EP0691901A1 - Installation et procede de decoupage par jet de fluide cryogenique - Google Patents

Installation et procede de decoupage par jet de fluide cryogenique

Info

Publication number
EP0691901A1
EP0691901A1 EP94912580A EP94912580A EP0691901A1 EP 0691901 A1 EP0691901 A1 EP 0691901A1 EP 94912580 A EP94912580 A EP 94912580A EP 94912580 A EP94912580 A EP 94912580A EP 0691901 A1 EP0691901 A1 EP 0691901A1
Authority
EP
European Patent Office
Prior art keywords
cryogenic fluid
fluid jet
cutting
temperature
pressure compressor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP94912580A
Other languages
German (de)
English (en)
Inventor
R. Geo Res. S.A.R.L. Grudzinski
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Geofinanciere SA
Original Assignee
GEO RESEARCH Sarl
GEO RESEARCH SARL
Geofinanciere SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from FR9303931A external-priority patent/FR2703292B1/fr
Priority claimed from FR9303930A external-priority patent/FR2703291B1/fr
Application filed by GEO RESEARCH Sarl, GEO RESEARCH SARL, Geofinanciere SA filed Critical GEO RESEARCH Sarl
Publication of EP0691901A1 publication Critical patent/EP0691901A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C7/00Methods or apparatus for discharging liquefied, solidified, or compressed gases from pressure vessels, not covered by another subclass
    • F17C7/02Discharging liquefied gases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B26HAND CUTTING TOOLS; CUTTING; SEVERING
    • B26FPERFORATING; PUNCHING; CUTTING-OUT; STAMPING-OUT; SEVERING BY MEANS OTHER THAN CUTTING
    • B26F3/00Severing by means other than cutting; Apparatus therefor
    • B26F3/004Severing by means other than cutting; Apparatus therefor by means of a fluid jet
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/01Shape
    • F17C2201/0104Shape cylindrical
    • F17C2201/0109Shape cylindrical with exteriorly curved end-piece
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/01Shape
    • F17C2201/0104Shape cylindrical
    • F17C2201/0119Shape cylindrical with flat end-piece
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/01Shape
    • F17C2201/0138Shape tubular
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/01Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the phase
    • F17C2223/0146Two-phase
    • F17C2223/0153Liquefied gas, e.g. LPG, GPL
    • F17C2223/0161Liquefied gas, e.g. LPG, GPL cryogenic, e.g. LNG, GNL, PLNG
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/03Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the pressure level
    • F17C2223/035High pressure (>10 bar)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/03Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the pressure level
    • F17C2223/036Very high pressure (>80 bar)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/01Propulsion of the fluid
    • F17C2227/0128Propulsion of the fluid with pumps or compressors
    • F17C2227/0157Compressors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2227/00Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
    • F17C2227/03Heat exchange with the fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2250/00Accessories; Control means; Indicating, measuring or monitoring of parameters
    • F17C2250/04Indicating or measuring of parameters as input values
    • F17C2250/0404Parameters indicated or measured
    • F17C2250/0439Temperature

Definitions

  • the present invention relates to an installation and a method of cutting by cryogenic fluid jet.
  • This cutting process is similar to cutting processes using a high-pressure water jet or a jet of fluid loaded with abrasive particles. It has the advantage of not moistening the cut material, which is particularly advantageous for cutting food, or hydrophilic materials. Furthermore, the boiling point of cryogenic fluids is generally significantly below 0 ° C at atmospheric pressure. The process is therefore particularly suitable for cutting frozen products.
  • French Patent No. 2,647,049 describes a process for cutting materials with a fluid, maintained under low pressure in a tank, and compressed at high pressure to form a jet which volatilizes after cutting the material.
  • the object of the present invention is to improve this process, in particular by increasing the efficiency of cutting.
  • the invention relates more particularly to a cryogenic fluid jet cutting installation comprising a storage tank for cryogenic liquid at low pressure, a high-pressure compressor, an ejection nozzle connected by heat-insulating ducts, as well as a heat exchanger. heat disposed between the storage tank and the ejection nozzle for cooling the ejected fluid to a constant set temperature.
  • the functioning 1 heat exchanger is slaved to the signal delivered by a temperature sensor disposed at the inlet of the high-pressure compressor.
  • This embodiment guarantees the permanence of the mechanical efficiency of the jet.
  • the heat exchanger is arranged between the storage tank and the high-pressure compressor.
  • the heat exchanger consists of an enclosure containing liquid nitrogen connected to a vacuum pump causing the expansion of the liquid nitrogen contained in said enclosure.
  • the heat exchanger comprises a primary circuit in which the cryogenic fluid circulating coming from the storage tank, said primary circuit being thermally connected to a secondary circuit in which circulates a fluid coming from a cryogenerator.
  • the heat exchanger is controlled by an electronic circuit connected to the temperature sensor disposed at the inlet of the high-pressure compressor, and comprising an adjustment means for the adjustment of a set point value fixed experimentally.
  • the electronic circuit includes a comparator, one of the inputs of which receives the signal from the temperature sensor and the other inverter input receives a setpoint voltage from the means for adjusting the setpoint temperature.
  • the invention also relates to a method of cutting by jet of cryogenic fluid compressed to a pressure greater than 500 bars and ejected through a calibrated orifice of small diameter.
  • the set temperature is determined experimentally cryogenic fluid at the inlet of the high-pressure compressor by optimizing the mechanical efficiency of the jet, and in that the temperature of the cryogenic fluid is kept equal to the set value by a controlled temperature exchanger.
  • Another object of the invention is to allow industrial cutting of a plurality of elements.
  • Cutting a part involves the relative displacement of the ejection nozzle relative to the part.
  • connection between the high pressure pump and the nozzle is carried out by a high pressure resistant conduit, articulated in a manner avoiding deformation.
  • patent PS3631116 consists in that the duct is movable in rotation around the Z axis thanks to a spiral element and a joint. It explicitly aims to avoid transverse deformations of the high-pressure resistant tube by using a conformation of the duct in the form of a spiral.
  • This document PS363111 ⁇ does not disclose the characteristic relating to the insulation of the duct, which is not very compatible with a spiral conformation, unless it results in excessive congestion of the cutting system and an unacceptable gap between the different nozzles.
  • a second object of the invention is to remedy these drawbacks by allowing multi-cutting with a high performance cryogenic jet.
  • the invention relates more particularly to an installation in which the outlet of the high-pressure compressor is connected to a fixed ramp constituted by a tubular duct with thick insulating wall, to which is connected at least one tubular duct with thick insulating wall whose end opposite to the ramp is secured to a movable plate in a plane substantially perpendicular to the longitudinal axis of said conduit, the ejection nozzle being connected to the movable end of said conduit.
  • a plurality of thick-walled conduits is connected to the fixed ramp, the end of each of said conduits being integral with a movable plate in a plane substantially perpendicular to the longitudinal axis of said conduit, a nozzle ejection being connected to each of the movable ends of said conduits.
  • the thick-walled conduits are surrounded by a sealed envelope, the volume between the sealed envelope and the conduit being connected to a vacuum pump.
  • each of the ejection nozzles is fixed to the plate so as to maintain a constant ejection direction whatever the position of said plate.
  • FIG. 1 shows a schematic view of the installation according to the invention
  • FIG. 2 shows an embodiment of an electronic circuit for controlling the heat exchanger
  • FIG. 4 shows a schematic view of a variant of the installation according to the invention
  • FIG. 5 shows a schematic view of the installation according to the invention
  • FIG. 6 shows a sectional view of the cryogenic fluid ejection system.
  • This installation comprises a storage tank (1) for liquid nitrogen at low pressure and at a temperature corresponding substantially to the boiling temperature, ie at 77.3 ° K at atmospheric pressure.
  • the temperature of liquid nitrogen increases during storage by about 0.5 ° per day due to the heat losses resulting from the lack of insulation.
  • This reservoir (1) is constituted by a cylindrical body with thick walls closed by flanges.
  • This tank is connected via a heat-insulating duct (2) to an intermediate tank (3) of smaller capacity.
  • a valve (4) allows the filling of the intermediate tank (3) to be controlled.
  • This reservoir (5) of gaseous nitrogen makes it possible to raise the pressure of the liquid nitrogen contained in the intermediate reservoir (3) until a sufficient pressure is reached for the booster of the high-pressure compressor which follows. Conventionally, the booster pressure is around 30 bars.
  • the booster pressure is around 30 bars.
  • the valve (7) disposed at the outlet of the intermediate tank is closed during this time.
  • the valve (4) disposed at the inlet of the intermediate tank (3) is closed and the valve (6) connecting the liquid nitrogen tank (5) to the intermediate tank is opened. ).
  • the pressure of liquid nitrogen in the intermediate tank (3) thus increases up to the booster pressure.
  • the outlet valve (7) can then be opened to start a high-pressure compression cycle.
  • the intermediate tank (3) is connected to a temperature exchanger (8) supplied with low temperature primary fluid by a cryogenerator (9), for example helium stirling, or by expansion of liquid nitrogen.
  • a cryogenerator (9) for example helium stirling, or by expansion of liquid nitrogen.
  • This temperature exchanger (8) has the function of lowering the temperature of liquid nitrogen to a temperature below the boiling temperature, and of regulating the temperature of nitrogen supplying the high-pressure compressor. It is connected to the high-pressure compressor (12) by a pipe (10) provided with a thermally insulated valve (11).
  • a temperature sensor (31) measures the temperature of the cryogenic fluid at the inlet of the high-pressure compressor (12).
  • the signal delivered by the temperature sensor (31) is compared to a setpoint signal delivered by an adjustment device (32) by an electronic circuit (33).
  • This electronic circuit (33) controls the operation of the temperature exchanger (8) so as to keep the temperature of the cryogenic fluid supplying the high-pressure compressor (12) constant and equal to the set temperature.
  • the high-pressure compressor (12) consists of a pressure intensifier using a double-acting piston, having a head
  • the piston consists of a plunger (15) of reduced section, communicating with a chamber (18) supplied with liquid nitrogen at low pressure.
  • the outlet of the booster (12) feeds an ejection nozzle (19) comprising in a known manner a sapphire pierced by a calibrated orifice.
  • the ejection head
  • FIG. 2 represents an exemplary embodiment of an electronic circuit (33). It is composed of a differential operational amplifier (35) one of the inputs of which receives the signal from of the temperature sensor (31) and the other input of which is connected to a variable resistor (36) delivering a setpoint signal. The output of the operational amplifier (35) is connected to a power stage (36) controlling the operation of the engine of the cryogenerator.
  • a differential operational amplifier (35) one of the inputs of which receives the signal from of the temperature sensor (31) and the other input of which is connected to a variable resistor (36) delivering a setpoint signal.
  • the output of the operational amplifier (35) is connected to a power stage (36) controlling the operation of the engine of the cryogenerator.
  • the setting of the set temperature is carried out as follows:
  • a standardized sample for example a plate made of a reference material, and of a standardized thickness, is placed on the cutting tray.
  • the sample is then moved under the jet and the target value is modified by acting empirically on the control means
  • the temperature for liquid nitrogen in equilibrium with the vapor phase is 77.35 ° K.
  • the cycle would be isentropic, and would correspond to the vertical line AA ', the path AA' representing the isentropic compression without any exchange with the outside at the level of the body of the booster (12), and the path A'A representing the nitrogen jet outlet isentropic liquid, without exchange with the outside at the nozzle (19).
  • each transformation leads to an increase in entropy.
  • a point B ' In order to obtain an outlet jet corresponding to a mixture of vapor phase and liquid phase, represented on the temperature-entropy diagram by a point B ', it is necessary to take account of the exchanges and therefore to set the initial operating point at a point C of the liquid-vapor separation curve corresponding to an initial temperature lower than the boiling temperature.
  • the compression in the booster (12 ) is represented by the path CD, reflecting an increase in entropy by loss due to the heat exchanges between the nitrogen and the wall of the booster (12).
  • the expansion occurring at the nozzle (19) is represented by the path DB showing the thermal losses due to rolling.
  • the vapor pressure is less than 1 bar, and the ejected fluid is therefore completely liquid, with no vapor phase.
  • the operating point C of the nitrogen introduced into the booster is adjusted so that the operating point B "at the outlet of the nozzle (19) is very slightly beyond the equilibrium point corresponding to a temperature of 77.3 ° K at atmospheric pressure, so that the fluid has a proportion of gaseous phase between 1 and 20% by volume.
  • the fluid will thus behave like a charged liquid bubbles producing a mechanical erosion effect on contact with the material to be cut. Maintaining the optimum operating point B "will be obtained by controlling the cooling temperature by the temperature exchanger (8).
  • FIG. 4 shows an alternative embodiment of the installation.
  • the liquid nitrogen is cooled before entering the booster (12) by circulation in an enclosure (41) containing liquid nitrogen coming from the storage tank (1).
  • This enclosure is connected to a vacuum pump (42) creating a vacuum causing expansion of the liquid nitrogen, and therefore a lowering of the temperature.
  • a pressure of 0.3 bar causes the temperature to drop by 8 °.
  • the temperature sensor (31) delivers a signal to an electronic circuit (33) also receiving a signal from a means for adjusting (32) the set value.
  • the output of the electronic circuit (33) controls the operation of the vacuum pump, as well as the operation of a valve disposed between the vacuum pump (42) and the enclosure (41).
  • FIGS. 5 and 6 relate to an alternative embodiment of a multi-nozzle cryogenic jet cutting installation.
  • the nozzle (69) is supplied with cryogenic fluid under pressure through a thick-walled conduit (74).
  • This conduit is constituted by a stainless steel tube having an internal diameter of 1.6 millimeters and an external diameter of 6.35 millimeters.
  • the pipe (74) is surrounded by an insulating sleeve connected to the liquid nitrogen tank (53) by a pipe (72) insulated by an insulation sleeve (73).
  • the upstream end (75) of the duct (74) connecting the booster (62) to the nozzle (69) is fixed.
  • the opposite end closest to the nozzle (69) is movable in a plane perpendicular to the longitudinal axis to the conduit (74).
  • a motor (77) mounted on a frame (not shown) causes the nozzle (69) to move in a direction perpendicular to the plane of the figure.
  • the elasticity of the conduit (74) allows a lateral movement whose amplitude depends on the length of the conduit
  • a duct made of stainless steel allows lateral movement of the movable end of approximately 50 millimeters for a length of 80 centimeters.
  • the workpiece (80) is moved in a direction perpendicular to the axis of the jet and to the direction of movement of the nozzle (69) via a conveyor (81), for example a roller conveyor.
  • a conveyor for example a roller conveyor.
  • the combination of the two movements makes it possible to follow any cutting line.
  • FIG. 6 represents a view of the ejection system comprising several ejection nozzles (90 to 93).
  • the outlet of the booster (112) is connected to a supply ramp (94).
  • This feed ramp consists of a plurality of tubular segments (95 to 98).
  • the tubular segments (95 to 98) are connected together in a known manner.
  • Each of the tubular segments (95 to 98) has a branch opening into a conduit (99 to 102) supplying one of the nozzles (90 to 93) with high pressure cryogenic fluid.
  • Each of the conduits (99 to 102) is surrounded by a bellows envelope (103 to 106), opening onto the sleeve (107 to 110) surrounding the corresponding tubular segment (95 to 98).
  • the nozzles (90 to 93) are integral with a plate (111) supporting the drive mechanisms (112 to 115).
  • the plate (111) is fixed relative to the ramp (94).
  • the drive mechanism (112 to 115) ensures the lateral displacement of the corresponding nozzle (90 to 93), and therefore causes a deformation of the corresponding conduit (99 to 102).
  • the nozzle (92) disposed at the end of the conduit (101) is moved to the right, which causes a longitudinal deformation of the conduit (101) of which the two ends retain the original orientation.
  • the upstream end remains perpendicular to the horizontal plane passing through the ramp (94).
  • the downstream end remains perpendicular to the plate (111).
  • the intermediate part of the conduit (101) takes a regular curvature determined by the mechanical characteristics of the material constituting the conduit.
  • conduit (102) is deformed in the opposite direction due to the displacement of the corresponding nozzle (93) to the right.
  • the material to be cut (116) is moved in the plane parallel to the plate (111) by a conveyor (117).
  • the device shown in Figure 6 allows for four simultaneous cutting lines.
  • the control of the drive mechanisms (112 to 115) of the nozzles (90 to 93) as well as of the conveyor (117) can be controlled by a computer, optionally controlled by the cutting speed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Forests & Forestry (AREA)
  • Perforating, Stamping-Out Or Severing By Means Other Than Cutting (AREA)

Abstract

La présente invention concerne une installation de découpage par jet de fluide cryogénique comportant un réservoir de stockage du liquide cryogénique à basse pression, un compresseur haute-pression (12), une buse d'éjection (19) reliée par des conduits calorifugés. Le fonctionnement d'un échangeur de chaleur (8) disposé entre le réservoir de stockage (1) et la buse d'éjection (19) pour le refroidissement du fluide éjecté à une température de consigne constante est asservi au signal délivré par un capteur de température (31) disposé à l'entrée du compresseur haute-pression (12). L'invention concerne également le procédé de découpe mis en oeuvre par ladite installation.

Description

INSTILLATION ET PROCEDE DE DECOUPAGE PAR JET DE FLUIDE CRYOGENIQUE.
La présente invention concerne une installation et un procédé de découpage par jet de fluide cryogénique.
Ce procédé de découpage s'apparente aux procédés de découpage à jet d'eau haute-pression ou à jet de fluide chargé de particules abrasives. Il présente l'avantage de ne pas humidifier le matériau découpé, ce qui est particulièrement avantageux pour la découpe d'aliments, ou de matériaux hydrophiles. Par ailleurs, la température d'ébullition des fluides cryogéniques est généralement nettement inférieure à 0°C à la pression atmosphérique. Le procédé est de ce fait particulièrement adapté à la découpe de produits congelés.
On a décrit dans l'art antérieur un procédé de découpe par jet volatil. En particulier, le brevet français n° 2.647.049 décrit un procédé de découpe de matériaux par un fluide, maintenu sous basse pression dans un réservoir, et comprimé à haute pression pour former un jet qui se volatilise après avoir découpé le matériau.
Le but de la présente invention est d'améliorer ce procédé, notamment par un accroissement de l'efficacité de la découpe.
L'invention concerne plus particulièrement une installation de découpage par jet de fluide cryogénique comportant un réservoir de stockage du liquide cryogénique à basse pression, un compresseur haute-pression, une buse d'éjection reliée par des conduits calorifuges, ainsi qu'un échangeur de chaleur disposé entre le réservoir de stockage et la buse d'éjection pour le refroidissement du fluide éjecté à une température de consigne constante. Le fonctionnement de 1 'échangeur de chaleur est asservi au signal délivré par un capteur de température disposé à l'entrée du compresseur haute-pression.
Ce mode de réalisation permet de garantir la permanence de l'efficacité mécanique du jet.
Selon un mode de réalisation préféré, l' échangeur de chaleur est disposé entre le réservoir de stockage et le compresseur haute-pression. Selon une première variante, 1 ' échangeur de chaleur est constitué par une enceinte contenant de l'azote liquide reliée à une pompe à vide provoquant la détente de l'azote liquide contenu dans ladite enceinte.
Selon une deuxième variante, l' échangeur de chaleur comporte un circuit primaire dans lequel circule le fluide cryogénique provenant du réservoir de stockage, ledit circuit primaire étant relié thermiquement à un circuit secondaire dans lequel circule un fluide provenant d'un cryognérateur .
Avantageusement, l' échangeur de chaleur est commandé par un circuit électronique relié au capteur de température disposé à l'entrée du compresseur haute- pression, et comportant un moyen de réglage pour l'ajustement d'une valeur de consigne fixée expérimentalement . De préférence, le circuit électronique comporte un comparateur dont l'une des entrées reçoit le signal provenant au capteur de température et l'autre entrée inverseur reçoit une tension de consigne provenant du moyen d'ajustage de la température de consigne.
L'invention concerne également un procédé de découpage par jet de fluide cryogénique comprimé à une pression supérieure à 500 bars et éjecté à travers un orifice calibré de faible diamètre. Selon ce procédé, on détermine expérimentalement la température de consigne du fluide cryogénique à l'entrée du compresseur haute- pression par optimisation de l'efficacité mécanique du jet, et en ce qu'on maintient la température du fluide cryogénique égale à la valeur de consigne par un échangeur de température asservi.
Un autre but de l'invention est de permettre la découpe industrielle d'une pluralité d'éléments.
La découpe d'une pièce implique le déplacement relatif de la buse d'éjection par rapport à la pièce.
Compte tenu de la pression du fluide à la sortie du compresseur qui dépasse habituellement 1000 bars, et de la température très basse du fluide éjecté, on a proposé dans l'art antérieur, de raccorder la buse au compresseur avec un conduit de faible longueur, et de déplacer la pièce dans un plan perpendiculaire à l'axe d'éjection du fluide.
Cette solution est satisfaisante pour une utilisation expérimentale ou pour des faibles cadences de découpages. Par contre, elle ne permet pas de découper des séries importantes de pièces dans un matériau de grande dimension.
Une autre solution a été divulguée par le brevet allemand PS3631116. Ce document divulgue un dispositif de découpe comportant une buse mobile dans un plan X-Y.
La liaison entre la pompe haute-pression et la buse est réalisée par un conduit résistant aux hautes pressions, articulé d'une manière évitant les déformations.
La solution divulguée par le brevet PS3631116 consiste en ce que le conduit est mobile en rotation autour de l'axe Z grâce à un élément en spirale et une articulation. Elle vise explicitement à éviter les déformations transversales du tube résistant aux hautes- pression en utilisant une conformation du conduit en forme de spirale. Ce document PS363111β ne divulgue pas la caractéristique relative au calorifugeage du conduit, peu compatible avec une conformation en spirale, sauf à aboutir à un enco brement excessif du système de découpe et à un écartement rédhibitoire des différentes buses. Un second but de l'invention est de remédier à ces inconvénients en permettant la multi-découpe avec un jet cryogénique de haute performance.
A cet effet, l'invention concerne plus particulièrement une installation dans laquelle la sortie du compresseur haute-pression est raccordée à une rampe fixe constituée par un conduit tubulaire à paroi épaisse calorifuge, sur laquelle est raccordé au moins un conduit tubulaire à paroi épaisse calorifuge dont l'extrémité opposée à la rampe est solidaire d'une platine mobile dans un plan sensiblement perpendiculaire à l'axe longitudinal dudit conduit, la buse d'éjection étant raccordée sur l'extrémité mobile dudit conduit.
La force exercée par la platine sur l'extrémité du conduit à paroi épaisse, l'autre extrémité étant fixe, provoque une déformation du conduit, cette déformation étant réversible si l'on respecte les limites d'élasticité dudit conduit.
Selon un mode de réalisation préféré, une pluralité de conduits à paroi épaisse est raccordée à la rampe fixe, l'extrémité de chacun desdits conduits étant solidaire d'une platine mobile dans un plan sensiblement perpendiculaire à l'axe longitudinal dudit conduit, une buse d'éjection étant raccordée à chacune des extrémités mobiles desdits conduits. Avantageusement, les conduits à paroi épaisse sont entourés par une enveloppe étanche, le volume compris entre l'enveloppe étanche et le conduit étant relié à une pompe à vide. Selon un mode de mise en oeuvre préféré, chacune des buses d'éjection est fixée sur la platine de façon à maintenir une direction d'éjection constante quelque soit la position de ladite platine.
L'invention sera mieux comprise à la lecture de la description qui suit, faisant référence aux dessins où :
- la figure 1 représente une vue schématique de l'installation selon l'invention ;
- la figure 2 représente un exemple de réalisation d'un circuit électronique pour la commande de l'échangeur de chaleur ;
- la figure 3 représente le diagramme température-entropie du fluide cryogénique ;
- la figure 4 représente une vue schématique d'une variante de l'installation selon l'invention ;
- la figure 5 représente une vue schématique de l'installation selon l'invention ;
- la figure 6 représente une vue en coupe du système d'éjection de fluide cryogénique. L'installation dont un exemple de réalisation est décrit en référence à la figure 1. Cette installation comporte un réservoir de stockage (1) de l'azote liquide à basse pression et à une température correspondant sensiblement à la température d'ébullition, soit à 77,3°K à la pression atmosphérique. La température de l'azote liquide augmente en cours de stockage d'environ 0,5° par jour en raison des déperditions calorifiques résultant du défaut d'isolation. Ce réservoir (1) est constitué par un corps cylindrique à parois épaisses fermées par des flasques. Ce réservoir est relié par l'intermédiaire d'un conduit calorifuge (2) à un réservoir intermédiaire (3) de plus petite capacité. Une vanne (4) permet de commander le remplissage du réservoir intermédiaire (3) . Un réservoir (5) d'azote gazeux contenant de l'azote à basse pression, par exemple à environ 30 bars, est également relié au réservoir intermédiaire (3) . Ce réservoir (5) d'azote gazeux permet d'élever la pression de l'azote liquide contenue dans le réservoir intermédiaire (3) jusqu'à atteindre une pression suffisante pour le gavage du compresseur haute-pression qui suit. Classiquement, la pression de gavage est d'environ 30 bars. Pour atteindre cette pression, on commence par remplir le réservoir intermédiaire (3) par ouverture de la vanne (4) . La vanne (7) disposée à la sortie du réservoir intermédiaire est fermée pendant ce temps. Lorsque la pression d'équilibre est atteinte, on ferme la vanne (4) disposée à l'entrée du réservoir intermédiaire (3) et on ouvre la vanne (6) reliant le réservoir d'azote liquide (5) au réservoir intermédiaire (3) . La pression de l'azote liquide du réservoir intermédiaire (3) augmente ainsi jusqu'à la pression de gavage. La vanne de sortie (7) peut alors être ouverte pour commencer un cycle de compression haute-pression.
Le réservoir intermédiaire (3) est relié à un échangeur de température (8) alimenté en fluide primaire basse température par un cryogénérateur (9), par exemple stirling à hélium, ou par détente d'azote liquide.
Cet échangeur de température (8) a pour fonction d'abaisser la température de l'azote liquide à une température inférieure à la température d'ébullition, et de réguler la température de l'azote alimentant le compresseur haute-pression. Il est raccordé au compresseur haute-pression (12) par un conduit (10) muni d'une vanne (11) calorifugée.
Un capteur de température (31) mesure la température du fluide cryogénique à l'entrée du compresseur haute-pression (12) .
Le signal délivré par le capteur de température (31) est comparé à un signal de consigne délivré par un dispositif de réglage (32) par un circuit électronique (33) . Ce circuit électronique (33) commande le fonctionnement de 1 'échangeur de température (8) de façon à maintenir la température du fluide cryogénique alimentant le compresseur haute-pression (12) constante et égale à la température de consigne. Le compresseur haute-pression (12) est constitué par un intensificateur de pression mettant en oeuvre un piston à double-effet, présentant une tête
(14) de grande section actionnée par de l'air comprimé provenant d'un réservoir (13) par l'intermédiaire d'un conduit (16) commandé par une vanne (17) . L'autre extrémité du piston est constituée par un piston- plongeur (15) d'une section réduite, communiquant avec une chambre (18) alimentée en azote liquide à basse- pression. La sortie du surpresseur (12) alimente une buse d'éjection (19) comportant de façon connue un saphir percé par un orifice calibré. La tête d'éjection
(20) est entourée d'un manchon isolant relié à une pompe à dépression (39) par un conduit (22) entouré d'un manchon d'isolation (23) . De même, les différents conduits calorifuges sont reliés à la pompe à vide (39)
La figure 2 représente un exemple de réalisation d'un circuit électronique (33) . Il est composé d'un amplificateur opérationnel différentiel (35) dont l'une des entrées reçoit le signal provenant du capteur de température (31) et dont l'autre entrée est reliée à une résistance variable (36) délivrant un signal de consigne. La sortie de l'amplificateur opérationnel (35) est reliée à un étage de puissance (36) commandant le fonctionnement du moteur du cryogénérateur.
Le réglage de la température de consigne est réalisé comme suit:
Après la mise en fonctionnement de l'installation de découpe, on dispose sur le plateau de découpe un échantillon normalisé, par exemple une plaquette en un matériau de référence, et d'une épaisseur normalisée. On déplace ensuite l'échantillon sous le jet et on modifie la valeur de consigne en agissant de façon empirique sur le moyen de commande
(32) en observant les modifications de la découpe. Le réglage optimum sera considéré comme atteint lorsque l'efficacité mécanique du jet sera maximalisée. Une solution consiste à observer la vitesse maximale de découpe en fonction du réglage de la valeur de consigne. La valeur maximale de découpe est déterminée par un asservissement du déplacement du plateau supportant l'échantillon à la traversée de l'échantillon par le jet de fluide cryogénique. Lorsque la valeur de consigne est déterminée, l'installation est opérationnelle pour un cycle d'utilisation. Le réglage doit être périodiquement revu, en raison des variations dues à 1 'échauffement du fluide cryogénique dans le réservoir de stockage. La figure 3 représente le diagramme température-entropie de l'installation.
A 1 bar, la température pour l'azote liquide en équilibre avec la phase vapeur est de 77,35°K.
Si l'installation était parfaite et ne présentait aucune perte thermique, le cycle serait isentropique, et correspondrait à la droite verticale AA' , le chemin AA' représentant la compression isentropique sans aucun échange avec l'extérieur au niveau du corps du surpresseur (12), et le chemin A'A représentant la sortie de jet d'azote liquide isentropique, sans échange avec l'extérieur au niveau de la buse (19) .
Dans les conditions réelles, chaque transformation entraîne un accroissement d'entropie. Afin d'obtenir un jet de sortie correspondant à un mélange de phase vapeur et de phase liquide, représenté sur le diagramme température- entropie par un point B', il est nécessaire de tenir compte des échanges et donc de fixer le point de fonctionnement initial en un point C de la courbe de séparation liquide-vapeur correspondant à une température initiale inférieure à la température d'ébullition.
Si l'on part d'un point C correspondant à une température Tc inférieure à 77°K, par exemple 72°K pour une pression Pc inférieure à 1 bar, par exemple 0,5 bar, la compression dans le surpresseur (12) est représentée par le chemin CD, traduisant un accroissement d'entropie par perte due aux échanges thermiques entre l'azote et la paroi du surpresseur (12) .
La détente se produisant au niveau de la buse (19) est représentée par le chemin DB faisant apparaître les pertes thermiques dues au laminage. Au point B, la pression de vapeur est inférieure à 1 bar, et le fluide éjecté est donc totalement liquide, sans phase de vapeur.
Si les pertes dans la buse (19) augmentent, le point de fonctionnement se déplace en B' correspondant à une pression de vapeur supérieure à la pression atmosphérique. Dans ce cas, le jet à la sortie de la buse est totalement vaporisé, et perd donc tout effet mécanique de coupe.
Pour obtenir un effet de coupe maximal, on ajuste le point de fonctionnement C de l'azote introduit dans le surpresseur de manière à ce que le point de fonctionnement B" à la sortie de la buse (19) soit très légèrement au-delà du point d'équilibre correspondant à une température de 77,3°K à la pression atmosphérique, de façon à ce que le fluide comporte une proportion de phase gazeuse comprise entre 1 et 20 % en volume. Le fluide se comportera ainsi comme un liquide chargé de bulles produisant un effet mécanique d'érosion au contact du matériau à découper. Le maintien du point de fonctionnement optimal B" sera obtenu par le contrôle de la température de refroidissement par l'échangeur de température (8) .
La figure 4 représente une variante de réalisation de l'installation. Le refroidissement de l'azote liquide avant l'entrée dans le surpresseur (12) est réalisé par circulation dans une enceinte (41) contenant de l'azote liquide provenant du réservoir de stockage (1) . Cette enceinte est reliée à une pompe à vide (42) créant une dépression provoquant une détente de l'azote liquide, et donc un abaissement de la température. A titre d'exemple, une pression de 0,3 bars provoque un abaissement de la température de 8°.
Le capteur de température (31) délivre un signal à un circuit électronique (33) recevant par ailleurs un signal provenant d'un moyen de réglage (32) de la valeur de consigne. La sortie du circuit électronique (33) commande le fonctionnement de la pompe à vide, ainsi que le fonctionnement d'une vanne disposée entre la pompe à vide (42) et l'enceinte (41) . Les figures 5 et 6 concernent une variante de réalisation d'une installation de découpe par jet cryognéique multi-buses.
La buse (69) est alimentée en fluide cryogénique sous pression par un conduit (74) à paroi épaisse. Ce conduit est constitué par un tube en acier inoxydable présentant un diamètre intérieur de 1,6 millimètres et un diamètre extérieur de 6,35 millimètres. Le conduit (74) est entouré par un manchon isolant relié au réservoir d'azote liquide (53) par un conduit (72) calorifuge par un manchon d'isolation (73).
L'extrémité (75) amont du conduit (74) reliant le surpresseur (62) à la buse (69) est fixe. L'extrémité opposée la plus proche de la buse (69) est mobile dans un plan perpendiculaire à l'axe longitudinal au conduit (74) .
Un moteur (77) monté sur un bâti non représenté entraîne le déplacement de la buse (69) selon une direction perpendiculaire au plan de la figure. L'élasticité du conduit (74) permet un débattement latéral dont l'amplitude dépend de la longueur du conduit
(74) et des qualités mécaniques du matériau employé. A titre d'exemple, un conduit réalisé en acier inoxydable dont le diamètre intérieur est de 1, 6 millimètres et dont le diamètre extérieur est de 6,35 millimètres, permet un déplacement latéral de l'extrémité mobile d'environ 50 millimètres pour une longueur de 80 centimètres.
La pièce à découper (80) est déplacée selon une direction perpendiculaire à l'axe du jet et à la direction de déplacement de la buse (69) par l'intermédiaire d'un convoyeur (81), par exemple un convoyeur à galet. La combinaison des deux mouvements permet de suivre une ligne de découpe quelconque.
La figure 6 représente une vue du système d'éjection comportant plusieurs buses d'éjection (90 à 93) . La sortie du surpresseur (112) est reliée a une rampe d'alimentation (94) . Cette rampe d'alimentation est constituée par une pluralité de segments tubulaires (95 à 98) . Les segments tubulaires (95 à 98) sont raccordés entre eux de façon connue. Chacun des segments tubulaires (95 à 98) présente une dérivation débouchant dans un conduit (99 à 102) alimentant l'une des buses (90 à 93) en fluide cryogénique à haute pression.
Chacun des conduits (99 à 102) est entouré par une enveloppe (103 à 106) à soufflet, débouchant sur le manchon (107 à 110) entourant le segment tubulaire (95 à 98) correspondant.
Les buses (90 à 93) sont solidaires d'une platine (111) supportant les mécanismes d'entraînement (112 à 115) . La platine (111) est fixe par rapport à la rampe (94) .
Le mécanisme d'entraînement (112 à 115) assure le déplacement latéral de la buse correspondante (90 à 93), et provoque donc une déformation du conduit (99 à 102) correspondant. Dans l'exemple de réalisation faisant l'objet de la figure 6, la buse (92) disposée à l'extrémité du conduit (101) est déplacée vers la droite, ce qui provoque une déformation longitudinale du conduit (101) dont les deux extrémités conservent l'orientation initiale. L'extrémité amont reste perpendiculaire au plan horizontal passant par la rampe (94) . De même, l'extrémité avale reste perpendiculaire à la platine (111) . La partie intermédiaire du conduit (101) prend une courbure régulière déterminée par les caractéristiques mécaniques du matériau constitutif du conduit.
De même, le conduit (102) est déformé en sens opposé du fait du déplacement de la buse (93) correspondante vers la droite.
Le matériau à découpé (116) est déplacé dans le plan parallèle à la platine (111) par un convoyeur (117) . Le dispositif représenté en figure 6 permet de procéder à quatre lignes de découpes simultanées. Le pilotage des mécanismes d'entraînement (112 à 115) des buses (90 à 93) ainsi que du convoyeur (117) peut être commandé par un calculateur, asservi éventuellement à la vitesse de découpe.
L'invention est décrite dans ce qui précède à titre d'exemple non limitatif. Il est bien entendu que l'Homme de Métier sera à même de réaliser diverses variantes sans pour autant sortir du cadre de
1'invention.

Claims

REVENDICATIONS
1 - Installation de découpage par jet de fluide cryogénique comportant un réservoir de stockage du liquide cryogénique à basse pression, un compresseur haute-pression (12), une buse d'éjection (19) reliée par des conduits calorifuges, caractérisé en ce qu'elle comporte en outre un échangeur de chaleur (8) disposé entre le réservoir de stockage (1) et la buse d'éjection (19) pour le refroidissement du fluide éjecté à une température de consigne constante, ledit échangeur de chaleur étant asservi au signal délivré par un capteur de température (31) disposé à l'entrée du compresseur haute-pression (12) .
2 - Installation de découpage par jet de fluide cryogénique selon la revendication 1, caractérisé en ce que l'échangeur de chaleur (8) est disposé entre le réservoir de stockage (1) et le compresseur haute- pression (12) .
3 - Installation de découpage par jet de fluide cryogénique selon la revendication 1 ou selon la revendication 2 caractérisé en ce que l'échangeur de chaleur (8) est constitué par une enceinte (41) contenant de l'azote liquide reliée à une pompe à vide (42) provoquant la détente de l'azote liquide contenue dans ladite enceinte.
4 - Installation de découpage par jet de fluide cryogénique selon la revendication 1 ou selon la revendication 2 caractérisé en ce que l'échangeur de chaleur (8) comporte un circuit primaire dans lequel circule le fluide cryognéique provenant du réservoir de stockage (1), ledit circuit primaire étant relié thermiquement à un circuit secondaire dans lequel circule un fluide provenant d'un cryognérateur.
5 - Installation de découpage par jet de fluide cryogénique selon l'une quelconque des revendications précédentes caractérisée en ce que 1 'échangeur de chaleur (8) est commandé par un circuit électronique relié au capteur de température (31) disposé à l'entrée du compresseur haute-pression, et comportant un moyen de réglage pour l'ajustement d'une valeur de consigne fixée expérimentalement.
6 - Installation de découpage par jet de fluide cryogénique selon la revendication précédente caractérisée en ce que le circuit électronique comporte un amplificateur différentiel (37) dont l'une des entrées reçoit le signal provenant au capteur de température (31) et l'autre entrée inverseuse reçoit un signal de consigne (35) provenant du moyen d'ajustage de la température de consigne.
7 - Procédé de découpage par jet de fluide cryogénique comprimé à une pression supérieure à 500 bars et éjecté à travers un orifice calibré de faible diamètre, caractérisé en ce que l'on détermine expérimentalement la température de consigne du fluide cryogénique à l'entrée du compresseur haute-pression par optimisation de l'efficacité mécanique du jet, et en ce que l'on maintienne la température du fluide cryogénique égale à la valeur de consigne par un échangeur de température asservi.
8 - Installation de découpage par jet de fluide cryogénique selon l'une quelconque des revendication précédentes caractérisé en ce qu'elle comporte au moins une buse d'éjection (90 à 93) solidaire d'une platine (111) mobile dans un plan sensiblement perpendiculaire à l'axe longitudinal dudit conduit (99 à 102) , la buse d'éjection (90 à 93) étant reliée au compresseur haute-pression par un conduit tubulaire (99 à 102) à paroi épaisse calorifuge raccordée à une rampe (94) fixe constituée par un conduit tubulaire à paroi épaisse calorifugée.
9 - Installation de découpage par jet de fluide cryogénique selon la revendication 8 caractérisé en ce qu'une pluralité de conduits (99 à 102) à paroi épaisse sont recordés à la rampe fixe (94), l'extrémité de chacun desdits conduits étant solidaire d'une platine mobile dans un plan sensiblement perpendiculaire à l'axe longitudinal dudit conduit, une buse d'éjection étant raccordée à chacune des extrémités mobiles desdits conduits .
10 - Installation de découpage par jet de fluide cryogénique selon la revendication 8 ou selon la revendication 9 caractérisé en ce que les conduits a paroi épaisse sont entourés par une enveloppe étanche rigide à soufflets réalisée en un matériau thermiquement isolant.
11 - Installation de découpage par jet de fluide cryogénique selon la revendication 10 caractérisé en ce que le volume entre l'enveloppe à soufflets et le conduit tubulaire est relié à une pompe à vide.
EP94912580A 1993-04-02 1994-03-31 Installation et procede de decoupage par jet de fluide cryogenique Withdrawn EP0691901A1 (fr)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
FR9303931A FR2703292B1 (fr) 1993-04-02 1993-04-02 Installation et procédé de découpage par jet de fluide cryogénique.
FR9303930A FR2703291B1 (fr) 1993-04-02 1993-04-02 Installation de découpage par jet de fluide cryogénique.
FR9303931 1993-04-02
FR9303930 1993-04-02
PCT/FR1994/000369 WO1994022646A1 (fr) 1993-04-02 1994-03-31 Installation et procede de decoupage par jet de fluide cryogenique

Publications (1)

Publication Number Publication Date
EP0691901A1 true EP0691901A1 (fr) 1996-01-17

Family

ID=26230222

Family Applications (1)

Application Number Title Priority Date Filing Date
EP94912580A Withdrawn EP0691901A1 (fr) 1993-04-02 1994-03-31 Installation et procede de decoupage par jet de fluide cryogenique

Country Status (3)

Country Link
EP (1) EP0691901A1 (fr)
JP (1) JPH08511205A (fr)
WO (1) WO1994022646A1 (fr)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2306195A (en) * 1994-05-05 1995-11-29 Unilever Plc Method of dividing a food block into portions
CN110080764B (zh) * 2019-05-29 2024-01-26 河南理工大学 液氮增压装置、使用该装置的增透实验系统及实验方法
ES2955791T3 (es) 2019-06-07 2023-12-07 Arcedi Biotech Aps Aislamiento de células fetales usando FACS

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2042398B (en) * 1979-01-15 1982-09-22 Boc Ltd Method and apparatus for penetrating a body of material or treating a surface
ATE19699T1 (de) * 1982-03-20 1986-05-15 Vaillant Gmbh Sollwertgeber fuer einen temperaturregler.
DE3300297C2 (de) * 1983-01-07 1986-07-10 Danfoss A/S, Nordborg Vorrichtung zum Fördern von Flüssiggas
SU1158995A1 (ru) * 1983-01-11 1985-05-30 Предприятие П/Я А-3903 Устройство дл регулировани температуры
FR2582785B1 (fr) * 1985-04-26 1989-04-28 Agliani Philippe Installation autonome de refroidissement de fluide gazeux tel que de l'air
DE3631116C1 (en) * 1986-09-12 1988-02-25 Duerkopp System Technik Gmbh Arrangement of the high-pressure pipe for the liquid feed of a very high-pressure fluid jet cutting system
DE3803112A1 (de) * 1988-02-03 1989-08-17 Kabelmetal Electro Gmbh Leitungsrohr zum transport von tiefgekuehlten medien
DE3827417C1 (fr) * 1988-08-12 1989-08-31 Messer Griesheim Gmbh, 6000 Frankfurt, De
FR2647049B1 (fr) * 1989-05-18 1995-04-14 Grudzinski Richard Procede de decoupe de materiaux utilisant un jet de liquide volatil
CA1312274C (fr) * 1989-08-08 1993-01-05 Converdis Inc. Perforatrice a grande vitesse pour perforer des motifs repetitifs et predetermines dans une laize en mouvement continu
US5062898A (en) * 1990-06-05 1991-11-05 Air Products And Chemicals, Inc. Surface cleaning using a cryogenic aerosol

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9422646A1 *

Also Published As

Publication number Publication date
JPH08511205A (ja) 1996-11-26
WO1994022646A1 (fr) 1994-10-13

Similar Documents

Publication Publication Date Title
EP1097663B1 (fr) Dispositif et procédé de chauffage en continu d'un liquide à une température constante
EP0376823B1 (fr) Procédé et dispositif de régulation d'un débit de CO2 liquide, et application à un tunnel de refroidissement
FR2678527A1 (fr) Appareil de stockage et de projection de billes de glace.
EP2831490B1 (fr) Dispositif et procédé de remplissage de réservoir
EP0988495A1 (fr) Procede et installation de refroidissement du contenu d'une enceinte
EP0235017A1 (fr) Procédé et installation pour fournir de l'anhydride carbonique sous haute pression
FR2684437A1 (fr) Echangeur de chaleur, notamment pour reacteurs hypersoniques, comportant un entretoisement pour les tubes de sa matrice.
FR3111416A1 (fr) Desurchauffeur de fluide frigorigene sous forme gazeuse et installation mettant en œuvre un cycle frigorifique associee
WO1994022646A1 (fr) Installation et procede de decoupage par jet de fluide cryogenique
FR2549743A1 (fr) Dispositif et procede de projection pour former des refractaires
EP0968387B1 (fr) Procede et installation de remplissage d'un reservoir sous pression
EP0166655B1 (fr) Procédé et installation de refroidissement, au moyen d'un fluide frigorigène d'une poudre
FR2588067A1 (fr) Procede et tunnel de refroidissement superficiel de produits alimentaires
BE1009829A3 (fr) Machine a vis pour fluide a sec.
EP0318352B1 (fr) Lance à neige carbonique pour la métallurgie
FR2703292A1 (fr) Installation et procédé de découpage par jet de fluide cryogénique.
FR2703291A1 (fr) Installation de découpage par jet de fluide cryogénique.
FR2734624A1 (fr) Dispositif d'injection de liquide sous pression dans une enceinte
EP0441710A1 (fr) Dispositif de maintien et de regulation en temperature
FR2580384A1 (fr) Appareil de refroidissement cryogenique
CH522127A (fr) Turbine à gaz et procédé de mise en action de cette turbine
FR2904401A1 (fr) Procede et dispositif d'alimentation en gaz d'une installation
EP3994412A1 (fr) Système et procédé de nettoyage par ondes de choc pour échangeur thermique d'une chaudière
FR2506443A3 (fr) Appareil d'echange thermique centrifuge a film liquide
BE1003665A6 (fr) Dispositif et procede pour le refroidissement module d'un element cylindrique en defilement.

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19951026

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LI LU MC NL PT SE

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

17Q First examination report despatched

Effective date: 19960520

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: COMPAGNIE GEOFINANCIERE SA

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 19970129