. It thus comprises two fiber retainers 3, in which first the aged fiber is clamped extending along a straight path between the retainers. The fiber retainers 3 are attached to movable slides 5, which are actuated by drive motors 7 along suitable guides, not shown. The slides 5 can in particular move as one unit in the direction of the arrows 9 a limited distance up and back in the longitudinal direction of the clamped straight segment of the fiber 1. A carbondioxide laser 11 generates an intensive infrared light beam having a direction essentially perpendicular to the longitudinal direction of the optical fiber 1. The light beam from the CO2laser 11 is deflected by means of two parallel mirrors 13, e. g. arranged in an angle comprising 45 in relation to the light beam, so that the light beam passes along a parallel path and substantially straight through a beam mixer 15 to a lens system 17. In the lens system 17 the beam is focused to hit the fiber 1 at a point in the segment thereof which is located between the retainers 3. Further, a helium-neon-laser 19 is arranged, providing a visible light beam having a lower intensity, which is only arranged for cooperating in directing the heat beam from the carbondioxide laser 11, so that the non-visible heat beam therefrom actually hits the fiber 1 at the intended location. The light beam from the helium neon laser 19 is deflected by an angle of 90 by means of a mirror 21 in order to be directed to the side of the beam mixer 15 and therein again be deflected by an angle of 90 . After that, for a correct adjustment, the light beam from the helium neon laser 19 has the same radiation path as the light beam or heat beam from the carbondioxide laser 11 and hits the lens system 17 and is focused to the same point on the clamped portion of the fiber 1 as the beam from the C02-laser 11. For treating an aged silica fiber, first the protective cover thereof, ordinarily a polymer layer, is removed, e. g. chemically, over a segment of the fiber so that the surface of silica material in the cladding of the fiber 1 is exposed. Then this segment of the fiber 1, which is to be treated, is clamped' between the clamps or retainers 3. The helium-neon-laser 15 is started so that it generates a beam of light having a wave length within the visible range. The lens system 17 is adjusted by a direct observation of the visible light from the helium neon laser 19, so that the focused beam (visible as a red spot) hits the fiber 1, or alternatively the slides 5 are displaced, by operating the motors 7, in directions perpendicular to the clamped fiber segment to make the focused visible light beam hit the fiber. Then the slides 5 are moved to an end position as seen in the longitudinal direction of the clamp fiber segment, the slides still moving as one unit maintaining the segment clamped along a straight line. Then also the carbondioxide laser 11 is started. The infrared ray or heat beam therefrom will then also be focused on the fiber 1 at the same location as the ray from the alignment laser 19 and will there heat the fiber strongly over a cross section thereof. The displacement of the slides 5 is started in the longitudinal direction of the clamped segment at the same time as the light beam from the carbondioxide laser hits the fiber, thus moving the segment in the longitudinal direction thereof. The movement is given a suitably adapted velocity and terminates at the other end position of the slides 5, as seen in the longitudinal direction of the fiber segment. During the movement, all of the time, the focused heat beam from the carbondioxide laser 11 thus heats a short region of the clamped fiber segment, as seen in the longitudinal direction of the fiber 1, the region being moved at a constant velocity along the fiber segment located between the fiber retainers 3. The light or heat ray from the carbondioxide laser 11 and the movement velocity of the slides 5 and thus of the clamped fiber segment are adjusted so that the surface of the optical fiber after the heating will have a smooth, shiny appearance. The temperature, at which the surface of the optical fiber 1 is heated, can be estimated to be close to the softening temperature of the silica glass or generally near the melt temperature of the material in the silica fiber 1. The treated region of the fiber 1 will hereby get improved mechanical characteristics, in particular an improved tensile strength. In a practical experiment an aged fiber having a tensile strength comprising approximately 2 GPa obtained, by a treatment according the description above, a region having a tensile strength comprising approximately 5 GPa, i. e. the tensile strength was more than doubled within the heated segment of the fiber. Then the segment of the fiber can be mechanically handled and treated and in particular the fiber segment can be cut off at a suitable position and spliced to another optical fiber. The cutting operation can be performed in same splicing machine if there are facilities therefor, such as cutting blade 22 movable along suitable guides, not shown, in a direction perpendicular to the clamped fiber segment. Otherwise the retainers 3 are released from the slides 5 and then one retainer is placed in a separate fiber cutter, not shown. Then this retainer with the cut and treated remaining segment of the fiber is again placed on a slide 5. A new optical fiber which has been prepared for splicing is mounted in a retainer 3 and it is placed on the other slide 5. Then the fiber ends are spliced to each other in the conventional way. Thus the slides 5 are moved independently of each other to position the fiber end surfaces essentially at each other and aligned with each other and then an electric arc is generated between two high voltage, welding electrodes 23 which are energized from a high voltage supply 25. Instead of using the light beam from the carbondioxide laser 17 for heating the fiber segment, the heating can also be provided by the electric arc generated between the welding electrodes 23. Then also an automatic image processing and control of the movements of the slides 5, which is conventionally arranged in automatic fiber splicing machines, can be used in the heat processing of the clamped fiber segment for heating it to the desired temperature by both a control of the heating effect of the electric arc and the transport of the clamped fiber segment.
Claims
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
SE9401077A SE515665C2 (en) | 1994-03-30 | 1994-03-30 | Recovery of the aging fiber's breaking strength |
SE9401077 | 1994-03-30 | ||
PCT/SE1995/000339 WO1995027225A1 (en) | 1994-03-30 | 1995-03-30 | Splicing aged optical fibers |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0701705A1 true EP0701705A1 (en) | 1996-03-20 |
EP0701705B1 EP0701705B1 (en) | 2000-02-09 |
Family
ID=20393484
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP95914663A Expired - Lifetime EP0701705B1 (en) | 1994-03-30 | 1995-03-30 | Splicing aged optical fibers |
Country Status (7)
Country | Link |
---|---|
US (1) | US5649040A (en) |
EP (1) | EP0701705B1 (en) |
JP (1) | JP3531936B2 (en) |
AU (1) | AU2155695A (en) |
DE (1) | DE69514971T2 (en) |
SE (1) | SE515665C2 (en) |
WO (1) | WO1995027225A1 (en) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1170606A1 (en) | 2000-07-06 | 2002-01-09 | Corning Incorporated | Multiple planar complex optical devices and the process of manufacturing the same |
DE10045264A1 (en) * | 2000-09-13 | 2002-03-21 | Zeiss Carl | Method for heating a workpiece, in particular an optical element |
US6866429B2 (en) | 2001-09-26 | 2005-03-15 | Np Photonics, Inc. | Method of angle fusion splicing silica fiber with low-temperature non-silica fiber |
US6705771B2 (en) | 2001-09-26 | 2004-03-16 | Np Photonics, Inc. | Method of fusion splicing silica fiber with low-temperature multi-component glass fiber |
SE522255C2 (en) * | 2002-02-26 | 2004-01-27 | Ericsson Telefon Ab L M | Apparatus and method for melting the ends of two optical fibers |
US7029187B2 (en) * | 2002-05-31 | 2006-04-18 | Corning Incorporated | Optical fiber splice manufacturing process |
EP1563329A2 (en) * | 2002-11-20 | 2005-08-17 | Vytran Corporation | Method for expanding the mode-field diameter of an optical fiber and for forming low optical loss splices |
US8070369B2 (en) | 2003-01-10 | 2011-12-06 | Weatherford/Lamb, Inc. | Large diameter optical waveguide splice |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2538313C3 (en) * | 1975-08-28 | 1981-11-05 | Heraeus Quarzschmelze Gmbh, 6450 Hanau | Process for the production of a preliminary product for the production of an optical, self-focusing light guide |
DE2817651A1 (en) * | 1978-04-21 | 1979-10-31 | Siemens Ag | PROCESS FOR INCREASING THE BREAKTHROUGH STRENGTH OF GLASS FIBERS |
JPS623208A (en) * | 1985-06-28 | 1987-01-09 | Sumitomo Electric Ind Ltd | Connecting method for optical fibers |
JPS6261010A (en) * | 1985-09-12 | 1987-03-17 | Kokusai Denshin Denwa Co Ltd <Kdd> | Fusion splicing method for optical fibers |
CA1324260C (en) * | 1988-08-30 | 1993-11-16 | William Donald O'brien, Jr. | Methods of and apparatus for heating glassy tubes |
US5061265A (en) * | 1989-06-20 | 1991-10-29 | University Of Florida | Laser treatment apparatus and method |
DE4041150A1 (en) | 1990-12-21 | 1992-06-25 | Kabelmetal Electro Gmbh | Fibre optic reheater - uses laser beam with reflector focus within drawing stage |
US5566262A (en) * | 1993-05-14 | 1996-10-15 | The Furukawa Electric Co., Ltd. | Optical fiber array and a method of producing the same |
-
1994
- 1994-03-30 SE SE9401077A patent/SE515665C2/en not_active IP Right Cessation
-
1995
- 1995-03-30 EP EP95914663A patent/EP0701705B1/en not_active Expired - Lifetime
- 1995-03-30 JP JP52560995A patent/JP3531936B2/en not_active Expired - Lifetime
- 1995-03-30 US US08/553,540 patent/US5649040A/en not_active Expired - Lifetime
- 1995-03-30 WO PCT/SE1995/000339 patent/WO1995027225A1/en active IP Right Grant
- 1995-03-30 AU AU21556/95A patent/AU2155695A/en not_active Abandoned
- 1995-03-30 DE DE69514971T patent/DE69514971T2/en not_active Expired - Lifetime
Non-Patent Citations (1)
Title |
---|
See references of WO9527225A1 * |
Also Published As
Publication number | Publication date |
---|---|
JP3531936B2 (en) | 2004-05-31 |
SE9401077L (en) | 1995-10-01 |
JPH08511360A (en) | 1996-11-26 |
AU2155695A (en) | 1995-10-23 |
US5649040A (en) | 1997-07-15 |
EP0701705B1 (en) | 2000-02-09 |
SE9401077D0 (en) | 1994-03-30 |
SE515665C2 (en) | 2001-09-17 |
DE69514971T2 (en) | 2000-06-08 |
DE69514971D1 (en) | 2000-03-16 |
WO1995027225A1 (en) | 1995-10-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8052836B2 (en) | Laser-based methods of stripping fiber optic cables | |
EP0687928B1 (en) | Splicing optical fibers | |
US5161207A (en) | Optical fiber circumferentialy symmetric fusion splicing and progressive fire polishing | |
US4954152A (en) | High strength optical fiber splice | |
EP2989493B1 (en) | Preterminated fiber optic connector sub-assemblies, and related fiber optic connectors, cable assemblies, and methods | |
JP3073520B2 (en) | Optical fiber high strength connection method and connection device | |
JPS63282707A (en) | Method and device for lap-joining optical fiber | |
US5649040A (en) | Splicing aged optical fibers | |
US7144165B2 (en) | Fiber splicer | |
WO2010118106A1 (en) | Method and apparatus for cleaving and chamfering optical fiber | |
US20150192738A1 (en) | Optical fiber processing system using a co2 laser | |
US20110146071A1 (en) | Thermal rounding shaped optical fiber for cleaving and splicing | |
CA2164098C (en) | Splicing aged optical fibers | |
CA2746207A1 (en) | Fiber ball lens apparatus and method | |
JP2003043288A (en) | Method and device for lump processing of coated optical fiber for optical fiber tape | |
WO2020066190A1 (en) | Method for fusion splicing optical fiber, optical fiber, and fusing device | |
JP4080309B2 (en) | Fusion splicing method of optical fiber | |
EP1154295A2 (en) | Method of fabricating optical fiber fusion splice and optical device | |
JP3607642B2 (en) | Optical fiber fusion splicer | |
KR940007340Y1 (en) | Automated laser fusion system for high strength optical fiber splicing | |
JP2004239966A (en) | Optical fiber coupler, and manufacturing method and manufacturing equipment therefor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 19951110 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): DE FR GB NL |
|
17Q | First examination report despatched |
Effective date: 19980720 |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE FR GB NL |
|
REF | Corresponds to: |
Ref document number: 69514971 Country of ref document: DE Date of ref document: 20000316 |
|
ET | Fr: translation filed | ||
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
REG | Reference to a national code |
Ref country code: GB Ref legal event code: IF02 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20140326 Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20140317 Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20140327 Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20140327 Year of fee payment: 20 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R071 Ref document number: 69514971 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: V4 Effective date: 20150330 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: PE20 Expiry date: 20150329 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION Effective date: 20150329 |