EP0690065B1 - Halogenated biphenyl-2,2'-diyl-bis-diphenylphosphines, their preparation and use - Google Patents
Halogenated biphenyl-2,2'-diyl-bis-diphenylphosphines, their preparation and use Download PDFInfo
- Publication number
- EP0690065B1 EP0690065B1 EP95109922A EP95109922A EP0690065B1 EP 0690065 B1 EP0690065 B1 EP 0690065B1 EP 95109922 A EP95109922 A EP 95109922A EP 95109922 A EP95109922 A EP 95109922A EP 0690065 B1 EP0690065 B1 EP 0690065B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- formula
- compound
- solution
- mmol
- nmr
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000002360 preparation method Methods 0.000 title claims description 11
- 229910052731 fluorine Inorganic materials 0.000 claims description 61
- 150000001875 compounds Chemical class 0.000 claims description 42
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 claims description 21
- 238000000034 method Methods 0.000 claims description 14
- MHOVAHRLVXNVSD-UHFFFAOYSA-N rhodium atom Chemical compound [Rh] MHOVAHRLVXNVSD-UHFFFAOYSA-N 0.000 claims description 14
- 239000003054 catalyst Substances 0.000 claims description 12
- 125000001309 chloro group Chemical group Cl* 0.000 claims description 12
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 claims description 11
- 238000009835 boiling Methods 0.000 claims description 11
- 239000011737 fluorine Substances 0.000 claims description 11
- ZUOUZKKEUPVFJK-UHFFFAOYSA-N diphenyl Chemical compound C1=CC=CC=C1C1=CC=CC=C1 ZUOUZKKEUPVFJK-UHFFFAOYSA-N 0.000 claims description 10
- 230000008569 process Effects 0.000 claims description 8
- 238000010992 reflux Methods 0.000 claims description 8
- 239000003446 ligand Substances 0.000 claims description 7
- IMFACGCPASFAPR-UHFFFAOYSA-N tributylamine Chemical compound CCCCN(CCCC)CCCC IMFACGCPASFAPR-UHFFFAOYSA-N 0.000 claims description 7
- 239000000460 chlorine Substances 0.000 claims description 6
- ZCSHNCUQKCANBX-UHFFFAOYSA-N lithium diisopropylamide Chemical compound [Li+].CC(C)[N-]C(C)C ZCSHNCUQKCANBX-UHFFFAOYSA-N 0.000 claims description 6
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 claims description 6
- 229910052723 transition metal Inorganic materials 0.000 claims description 6
- 150000003624 transition metals Chemical class 0.000 claims description 6
- 235000010290 biphenyl Nutrition 0.000 claims description 5
- 239000004305 biphenyl Substances 0.000 claims description 5
- 238000005859 coupling reaction Methods 0.000 claims description 5
- 229910052763 palladium Inorganic materials 0.000 claims description 5
- ZDHXKXAHOVTTAH-UHFFFAOYSA-N trichlorosilane Chemical compound Cl[SiH](Cl)Cl ZDHXKXAHOVTTAH-UHFFFAOYSA-N 0.000 claims description 5
- 239000012442 inert solvent Substances 0.000 claims description 4
- 239000003960 organic solvent Substances 0.000 claims description 4
- MUJIDPITZJWBSW-UHFFFAOYSA-N palladium(2+) Chemical compound [Pd+2] MUJIDPITZJWBSW-UHFFFAOYSA-N 0.000 claims description 4
- 238000006467 substitution reaction Methods 0.000 claims description 4
- 238000007259 addition reaction Methods 0.000 claims description 2
- 238000010438 heat treatment Methods 0.000 claims description 2
- 239000011261 inert gas Substances 0.000 claims description 2
- PNDPGZBMCMUPRI-UHFFFAOYSA-N iodine Chemical compound II PNDPGZBMCMUPRI-UHFFFAOYSA-N 0.000 claims description 2
- 230000008707 rearrangement Effects 0.000 claims description 2
- 238000006462 rearrangement reaction Methods 0.000 claims description 2
- 229910004721 HSiCl3 Inorganic materials 0.000 claims 1
- 230000008030 elimination Effects 0.000 claims 1
- 238000003379 elimination reaction Methods 0.000 claims 1
- YAYGSLOSTXKUBW-UHFFFAOYSA-N ruthenium(2+) Chemical compound [Ru+2] YAYGSLOSTXKUBW-UHFFFAOYSA-N 0.000 claims 1
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 84
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 66
- 239000000243 solution Substances 0.000 description 58
- 229910052698 phosphorus Inorganic materials 0.000 description 42
- 229910052739 hydrogen Inorganic materials 0.000 description 38
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 31
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 26
- 229910052717 sulfur Inorganic materials 0.000 description 25
- 238000005481 NMR spectroscopy Methods 0.000 description 23
- 238000004128 high performance liquid chromatography Methods 0.000 description 21
- 239000007787 solid Substances 0.000 description 21
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 20
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 20
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 18
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 18
- 239000002904 solvent Substances 0.000 description 18
- 238000006243 chemical reaction Methods 0.000 description 17
- 239000000203 mixture Substances 0.000 description 17
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 15
- 239000000725 suspension Substances 0.000 description 15
- CXWXQJXEFPUFDZ-UHFFFAOYSA-N tetralin Chemical compound C1=CC=C2CCCCC2=C1 CXWXQJXEFPUFDZ-UHFFFAOYSA-N 0.000 description 15
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 14
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 13
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 13
- 239000012071 phase Substances 0.000 description 13
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 13
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 12
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 12
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 12
- 239000013078 crystal Substances 0.000 description 12
- UAOMVDZJSHZZME-UHFFFAOYSA-N diisopropylamine Chemical compound CC(C)NC(C)C UAOMVDZJSHZZME-UHFFFAOYSA-N 0.000 description 12
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 11
- UAJRSHJHFRVGMG-UHFFFAOYSA-N 1-ethenyl-4-methoxybenzene Chemical compound COC1=CC=C(C=C)C=C1 UAJRSHJHFRVGMG-UHFFFAOYSA-N 0.000 description 10
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 10
- VURFVHCLMJOLKN-UHFFFAOYSA-N diphosphane Chemical compound PP VURFVHCLMJOLKN-UHFFFAOYSA-N 0.000 description 10
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical class CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 10
- 229910052786 argon Inorganic materials 0.000 description 9
- 229910052757 nitrogen Inorganic materials 0.000 description 9
- 230000003287 optical effect Effects 0.000 description 9
- QFMZQPDHXULLKC-UHFFFAOYSA-N 1,2-bis(diphenylphosphino)ethane Chemical compound C=1C=CC=CC=1P(C=1C=CC=CC=1)CCP(C=1C=CC=CC=1)C1=CC=CC=C1 QFMZQPDHXULLKC-UHFFFAOYSA-N 0.000 description 8
- 239000010410 layer Substances 0.000 description 8
- 230000003647 oxidation Effects 0.000 description 8
- 238000007254 oxidation reaction Methods 0.000 description 8
- 238000005160 1H NMR spectroscopy Methods 0.000 description 7
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 7
- -1 Arylboronic acid esters Chemical class 0.000 description 7
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 7
- 235000019439 ethyl acetate Nutrition 0.000 description 7
- 238000006197 hydroboration reaction Methods 0.000 description 7
- 239000001257 hydrogen Substances 0.000 description 7
- 239000002244 precipitate Substances 0.000 description 7
- 238000001953 recrystallisation Methods 0.000 description 7
- 238000001228 spectrum Methods 0.000 description 7
- ZCYVEMRRCGMTRW-UHFFFAOYSA-N 7553-56-2 Chemical compound [I] ZCYVEMRRCGMTRW-UHFFFAOYSA-N 0.000 description 6
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 6
- XDTMQSROBMDMFD-UHFFFAOYSA-N Cyclohexane Chemical compound C1CCCCC1 XDTMQSROBMDMFD-UHFFFAOYSA-N 0.000 description 6
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 6
- MZRVEZGGRBJDDB-UHFFFAOYSA-N N-Butyllithium Chemical compound [Li]CCCC MZRVEZGGRBJDDB-UHFFFAOYSA-N 0.000 description 6
- IMNFDUFMRHMDMM-UHFFFAOYSA-N N-Heptane Chemical compound CCCCCCC IMNFDUFMRHMDMM-UHFFFAOYSA-N 0.000 description 6
- 238000010265 fast atom bombardment Methods 0.000 description 6
- 239000011521 glass Substances 0.000 description 6
- 229910052740 iodine Inorganic materials 0.000 description 6
- 239000011630 iodine Substances 0.000 description 6
- 239000000047 product Substances 0.000 description 6
- 238000000607 proton-decoupled 31P nuclear magnetic resonance spectroscopy Methods 0.000 description 6
- 238000003756 stirring Methods 0.000 description 6
- IBJQBHAZHNTAGH-UHFFFAOYSA-N 1-diphenylphosphoryl-3-fluoro-2-iodobenzene Chemical compound FC1=CC=CC(P(=O)(C=2C=CC=CC=2)C=2C=CC=CC=2)=C1I IBJQBHAZHNTAGH-UHFFFAOYSA-N 0.000 description 5
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 5
- ZAFNJMIOTHYJRJ-UHFFFAOYSA-N Diisopropyl ether Chemical compound CC(C)OC(C)C ZAFNJMIOTHYJRJ-UHFFFAOYSA-N 0.000 description 5
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 5
- 230000015572 biosynthetic process Effects 0.000 description 5
- 239000012267 brine Substances 0.000 description 5
- UWGIJJRGSGDBFJ-UHFFFAOYSA-N dichloromethylsilane Chemical compound [SiH3]C(Cl)Cl UWGIJJRGSGDBFJ-UHFFFAOYSA-N 0.000 description 5
- GPAYUJZHTULNBE-UHFFFAOYSA-N diphenylphosphine Chemical compound C=1C=CC=CC=1PC1=CC=CC=C1 GPAYUJZHTULNBE-UHFFFAOYSA-N 0.000 description 5
- 238000001914 filtration Methods 0.000 description 5
- 238000005984 hydrogenation reaction Methods 0.000 description 5
- AUONHKJOIZSQGR-UHFFFAOYSA-N oxophosphane Chemical compound P=O AUONHKJOIZSQGR-UHFFFAOYSA-N 0.000 description 5
- PIBWKRNGBLPSSY-UHFFFAOYSA-L palladium(II) chloride Chemical class Cl[Pd]Cl PIBWKRNGBLPSSY-UHFFFAOYSA-L 0.000 description 5
- 150000003003 phosphines Chemical class 0.000 description 5
- HPALAKNZSZLMCH-UHFFFAOYSA-M sodium;chloride;hydrate Chemical compound O.[Na+].[Cl-] HPALAKNZSZLMCH-UHFFFAOYSA-M 0.000 description 5
- 239000000126 substance Substances 0.000 description 5
- 239000004912 1,5-cyclooctadiene Substances 0.000 description 4
- QDFKKJYEIFBEFC-UHFFFAOYSA-N 1-bromo-3-fluorobenzene Chemical compound FC1=CC=CC(Br)=C1 QDFKKJYEIFBEFC-UHFFFAOYSA-N 0.000 description 4
- UKYHKRNPUWIQSV-UHFFFAOYSA-N 1-diphenylphosphoryl-3-fluorobenzene Chemical compound FC1=CC=CC(P(=O)(C=2C=CC=CC=2)C=2C=CC=CC=2)=C1 UKYHKRNPUWIQSV-UHFFFAOYSA-N 0.000 description 4
- XYFCBTPGUUZFHI-UHFFFAOYSA-N Phosphine Chemical compound P XYFCBTPGUUZFHI-UHFFFAOYSA-N 0.000 description 4
- 239000000538 analytical sample Substances 0.000 description 4
- 239000012300 argon atmosphere Substances 0.000 description 4
- 229910052799 carbon Inorganic materials 0.000 description 4
- 238000006555 catalytic reaction Methods 0.000 description 4
- 239000003153 chemical reaction reagent Substances 0.000 description 4
- 229940043279 diisopropylamine Drugs 0.000 description 4
- 125000002147 dimethylamino group Chemical group [H]C([H])([H])N(*)C([H])([H])[H] 0.000 description 4
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 4
- 239000000706 filtrate Substances 0.000 description 4
- 238000000655 nuclear magnetic resonance spectrum Methods 0.000 description 4
- 229940078552 o-xylene Drugs 0.000 description 4
- 229910052760 oxygen Inorganic materials 0.000 description 4
- 150000002940 palladium Chemical class 0.000 description 4
- NNFCIKHAZHQZJG-UHFFFAOYSA-N potassium cyanide Chemical compound [K+].N#[C-] NNFCIKHAZHQZJG-UHFFFAOYSA-N 0.000 description 4
- 239000000843 powder Substances 0.000 description 4
- 230000009467 reduction Effects 0.000 description 4
- 229920006395 saturated elastomer Polymers 0.000 description 4
- GEHJYWRUCIMESM-UHFFFAOYSA-L sodium sulfite Chemical compound [Na+].[Na+].[O-]S([O-])=O GEHJYWRUCIMESM-UHFFFAOYSA-L 0.000 description 4
- 239000005052 trichlorosilane Substances 0.000 description 4
- 238000004506 ultrasonic cleaning Methods 0.000 description 4
- VYXHVRARDIDEHS-UHFFFAOYSA-N 1,5-cyclooctadiene Chemical compound C1CC=CCCC=C1 VYXHVRARDIDEHS-UHFFFAOYSA-N 0.000 description 3
- UIIMBOGNXHQVGW-UHFFFAOYSA-M Sodium bicarbonate Chemical class [Na+].OC([O-])=O UIIMBOGNXHQVGW-UHFFFAOYSA-M 0.000 description 3
- CSCPPACGZOOCGX-WFGJKAKNSA-N acetone d6 Chemical compound [2H]C([2H])([2H])C(=O)C([2H])([2H])[2H] CSCPPACGZOOCGX-WFGJKAKNSA-N 0.000 description 3
- 238000007792 addition Methods 0.000 description 3
- 150000001336 alkenes Chemical class 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 3
- 238000009876 asymmetric hydrogenation reaction Methods 0.000 description 3
- 230000003197 catalytic effect Effects 0.000 description 3
- ZDQWVKDDJDIVAL-UHFFFAOYSA-N catecholborane Chemical compound C1=CC=C2O[B]OC2=C1 ZDQWVKDDJDIVAL-UHFFFAOYSA-N 0.000 description 3
- 239000012043 crude product Substances 0.000 description 3
- 239000000284 extract Substances 0.000 description 3
- 238000011065 in-situ storage Methods 0.000 description 3
- 230000006698 induction Effects 0.000 description 3
- 238000002347 injection Methods 0.000 description 3
- 239000007924 injection Substances 0.000 description 3
- 239000011777 magnesium Substances 0.000 description 3
- AUHZEENZYGFFBQ-UHFFFAOYSA-N mesitylene Substances CC1=CC(C)=CC(C)=C1 AUHZEENZYGFFBQ-UHFFFAOYSA-N 0.000 description 3
- 125000001827 mesitylenyl group Chemical group [H]C1=C(C(*)=C(C([H])=C1C([H])([H])[H])C([H])([H])[H])C([H])([H])[H] 0.000 description 3
- 239000012044 organic layer Substances 0.000 description 3
- 239000011541 reaction mixture Substances 0.000 description 3
- 238000000926 separation method Methods 0.000 description 3
- 239000000741 silica gel Substances 0.000 description 3
- 229910002027 silica gel Inorganic materials 0.000 description 3
- 238000003786 synthesis reaction Methods 0.000 description 3
- 230000007704 transition Effects 0.000 description 3
- 239000008096 xylene Substances 0.000 description 3
- KYILORDWJFEQBS-RMKNXTFCSA-N (2e)-2-benzylidenebutanedioic acid Chemical compound OC(=O)C\C(C(O)=O)=C/C1=CC=CC=C1 KYILORDWJFEQBS-RMKNXTFCSA-N 0.000 description 2
- MIVUDAUOXJDARR-CYBMUJFWSA-N (2r)-2-[(3,5-dinitrobenzoyl)amino]-2-phenylacetic acid Chemical compound N([C@@H](C(=O)O)C=1C=CC=CC=1)C(=O)C1=CC([N+]([O-])=O)=CC([N+]([O-])=O)=C1 MIVUDAUOXJDARR-CYBMUJFWSA-N 0.000 description 2
- HZNVUJQVZSTENZ-UHFFFAOYSA-N 2,3-dichloro-5,6-dicyano-1,4-benzoquinone Chemical compound ClC1=C(Cl)C(=O)C(C#N)=C(C#N)C1=O HZNVUJQVZSTENZ-UHFFFAOYSA-N 0.000 description 2
- AUWDOZOUJWEPBA-UHFFFAOYSA-N 2-(4-methoxyphenyl)ethanol Chemical compound COC1=CC=C(CCO)C=C1 AUWDOZOUJWEPBA-UHFFFAOYSA-N 0.000 description 2
- HBAQYPYDRFILMT-UHFFFAOYSA-N 8-[3-(1-cyclopropylpyrazol-4-yl)-1H-pyrazolo[4,3-d]pyrimidin-5-yl]-3-methyl-3,8-diazabicyclo[3.2.1]octan-2-one Chemical class C1(CC1)N1N=CC(=C1)C1=NNC2=C1N=C(N=C2)N1C2C(N(CC1CC2)C)=O HBAQYPYDRFILMT-UHFFFAOYSA-N 0.000 description 2
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonia chloride Chemical compound [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 description 2
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 2
- 101000610640 Homo sapiens U4/U6 small nuclear ribonucleoprotein Prp3 Proteins 0.000 description 2
- 238000003109 Karl Fischer titration Methods 0.000 description 2
- CSNNHWWHGAXBCP-UHFFFAOYSA-L Magnesium sulfate Chemical compound [Mg+2].[O-][S+2]([O-])([O-])[O-] CSNNHWWHGAXBCP-UHFFFAOYSA-L 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- 101001110823 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) 60S ribosomal protein L6-A Proteins 0.000 description 2
- 101000712176 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) 60S ribosomal protein L6-B Proteins 0.000 description 2
- 102100040374 U4/U6 small nuclear ribonucleoprotein Prp3 Human genes 0.000 description 2
- 238000002441 X-ray diffraction Methods 0.000 description 2
- 125000000746 allylic group Chemical group 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- 238000011914 asymmetric synthesis Methods 0.000 description 2
- 239000007795 chemical reaction product Substances 0.000 description 2
- XGRJZXREYAXTGV-UHFFFAOYSA-N chlorodiphenylphosphine Chemical compound C=1C=CC=CC=1P(Cl)C1=CC=CC=C1 XGRJZXREYAXTGV-UHFFFAOYSA-N 0.000 description 2
- 238000003776 cleavage reaction Methods 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 230000008878 coupling Effects 0.000 description 2
- 238000010168 coupling process Methods 0.000 description 2
- 239000003480 eluent Substances 0.000 description 2
- 238000006459 hydrosilylation reaction Methods 0.000 description 2
- 150000002466 imines Chemical class 0.000 description 2
- 150000002576 ketones Chemical class 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- BDAGIHXWWSANSR-UHFFFAOYSA-N methanoic acid Natural products OC=O BDAGIHXWWSANSR-UHFFFAOYSA-N 0.000 description 2
- SJYNFBVQFBRSIB-UHFFFAOYSA-N norbornadiene Chemical compound C1=CC2C=CC1C2 SJYNFBVQFBRSIB-UHFFFAOYSA-N 0.000 description 2
- 239000003921 oil Substances 0.000 description 2
- 239000012074 organic phase Substances 0.000 description 2
- 238000006053 organic reaction Methods 0.000 description 2
- 229910000073 phosphorus hydride Inorganic materials 0.000 description 2
- 239000010948 rhodium Substances 0.000 description 2
- 239000000523 sample Substances 0.000 description 2
- 230000007017 scission Effects 0.000 description 2
- 235000010265 sodium sulphite Nutrition 0.000 description 2
- LMBFAGIMSUYTBN-MPZNNTNKSA-N teixobactin Chemical compound C([C@H](C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](CO)C(=O)N[C@H](CCC(N)=O)C(=O)N[C@H]([C@@H](C)CC)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](CO)C(=O)N[C@H]1C(N[C@@H](C)C(=O)N[C@@H](C[C@@H]2NC(=N)NC2)C(=O)N[C@H](C(=O)O[C@H]1C)[C@@H](C)CC)=O)NC)C1=CC=CC=C1 LMBFAGIMSUYTBN-MPZNNTNKSA-N 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 238000009210 therapy by ultrasound Methods 0.000 description 2
- 238000002604 ultrasonography Methods 0.000 description 2
- VVTPGMKFNKYMSG-UHFFFAOYSA-N (3-fluorophenyl)-diphenylphosphane Chemical compound FC1=CC=CC(P(C=2C=CC=CC=2)C=2C=CC=CC=2)=C1 VVTPGMKFNKYMSG-UHFFFAOYSA-N 0.000 description 1
- VYXHVRARDIDEHS-HASIUUCGSA-N (5z)-cycloocta-1,5-diene Chemical compound C1C\C=C/CCC=C1 VYXHVRARDIDEHS-HASIUUCGSA-N 0.000 description 1
- POILWHVDKZOXJZ-ARJAWSKDSA-M (z)-4-oxopent-2-en-2-olate Chemical compound C\C([O-])=C\C(C)=O POILWHVDKZOXJZ-ARJAWSKDSA-M 0.000 description 1
- RYHBNJHYFVUHQT-UHFFFAOYSA-N 1,4-Dioxane Chemical compound C1COCCO1 RYHBNJHYFVUHQT-UHFFFAOYSA-N 0.000 description 1
- 238000001644 13C nuclear magnetic resonance spectroscopy Methods 0.000 description 1
- OSWFIVFLDKOXQC-UHFFFAOYSA-N 4-(3-methoxyphenyl)aniline Chemical compound COC1=CC=CC(C=2C=CC(N)=CC=2)=C1 OSWFIVFLDKOXQC-UHFFFAOYSA-N 0.000 description 1
- CSDQQAQKBAQLLE-UHFFFAOYSA-N 4-(4-chlorophenyl)-4,5,6,7-tetrahydrothieno[3,2-c]pyridine Chemical compound C1=CC(Cl)=CC=C1C1C(C=CS2)=C2CCN1 CSDQQAQKBAQLLE-UHFFFAOYSA-N 0.000 description 1
- IUUULXXWNYKJSL-UHFFFAOYSA-N 4-methoxy-alpha-methylbenzyl alcohol Chemical compound COC1=CC=C(C(C)O)C=C1 IUUULXXWNYKJSL-UHFFFAOYSA-N 0.000 description 1
- JKTYGPATCNUWKN-UHFFFAOYSA-N 4-nitrobenzyl alcohol Chemical compound OCC1=CC=C([N+]([O-])=O)C=C1 JKTYGPATCNUWKN-UHFFFAOYSA-N 0.000 description 1
- 238000006418 Brown reaction Methods 0.000 description 1
- 0 CC=CC(P(c1ccccc1)(c1ccccc1)=O)=C(C*)[C@]1C(*)=CC=CC1P(c1ccccc1)(c1ccccc1)=O Chemical compound CC=CC(P(c1ccccc1)(c1ccccc1)=O)=C(C*)[C@]1C(*)=CC=CC1P(c1ccccc1)(c1ccccc1)=O 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- BZLVMXJERCGZMT-UHFFFAOYSA-N Methyl tert-butyl ether Chemical compound COC(C)(C)C BZLVMXJERCGZMT-UHFFFAOYSA-N 0.000 description 1
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 description 1
- 229920002472 Starch Polymers 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 238000006069 Suzuki reaction reaction Methods 0.000 description 1
- 238000006887 Ullmann reaction Methods 0.000 description 1
- JUXIMPYYJYTDDI-UHFFFAOYSA-N [2-(2-diphenylphosphanyl-6,6-difluorocyclohexa-1,3-dien-1-yl)phenyl]-diphenylphosphane Chemical compound FC1(CC=CC(=C1C1=C(C=CC=C1)P(C1=CC=CC=C1)C1=CC=CC=C1)P(C1=CC=CC=C1)C1=CC=CC=C1)F JUXIMPYYJYTDDI-UHFFFAOYSA-N 0.000 description 1
- KIMYQLAAXIMCIV-UHFFFAOYSA-N [Ir+].[Ru+2] Chemical compound [Ir+].[Ru+2] KIMYQLAAXIMCIV-UHFFFAOYSA-N 0.000 description 1
- OBDSITLACDGNMC-UHFFFAOYSA-N [Rh+] Chemical compound [Rh+] OBDSITLACDGNMC-UHFFFAOYSA-N 0.000 description 1
- CUJRVFIICFDLGR-UHFFFAOYSA-N acetylacetonate Chemical compound CC(=O)[CH-]C(C)=O CUJRVFIICFDLGR-UHFFFAOYSA-N 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- 235000019270 ammonium chloride Nutrition 0.000 description 1
- 150000001502 aryl halides Chemical class 0.000 description 1
- 125000003609 aryl vinyl group Chemical group 0.000 description 1
- 238000005801 aryl-aryl coupling reaction Methods 0.000 description 1
- 150000001768 cations Chemical class 0.000 description 1
- 238000000451 chemical ionisation Methods 0.000 description 1
- 239000007809 chemical reaction catalyst Substances 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- SLLGVCUQYRMELA-UHFFFAOYSA-N chlorosilicon Chemical compound Cl[Si] SLLGVCUQYRMELA-UHFFFAOYSA-N 0.000 description 1
- 239000012230 colorless oil Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- IJKVHSBPTUYDLN-UHFFFAOYSA-N dihydroxy(oxo)silane Chemical compound O[Si](O)=O IJKVHSBPTUYDLN-UHFFFAOYSA-N 0.000 description 1
- BVURNMLGDQYNAF-UHFFFAOYSA-N dimethyl(1-phenylethyl)amine Chemical compound CN(C)C(C)C1=CC=CC=C1 BVURNMLGDQYNAF-UHFFFAOYSA-N 0.000 description 1
- 238000010494 dissociation reaction Methods 0.000 description 1
- 230000005593 dissociations Effects 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000000132 electrospray ionisation Methods 0.000 description 1
- 150000002081 enamines Chemical class 0.000 description 1
- 235000019253 formic acid Nutrition 0.000 description 1
- 238000007429 general method Methods 0.000 description 1
- 238000007037 hydroformylation reaction Methods 0.000 description 1
- 230000002706 hydrostatic effect Effects 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 238000006317 isomerization reaction Methods 0.000 description 1
- 229910052943 magnesium sulfate Inorganic materials 0.000 description 1
- 235000019341 magnesium sulphate Nutrition 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000000199 molecular distillation Methods 0.000 description 1
- 239000002808 molecular sieve Substances 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 230000000269 nucleophilic effect Effects 0.000 description 1
- MPQXHAGKBWFSNV-UHFFFAOYSA-N oxidophosphanium Chemical class [PH3]=O MPQXHAGKBWFSNV-UHFFFAOYSA-N 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- YJVFFLUZDVXJQI-UHFFFAOYSA-L palladium(ii) acetate Chemical compound [Pd+2].CC([O-])=O.CC([O-])=O YJVFFLUZDVXJQI-UHFFFAOYSA-L 0.000 description 1
- 125000005538 phosphinite group Chemical group 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 230000006340 racemization Effects 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 230000035484 reaction time Effects 0.000 description 1
- 239000013074 reference sample Substances 0.000 description 1
- 238000007363 ring formation reaction Methods 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- URGAHOPLAPQHLN-UHFFFAOYSA-N sodium aluminosilicate Chemical compound [Na+].[Al+3].[O-][Si]([O-])=O.[O-][Si]([O-])=O URGAHOPLAPQHLN-UHFFFAOYSA-N 0.000 description 1
- 235000017557 sodium bicarbonate Nutrition 0.000 description 1
- 229910000030 sodium bicarbonate Inorganic materials 0.000 description 1
- 229910052938 sodium sulfate Inorganic materials 0.000 description 1
- 235000011152 sodium sulphate Nutrition 0.000 description 1
- AKHNMLFCWUSKQB-UHFFFAOYSA-L sodium thiosulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=S AKHNMLFCWUSKQB-UHFFFAOYSA-L 0.000 description 1
- 235000019345 sodium thiosulphate Nutrition 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
- 235000019698 starch Nutrition 0.000 description 1
- 239000008107 starch Substances 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- CYRMSUTZVYGINF-UHFFFAOYSA-N trichlorofluoromethane Chemical compound FC(Cl)(Cl)Cl CYRMSUTZVYGINF-UHFFFAOYSA-N 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 238000012982 x-ray structure analysis Methods 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J31/00—Catalysts comprising hydrides, coordination complexes or organic compounds
- B01J31/16—Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
- B01J31/24—Phosphines, i.e. phosphorus bonded to only carbon atoms, or to both carbon and hydrogen atoms, including e.g. sp2-hybridised phosphorus compounds such as phosphabenzene, phosphole or anionic phospholide ligands
- B01J31/2404—Cyclic ligands, including e.g. non-condensed polycyclic ligands, the phosphine-P atom being a ring member or a substituent on the ring
- B01J31/2409—Cyclic ligands, including e.g. non-condensed polycyclic ligands, the phosphine-P atom being a ring member or a substituent on the ring with more than one complexing phosphine-P atom
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07F—ACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
- C07F15/00—Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table
- C07F15/0006—Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table compounds of the platinum group
- C07F15/0046—Ruthenium compounds
- C07F15/0053—Ruthenium compounds without a metal-carbon linkage
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07F—ACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
- C07F15/00—Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table
- C07F15/0006—Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table compounds of the platinum group
- C07F15/006—Palladium compounds
- C07F15/0066—Palladium compounds without a metal-carbon linkage
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07F—ACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
- C07F15/00—Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table
- C07F15/0006—Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table compounds of the platinum group
- C07F15/0073—Rhodium compounds
- C07F15/008—Rhodium compounds without a metal-carbon linkage
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07F—ACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
- C07F15/00—Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table
- C07F15/0006—Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table compounds of the platinum group
- C07F15/0086—Platinum compounds
- C07F15/0093—Platinum compounds without a metal-carbon linkage
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07F—ACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
- C07F9/00—Compounds containing elements of Groups 5 or 15 of the Periodic Table
- C07F9/02—Phosphorus compounds
- C07F9/28—Phosphorus compounds with one or more P—C bonds
- C07F9/50—Organo-phosphines
- C07F9/5027—Polyphosphines
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07F—ACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
- C07F9/00—Compounds containing elements of Groups 5 or 15 of the Periodic Table
- C07F9/02—Phosphorus compounds
- C07F9/28—Phosphorus compounds with one or more P—C bonds
- C07F9/50—Organo-phosphines
- C07F9/53—Organo-phosphine oxides; Organo-phosphine thioxides
- C07F9/5329—Polyphosphine oxides or thioxides
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2231/00—Catalytic reactions performed with catalysts classified in B01J31/00
- B01J2231/30—Addition reactions at carbon centres, i.e. to either C-C or C-X multiple bonds
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2231/00—Catalytic reactions performed with catalysts classified in B01J31/00
- B01J2231/30—Addition reactions at carbon centres, i.e. to either C-C or C-X multiple bonds
- B01J2231/32—Addition reactions to C=C or C-C triple bonds
- B01J2231/323—Hydrometalation, e.g. bor-, alumin-, silyl-, zirconation or analoguous reactions like carbometalation, hydrocarbation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2231/00—Catalytic reactions performed with catalysts classified in B01J31/00
- B01J2231/40—Substitution reactions at carbon centres, e.g. C-C or C-X, i.e. carbon-hetero atom, cross-coupling, C-H activation or ring-opening reactions
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2231/00—Catalytic reactions performed with catalysts classified in B01J31/00
- B01J2231/40—Substitution reactions at carbon centres, e.g. C-C or C-X, i.e. carbon-hetero atom, cross-coupling, C-H activation or ring-opening reactions
- B01J2231/42—Catalytic cross-coupling, i.e. connection of previously not connected C-atoms or C- and X-atoms without rearrangement
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2231/00—Catalytic reactions performed with catalysts classified in B01J31/00
- B01J2231/50—Redistribution or isomerisation reactions of C-C, C=C or C-C triple bonds
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2231/00—Catalytic reactions performed with catalysts classified in B01J31/00
- B01J2231/60—Reduction reactions, e.g. hydrogenation
- B01J2231/64—Reductions in general of organic substrates, e.g. hydride reductions or hydrogenations
- B01J2231/641—Hydrogenation of organic substrates, i.e. H2 or H-transfer hydrogenations, e.g. Fischer-Tropsch processes
- B01J2231/643—Hydrogenation of organic substrates, i.e. H2 or H-transfer hydrogenations, e.g. Fischer-Tropsch processes of R2C=O or R2C=NR (R= C, H)
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2531/00—Additional information regarding catalytic systems classified in B01J31/00
- B01J2531/80—Complexes comprising metals of Group VIII as the central metal
- B01J2531/82—Metals of the platinum group
- B01J2531/821—Ruthenium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2531/00—Additional information regarding catalytic systems classified in B01J31/00
- B01J2531/80—Complexes comprising metals of Group VIII as the central metal
- B01J2531/82—Metals of the platinum group
- B01J2531/822—Rhodium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2531/00—Additional information regarding catalytic systems classified in B01J31/00
- B01J2531/80—Complexes comprising metals of Group VIII as the central metal
- B01J2531/82—Metals of the platinum group
- B01J2531/824—Palladium
Definitions
- the present invention relates to halogenated biphenyl-2,2'-diyl-bisdiphenylphosphines, their manufacture and their use.
- Mono- and diphosphines are of considerable importance as ligands in Transition metal-catalyzed organic reactions.
- Ligands in transition metal-catalyzed enantioselective reactions found, e.g.
- EP 0 643 065 A1 which is a document in the sense of Article 54 (3) EPC, describes compounds that correspond to the compounds of the present Invention are similar.
- the present invention accordingly relates to the compounds of the formula II in which the phenyl rings of the biphenyl molecule can be substituted with up to 6 additional fluorine and / or chlorine atoms.
- the compounds of the formula II in which the phenyl rings are substituted with up to four fluorine and / or chlorine atoms, in particular with up to two fluorine and / or chlorine atoms, are preferred.
- the compounds of formula II have a very special meaning.
- the present invention relates to the compounds mentioned both in the racemic form and in the chiral form, which are to be exemplified by the following formulas, which show very particularly preferred compounds.
- the compounds of formula 4 appearing as an important intermediate in chiral and racemic form also belong to the subject of the present invention.
- the present invention furthermore relates to the process for the preparation of the compound of the formula 4, which is characterized in that a compound of the formula 3 is heated in an inert solvent, preferably DMF, with the addition of a transition metal, preferably Cu, it being possible for the compound of the formula 3 to be substituted in the 4-, 5- and / or 6-position by up to 3 fluorine and / or chlorine atoms ,
- the present invention furthermore relates to the process for the preparation of the compound of the formula 3, which is characterized in that a compound of the formula 2 with lithium diisopropylamide in an inert solvent, preferably in THF, and then reacted with iodine, the compounds of the formulas 2 and 3 being substituted in the 4-, 5- and / or 6-position with up to 3 fluorine and / or chlorine atoms can.
- the subject of the present invention also includes the Rh (I) -, Ru (II) -, Pd (II) and Pd (0) complexes of the compounds of the formula II,
- Z, Z-1,5-cyclooctadiene (COD), norbornadiene (NBD) or acetylacetonate (Acac) are preferred as such easily displaceable ligands.
- the corresponding transition metal complexes are commercially available or can be easily prepared in a known manner. The examples in this application (see asymmetric hydrogenation and asymmetric hydroboration / oxidation) contain specific rules for this procedure.
- the homochiral palladium dichloride complexes with compounds of the formula II can, as shown in Scheme 2, also be obtained from the diastereomeric palladium complexes of the formula 10 by HCl-induced cleavage of the N, N-dimethyl-alpha-phenylethylamine ligand.
- an object of the present invention is the use of the compounds of the invention as catalysts.
- the invention Catalysts are particularly suitable for the catalysis of organic addition, Substitution, rearrangement and coupling reactions.
- the optically pure Diphosphines 5 and their palladium dichloride complexes 11 are thermal and chemically unusually stable. For example, solutions from homochiral 5 have not been thermally racemized so far. Even after that Heating a solution of (S) - (+) - 5 in tetralin under reflux for 2.5 hours (Bp 207 ° C) in an argon atmosphere, is the specific rotation unchanged and chiral phase HPLC analysis of the corresponding phosphine oxide 4 still gives 100% ee. The enantiomers of 11 (mp.
- the rhodium (I) complex of (R) - (-) - 5 has high catalytic activity and enantioselectivity, for example in the hydroboration of prochiral olefins.
- the hydroboration of p-methoxystyrene 12 with 2 equiv. Catecholborane in THF at 0 ° C in the presence of 2 mol% of an in situ catalyst made from (1,5-cyclooctadiene) (2,4-pentanedionato) rhodium (I) and (R) - (-) - 5 is within 1.5 hours quantitative.
- the presence of the rhodium (I) complex of the electron-deficient, homochiral diphosphine 5 thus drastically lowers the activation energy of the hydroboration, reverses the anti-Markovnikov selectivity of the hydroboration to a Markovnikov selectivity and delivers the product alcohol even in the case of the technically easily realizable one Reaction temperature of 0 ° C in a much higher optical purity than electron-rich diphosphines at -70 to -20 ° C. At 0-25 ° C, electron-rich diphosphines no longer provide significant induction.
- 2-Benzylidosuccinic acid-4 [(4-BOC-amino) -1-piperidide] 37 is at 25 ° C under 1 bar of hydrogen in the presence of 1 mol% of the in situ catalyst Di- ⁇ -chloro-bis (cycloocta-1c, 5c-diene) rhodium (I) and (R) - (-) - 5 not hydrogenated.
- Rh (I) complex of the homochiral diphosphine (R) - (-) 5 causes at high Hydrogen pressure asymmetric hydrogenation (see the examples).
- the palladium complexes of (R / S) -5 with palladium chloride or palladium acetate give better yields than corresponding palladium complexes electron-rich mono- or diphosphines in aryl-aryl couplings of Arylboronic acid esters with aryl halides in aqueous / organic Two-phase mixture (Suzuki coupling). They also make better ones Yields of Heck-type aryl vinyl couplings.
- Chlorodiphenylphosphine ClPPh 2 (technical, 95%, Aldrich) (boiling point 98-100 ° C / 0.2 Torr) and p-methoxystyrene (97%, Aldrich) (boiling point 41-42 ° C / 0.5 Torr) became immediate Distilled under vacuum before use.
- Diisopropylamine (99%, Aldrich) and diisopropyl ether (> 99%, Hoechst) were distilled from calcium hydride in an argon atmosphere immediately before use (Karl Fischer titration gave ⁇ 0.01% H 2 O in iPr 2 O and ⁇ 0.05% H 2 O in iPr 2 NH).
- N, N-Dimethylformamide (DMF) was left in a sealed flask over activated 4A molecular sieves for several days and then distilled under vacuum.
- Tetrahydrofuran (THF) was passed through ICN aluminum oxide B (activity 1.1 g / 3 ml THF) for drying immediately before use (Karl Fischer titration gave ⁇ 0.01% H 2 O).
- Copper powder (99.8%, Riedel-de Ha ⁇ n) was activated using the following procedure: 260 g of copper powder was placed in a solution of 52 g of iodine in 2.6 l of acetone and the mixture was stirred for 10 minutes. The copper was filtered through a Buchner funnel and stirred for 10 minutes in a solution of 650 ml of concentrated hydrochloric acid in 650 ml of acetone. The copper powder was filtered, washed with 3 ⁇ 200 ml acetone and dried under vacuum in a desiccator.
- the melting points (mp) were measured using a Buchi capillary melting point device (according to Dr. Tottoli) and are not corrected.
- HPLC Kontron 420 pump with Kontron 425 gradient generator, Kontron 360 autosampler (20 ⁇ l injection loop), Kontron 432 HPLC UV detector and Kontron 450-MT2 data processing system or alternatively Spectra Physics SP 4200 pump / 8750 Organizer (10 ⁇ l injection loop) with SP 8700 solvent dosing system, Spectra 100 UV-Vis detector and SP 4100 computing Integrator.
- TLC precoated with silica gel 60 F-254 (E. Merck) 5 ⁇ 10 cm glass plates; Representation of stains with universal Camag UV lamp (254 nm).
- Ultrasonic cleaning bath Elma Transsonic TS540.
- IR Perkin Elmer 683 spectrometer.
- MS a) "Fast atom bombardment” positive ionization (+ FAB): VG ZAB SEQ; NBA denotes p-nitrobenzyl alcohol.
- DCI dissociation chemical ionization
- Kratos MS 80 Kratos MS 80.
- Optical rotation was determined on a Perkin-Elmer 241 polarimeter using a 10 cm long micro cuvette.
- the X-ray structures were determined on the basis of single crystals sealed in Lindemann glass capillaries, using a computer-controlled four-circle diffractometer (R3m / V, Siemens). 25 reflections with ⁇ > 4 ° (for 4 and S, S-10) or ⁇ > 8 ° (for 7 ) were used to determine the cell dimensions.
- the phase problem was solved with the direct method, minimization of ⁇ w (Fo 2 -Fc 2 ) 2 , weighting scheme w according to the counting statistics.
- Rhodium (I) - (R) - (-) - 5 catalyzed asymmetric Hydroboration / oxidation of p-methoxystyrene
- the clear catalyst solution is added under argon and the reaction mixture is shaken from a hydrostatic hydrogenation device 53 under 1 bar of hydrogen: no hydrogen is taken up within 6 hours.
- the hydrogenation flask is placed in a shake autoclave under argon; 150 bar of hydrogen is allowed to act for 2 days.
- the solvent is evaporated in vacuo and the solid residue is dissolved in tert-butyl methyl ether (40 ml).
- the cold (0 ° C) solution is washed with 0.5N hydrochloric acid (10 ml) and with water (10 ml) and dried (MgSO 4 ).
- the solvent is evaporated to give a solid (1.80 g, 4.16 mmol, 92% crude yield).
- HPLC 53 shows quantitative hydrogenation.
- HPLC of chiral phase 53 gives 22% ee of the (R) - (+) configuration.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Molecular Biology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Health & Medical Sciences (AREA)
- Inorganic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Catalysts (AREA)
- Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
Description
Die vorliegende Erfindung betrifft halogenierte Biphenyl-2,2'-diyl-bisdiphenylphosphine, ihre Herstellung und ihre Verwendung. Mono- und Diphosphine besitzen beträchtliche Bedeutung als Liganden in Übergangsmetall-katalysierten organischen Reaktionen. In den letzten Jahren haben insbesondere homochirale Mono- und Diphosphine großes Interesse als Liganden in Übergangsmetall-katalysierten enantioselektiven Reaktionen gefunden, z.B. in Rhodium(I)-, Ruthenium(II)- und Iridium(I)- katalysierten asymmetrischen Hydrierungen prochiraler Alkene, Ketone und Imine, in Palladium-katalysierten nucleophilen allylischen Substitutionen und Heck-Kupplungs-Reaktionen, in Rhodium(I)-katalysierten Hydrosilylierungen, Hydroborierungen und Hydroformylierungen von prochiralen Alkenen und Hydrosilylierungen von Ketonen und Iminen, als auch in Rhodium(I)-katalysierten asymmetrischen Isomerisierungen von Allylaminen zu den entsprechenden Enaminen.The present invention relates to halogenated biphenyl-2,2'-diyl-bisdiphenylphosphines, their manufacture and their use. Mono- and diphosphines are of considerable importance as ligands in Transition metal-catalyzed organic reactions. In recent years are particularly interested in homochiral mono- and diphosphines Ligands in transition metal-catalyzed enantioselective reactions found, e.g. in rhodium (I) -, ruthenium (II) - and iridium (I) - catalyzed asymmetric hydrogenations of prochiral alkenes, ketones and imines, in Palladium-catalyzed nucleophilic allylic substitutions and Heck coupling reactions, in rhodium (I) catalyzed hydrosilylations, Hydroboration and hydroformylation of prochiral alkenes and Hydrosilylations of ketones and imines, as well as in rhodium (I) -catalyzed asymmetric isomerizations of allylamines to the corresponding ones Enamines.
Es ist auffällig, daß in den bekannten Anwendungen sowohl von achiralen Phosphinen in Übergangsmetall-katalysierten Reaktionen, als auch in allen oben genannten Beispielen für die Anwendung von homochiralen Phosphinen in der katalytischen asymmetrischen Synthese (Zassinovich et al., S.Chem.Rev. 1992, 92, 1051-1069, oder EP-A-398 132) und in tabellarischen Zusammenstellungen von ca. 200 unterschiedlichen homochiralen Phosphinen, Phosphiniten und Amidophosphinen, die in der asymmetrischen Synthese getestet wurden, alle eingesetzten Phosphine elektronenreich sind. Die genannten Phosphine haben den Nachteil, daß einige mit ihrer Hilfe katalysierte Reaktionen nur schlecht und insbesondere mit unzureichender Enantioselektivität ablaufen. It is striking that in the known applications both achiral Phosphines in transition metal catalyzed reactions, as well as in all of the above mentioned examples for the use of homochiral phosphines in the catalytic asymmetric synthesis (Zassinovich et al., S.Chem.Rev. 1992, 92, 1051-1069, or EP-A-398 132) and in tables of approx. 200 different homochiral phosphines, phosphinites and Amidophosphines tested in asymmetric synthesis, all phosphines used are electron rich. Have the phosphines mentioned the disadvantage that some reactions catalyzed with their help are poor and in particular with insufficient enantioselectivity.
Weiterhin werden in der EP 0 643 065 A1, die ein Dokument im Sinne von Artikel 54(3) EPÜ ist, Verbindungen beschrieben, die den Verbindungen der vorliegenden Erfindung ähnlich sind.Furthermore, EP 0 643 065 A1, which is a document in the sense of Article 54 (3) EPC, describes compounds that correspond to the compounds of the present Invention are similar.
Überraschenderweise wurde nun gefunden, daß bestimmte elektronenarme Systeme, wie halogenierte Biphenyl-2,2'-diyl-bis-diphenylphosphine, in einigen Übergangsmetall-katalysierten Reaktionen den konventionellen elektronenreichen Mono- und Diphosphinen bezüglich erzielter Reaktionsausbeute, katalytischer Aktivität bzw. Enantioselektivität überlegen sind.Surprisingly, it has now been found that certain electron poor Systems such as halogenated biphenyl-2,2'-diyl-bis-diphenylphosphines in some Transition metal-catalyzed reactions the conventional electron-rich Mono- and diphosphines in terms of reaction yield, catalytic Activity or enantioselectivity are superior.
Ein Gegenstand der vorliegenden Erfindung sind demzufolge die Verbindungen der Formel II in der die Phenylringe des Biphenylmoleküls mit bis zu 6 zusätzlichen Fluor- und/oder Chloratomen substituiert sein können.The present invention accordingly relates to the compounds of the formula II in which the phenyl rings of the biphenyl molecule can be substituted with up to 6 additional fluorine and / or chlorine atoms.
Bevorzugt sind die Verbindungen der Formel II in der die Phenylringe mit bis zu vier Fluor- undloder Chloratomen, insbesondere mit bis zu zwei Fluor- und/oder Chloratomen substituiert sind. Eine ganz besondere Bedeutung besitzen die Verbindungen der Formel II. The compounds of the formula II in which the phenyl rings are substituted with up to four fluorine and / or chlorine atoms, in particular with up to two fluorine and / or chlorine atoms, are preferred. The compounds of formula II have a very special meaning.
Die vorliegende Erfindung betrifft die genannten Verbindungen sowohl in der racemischen Form als auch in der chiralen Form, die durch die nachfolgenden Formeln, die ganz besonders bevorzugte Verbindungen zeigen, beispielhaft belegt werden sollen. The present invention relates to the compounds mentioned both in the racemic form and in the chiral form, which are to be exemplified by the following formulas, which show very particularly preferred compounds.
Ein weiterer Gegenstand der vorliegenden Erfindung ist das Verfahren zu Herstellung der Verbindungen der Formel II, das dadurch gekennzeichnet ist, daß eine Verbindung der Formel 4 wobei X = F mit Cl2Si(CH3)H, NBu3, in einem organischen Lösungsmittel, vorzugsweise Xylol unter Inertgas, vorzugsweise Stickstoff umgesetzt wird oder alternativ mit HSiCl3 und NBu3 in einem organischen Lösungsmittel, vorzugsweise Xylol, unter Rückfluß gekocht wird wobei die Verbindung der Formel II entsteht und wobei die Phenylringe des Biphenylmoleküls mit bis zu 6 zusätzlichen Fluor und/oder Chloratomen substituiert sein können.The present invention further provides the process for the preparation of the compounds of the formula II, which is characterized in that a compound of the formula 4 where X = F is reacted with Cl 2 Si (CH 3 ) H, NBu 3 in an organic solvent, preferably xylene under an inert gas, preferably nitrogen, or alternatively with HSiCl 3 and NBu 3 in an organic solvent, preferably xylene, boiled under reflux is where the compound of formula II is formed and where the phenyl rings of the biphenyl molecule can be substituted with up to 6 additional fluorine and / or chlorine atoms.
Die als wichtiges Zwischenprodukt auftretenden Verbindungen der Formel 4 in chiraler und racemischer Form gehören ebenfalls zum Gegenstand der vorliegenden Erfindung. Weiterhin gehört zum Gegenstand der vorliegenden Erfindung das Verfahren zur Herstellung der Verbindung der Formel 4, das dadurch gekennzeichnet ist, daß eine Verbindung der Formel 3 in einem inerten Lösungsmittel, vorzugsweise DMF, unter Zusatz eines Übergangsmetalls, vorzugsweise Cu, erhitzt wird, wobei die Verbindung der Formel 3 in 4-, 5- und/oder 6-Stellung mit bis zu 3 Fluor- und/oder Chloratomen substituiert sein kann.The compounds of formula 4 appearing as an important intermediate in chiral and racemic form also belong to the subject of the present invention. The present invention furthermore relates to the process for the preparation of the compound of the formula 4, which is characterized in that a compound of the formula 3 is heated in an inert solvent, preferably DMF, with the addition of a transition metal, preferably Cu, it being possible for the compound of the formula 3 to be substituted in the 4-, 5- and / or 6-position by up to 3 fluorine and / or chlorine atoms ,
Darüber hinaus gehört zum Gegenstand der vorliegenden Erfindung das Verfahren zur Herstellung der Verbindung der Formel 3, das dadurch gekennzeichnet ist, daß eine Verbindung der Formel 2 mit Lithiumdiisopropylamid in einem inerten Lösungsmittel, vorzugsweise in THF, und anschließend mit Jod umgesetzt wird, wobei die Verbindungen der Formeln 2 und 3 in 4-, 5- und/oder 6-Stellung mit bis zu 3 Fluor- und/oder Chloratomen substituiert sein können.The present invention furthermore relates to the process for the preparation of the compound of the formula 3, which is characterized in that a compound of the formula 2 with lithium diisopropylamide in an inert solvent, preferably in THF, and then reacted with iodine, the compounds of the formulas 2 and 3 being substituted in the 4-, 5- and / or 6-position with up to 3 fluorine and / or chlorine atoms can.
Ein Verfahren zur Herstellung erfindungsgemäßer Verbindungen ist unter Nennung bevorzugter Parameter nachfolgend schematisch dargestellt. A process for the preparation of compounds according to the invention is shown schematically below, naming preferred parameters.
Die obengenannten Verfahren betreffen die racemischen Verbindungen. Die einzelnen chiralen Formen der genannten Verbindungen können durch übliche Racemattrennungsverfahren erhalten werden. Ein bevorzugtes Trennungsverfahren ist durch das nachfolgende Schema dargestellt. Die danach folgende Erläuterung erfindungsgemäßer Merkmale erfolgt unter Benutzung der numerischen Bezeichnung der Verbindungen aus Schema 2. The above procedures relate to the racemic compounds. The individual chiral forms of the compounds mentioned can be obtained by conventional racemate separation processes. A preferred separation process is shown by the scheme below. The following explanation of features according to the invention is carried out using the numerical designation of the compounds from scheme 2.
Die Racematspaltung von (R/S)-5 zu (S)-(+)-5 erfolgt mit 75% der theoretischen Ausbeute und zu (R)-(-)-5 mit 95% der theoretischen Ausbeute. Die zweifelsfreie Bestimmung der optischen Reinheit erfolgt durch Chiralphasen-HPLC-Analyse der entsprechenden Bis(phosphinoxide) (S)-(-)-4 und (R)-(+)-4. Die Absolutkonfiguration ist durch Einkristall-Röntgenstrukturanalyse von (S,S)-(-)-10 gesichert.The resolution of (R / S) -5 to (S) - (+) - 5 takes place with 75% of the theoretical yield and to (R) - (-) - 5 with 95% of the theoretical yield. The optical purity is determined without a doubt by Chiral phase HPLC analysis of the corresponding bis (phosphine oxides) (S) - (-) - 4 and (R) - (+) -. 4 The absolute configuration is by single crystal X-ray structure analysis secured by (S, S) - (-) - 10.
Zum Gegenstand der vorliegenden Erfindung gehören auch die Rh(I)-, Ru(II)-, Pd(II)- und Pd(0)-Komplexe der Verbindungen der Formel II,The subject of the present invention also includes the Rh (I) -, Ru (II) -, Pd (II) and Pd (0) complexes of the compounds of the formula II,
Ihre Herstellung durch Umsetzung der Verbindungen der Formel II mit geeigneten Komplexen dieser Metalle mit leicht verdrängbaren Liganden gehört ebenfalls zum Gegenstand dieser Erfindung.Their preparation by reacting the compounds of formula II with appropriate complexes of these metals with easily displaceable ligands also the subject of this invention.
Als solche leicht verdrängbaren Liganden werden Z,Z-1,5-Cyclooctadien (COD),
Norbornadien (NBD) oder Acetylacetonat (Acac) bevorzugt. Die entsprechenden
Übergangsmetall-Komplexe sind kommerziell erhältlich oder können leicht auf
bekannte Weise hergstellt werden. In den Beispielen dieser Anmeldung (siehe
asymmetrische Hydrierung und asymmetrische Hydroborierung/Oxidation) finden
sich konkrete Vorschriften für diese Vorgehensweise.
Die homochiralen Palladiumdichlorid-Komplexe mit Verbindungen der Formel
II können auch, wie in Schema 2 gezeigt, durch HCl-induzierte Abspaltung
des N,N-Dimethyl-alpha-Phenylethylamin-Liganden aus den diastereomeren
Palladium-Komplexen der Formel 10 gewonnen werden.Z, Z-1,5-cyclooctadiene (COD), norbornadiene (NBD) or acetylacetonate (Acac) are preferred as such easily displaceable ligands. The corresponding transition metal complexes are commercially available or can be easily prepared in a known manner. The examples in this application (see asymmetric hydrogenation and asymmetric hydroboration / oxidation) contain specific rules for this procedure.
The homochiral palladium dichloride complexes with compounds of the formula II can, as shown in Scheme 2, also be obtained from the diastereomeric palladium complexes of the formula 10 by HCl-induced cleavage of the N, N-dimethyl-alpha-phenylethylamine ligand.
Darüber hinaus ist ein Gegenstand der vorliegenden Erfindung die Verwendung der erfindungsgemäßen Verbindungen als Katalysatoren. Die erfindungsgemäßen Katalysatoren eignen sich insbesondere zur Katalyse organischer Additions-, Substitutions-, Umlagerungs- und Kupplungsreaktionen. Die optisch reinen Diphosphine 5 und ihre Palladiumdichlorid-Komplexe 11 sind thermisch und chemisch ungewöhnlich stabil. Zum Beispiel konnten Lösungen von homochiralem 5 bisher nicht thermisch racemisiert werden. Selbst nach dem 2.5-stündigen Erhitzen einer Lösung von (S)-(+)-5 in Tetralin unter Rückfluß (Sdp. 207°C) in einer Argon-Atmosphäre, ist die spezifische Drehung unverändert und Chiralphasen-HPLC-Analyse des entsprechenden Phosphinoxids 4 ergibt noch 100% ee. Die Enantiomeren von 11 (Schmp. 310 - 312°C) werden nach 16-stündigem Rühren in einer Lösung aus überschüssigem Kaliumcyanid in Wasser / Methanol / Dichlormethan unverändert zurückgewonnen. Es erfolgt keinerlei Spaltung zum freien Diphosphin und Kaliumtetracyanopalladat. Die extrem hohe thermische Konfigurationsstabilität des homochiralen Diphosphins 5 und die hohe thermische und chemische Stabilität seiner Übergangsmetallkomplexe (wie z.B. 11) ist eine wesentliche Grundlage für ungewöhnlich breite Einsatzmöglichkeiten letzterer als Katalysatoren organischer Reaktionen. Die ungewöhnliche hohe Resistenz gegenüber thermischer Racemisierung garantiert den Erhalt der vollen optischen Induktion entsprechender Katalysatoren auch bei hohen Reaktionstemperaturen. Die hohe chemische Resistenz ermöglicht prinzipiell den Einsatz des Katalysators in Gegenwart ungewöhnlich aggressiver Reagentien.In addition, an object of the present invention is the use of the compounds of the invention as catalysts. The invention Catalysts are particularly suitable for the catalysis of organic addition, Substitution, rearrangement and coupling reactions. The optically pure Diphosphines 5 and their palladium dichloride complexes 11 are thermal and chemically unusually stable. For example, solutions from homochiral 5 have not been thermally racemized so far. Even after that Heating a solution of (S) - (+) - 5 in tetralin under reflux for 2.5 hours (Bp 207 ° C) in an argon atmosphere, is the specific rotation unchanged and chiral phase HPLC analysis of the corresponding phosphine oxide 4 still gives 100% ee. The enantiomers of 11 (mp. 310-312 ° C) after stirring for 16 hours in a solution of excess Potassium cyanide in water / methanol / dichloromethane unchanged recovered. There is no cleavage to the free diphosphine and Kaliumtetracyanopalladat. The extremely high thermal configuration stability of the homochiral diphosphine 5 and the high thermal and chemical Stability of its transition metal complexes (such as 11) is essential Basis for unusually wide range of uses of the latter as Organic reaction catalysts. The unusually high resistance against thermal racemization guarantees the maintenance of the full optical Induction of appropriate catalysts even at high reaction temperatures. The high chemical resistance enables the use of the catalyst in principle in the presence of unusually aggressive reagents.
Im nachfolgenden werden die Vorteile der allgemein einsetzbaren Katalysatoren
an konkreten, besonders bevorzugten Beispielen erläutert. Die spezifische
Rotation z.B. des optisch reinen Diphosphins (S)-(+)-5 (Verbindung der Formel
II) variiert dramatisch in unterschiedlichen Lösungsmitteln (Tabelle 1). Zum
Beispiel wird die Richtung der optischen Drehung von +114.9° zu -73.9°
umgekehrt, wenn man das Lösungsmittel Toluol durch Tetralin ersetzt. Die
Bedeutung dieses bisher unbekannten Phänomens für die durch entsprechende
Übergangsmetall-Komplexe bewirkte asymmetrische Katalyse ist noch nicht
geklärt. Der genannte Umstand erlaubt, die optische Induktion durch
Lösungsmittel-Variation stark und gezielt zu beeinflussen und das
Reaktionsprodukt mit dem gleichen Katalysator in beiden Absolutkonfigurationen
herzustellen, je nachdem welches Lösungsmittel man verwendet.
Der Rhodium(I)-Komplex von (R)-(-)-5 hat hohe katalytische Aktivität und Enantioselektivität z.B. bei der Hydroborierung von prochiralen Olefinen. Die Hydroborierung von p-Methoxystyrol 12 mit 2 Äquiv. Catecholboran in THF bei 0°C in Gegenwart von 2 mol% eines in situ - Katalysators aus (1,5-Cyclooctadien)(2,4-pentandionato)-rhodium(I) und (R)-(-)-5 ist innerhalb 1.5 Std. quantitativ. Oxidation mit überschüssigem Wasserstoffperoxid bei 25°C gibt 78% des Markownikov-Produkts 1-(4-Methoxyphenyl)ethanol 13 [77.8% ee der (R)-Konfiguration] und 22% des anti-Markownikov-Produkts 4-Methoxyphenethylalkohol 14 (Schema 3). Die Anwesenheit des Rhodium(I)-Komplexes des elektronenarmen, homochiralen Diphosphins 5 bewirkt somit eine drastische Erniedrigung der Aktivierungsenergie der Hydroborierung, kehrt die anti-Markownikov-Selektivität der Hydroborierung in eine Markownikov-Selektivität um und liefert den Produktalkohol selbst bei der technisch leicht realisierbaren Reaktionstemperatur von 0°C in einer wesentlich höheren optischen Reinheit als elektronenreiche Diphosphine bei -70 bis -20°C. Bei 0-25°C liefern elektronenreiche Diphosphine keine signifikante Induktion mehr. The rhodium (I) complex of (R) - (-) - 5 has high catalytic activity and enantioselectivity, for example in the hydroboration of prochiral olefins. The hydroboration of p-methoxystyrene 12 with 2 equiv. Catecholborane in THF at 0 ° C in the presence of 2 mol% of an in situ catalyst made from (1,5-cyclooctadiene) (2,4-pentanedionato) rhodium (I) and (R) - (-) - 5 is within 1.5 hours quantitative. Oxidation with excess hydrogen peroxide at 25 ° C gives 78% of the Markownikov product 1- (4-methoxyphenyl) ethanol 13 [77.8% ee of the (R) configuration] and 22% of the anti-Markownikov product 4-methoxyphenethyl alcohol 14 (Scheme 3). The presence of the rhodium (I) complex of the electron-deficient, homochiral diphosphine 5 thus drastically lowers the activation energy of the hydroboration, reverses the anti-Markovnikov selectivity of the hydroboration to a Markovnikov selectivity and delivers the product alcohol even in the case of the technically easily realizable one Reaction temperature of 0 ° C in a much higher optical purity than electron-rich diphosphines at -70 to -20 ° C. At 0-25 ° C, electron-rich diphosphines no longer provide significant induction.
Der Rhodium(I)-Komplex von (R)-(-)-5 katalysiert Wasserstoff-Additionen an C=C - Doppelbindungen bei hohem Wasserstoffdruck. 2-Benzylidenbernsteinsäure-4[(4-BOC-amino)-1-piperidid] 37 wird bei 25°C unter 1 bar Wasserstoff in Gegenwart von 1 mol% des in situ - Katalysators aus Di-µ-chloro-bis(cycloocta-1c,5c-dien)-rhodium(I) und (R)-(-)-5 nicht hydriert. Ein in situ-Rh(I)-Komplex des homochiralen Diphosphins (R)-(-)5 bewirkt bei hohem Wasserstoffdruck asymmetrische Hydrierung (vgl. die Beispiele).The rhodium (I) complex of (R) - (-) - 5 catalyzes hydrogen additions C = C - double bonds at high hydrogen pressure. 2-Benzylidosuccinic acid-4 [(4-BOC-amino) -1-piperidide] 37 is at 25 ° C under 1 bar of hydrogen in the presence of 1 mol% of the in situ catalyst Di-µ-chloro-bis (cycloocta-1c, 5c-diene) rhodium (I) and (R) - (-) - 5 not hydrogenated. On in situ Rh (I) complex of the homochiral diphosphine (R) - (-) 5 causes at high Hydrogen pressure asymmetric hydrogenation (see the examples).
Die Palladium-Komplexe von (R/S)-5 mit Palladiumchlorid bzw. Palladiumacetat geben bessere Ausbeuten als entsprechende Palladium-Komplexe elektronenreicher Mono- oder Diphosphine bei Aryl-Aryl-Kupplungen von Arylboronsäureestern mit Arylhalogeniden im wäßrig / organischen Zweiphasengemisch (Suzuki-Kupplung). Sie ergeben ebenfalls bessere Ausbeuten bei Aryl-Vinyl-Kupplungen des Heck-Typs. Die Palladium-Katalysatoren (S,S)-(-)-10, (S,R)-(+)-10, (S)-(-)-11 und (R)-(+)-11 ergeben überlegene chemische und optische Ausbeuten bei asymmetrischen allylischen Substitutionen, Heck-Kupplungen und Ringschlußreaktionen. The palladium complexes of (R / S) -5 with palladium chloride or palladium acetate give better yields than corresponding palladium complexes electron-rich mono- or diphosphines in aryl-aryl couplings of Arylboronic acid esters with aryl halides in aqueous / organic Two-phase mixture (Suzuki coupling). They also make better ones Yields of Heck-type aryl vinyl couplings. The Palladium catalysts (S, S) - (-) - 10, (S, R) - (+) - 10, (S) - (-) - 11 and (R) - (+) - 11 result in superior chemical and optical yields in asymmetric allylic substitutions, Heck couplings and ring closure reactions.
Reagentien, Geräte und allgemeine Methoden: Aceton (99,5%, Riedel-de Haën), 1,2-Bis(diphenylphosphin)ethan (99%, Aldrich), 1-Brom-3-Fluorbenzol (>99%, Aldrich), n-Butyllithium (15%ige Lösung in Hexanen, 1,6 N, Chemetall Gesellschaft), (-)-(2R,3R)-2,3-O,O'-Dibenzoyltartarsäure und deren (+)-(2S,3S)-Enantiomer (>99%, Fluka), Catecholboran (1,0 N Lösung in THF, Aldrich), (1,5-Cyclooctadien)(2,4-pentadionat)-rhodium(I) (99%, Aldrich), Di-µ-chlor-bis[(cycloocta-lc,5c-dien)-rhodium(I)], (S)-(+)-Di-µchlor-bis{2-[1-(dimethyl-amino)ethyl]phenyl-C,N}dipalladium (9) (98%, Aldrich), Dichlormethan (99,8%, Riedel-de Haen), Dichlormethylsilan Cl2Si(CH3)H (97%, Janssen), Diethylether (>99%, Hoechst), Wasserstoffperoxid (35% wässrige Lösung, Riedel-de Haën), Iod (99,8%, Riedel-de Haën), Mesitylen (99%, Fluka), Methanol (99,5%, 0,2% H2O, Riedel-de Haën), Kaliumhexafluorphosphat (>98%, Fluka), Tetralin (99%, Aldrich), Toluol (>99%, <0,03% H2O, Aldrich), Tri-n-butylamin (98%, Merck-Schuchardt), Trichlorsilan (99%, Aldrich), o-Xylol (99,5%, Riedel-de Haën) wurden wie gekauft eingesetzt.Reagents, devices and general methods: acetone (99.5%, Riedel-de Haën), 1,2-bis (diphenylphosphine) ethane (99%, Aldrich), 1-bromo-3-fluorobenzene (> 99%, Aldrich) , n-butyllithium (15% solution in hexanes, 1.6 N, Chemetall Gesellschaft), (-) - (2R, 3R) -2,3-O, O'-dibenzoyltartaric acid and its (+) - (2S, 3S) enantiomer (> 99%, Fluka), catecholborane (1.0 N solution in THF, Aldrich), (1,5-cyclooctadiene) (2,4-pentadionate) rhodium (I) (99%, Aldrich) , Di-µ-chloro-bis [(cycloocta-lc, 5c-diene) rhodium (I)], (S) - (+) - di-µchloro-bis {2- [1- (dimethylamino) ethyl ] phenyl-C, N} dipalladium (9) (98%, Aldrich), dichloromethane (99.8%, Riedel-de Haen), dichloromethylsilane Cl 2 Si (CH 3 ) H (97%, Janssen), diethyl ether (> 99%, Hoechst), hydrogen peroxide (35% aqueous solution, Riedel-de Haën), iodine (99.8%, Riedel-de Haën), mesitylene (99%, Fluka), methanol (99.5%, 0.2 % H 2 O, Riedel-de Haën), potassium hexafluorophosphate (> 98%, Fluka), tetralin (99%, Aldrich), toluene (> 99%, <0.03% H 2 O, Aldrich), tri-n- butylamine (98%, Merck-Sch uchardt), trichlorosilane (99%, Aldrich), o-xylene (99.5%, Riedel-de Haën) were used as purchased.
Chlordiphenylphosphin ClPPh2 (techn., 95%, Aldrich) (Siedepunkt 98-100°C / 0,2 Torr) und p-Methoxystyrol (97%, Aldrich) (Siedepunkt 41-42°C / 0,5 Torr) wurden unmittelbar vor der Verwendung unter Vakuum destilliert. Diisopropylamin (99%, Aldrich) und Diisopropylether (>99%, Hoechst) wurden unmittelbar vor der Verwendung aus Calciumhydrid in einer Argon-Atmosphäre destilliert (Karl-Fischer-Titration ergab <0,01% H2O in iPr2O und ≤0,05% H2O in iPr2NH). N,N-Dimethylformamid (DMF) wurde mehrere Tage in einem verschlossenen Kolben über aktivierten 4A Molekularsieben stehengelassen und dann unter Vakuum destilliert. Tetrahydrofuran (THF) wurde unmittelbar vor der Verwendung zur Trocknung durch ICN Aluminiumoxid B (Aktivität 1, 1 g/3 ml THF) geleitet (Karl-Fischer-Titration ergab < 0,01% H2O).Chlorodiphenylphosphine ClPPh 2 (technical, 95%, Aldrich) (boiling point 98-100 ° C / 0.2 Torr) and p-methoxystyrene (97%, Aldrich) (boiling point 41-42 ° C / 0.5 Torr) became immediate Distilled under vacuum before use. Diisopropylamine (99%, Aldrich) and diisopropyl ether (> 99%, Hoechst) were distilled from calcium hydride in an argon atmosphere immediately before use (Karl Fischer titration gave <0.01% H 2 O in iPr 2 O and ≤ 0.05% H 2 O in iPr 2 NH). N, N-Dimethylformamide (DMF) was left in a sealed flask over activated 4A molecular sieves for several days and then distilled under vacuum. Tetrahydrofuran (THF) was passed through ICN aluminum oxide B (activity 1.1 g / 3 ml THF) for drying immediately before use (Karl Fischer titration gave <0.01% H 2 O).
Kupferpulver (99,8%, Riedel-de Haën) wurde nach dem folgenden
Verfahren aktiviert:
260 g Kupferpulver wurden in eine Lösung von 52 g Iod in 2,6 1
Aceton gegeben und das Gemisch wurde 10 min gerührt. Das Kupfer
wurde über einen Büchner-Trichter filtriert und 10 min in einer
Lösung von 650 ml konzentrierter Salzsäure in 650 ml Aceton gerührt.
Das Kupferpulver wurde filtriert, mit 3 × 200 ml Aceton
gewaschen und unter Vakuum in einem Exsikkator getrocknet.Copper powder (99.8%, Riedel-de Haën) was activated using the following procedure:
260 g of copper powder was placed in a solution of 52 g of iodine in 2.6 l of acetone and the mixture was stirred for 10 minutes. The copper was filtered through a Buchner funnel and stirred for 10 minutes in a solution of 650 ml of concentrated hydrochloric acid in 650 ml of acetone. The copper powder was filtered, washed with 3 × 200 ml acetone and dried under vacuum in a desiccator.
Alle Reaktionen wurden in trockener Glasapparatur in einer Argon-Atmosphäre gefahren.All reactions were carried out in a dry glass apparatus in one Argon atmosphere driven.
Die Schmelzpunkte (Schmp.) wurden mit einem Büchi Kapillar-Schmelzpunktgerät (nach Dr. Tottoli) bestimmt und sind nicht korrigiert. HPLC: Kontron 420 Pumpe mit Kontron 425 Gradientenbildner, Kontron 360 Autosampler (20 µl Injektionsschleife), Kontron 432 HPLC UV-Detektor und Kontron 450-MT2 Datenverarbeitungssystem oder alternativ Spectra Physics SP 4200 Pumpe/8750 Organizer (10µl Injektionsschleife) mit SP 8700 Lösemittel-Dosiersystem, Spectra 100 UV-Vis Detektor und SP 4100 Computing Integrator. DC: mit Silikagel 60 F-254 (E.Merck) vorbeschichtete Glasplatten von 5 × 10 cm; Darstellung der Flecken mit Universal UV Lampe Camag (254 nm). Ultraschall-Reinigungsbad: Elma Transsonic TS540.The melting points (mp) were measured using a Buchi capillary melting point device (according to Dr. Tottoli) and are not corrected. HPLC: Kontron 420 pump with Kontron 425 gradient generator, Kontron 360 autosampler (20 µl injection loop), Kontron 432 HPLC UV detector and Kontron 450-MT2 data processing system or alternatively Spectra Physics SP 4200 pump / 8750 Organizer (10µl injection loop) with SP 8700 solvent dosing system, Spectra 100 UV-Vis detector and SP 4100 computing Integrator. TLC: precoated with silica gel 60 F-254 (E. Merck) 5 × 10 cm glass plates; Representation of stains with universal Camag UV lamp (254 nm). Ultrasonic cleaning bath: Elma Transsonic TS540.
1H-NMR (interner Standard TMS): Varian Gemini 200 (200 MHz), Bruker AM 400 (400 MHz) und Bruker ARX 500 (500 MHz). 13C-NMR (interner Standard TMS): Bruker AM 270 (67,93 MHz) und Bruker ARX 500 (125,77 MHz). 19F-NMR (interner Standard Fluortrichlormethan): Bruker AC 100 (94,2 MHz), Varian Gemini 200 (188,14 MHz), Bruker AM 400 (376,50 MHz) und Bruker ARX 500 (470,59 MHz). 31P-NMR (externer Standard 80 wässr. Phosphorsäure): Bruker AM 270 (109,35 MHz), Bruker AM 360 (145,79 MHz) und Bruker ARX 500 (202,46 MHz). Die angegebenen δ- und J-Werte für alle Verbindungen außer (R/S)-4, (S)-(-)-4 und (R)-(+)-4 entsprechen der üblichen Analyse erster Ordnung der Spektren. Alle NMR-Spektren von (R/S)-4, (S)-(-)-4 und (R)-(+)-4 wurden unter Einsatz von Entkoppelungsverfahren und der 1H-13C-NMR-Korrelation (hsqc) vollständig analysiert. IR: Perkin Elmer 683 Spektrometer. MS: a) "fast atom bombardment" positive Ionisierung (+FAB): VG ZAB SEQ; NBA bezeichnet p-Nitrobenzylalkohol. b) "dissociation chemical ionization" (DCI): Kratos MS 80. c) "positive electrospray ionization" (+ESI): VG BIO-Q; Acetonitril/Wasser (1:1) + 0,5% Ameisensäure. Die optische Drehung wurde auf einem Perkin-Elmer 241 Polarimeter unter Verwendung einer Mikroküvette von 10 cm Länge bestimmt. 1 H-NMR (internal standard TMS): Varian Gemini 200 (200 MHz), Bruker AM 400 (400 MHz) and Bruker ARX 500 (500 MHz). 13 C-NMR (internal standard TMS): Bruker AM 270 (67.93 MHz) and Bruker ARX 500 (125.77 MHz). 19 F-NMR (internal standard fluorotrichloromethane): Bruker AC 100 (94.2 MHz), Varian Gemini 200 (188.14 MHz), Bruker AM 400 (376.50 MHz) and Bruker ARX 500 (470.59 MHz). 31 P-NMR (external standard 80 aqueous phosphoric acid): Bruker AM 270 (109.35 MHz), Bruker AM 360 (145.79 MHz) and Bruker ARX 500 (202.46 MHz). The specified δ and J values for all compounds except (R / S) -4, (S) - (-) - 4 and (R) - (+) - 4 correspond to the usual first-order analysis of the spectra. All NMR spectra of (R / S) -4, (S) - (-) - 4 and (R) - (+) - 4 were obtained using decoupling methods and the 1 H- 13 C NMR correlation (hsqc ) fully analyzed. IR: Perkin Elmer 683 spectrometer. MS: a) "Fast atom bombardment" positive ionization (+ FAB): VG ZAB SEQ; NBA denotes p-nitrobenzyl alcohol. b) "dissociation chemical ionization" (DCI): Kratos MS 80. c) "positive electrospray ionization" (+ ESI): VG BIO-Q; Acetonitrile / water (1: 1) + 0.5% formic acid. Optical rotation was determined on a Perkin-Elmer 241 polarimeter using a 10 cm long micro cuvette.
Die Röntgenstrukturen wurden anhand von in Lindemann-Glas-Kapillaren versiegelten Einkristallen ermittelt, wobei ein computergesteuertes Vierkreis-Diffraktometer (R3m/V, Siemens) eingesetzt wurde. 25 Reflexionen mit > 4° (für 4 und S,S-10) bzw. > 8° (für 7) dienten der Bestimmung der Zelldimensionen. Das Phasenproblem wurde mit der direkten Methode gelöst , Minimierung von Σw(Fo2-Fc2)2 , Gewichtungsschema w gemäß den Zählstatistiken.The X-ray structures were determined on the basis of single crystals sealed in Lindemann glass capillaries, using a computer-controlled four-circle diffractometer (R3m / V, Siemens). 25 reflections with > 4 ° (for 4 and S, S-10) or > 8 ° (for 7 ) were used to determine the cell dimensions. The phase problem was solved with the direct method, minimization of Σw (Fo 2 -Fc 2 ) 2 , weighting scheme w according to the counting statistics.
Einer Lösung aus 1-Brom-3-fluorbenzol (1) (298,7 g, 1,7 Mol) in Diisopropylether (4,0 l) wurde bei -78°C innerhalb von 30 min über eine flexible Nadel eine 1,6 N Lösung von n-Butyllithium in Hexanen (1060 ml, 1,7 Mol) zugegeben. Die gelbe Suspension wurde für eine weitere Stunde bei -78°C gerührt. Chlordiphenylphosphin (394 g, 1,78 Mol) wurde tropfenweise innerhalb von 20 min bei -78°C bis -60°C zugegeben. Man ließ die gelbe Lösung sich innerhalb von 2 h auf 0°C erwärmen, wobei sie allmählich zu einer weißen Suspension wurde. Eine gesättigte wässrige Ammoniumchlorid-Lösung (1,0 l) wurde tropfenweise zugegeben. Die organische Schicht wurde getrennt, mit Salzlake gewaschen (2 × 700 ml), mit MgSO4 getrocknet und dann filtriert. Das Lösemittel wurde unter Vakuum verdampft und der ölige Rückstand wurde im Hochvakuum getrocknet, bis die Kristallisierung einsetzte und eine blaßgelbe halbfeste Substanz ergab (479 g, 1,71 Mol, Ausbeute 100%). Dieses Rohprodukt wurde ohne Reinigung zu Phosphinoxid oxidiert. Eine Analysenprobe wurde durch Waschen des Rohprodukts mit Methanol erhalten, was farblose Kristalle von (3-Fluorphenyl)diphenylphosphin ergab, Schmp. 59-61°C, Rf 0,26 (Cyclohexan) [Rf von 1: 0,73], 1H-NMR (200 MHz, CDCl3): δ 6,84-7,17.(m, 3H), 7,20-7,60 (m, 11H); MS (DCI, CH3OH): m/e (rel. Int.) 281 (M+H, 100), 280 (M, 83), 203 (M-C6H5,24); IR (KBr): 3070, 1602, 1580, 1475, 1437, 1415, 1216, 876, 791, 742, 694, 685 cm-1.A solution of 1-bromo-3-fluorobenzene (1) (298.7 g, 1.7 mol) in diisopropyl ether (4.0 l) was added to a 1.6 at -78 ° C within 30 min using a flexible needle N solution of n-butyllithium in hexanes (1060 ml, 1.7 mol) was added. The yellow suspension was stirred for a further hour at -78 ° C. Chlorodiphenylphosphine (394 g, 1.78 mol) was added dropwise over 20 minutes at -78 ° C to -60 ° C. The yellow solution was allowed to warm to 0 ° C over 2 hours, gradually becoming a white suspension. A saturated aqueous ammonium chloride solution (1.0 L) was added dropwise. The organic layer was separated, washed with brine (2 x 700 ml), dried with MgSO 4 and then filtered. The solvent was evaporated in vacuo and the oily residue was dried under high vacuum until crystallization started and gave a pale yellow semi-solid (479 g, 1.71 mol, 100% yield). This crude product was oxidized to phosphine oxide without purification. An analytical sample was obtained by washing the crude product with methanol to give colorless crystals of (3-fluorophenyl) diphenylphosphine, mp 59-61 ° C, R f 0.26 (cyclohexane) [R f of 1: 0.73], 1 H NMR (200 MHz, CDCl 3 ): δ 6.84-7.17 (m, 3H), 7.20-7.60 (m, 11H); MS (DCI, CH 3 OH): m / e (rel. Int.) 281 (M + H, 100), 280 (M, 83), 203 (MC 6 H 5 , 24); IR (KBr): 3070, 1602, 1580, 1475, 1437, 1415, 1216, 876, 791, 742, 694, 685 cm -1 .
In eine Suspension des Phosphins (476,5 g, 1,7 Mol) in Methanol (2,1 l) wurde tropfenweise bei <40°C 35%iges wässriges Wasserstoffperoxid (183 ml, 2,1 Mol) zugegeben. Nach Rühren der erhaltenen klaren gelben Lösung für 10 min bei 20°C zeigte die DC eine quantitative Reaktion (Ethylacetat / Isopropanol 20:1; Rf 2: 0,44; Phosphin: 0,75). Eine gesättigte wässrige Lösung von Natriumsulfit (640 ml) und iN-Salzsäure (300 ml) wurde zugegeben, und das Gemisch wurde gerührt, bis ein Test mit Iod-Stärkepapier die vollständige Reduktion des Wasserstoffperoxid-Überschusses anzeigte. Methanol wurde unter Vakuum verdampft, und Dichlormethan (4,0 1) wurde unter Rühren zugegeben. Die organische Schicht wurde getrennt, mit 2 × 1 l gesättigter Natriumbicarbonatlösung und mit 2 × 1 l Wasser gewaschen. Die organische Phase wurde getrocknet (MgSO4) und das Lösemittel wurde unter Vakuum verdampft, so daß ein weißes Pulver zurückblieb (475 g). Es wurde mit Diisopropylether (900 ml) in einem Ultraschall-Reinigungsbad trituriert, filtriert und nochmals mit Diisopropylether (300 ml) gewaschen und unter Vakuum getrocknet: 441 g (1,49 Mol, 88% Ausbeute auf der Basis von 1), Schmp. 143-145°C. Die HPLC [250 × 4,6 mm Lichrosorb RP 18 7 µm, 1 ml/min (630 ml CH3CN + 370 ml H2O + 0,1% NH4OAc), det.: 254 nm, tret 8,50 min] ergab eine Reinheit von 98,1%. 1H-NMR (200 MHz, CDCl3): 7,18 - 7,80 (m); MS (DCI, CH3OH): m/e (rel.Int. 297 (M+H, 100) 296 (M, 11), 295 (M-H, 13); IR (KBr): 3055, 1583, 1440, 1228, 1188, 1122, 1110, 725, 708, 700, 690, 542, 511 cm-1.In a suspension of the phosphine (476.5 g, 1.7 mol) in methanol (2.1 l) 35% aqueous hydrogen peroxide (183 ml, 2.1 mol) was added dropwise at <40 ° C. After stirring the clear yellow solution obtained for 10 min at 20 ° C., the TLC showed a quantitative reaction (ethyl acetate / isopropanol 20: 1; R f 2: 0.44; phosphine: 0.75). A saturated aqueous solution of sodium sulfite (640 ml) and iN hydrochloric acid (300 ml) was added and the mixture was stirred until an iodine starch paper test indicated complete reduction of the excess hydrogen peroxide. Methanol was evaporated in vacuo and dichloromethane (4.0 L) was added with stirring. The organic layer was separated, washed with 2 × 1 l of saturated sodium bicarbonate solution and with 2 × 1 l of water. The organic phase was dried (MgSO 4 ) and the solvent was evaporated in vacuo to leave a white powder (475 g). It was triturated with diisopropyl ether (900 ml) in an ultrasonic cleaning bath, filtered and washed again with diisopropyl ether (300 ml) and dried under vacuum: 441 g (1.49 mol, 88% yield based on 1 ), mp. 143-145 ° C. HPLC [250 × 4.6 mm Lichrosorb RP 18 7 μm, 1 ml / min (630 ml CH 3 CN + 370 ml H 2 O + 0.1% NH 4 OAc), det .: 254 nm, t ret 8 , 50 min] gave a purity of 98.1%. 1 H NMR (200 MHz, CDCl 3 ): 7.18 - 7.80 (m); MS (DCI, CH 3 OH): m / e (rel.Int. 297 (M + H, 100) 296 (M, 11), 295 (MH, 13); IR (KBr): 3055, 1583, 1440, 1228, 1188, 1122, 1110, 725, 708, 700, 690, 542, 511 cm -1 .
Anmerkung: Es ist bei diesem Schritt absolut erforderlich, mit sorgfältig getrockneten Glasgeräten, THF und Diisopropylamin zu arbeiten und einen Iod-Überschuß zu vermeiden. Bereits die Gegenwart der in handelsüblichem Diisopropylamin enthaltenen 0,2% H2O beeinträchtigte die Ergebnisse (jeweils 10-15% 2 und Diiodid 6 wurden nicht umgesetzt).Note: It is essential to use carefully dried glassware, THF and diisopropylamine at this step and to avoid excess iodine. Even the presence of the 0.2% H 2 O contained in commercially available diisopropylamine affected the results (10-15% 2 and diiodide 6 were not converted in each case).
Einer Lösung von Diisopropylamin (176 ml, 1,24 Mol) in THF (1,0 1) wurde bei -70°C eine 1,6 N Lösung von n-Butyllithium in Hexanen (769 ml, 1,23 Mol) zugegeben. Man ließ die Lösung sich auf -20°C erwärmen und kühlte sie dann erneut auf -70°C ab. Diese klare gelbe LDA-Lösung wurde bei -70°C innerhalb von 25 min mit einer flexiblen Nadel in eine kalte (-78°C) Suspension von 2 (296,3 g, 1,0 Mol) in THF (2,0 1) eingegeben. Das Gemisch wurde 15 min bei -78°C gerührt, was eine orange-rote Suspension ergab. Eine Lösung von Iod (254 g, 1,0 Mol) in THF (1,0 l) wurde tropfenweise bei ≤ -70°C in 30 min zugegeben, was zu einer gelborangefarbenen dicken Suspension führte. Man ließ sie sich innerhalb 1,5 h auf 0°C erwärmen. Eine Lösung von Natriumthiosulfat (74 g) in Wasser (600 ml) wurde zugegeben, gefolgt von der Zugabe von Salzlake (1,2 l). Die organische Phase wurde getrennt und mit 3 × 1,2 l Salzlake gewaschen. Sie wurde getrocknet (MgSO4), und das Lösemittel wurde unter Vakuum verdampft. Der Rückstand wurde mit Diisopropylether (1,0 l) in einem Ultraschall-Reinigungsbad (≈ 1 min) trituriert. Der Feststoff wurde filtriert und unter Vakuum getrocknet, was ein farbloses Pulver ergab (358g, 848 mMol, 85% Ausbeute), Schmp. 155-157°C. HPLC [250 × 4,6 mm Lichrosorb RP18 7µm, 1,5 ml/min (630 ml CH3CN + 370 ml H2O + 0,1% NH4OAc), det.: 220 nm] ergab 0,6% 2 (tret 4,41 min), 97,8% 3 (tret 4,71 min), 1,6% 6 (tret 7,47 min). 1H-NMR (200 MHz, CDCl3): δ 6,97 (ddd, 3JH,P=13 Hz, 3JH,H=7 Hz, 4JH,H=1 Hz, 1 H), 7,15 - 7,38 (m,2H), 7,40 - 7,80 (m, 10H); 19F {1H}-NMR(94,2 MHz, CDCl3): δ -87,3 (d, 4JF,P=6,8 Hz); 19F-NMR (94,2 MHz, CDCl3): δ -87,3 (td, 4JF,P≈3JF,H≈7,0 Hz, 4JF,H=5,2 Hz); MS (DCI): m/e (rel.Int.) 423 (M+H, 100); IR (KBr): 2920(w), 1437, 1400, 1244, 1182, 1117, 791, 718, 697, 542, 520 cm-1.A solution of diisopropylamine (176 ml, 1.24 mol) in THF (1.0 l) was added with a 1.6 N solution of n-butyllithium in hexanes (769 ml, 1.23 mol) at -70 ° C. The solution was allowed to warm to -20 ° C and then cooled again to -70 ° C. This clear yellow LDA solution was converted into a cold (-78 ° C) suspension of 2 (296.3 g, 1.0 mol) in THF (2.0 1 ) entered. The mixture was stirred at -78 ° C for 15 min to give an orange-red suspension. A solution of iodine (254 g, 1.0 mole) in THF (1.0 L) was added dropwise at ≤ -70 ° C in 30 min, resulting in a yellow-orange thick suspension. It was allowed to warm to 0 ° C over 1.5 hours. A solution of sodium thiosulfate (74 g) in water (600 ml) was added, followed by the addition of brine (1.2 l). The organic phase was separated and washed with 3 × 1.2 l brine. It was dried (MgSO 4 ) and the solvent was evaporated in vacuo. The residue was triturated with diisopropyl ether (1.0 l) in an ultrasonic cleaning bath (≈ 1 min). The solid was filtered and dried under vacuum to give a colorless powder (358g, 848 mmol, 85% yield), mp 155-157 ° C. HPLC [250 × 4.6 mm Lichrosorb RP18 7 μm, 1.5 ml / min (630 ml CH 3 CN + 370 ml H 2 O + 0.1% NH 4 OAc), det .: 220 nm] gave 0.6 % 2 (t ret 4.41 min), 97.8% 3 (t ret 4.71 min), 1.6% 6 (t ret 7.47 min). 1 H-NMR (200 MHz, CDCl 3 ): δ 6.97 (ddd, 3 J H, P = 13 Hz, 3 J H, H = 7 Hz, 4 J H, H = 1 Hz, 1 H), 7.15 - 7.38 (m, 2H), 7.40 - 7.80 (m, 10H); 19 F { 1 H} -NMR (94.2 MHz, CDCl 3 ): δ -87.3 (d, 4 J F, P = 6.8 Hz); 19 F-NMR (94.2 MHz, CDCl 3 ): δ -87.3 (td, 4 J F, P ≈ 3 J F, H ≈7.0 Hz, 4 J F, H = 5.2 Hz) ; MS (DCI): m / e (rel. Int.) 423 (M + H, 100); IR (KBr): 2920 (w), 1437, 1400, 1244, 1182, 1117, 791, 718, 697, 542, 520 cm -1 .
Bei den Produkten von Testreaktionen, die [aufgrund von Spuren von Wasser in den Reagentien und eines Iod-Überschusses (1,13 Äquiv.)] bis zu 15% Diiodid 6 enthielten, wurden die charakteristischen spektralen Signale beobachtet: 1H-NMR (200 MHz, CDCl3): δ 6,68 (dd, 3JH,P=12,5 Hz, 3JH,H=9 Hz); 19F{1H}-NMR (94,2 MHz, CDCl3): δ -65,8 (d, 4JF,P=5,9 Hz); 19F-NMR (94,2 MHz, CDCl3): δ -65,8 (≈t, 4JF,P=5,9 Hz, 4JF,H=5,7 Hz); MS (+ESI): m/e 549 (M+H).The characteristic spectral signals were observed for the products of test reactions containing [up to 15% diiodide 6 [due to traces of water in the reagents and an excess of iodine (1.13 equiv.)]: 1H-NMR (200 MHz , CDCl 3 ): δ 6.68 (dd, 3 J H, P = 12.5 Hz, 3 J H, H = 9 Hz); 19 F { 1 H} -NMR (94.2 MHz, CDCl 3 ): δ -65.8 (d, 4 J F, P = 5.9 Hz); 19 F NMR (94.2 MHz, CDCl 3 ): δ -65.8 (≈t, 4 J F, P = 5.9 Hz, 4 J F, H = 5.7 Hz); MS (+ ESI): m / e 549 (M + H).
Ein Gemisch aus 3 (350 g, 829 mMol), aktiviertem Kupferpulver (163 g, 2,56 Mol, vgl. Reagentien und Geräte) und DMF (1,7 1) wurde bei 140°C (Ölbad-Temperatur) 1,5 h lang gerührt. Das Gemisch wurde auf Umgebungstemperatur abgekühlt, und das Lösemittel wurde unter Vakuum bei 70°C bis zur Trockne verdampft. Der Rückstand wurde durch wiederholtes Rühren mit heißem Dichlormethan (4 × 2 l) extrahiert. Die filtrierten Extrakte wurden zusammengegeben und bis zur Trockne eingedampft, und der Rückstand wurde im Hochvakuum getrocknet, was einen Feststoff ergab (223 g, Ausbeute 91%), der nach der HPLC [Bedingungen wie für 3 beschrieben] aus 92% 4 (tret 7,25 min) und 8% 2 (< 0,1% 3) bestand. Die Ultraschallbehandlung in Dichlormethan (1,3 l) für 1 min ergab einen farblosen Feststoff (173 g, Ausbeute 71%), Schmp. 280-282°C, >99,5% 4. Eine Analysenprobe wurde erhalten durch Rekristallisierung, indem Dichlormethan/Ethylacetat (3:1) unter Rückfluß gekocht wurden, um Kristalle zu erhalten, Schmp. 283-284°C. NMR-Spektren waren identisch mit denen der optisch reinen Verbindungen (S)-(-)-4 und (R)-(+)-4 (siehe unten). MS (+FAB, MeOH/NBA): m/e (rel.Int.): 591 (M+H, 100) 513 (M-Ph, 7), 389 (M-Ph2PO, 17), 201 (Ph2PO, 27); IR (KBr): 3058 (w), 1436, 1422, 1240, 1206, 1192, 1117, 742, 695, 566, 532 cm-1.A mixture of 3 (350 g, 829 mmol), activated copper powder (163 g, 2.56 mol, see reagents and devices) and DMF (1.7 1) became 1.5 at 140 ° C. (oil bath temperature) stirred for h. The mixture was cooled to ambient temperature and the solvent was evaporated to dryness in vacuo at 70 ° C. The residue was extracted by repeated stirring with hot dichloromethane (4 × 2 l). The filtered extracts were pooled and evaporated to dryness, and the residue was dried under high vacuum to give a solid (223 g, yield 91%) which, after HPLC [conditions as described for 3], from 92% 4 (t ret 7.25 min) and 8% 2 (<0.1% 3 ). Ultrasound treatment in dichloromethane (1.3 l) for 1 min gave a colorless solid (173 g, yield 71%), mp. 280-282 ° C.,> 99.5% 4 . An analytical sample was obtained by recrystallization by refluxing dichloromethane / ethyl acetate (3: 1) to obtain crystals, mp 283-284 ° C. NMR spectra were identical to those of the optically pure compounds (S) - (-) - 4 and (R) - (+) - 4 (see below). MS (+ FAB, MeOH / NBA): m / e (rel.Int.): 591 (M + H, 100) 513 (M-Ph, 7), 389 (M-Ph 2 PO, 17), 201 ( Ph 2 PO, 27); IR (KBr): 3058 (w), 1436, 1422, 1240, 1206, 1192, 1117, 742, 695, 566, 532 cm -1 .
Für die Röntgenanalyse geeignete Kristalle wurden durch Rekristallisierung aus kochendem Toluol erhalten. Kristall von 0,31 × 0,18 × 0,17 mm3; Zelldimensionen: a = 26,570(4), b = 12,840(4), c = 20,296(3)Å, β=120,04 (1)°; C2/c,Z = 8, Dx = 1,309 Mg/m3; λ(Mo Kα) = 0,7107 Å, max = 25,06°, 5107 einzelne Reflexionen, 3117 mit (Fo) >4σ; 379 Parameter, wR2 = 0,154 (alle Reflexionen), R1 = 0,046 (3117 Reflexionen), S = 0,92, Maximum und Minimum in der Differential-Fourier-Synthese: 0,46, -0,39 e/Å3.Crystals suitable for X-ray analysis were obtained by recrystallization from boiling toluene. Crystal of 0.31 x 0.18 x 0.17 mm 3 ; Cell dimensions: a = 26.570 (4), b = 12.840 (4), c = 20.296 (3) Å, β = 120.04 (1) °; C2 / c, Z = 8, D x = 1.309 Mg / m 3 ; λ (Mo K α ) = 0.7107 Å, max = 25.06 °, 5107 individual reflections, 3117 with (Fo)>4σ; 379 parameters, wR2 = 0.154 (all reflections), R1 = 0.046 (3117 reflections), S = 0.92, maximum and minimum in the differential Fourier synthesis: 0.46, -0.39 e / Å 3 .
Die Reaktion von Monoiodid 3, das 14% Diiodid 6 enthält, unter denselben Ullmann-Koppelungsbedingungen ergab ein aus 89% 4, 10% 7 und 1% eines nicht identifizierten Bestandteiles bestehendes Produkt. 31,5 g dieses Gemisches wurden über 3 kg RP18 Silikagel chromatographiert (Eluent Methanol/Wasser 1:1) und ergaben nach Rekristallisierung aus heißem Dichlormethan/Ethylacetat (3:1) 2,7 g 7, farblose Nadeln, Schmp. 272-274°C, HPLC (Bedingungen wie für 3 beschrieben, tret 11,69 min): >99%. 1H-NMR (500 MHz, CDCl3): δ 6,78 (dd, 33JH,P=13,0 Hz, 3JH,H=8,4 Hz, 1H), 7,06 (ddd, 3JH,P=13,0 Hz, 3JH,H=8,0 Hz, 4JH,H=1,2 Hz, 1H), 7,12 (br t, 3JH,F≈3JH,H≈8,5 Hz, 1H), 7,30-7,36 (m, 5H), 7,40-7,48 (m, 6H), 7,50-7,56 (m, 2H), 7,58-7,68 (m, 8H), 7,70 (ddd, 1H); 19F{1H}-NMR (94,2 MHz, CDCl3): δ -89,6 (dt, 4JF,P= 6,3 Hz, 5JF,P=0,9 Hz, 5JF,F=0,9 Hz), -110,3 (dt, 4JF,P=6,9 Hz, 5JF,P=0,8 Hz, 5JF,F=0,9 Hz); 19F-NMR (94,2 MHz, CDCl3): δ -89,6 (br t, 4JF,P=4JF,H=6,3 Hz), -110,3 (br qua, 4JF,P≈3JF,H≈ 4JF,H≈7,0 Hz); 31P{1H}-NMR (109,35 MHz, CDCl3): δ +28,47 (d, 4JP,F=6,3 Hz), +28,58 (d, 4JP,F=6,9 Hz); MS (DCI, MeOH): m/e (rel.Int.) 717 (M+H, 85), 515 (M - Ph2PO); IR (KBr): 3057 (w), 1438, 1393, 1203, 1118, 705, 695, 533 cm-1. Eine Grundlinientrennung der Enantiomere von 7 [tret 20,34 (+)-Isomer und 22,14 min (-)-Isomer] wurde auf einer 250 × 4,6 mm Säule DNBPG-Bakerbond mit dem Eluenten n-Heptan/Ethanol 15:1 erhalten.The reaction of monoiodide 3 containing 14% diiodide 6 under the same Ullmann coupling conditions resulted in a product consisting of 89% 4 , 10% 7 and 1% of an unidentified component. 31.5 g of this mixture were chromatographed over 3 kg of RP18 silica gel (eluent methanol / water 1: 1) and, after recrystallization from hot dichloromethane / ethyl acetate (3: 1), gave 2.7 g of 7, colorless needles, mp. 272-274 ° C, HPLC (conditions as described for 3, ret 11.69 min):> 99%. 1 H-NMR (500 MHz, CDCl 3 ): δ 6.78 (dd, 33 J H, P = 13.0 Hz, 3 J H, H = 8.4 Hz, 1H), 7.06 (ddd, 3 J H, P = 13.0 Hz, 3 J H, H = 8.0 Hz, 4 J H, H = 1.2 Hz, 1H), 7.12 (br t, 3 J H, F ≈ 3 J H, H ≈8.5 Hz, 1H), 7.30-7.36 (m, 5H), 7.40-7.48 (m, 6H), 7.50-7.56 (m, 2H) ), 7.58-7.68 (m, 8H), 7.70 (ddd, 1H); 19 F { 1 H} -NMR (94.2 MHz, CDCl 3 ): δ -89.6 (dt, 4 J F, P = 6.3 Hz, 5 J F, P = 0.9 Hz, 5 J F, F = 0.9 Hz), -110.3 (dt, 4 J F, P = 6.9 Hz, 5 J F, P = 0.8 Hz, 5 J F, F = 0.9 Hz) ; 19 F NMR (94.2 MHz, CDCl 3 ): δ -89.6 (br t, 4 J F, P = 4 J F, H = 6.3 Hz), -110.3 (br qua, 4 J F, P ≈ 3 J F, H ≈ 4 J F, H ≈7.0 Hz); 31 P { 1 H} -NMR (109.35 MHz, CDCl 3 ): δ +28.47 (d, 4 J P, F = 6.3 Hz), +28.58 (d, 4 J P, F = 6.9 Hz); MS (DCI, MeOH): m / e (rel. Int.) 717 (M + H, 85), 515 (M-Ph 2 PO); IR (KBr): 3057 (w), 1438, 1393, 1203, 1118, 705, 695, 533 cm -1 . A baseline separation of the enantiomers of 7 [t ret 20.34 (+) - isomer and 22.14 min (-) - isomer] was carried out on a 250 × 4.6 mm column of DNBPG Bakerbond with the eluent n-heptane / ethanol 15 : 1 received.
Für die Röntgenanalyse geeignete Kristalle wurden mittels Rekristallisierung aus kochendem Dichlormethan erhalten. Kristall 0,45 × 0,45 = 0,3 mm3; Zelldimensionen: a = 10,462(1), b = 14,579(1), c = 20,467(2) Å; P212121, Z = 4, Dx = 1,524 Mg/m3; λ(MoKα) = 0,7107 Å, max = 28,06°, 7569 einzelne Reflexionen, 7063 mit (Fo)>4σ; 488 Parameter, wR2 = 0,065 (alle Reflexionen), R1 = 0,023 (7063 Reflexionen), S = 0,67, Maximum und Minimum in der Differential-Fourier-Synthese: 0,53, -0,26 e/Å3.Crystals suitable for X-ray analysis were obtained by recrystallization from boiling dichloromethane. Crystal 0.45 x 0.45 = 0.3 mm 3 ; Cell dimensions: a = 10.462 (1), b = 14.579 (1), c = 20.467 (2) Å; P2 1 2 1 2 1 , Z = 4, D x = 1.524 Mg / m 3 ; λ (MoK α ) = 0.7107 Å, max = 28.06 °, 7569 individual reflections, 7063 with (Fo)>4σ; 488 parameters, wR2 = 0.065 (all reflections), R1 = 0.023 (7063 reflections), S = 0.67, maximum and minimum in the differential Fourier synthesis: 0.53, -0.26 e / Å 3 .
Eine Suspension von (R/S)-5 (4,36 g, 7,38 mMol) und (S)-(+)-Di-µ-chlorbis{2-[1-(dimethylamino)ethyl]phenyl-C,N}dipalladium (9) (2,19 g, 3,69 mMol) in desoxygeniertem Methanol (430 ml) wurde 2 h lang bei 25°C gerührt, bis eine fast klare, blaßgelbe Lösung entstand. Eine sehr geringe Menge ungelöster Stoffe wurde mittels Filtration entfernt. Eine Lösung von Kaliumhexafluorphosphat (680 mg, 3,69 mMol) in desoxygeniertem Wasser (430 ml) wurde tropfenweise zugegeben. Ein blaßgelber Feststoff wurde ausgefällt, und die Suspension wurde 4 h gerührt. Der Reaktionsverlauf konnte mittels DC überwacht werden (100% Isopropanol; Rf(R/S)-5: 0,72, (S,S)-10: 0,57, (S,R)-10: 0,37, 9: 0,00). Die Präzipitate wurden mittels Filtration gesammelt, mit 50%iger desoxygenierter wässriger Methanollösung (300 ml) und dann mit Diethylether (150 ml) gewaschen. [Während diese Wäschen verworfen wurden, wurde das ursprüngliche Filtrat für die Isolierung von (S,R)-(+)-10 aufbewahrt (vgl. nächster Absatz)]. Der blaßgelbe Feststoff wurde unter Vakuum getrocknet und ergab das rohe (S,S)-10 (3,33 g, 3,48 mMol, Ausbeute 94% des theoretischen Wertes); Schmp. 218-220°C (dec.); [α]D25 -198,6 (c 0,967, Aceton). 1H-NMR-Signale seines Diastereomers (S,R)-10 konnten nicht nachgewiesen werden, doch mittels DC (Diastereoselektivität > 98:2) wurden Spuren beobachtet. Der rohe Komplex wurde in desoxygeniertem Aceton (40 ml) gelöst und Diethylether (40 ml) wurde langsam zugegeben. Das Gemisch wurde 8 h in einem veschlossenen Kolben stehengelassen. Das Präzipitat wurde mittels Filtration gesammelt und unter Vakuum getrocknet: 2,83 g (2,95 mMol, Ausbeute 80% des theoretischen Wertes) blaßgelber Feststoff, Schmp. 223-225°C (dec.), [α]D25 -203,2 (c 0,98, Aceton); 1H-NMR (200 MHz, Aceton-d6) δ 1,36 (d, J=6,5 Hz, 3H, NCHCH3), 1,68 (d, J=2,5 Hz, 3H, NCH3), 2.68 (m, ca. t, J=3,7 Hz, 3H, NCH3), 5,54 (qua, J=6,5 Hz, 1H, NCHCH3), 6,32 (≈t, J=7,0 Hz, 1H), 6,58 (≈qua d, J=8,0 und 1,0 Hz, 1H), 6,68-6,86 (m, 4H), 7,06-8,26 (m, 24H); 31P{1H}-NMR (145,79 MHz, Aceton-d6) δ -143,7 (sept, 1JP,F=707 Hz, PF6-), +11,5 (dd, 2JP,P=45 Hz, 4JP,F=8 Hz), +35,3 (dd, 2JP,P=45 Hz, 4JP,F=7 Hz); 19F{1H}-NMR (376,50 MHz, Aceton-d6, die linke Seite der PF6-Doublette wurde in Übereinstimmung mit Literaturangaben für NaPF6 auf -70 ppm eingestellt) δ-70,9 (d, 1JF,P=707 Hz, 6F, PF6-), -106,2 (ddd, 4JF,P=7,3 Hz, 5JF,F=5,9 Hz, 5JF,P?=1,7 Hz), -106,4 (ddd, 4JF,P=7,7 Hz, 5JF,F=5,9 Hz, 5JF,P?=1,7 Hz); MS (+FAB, MeOH/NBA): m/e (rel. Int.) 817 (16), 816 (32), 815 (30), 814 (71), 813 (43), 812 (100), 811 (67), 810 (27), 809 (2), 808 (3) [die Peaks m/e = 816, 814, 812, 811, 810, 808 entsprechen dem Kation C46H40F2NP2Pd des Salzes mit den Palladiumisotopen (natürliche Häufigkeit) 110Pd (43,2), 108Pd (97,7), 106Pd (100), 105Pd (81,3), 104Pd (40,1) bzw. 102Pd (3,5)]; IR (KBr): 3060 (w), 1450, 1442, 1418, 841, 746, 697, 556, 502 cm-1.A suspension of (R / S) -5 (4.36 g, 7.38 mmol) and (S) - (+) - di-µ-chlorobis {2- [1- (dimethylamino) ethyl] phenyl-C, N} dipalladium (9) (2.19 g, 3.69 mmol) in deoxygenated methanol (430 ml) was stirred at 25 ° C for 2 h until an almost clear, pale yellow solution resulted. A very small amount of undissolved matter was removed by filtration. A solution of potassium hexafluorophosphate (680 mg, 3.69 mmol) in deoxygenated water (430 ml) was added dropwise. A pale yellow solid was precipitated and the suspension was stirred for 4 hours. The course of the reaction could be monitored by TLC (100% isopropanol; R f (R / S) -5 : 0.72, (S, S) -10 : 0.57, (S, R) -10 : 0.37, 9: 0.00). The precipitates were collected by filtration, washed with 50% deoxygenated aqueous methanol solution (300 ml) and then with diethyl ether (150 ml). [While these washes were discarded, the original filtrate was kept for the isolation of (S, R) - (+) -10 (see next paragraph)]. The pale yellow solid was dried under vacuum to give the crude (S, S) -10 (3.33 g, 3.48 mmol, yield 94% of theoretical); M.p. 218-220 ° C (dec.); [α] D 25 -198.6 (c 0.967, acetone). 1 H NMR signals of its diastereomer (S, R) -10 could not be detected, but traces were observed by means of DC (diastereoselectivity> 98: 2). The crude complex was dissolved in deoxygenated acetone (40 ml) and diethyl ether (40 ml) was slowly added. The mixture was left in a sealed flask for 8 hours. The precipitate was collected by filtration and dried under vacuum: 2.83 g (2.95 mmol, yield 80% of the theoretical value) pale yellow solid, mp. 223-225 ° C (dec.), [Α] D 25 -203 , 2 (c 0.98, acetone); 1 H-NMR (200 MHz, acetone-d 6 ) δ 1.36 (d, J = 6.5 Hz, 3H, NCHCH 3 ), 1.68 (d, J = 2.5 Hz, 3H, NCH 3 ), 2.68 (m, approx.t, J = 3.7 Hz, 3H, NCH 3 ), 5.54 (qua, J = 6.5 Hz, 1H, NCHCH 3 ), 6.32 (≈t, J = 7.0 Hz, 1H), 6.58 (≈qua d, J = 8.0 and 1.0 Hz, 1H), 6.68-6.86 (m, 4H), 7.06-8, 26 (m, 24H); 31 P { 1 H} -NMR (145.79 MHz, acetone-d 6 ) δ -143.7 (sept, 1 J P, F = 707 Hz, PF 6 -), +11.5 (dd, 2 J P, P = 45 Hz, 4 J P, F = 8 Hz), +35.3 (dd, 2 J P, P = 45 Hz, 4 J P, F = 7 Hz); 19 F { 1 H} -NMR (376.50 MHz, acetone-d 6 , the left side of the PF 6 doublet was set to -70 ppm in accordance with literature data for NaPF 6 ) δ-70.9 (d, 1 J F, P = 707 Hz, 6F, PF 6 -), -106.2 (ddd, 4 J F, P = 7.3 Hz, 5 J F, F = 5.9 Hz, 5 J F, P? = 1.7 Hz), -106.4 (ddd, 4 J F, P = 7.7 Hz, 5 J F, F = 5.9 Hz, 5 J F, P? = 1.7 Hz); MS (+ FAB, MeOH / NBA): m / e (rel. Int.) 817 (16), 816 (32), 815 (30), 814 (71), 813 (43), 812 (100), 811 (67), 810 (27), 809 (2), 808 (3) [the peaks m / e = 816, 814, 812, 811, 810, 808 correspond to the cation C 46 H 40 F 2 NP 2 Pd of the salt with the palladium isotopes (natural frequency) 110 Pd (43.2), 108 Pd (97.7), 106 Pd (100), 105 Pd (81.3), 104 Pd (40.1) and 102 Pd (3rd , 5)]; IR (KBr): 3060 (w), 1450, 1442, 1418, 841, 746, 697, 556, 502 cm -1 .
Kristall: 0,3 x 0,2 x 0,15 mm3; Zelldimensionen: a = 12,091 (1), b = 18,612 (4), c = 18,958 (2) Å; P212121, Z = 4, Dx = 1,391 Mg/m3; λ (Mo Kα) = 0,7107 Å, max = 25,0°, 8124 einzelne Reflexionen, 4722 mit (Fo)>4σ; 533 Parameter, wR2 = 0,076 (alle Reflexionen), R1 = 0,047 (4722 Reflexionen), S = 0,83, Maximum und Minimum in der Differential-Fourier-Synthese: 0,88, -0,61 e/Å3.Crystal: 0.3 x 0.2 x 0.15 mm 3 ; Cell dimensions: a = 12.091 (1), b = 18.612 (4), c = 18.958 (2) Å; P2 1 2 1 2 1 , Z = 4, D x = 1.391 Mg / m 3 ; λ (Mo K α ) = 0.7107 Å, max = 25.0 °, 8124 individual reflections, 4722 with (Fo)>4σ; 533 parameters, wR2 = 0.076 (all reflections), R1 = 0.047 (4722 reflections), S = 0.83, maximum and minimum in the differential Fourier synthesis: 0.88, -0.61 e / Å 3 .
Das Originalfiltrat der Zubereitung von (S,S)-(-)-10 (siehe oben) wurde unter Vakuum verdampft und ergab einen blaßgelben Feststoff (3,25 g, 3,83 mMol, Ausbeute 104% des theoretischen Wertes); Schmp. 162-165°C (dec); [α]D25 + 184,3 (c 1,02, Methanol). 1H-NMR-Signale seines Diastereomers (S,S)-10 konnten nicht nachgewiesen werden, und mit der DC (Diastereoselektivität >>99:1) wurden keine Spuren beobachtet. Der rohe Komplex wurde in desoxygeniertem Methanol (40 ml) aufgelöst und für 2 min unter Rückfluß gekocht. Desoxygeniertes Wasser (150 ml) wurde zugegeben und das Gemisch wurde in dem verschlossenen Kolben 8 h stehengelassen. Das Präzipitat wurde mittels Filtration gesammelt, mit desoxygeniertem Methanol/Wasser (1:8, 15 ml), Wasser (30 ml) gewaschen und unter Vakuum getrocknet: blaßgelbe Kristalle (3,00 g, 3,54 mMol, 96% Ausbeute) Schmp. 164-166°C (dec.), [α]D 25 +208,0 (c 1,01, Methanol); 1H-NMR (200 MHz, CD3OD): δ 2,05 (d, J = 1,9 Hz, 3H, NCH3), 2,17 (m, ca. t, J ≈ 3,3 Hz, 3H, NCH3), 2,27 (d, J = 6,3 Hz, 3H, NCHCH3), 3,58 (qui, J = 6,3 Hz, 1H,NCHCH3), 6,26 (tdt, J = 7,5, 2,5 und 1,3 Hz, 1H), 6,44 (qua d, J = 7,5 und 0,8 Hz), 6,66-6,85 (m, 4H), 6,96-7,76 (m, 24H); 31P{1H}-NMR (145,79 MHz, CD3OD) δ +10,72 (dd, 2JP,P = 44 Hz, 4JP,F = 7,6 Hz), 33,21 (dd, 2JP,P = 44 Hz, 4JP,F = 7,5 Hz); 19F{1H}-NMR (376,50 MHz, CD3OD): δ -103,37 (qua, 4JF,P≈5JF,F≈6,8 Hz), -104,46 (≈ qua d, 4JF,P≈5JF,F≈6,8 Hz, 5JF,P?≈2 Hz); MS (+FAB, MeOH/NBA): identisch mit MS von (S,S)-10.The original filtrate from the preparation of (S, S) - (-) -10 (see above) was evaporated under vacuum to give a pale yellow solid (3.25 g, 3.83 mmol, yield 104% of theoretical); M.p. 162-165 ° C (dec); [α] D 25 + 184.3 (c 1.02, methanol). 1 H NMR signals of its diastereomer (S, S) -10 could not be detected, and no traces were observed with the DC (diastereoselectivity >> 99: 1). The crude complex was dissolved in deoxygenated methanol (40 ml) and refluxed for 2 minutes. Deoxygenated water (150 ml) was added and the mixture was left in the sealed flask for 8 hours. The precipitate was collected by filtration, washed with deoxygenated methanol / water (1: 8, 15 ml), water (30 ml) and dried under vacuum: pale yellow crystals (3.00 g, 3.54 mmol, 96% yield) mp 164-166 ° C (dec.), [Α] D 25 +208.0 (c 1.01, methanol); 1 H-NMR (200 MHz, CD 3 OD): δ 2.05 (d, J = 1.9 Hz, 3H, NCH 3 ), 2.17 (m, approx. T, J ≈ 3.3 Hz, 3H, NCH 3 ), 2.27 (d, J = 6.3 Hz, 3H, NCHCH 3 ), 3.58 (qui, J = 6.3 Hz, 1H, NCHCH 3 ), 6.26 (tdt, J = 7.5, 2.5 and 1.3 Hz, 1H), 6.44 (qua d, J = 7.5 and 0.8 Hz), 6.66-6.85 (m, 4H), 6.96-7.76 (m, 24H); 31 P { 1 H} -NMR (145.79 MHz, CD 3 OD) δ +10.72 (dd, 2 J P, P = 44 Hz, 4 J P, F = 7.6 Hz), 33.21 (dd, 2 J P, P = 44 Hz, 4 J P, F = 7.5 Hz); 19 F { 1 H} -NMR (376.50 MHz, CD 3 OD): δ -103.37 (qua, 4 J F, P ≈ 5 J F, F ≈6.8 Hz), -104.46 ( ≈ qua d, 4 J F, P ≈ 5 J F, F ≈6.8 Hz, 5 J F, P? ≈2 Hz); MS (+ FAB, MeOH / NBA): identical to MS from (S, S) -10.
Desoxygenierte 10 N-Salzsäure (12 ml) wurde der unter Rückfluß kochenden Lösung von (S,S)-(-)-10 (1,12 g, 1,17 mMol) in desoxygeniertem Aceton (20 ml) zugegeben. Nach einigen Minuten bildete sich ein gelbes Präzipitat. Das Gemisch wurde 2 h unter Rückfluß gekocht und dann unter Vakuum auf 10 ml konzentriert. Desoxygeniertes Wasser (100 ml) wurde zugegeben, und man ließ Stickstoff durch die Suspension durchperlen (25°C, 10 min). Der Feststoff wurde mittels Filtration erhalten und mit Isopropanol/Wasser (1:1, 20 ml) 5 min lang gerührt. Der Feststoff wurde filtriert, mit Isopropanol/Wasser (1:1, 5 ml) gewaschen, unter Vakuum getrocknet und ergab leuchtend gelbe Kristalle (846 mg, 1,15 mMol, Ausbeute 98%), Schmp. 310-312°C (dec.), [α]D25 -311,9 (c 0,495, Dichlormethan); die spezifische Drehung war unverändert, nachdem die Lösung 8 Tage bei Umgebungstemperatur stehengelassen worden war; 1H-NMR (200 MHz, CDCl3): δ 6,66-6,86 (m, 4H), 6,90-7,08 (m, 2H), 7,27-7,56 (m, 12H), 7,70 (ddd, J = 12,5, 8,0, 2,0 Hz, 4H), 7,94 (dd, J = 12,5 und 8,0 Hz); 31P{1H]-NMR (145,79 MHz, CDCl3): δ 26,72 (br d, 4JP,F = 6,0 Hz); 19F-NMR (188,14 MHz, CDCl3): δ -108,5 (m); MS (+FAB, MeOH/NBA): m/e (rel. Int.) [705 (14), 704 (20), 703 (53), 702 (37), 701 (93), 700 (49), 699 (100), 698 (60), 697 (30) M-Cl für verschiedene Isotope von Pd und Cl], [668 (7), 667 (11), 666 (14), 665 (10), 664 (23), 663 (16), 662 (10) M-2Cl für verschiedene Isotope von Pd]; IR (KBr): 3060 (w), 1450, 1437, 1420, 747, 696, 507, 499, 487 cm-1, Elementen-Analyse (gef./ber. für C36H26Cl2F2P2Pd): C 58,9/58,76, H 3,8/3,56, Cl 9,6/9,64, F 4,7/5,16. Deoxygenated 10 N hydrochloric acid (12 ml) was added to the refluxing solution of (S, S) - (-) -10 (1.12 g, 1.17 mmol) in deoxygenated acetone (20 ml). A yellow precipitate formed after a few minutes. The mixture was refluxed for 2 hours and then concentrated to 10 ml under vacuum. Deoxygenated water (100 ml) was added and nitrogen was bubbled through the suspension (25 ° C, 10 min). The solid was obtained by filtration and stirred with isopropanol / water (1: 1, 20 ml) for 5 minutes. The solid was filtered, washed with isopropanol / water (1: 1, 5 ml), dried under vacuum and gave bright yellow crystals (846 mg, 1.15 mmol, yield 98%), mp. 310-312 ° C (dec .), [α] D 25 -311.9 (c 0.495, dichloromethane); the specific rotation was unchanged after the solution was left at ambient temperature for 8 days; 1 H NMR (200 MHz, CDCl 3 ): δ 6.66-6.86 (m, 4H), 6.90-7.08 (m, 2H), 7.27-7.56 (m, 12H) ), 7.70 (ddd, J = 12.5, 8.0, 2.0 Hz, 4H), 7.94 (dd, J = 12.5 and 8.0 Hz); 31 P { 1 H] -NMR (145.79 MHz, CDCl 3 ): δ 26.72 (br d, 4 J P, F = 6.0 Hz); 19 F NMR (188.14 MHz, CDCl 3 ): δ -108.5 (m); MS (+ FAB, MeOH / NBA): m / e (rel. Int.) [705 (14), 704 (20), 703 (53), 702 (37), 701 (93), 700 (49), 699 (100), 698 (60), 697 (30) M-Cl for different isotopes of Pd and Cl], [668 (7), 667 (11), 666 (14), 665 (10), 664 (23 ), 663 (16), 662 (10) M-2Cl for different isotopes of Pd]; IR (KBr): 3060 (w), 1450, 1437, 1420, 747, 696, 507, 499, 487 cm -1 , element analysis (found / calculated for C 36 H 26 Cl 2 F 2 P 2 Pd ): C 58.9 / 58.76, H 3.8 / 3.56, Cl 9.6 / 9.64, F 4.7 / 5.16.
Desoxygenierte 10 N-Salzsäure (22 ml) wurde zu der unter Rückfluß kochenden Lösung von (S,R)-(+)-10 (408 mg, 0,48 mMol) in desoxygeniertem Aceton (20 ml) zugegeben. Nach einigen Minuten bildete sich ein gelbes Präzipitat. Das Gemisch wurde 2 h unter Rückfluß gekocht. Die Behandlung wie für (S)-11 beschrieben ergab leuchtend gelbe Kristalle (346 mg, 0,47 mMol, 98% Ausbeute), Schmp. 310-311°C (dec.), [α]D25 + 311,5 (c 0,495, Dichlormethan); die Spektren waren deckungsgleich mit denen von (S)-11.Deoxygenated 10 N hydrochloric acid (22 ml) was added to the refluxing solution of (S, R) - (+) - 10 (408 mg, 0.48 mmol) in deoxygenated acetone (20 ml). A yellow precipitate formed after a few minutes. The mixture was refluxed for 2 hours. Treatment as described for (S) -11 gave bright yellow crystals (346 mg, 0.47 mmol, 98% yield), mp. 310-311 ° C (dec.), [Α] D 25 + 311.5 ( c 0.495, dichloromethane); the spectra were congruent with those of (S) -11 .
1,2-Bis(diphenylphosphin)ethan (dppe) (508 mg, 1,27 mMol, 0,8 Äquiv.) wurde einer Lösung von (S,S)-10 (1,53 g, 1,59 mMol) in desoxygeniertem Dichlormethan (20 ml) zugegeben. Die erhaltene klare Lösung wurde 16 h bei 20-25°C gerührt. Der Reaktionsverlauf konnte mittels DC überwacht werden [100% Toluol, Rf: (S,S)-10 (0,00), dppe (0,61), 5 (0,80)], was eine quantitative Reaktion von dppe, die Gegenwart von 5 und einen Grundlinien-Fleck (Palladiumkomplexe) anzeigte. Desoxygeniertes Cyclohexan (20 ml) wurde zugegeben, und das Gemisch wurde über eine Fritte filtriert, die ein Bett aus Silikagel enthielt (35-70µm, 13,5 g). Das Silikabett wurde mit desoxygeniertem Dichlormethan/Cyclohexan (1:1, 4 × 20 ml) gewaschen. Die Filtrate wurden zusammengegeben und unter Vakuum eingedampft. Methanol (3 ml) wurde dem Rückstand zugegeben und das Lösemittel wurde unter Vakuum eingedampft; es entstand ein farbloser Feststoff (657 mg, 1,18 mMol, Ausbeute 93%), Schmp. 161-163°C. Eine Analysenprobe wurde durch Rekristallisierung (0°C, 12 h) aus kochendem Toluol/Ethanol (4:5), Schmp. 164-165°C, [α]D25 + 114,9 (c 0,99, Toluol) hergestellt, vgl. Tabelle 1. Die NMR-Spektren waren deckungsgleich mit denen von (R/S)-5. Die DC und die HPLC [vgl. (R/S)-5] ergaben eine 100%ige chemische Reinheit. Die Oxidation zum Bis(phosphinoxid) (S)-4 mit anschließender HPLC-Analyse der chiralen Phase ergab 100% ee (siehe unten). Als man (S,S)-10 unter denselben Bedingungen mit 1,0 Äquiv. dppe reagieren ließ, wurden beträchtliche Mengen von dppe nicht umgesetzt (DC) und es war schwierig, sie aus dem Reaktionsprodukt zu entfernen. 1,2-bis (diphenylphosphine) ethane (dppe) (508 mg, 1.27 mmol, 0.8 equiv) was added to a solution of (S, S) -10 (1.53 g, 1.59 mmol) in deoxygenated dichloromethane (20 ml) added. The clear solution obtained was stirred at 20-25 ° C for 16 h. The course of the reaction could be monitored by TLC [100% toluene, R f : (S, S) -10 (0.00), dppe (0.61), 5 (0.80)], which was a quantitative reaction of dppe, indicated the presence of 5 and a baseline spot (palladium complexes). Deoxygenated cyclohexane (20 ml) was added and the mixture was filtered through a frit containing a bed of silica gel (35-70 µm, 13.5 g). The silica bed was washed with deoxygenated dichloromethane / cyclohexane (1: 1, 4 x 20 ml). The filtrates were combined and evaporated in vacuo. Methanol (3 ml) was added to the residue and the solvent was evaporated in vacuo; there was a colorless solid (657 mg, 1.18 mmol, yield 93%), mp. 161-163 ° C. An analysis sample was prepared by recrystallization (0 ° C, 12 h) from boiling toluene / ethanol (4: 5), mp. 164-165 ° C, [α] D 25 + 114.9 (c 0.99, toluene) , see. Table 1. The NMR spectra were congruent with those of (R / S) -5. The DC and the HPLC [cf. (R / S) -5] gave 100% chemical purity. The oxidation to bis (phosphine oxide) (S) -4 followed by HPLC analysis of the chiral phase gave 100% ee (see below). When one (S, S) -10 under the same conditions with 1.0 equiv. dppe reacted, considerable amounts of dppe were not reacted (DC) and it was difficult to remove them from the reaction product.
Eine Lösung von optisch reinem (S)-5 (44,2 mg) in Tetralin (10 ml, Siedepunkt 207°C) wurde 2,5 Stunden lang in einer Argonatmosphäre unter Rückfluß gekocht. Die spezifische Drehung der Lösung blieb konstant und eine nach der Oxidation zu Bis(phosphinoxid) (S)-4 genommene Probe ergab 100% ee nach HPLC-Analyse der chiralen Phase.A solution of optically pure (S) -5 (44.2 mg) in tetralin (10 ml, boiling point 207 ° C) was refluxed in an argon atmosphere for 2.5 hours. The specific rotation of the solution remained constant and a sample taken after the oxidation to bis (phosphine oxide) (S) -4 gave 100% ee after HPLC analysis of the chiral phase.
Die Konfigurations-Stabilität wurde ebenfalls beobachtet, nachdem eine Lösung von (S)-5 in Toluol 12 Tage unter Argon stehengelassen wurde und diese Lösung dann für 8 h auf 100°C erhitzt wurde, und als eine Lösung von (S)-5 in Mesitylen (Siedepunkt 164°C) 3 h lang unter Rückfluß gekocht wurde.The configuration stability was also observed after a solution of (S) -5 in toluene was left under argon for 12 days and this solution was then heated at 100 ° C for 8 h, and as a solution of (S) -5 in Mesitylene (boiling point 164 ° C) was refluxed for 3 hours.
Einer Lösung von (S)-11 (87 mg, 0,12 mMol) in Dichlormethan (10 ml) wurde Kaliumcyanid (30 mg, 0,46 mMol), Wasser (5 ml) und Methanol (10 ml) zugegeben (alle Lösemittel desoxygeniert). Die klare Lösung wurde 2 h lang gerührt. Die DC zeigte keine Bildung von 5 an. Kaliumcyanid (250 mg) wurde zugegeben und die Lösung wurde 16 h gerührt: keine Reaktion.To a solution of (S) -11 (87 mg, 0.12 mmol) in dichloromethane (10 ml) was added potassium cyanide (30 mg, 0.46 mmol), water (5 ml) and methanol (10 ml) (all solvents deoxygenated). The clear solution was stirred for 2 hours. The TLC showed no formation of 5 . Potassium cyanide (250 mg) was added and the solution was stirred for 16 h: no reaction.
In einem analogen Verfahren zu dem für (S)-(+)-5 beschriebenen ergab die Reaktion des Chlorids (S,R)-10 (748 mg, 0,88 mMol) mit dppe (282 mg, 0,71 mMol, 0,8 Äquiv.) in Dichlormethan (20 ml) die in der Überschrift angegebene Verbindung (390 mg, 0,70 mMol, Ausbeute 99%), Schmp. 164-165°C, [α]D25 -114,8 (c 1,03, Toluol), NMR-Spektren deckungsgleich mit denen von (R/S)-5 und (S)-5. Die DC und die HPLC ergaben eine 100%ige chemische Reinheit. Die Oxidation zu dem Bis(phos phinoxid) (R)-4 mit anschließender HPLC-Analyse der chiralen Phase ergab 100% ee (siehe unten).In an analogous procedure to that described for (S) - (+) - 5, the reaction of the chloride (S, R) -10 (748 mg, 0.88 mmol) with dppe (282 mg, 0.71 mmol, 0) , 8 equiv.) In dichloromethane (20 ml) the title compound (390 mg, 0.70 mmol, yield 99%), mp. 164-165 ° C, [α] D 25 -114.8 (c 1.03, toluene), NMR spectra congruent with those of (R / S) -5 and (S) -5 . TLC and HPLC showed 100% chemical purity. The oxidation to the bis (phosphine oxide) (R) -4 followed by HPLC analysis of the chiral phase gave 100% ee (see below).
Methanol (5 ml) und dann 35%ige wässrige Wasserstoffperoxid-Lösung
(1 ml, 11,6 mMol) wurden der Lösung von (S)-5 (101
mg, 0,18 mMol) in Toluol (2 ml) zugegeben. Das Gemisch wurde
4 h lang gerührt. Die DC [vgl. (R/S)-5] ergab die Verbindung aus
der Überschrift und in Spuren Rückstände von 5 und Monooxid.
Wasserstoffperoxid (1 ml) wurde zugegeben und 1 h weiter gerührt.
Die DC zeigte nun eine quantitative Oxidation an. Die
Lösung wurde mit gesättigter wässriger Natriumsulfit-Lösung (3 ×
3 ml) und 1 N-Salzsäure (2 × 2 ml) gewaschen. Das Lösemittel
wurde unter Vakuum verdampft. Der Rückstand wurde mit Chloroform
(3 × 15 ml) extrahiert. Die Extrakte wurden zusammengegeben und
mit gesättigter wässriger Natriumbicarbonat-Lösung (2 × 10 ml)
und mit Wasser (2 × 10 ml) gewaschen und über Magnesiumsulfat
getrocknet. Das Lösemittel wurde unter Vakuum verdampft und man
erhielt einen farblosen Feststoff (100 mg, 0,17 mMol, Ausbeute
94%), Schmp. 275-277°C, [α]D20 -11,8 (c 0,92, Chloroform).
1H-NMR (Tabelle 2); 13C-NMR (Tabelle 3); 19F{1H}-NMR (470,59
MHz, CDCl3):δ-110,21 (JF,P=6,6 Hz); 31P{1H}-NMR (202,46 MHz,
CDCl3):δ 28,89 (JF,P=6,6 Hz).Methanol (5 ml) and then 35% aqueous hydrogen peroxide solution (1 ml, 11.6 mmol) were added to the solution of (S) -5 (101 mg, 0.18 mmol) in toluene (2 ml). The mixture was stirred for 4 hours. The DC [cf. (R / S) -5] gave the compound the title and trace residues of 5 and monooxide. Hydrogen peroxide (1 ml) was added and stirring continued for 1 h. The DC now showed a quantitative oxidation. The solution was washed with saturated aqueous sodium sulfite solution (3 × 3 ml) and 1N hydrochloric acid (2 × 2 ml). The solvent was evaporated in vacuo. The residue was extracted with chloroform (3 x 15 ml). The extracts were combined and washed with saturated aqueous sodium bicarbonate solution (2 × 10 ml) and with water (2 × 10 ml) and dried over magnesium sulfate. The solvent was evaporated in vacuo to give a colorless solid (100 mg, 0.17 mmol, yield 94%), mp. 275-277 ° C, [α] D 20 -11.8 (c 0.92, chloroform ).
1 H NMR (Table 2); 13 C NMR (Table 3); 19 F { 1 H} -NMR (470.59 MHz, CDCl 3 ): δ-110.21 (J F, P = 6.6 Hz); 31 P { 1 H} NMR (202.46 MHz, CDCl 3 ): δ 28.89 (J F, P = 6.6 Hz).
Die HPLC der chiralen Phase (250 × 4,6 mm DNBPG-Bakerbond, 1,0 ml / min n-Hexan + Ethanol (20 + 1), det. 254 nm) im Vergleich mit der racemischen Referenzprobe (R/S)-4 ergab 100% (S)-4 (tret 25,50 min) und 0% (R)-4 (tret 23,63 min). Eine Analysenprobe wurde erhalten durch Rekristallisierung (0°C, 12h) aus kochendem Dichlormethan / Ethylacetat (3:1), Schmp. 282-283°C, [α]D20 -11,3 (c 0,96, Chloroform); [α]36520 +57,0 (c 0,59, Methanol). The HPLC of the chiral phase (250 × 4.6 mm DNBPG Bakerbond, 1.0 ml / min n-hexane + ethanol (20 + 1), det. 254 nm) in comparison with the racemic reference sample (R / S) - 4 gave 100% (S) -4 (t ret 25.50 min) and 0% (R) -4 (t ret 23.63 min). An analytical sample was obtained by recrystallization (0 ° C, 12h) from boiling dichloromethane / ethyl acetate (3: 1), mp 282-283 ° C, [α] D 20 -11.3 (c 0.96, chloroform); [α] 365 20 +57.0 (c 0.59, methanol).
Analog dazu ergab die Oxidation von (R)-5 einen farblosen Feststoff, Schmp. 282-283°C, [α]D20 +11,3 (c 0,83, Chloroform); [α]36520 -56,5 (c 0,57, Methanol). Die 1H-, 13C{1H}-, 19F{1H}und 31P{1H}-NMR-Spektren in CDCl3 waren deckungsgleich mit denen von (S)-4 und (R/S)-4. Die HPLC der chiralen Phase ergab 100% (R)-4.Analogously, the oxidation of (R) -5 gave a colorless solid, mp. 282-283 ° C, [α] D 20 +11.3 (c 0.83, chloroform); [α] 365 20 -56.5 (c 0.57, methanol). The 1 H, 13 C { 1 H}, 19 F { 1 H}, and 31 P { 1 H} NMR spectra in CDCl 3 were congruent with those of (S) -4 and (R / S) - 4th HPLC of the chiral phase gave 100% (R) -4.
Die Lösung von p-Methoxystyrol (12) (671 mg, 5,0 mMol), (1,5-Cyclooctadien)(2,4-Pentandionat)-rhodium(I) (31,0 mg, 0,10 mMol) und (R)-(-)-5 (61,4 mg, 0,11 mMol) in desoxygeniertem, trockenem THF (6 ml) wird 90 min unter Argon unter Rückfluß gekocht. Die Lösung wird dann abgekühlt, und eine IN-Lösung von Catecholboran in THF (10,0 ml, 10,0 mMol), die zuvor mit Argon gespült wurde (10 min), wird innerhalb 5 min bei 0°C tropfenweise zugegeben. Das Gemisch wird 90 min bei 0°C unter Argon gerührt. Die DC (Cyclohexan/Ethylacetat 1:1; Rf 12: 0,66, 13: 0,41, 14:0,30) zeigt die quantitative Reaktion von 12. Die Lösung wird auf -20°C abgekühlt und Ethanol (10 ml), 4N wässrige Natriumhydroxid-Lösung (5 ml) und 36%ige wässrige Wasserstoffperoxid-Lösung (10 ml) werden nacheinander bei ≤ 5°C zugegeben. Das Gemisch wird über Nacht bei Umgebungstemperatur gerührt und dann mit Diethylether (3 × 50 ml) extrahiert. Die Extrakte werden zusammengegeben und mit IN-Natriumhydroxid (4 × 25 ml), mit Wasser (20 ml) und mit Salzlake (20 ml) gewaschen, über Natriumsulfat getrocknet, und das Lösemittel wird verdampft. Der Rückstand (780 mg blaßbraunes Öl) wird einer molekularen Destillation unterzogen (Bad 60-80°C / ≈ 10-3Torr) und ergibt ein farbloses Öl (682 mg, 4,48 mMol, Ausbeute 90%) und einen braunen Rückstand, der kristallisiert (98 mg). DC und 1H-NMR zeigen, daß das Destillat aus 13 und 14 (Verhältnis 78:22) besteht, [α]D20 +27,7 (c 1,17, Chloroform). Korrektur für 22% achirale 14 ergibt [α]D20corr +35,5 (c 0,91, Chloroform). Ein Vergleich mit der Literatur zeigt, daß 13 ≈67% ee der (R)-Konfiguration aufweist. Die HPLC-Analyse der chiralen Phase [250 mm Länge, 4,6 mm Innendurchmesser, Säule Chiralcel OD 10 µm (Daicel); 0,5 ml/min n-Hexan/Ethanol (100 + 0,8), 40°C, det. 254 nm] ergibt 68,3% (R)-(+)-13 (tret 62,80 min), 8,5% (S)-(-)-13 (79,40 min) und 23,2% 14 (66,14 min). Dies entspricht 77,8% ee des (R)-(+)-Isomeren von 13.The solution of p-methoxystyrene (12) (671 mg, 5.0 mmol), (1,5-cyclooctadiene) (2,4-pentanedionate) rhodium (I) (31.0 mg, 0.10 mmol) and (R) - (-) -5 (61.4 mg, 0.11 mmol) in deoxygenated, dry THF (6 ml) is refluxed under argon for 90 min. The solution is then cooled and an IN solution of catecholborane in THF (10.0 ml, 10.0 mmol), which has previously been purged with argon (10 min), is added dropwise over 5 min at 0 ° C. The mixture is stirred for 90 min at 0 ° C under argon. TLC (cyclohexane / ethyl acetate 1: 1; R f 12: 0.66, 13: 0.41, 14: 0.30) shows the quantitative reaction of 12 . The solution is cooled to -20 ° C and ethanol (10 ml), 4N aqueous sodium hydroxide solution (5 ml) and 36% aqueous hydrogen peroxide solution (10 ml) are added in succession at ≤ 5 ° C. The mixture is stirred at ambient temperature overnight and then extracted with diethyl ether (3 × 50 ml). The extracts are pooled and washed with IN sodium hydroxide (4 x 25 ml), water (20 ml) and brine (20 ml), dried over sodium sulfate and the solvent is evaporated. The residue (780 mg of pale brown oil) is subjected to molecular distillation (bath 60-80 ° C./≈10 -3 torr) and gives a colorless oil (682 mg, 4.48 mmol, yield 90%) and a brown residue, which crystallizes (98 mg). TLC and 1 H-NMR show that the distillate consists of 13 and 14 (ratio 78:22), [α] D 20 +27.7 (c 1.17, chloroform). Correction for 22% achiral 14 gives [α] D 20 corr +35.5 (c 0.91, chloroform). A comparison with the literature shows that 13 ≈67% ee has the (R) configuration. The HPLC analysis of the chiral phase [250 mm length, 4.6 mm inner diameter, column Chiralcel OD 10 µm (Daicel); 0.5 ml / min n-hexane / ethanol (100 + 0.8), 40 ° C, det. 254 nm] gives 68.3% (R) - (+) - 13 (t ret 62.80 min), 8.5% (S) - (-) -13 (79.40 min) and 23.2% 14 (66.14 min). This corresponds to 77.8% ee of the (R) - (+) - isomer of 13.
(R)-(-)-5 (30,1 mg, 0,054 mMol) wird der Suspension von Di-µ-chlor-bis[(cycloocta-1c,5c-dien)-rhodium(I)] (12,3 mg, 0,025 mMol) in desoxygeniertem Methanol/Benzol (3:1) (20 ml) zugegeben und unter Argon gerührt, so daß innerhalb 15 min eine klare Lösung entsteht. In einem Hydrogenierungskolben wird 2-Benzylidensuccinsäure-4-[(4-BOC-amino)-1-piperidid (1,94 g, 5,0 mMol) in desoxygeniertem Methanol/Benzol (3:1) (20 ml) gelöst. Die klare Katalysatorlösung wird unter Argon zugegeben und das Reaktionsgemisch wird unter 1 bar Wasserstoff aus einem hydrostatischen Hydrogenierungsgerät53 geschüttelt: innerhalb von 6 h wird kein Wasserstoff aufgenommen. Der Hydrogenierungskolben wird unter Argon in einen Schüttelautoklaven gegeben ; man läßt 150 bar Wasserstoff 2 Tage einwirken. Das Lösemittel wird unter Vakuum verdampft und der feste Rückstand wird in tert-Butyl-methylether (40 ml) gelöst. Die kalte (0°C) Lösung wird mit 0,5N-Salzsäure (10 ml) und mit Wasser (10 ml) gewaschen und getrocknet (MgSO4). Das Lösemittel wird verdampft, und man erhält einen Feststoff (1,80 g, 4,16 mMol, 92% Rohausbeute). Die HPLC53 zeigt eine quantitative Hydrogenierung. Die HPLC der chiralen Phase53 ergibt 22% ee der (R)-(+)-Konfiguration.(R) - (-) -5 (30.1 mg, 0.054 mmol) is added to the suspension of di-µ-chloro-bis [(cycloocta-1c, 5c-diene) rhodium (I)] (12.3 mg , 0.025 mmol) in deoxygenated methanol / benzene (3: 1) (20 ml) and stirred under argon, so that a clear solution is formed within 15 min. In a hydrogenation flask, 2-benzylidenesuccinic acid 4 - [(4-BOC-amino) -1-piperidide (1.94 g, 5.0 mmol) is dissolved in deoxygenated methanol / benzene (3: 1) (20 ml). The clear catalyst solution is added under argon and the reaction mixture is shaken from a hydrostatic hydrogenation device 53 under 1 bar of hydrogen: no hydrogen is taken up within 6 hours. The hydrogenation flask is placed in a shake autoclave under argon; 150 bar of hydrogen is allowed to act for 2 days. The solvent is evaporated in vacuo and the solid residue is dissolved in tert-butyl methyl ether (40 ml). The cold (0 ° C) solution is washed with 0.5N hydrochloric acid (10 ml) and with water (10 ml) and dried (MgSO 4 ). The solvent is evaporated to give a solid (1.80 g, 4.16 mmol, 92% crude yield). HPLC 53 shows quantitative hydrogenation. HPLC of chiral phase 53 gives 22% ee of the (R) - (+) configuration.
Claims (9)
- A process for the preparation of a compound of the formula II as claimed in claim 1, which comprises reacting a compound of the formula 4 in which X is F, with Cl2Si(CH3)H, NBu3, in an organic solvent under an inert gas or alternatively boiling the compound of the formula 4 under reflux with HSiCl3 and NBu3 in an organic solvent to give the compound of the formula II, where the phenyl rings of the biphenyl molecule may be substituted with up to 6 additional fluorine and/or chlorine atoms.
- A process for the preparation of a compound of the formula 4 as in claim 2, which comprises heating a compound of the formula 3 in an inert solvent with the addition of a transition metal, preferably Cu, where the compound of the formula 3 can be substituted in position 4, 5 and/or 6 with up to 3 fluorine and/or chlorine atoms.
- A process for the preparation of a compound of the formula 3 as in claim 3, which comprises reacting a compound of the formula 2 with lithium diisopropylamide in an inert solvent, preferably in THF, and then with iodine, where the compounds of the formulae 2 and 3 can be substituted in postiion 4, 5 and/or 6 with up to 3 fluorine and/or chlorine atoms.
- A complex of rhodium(I), ruthenium(II), palladium(II) or palladium(0) with a compound of the formula II.
- A process for the preparation of a complex as claimed in claim 6, which comprises reacting a compound of the formula II as claimed in claim 1 with suitable complexes having readily displaceable ligands, or comprises obtaining the complexes from the corresponding palladium complex by HCl-induced elimination of the N,N-dimethyl-·-phenylethylamine ligand.
- The use of a complex as claimed in claim 6 as a catalyst.
- The use of a complex as claimed in claim 6 as a catalyst for symmetrical or asymmetrical addition, substitution, rearrangement or coupling reactions.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE4422672 | 1994-06-30 | ||
DE4422672A DE4422672A1 (en) | 1994-06-30 | 1994-06-30 | Halogenated biphenyl-2,2'-diyl-bis-diphenylphosphines, their preparation and their use |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0690065A1 EP0690065A1 (en) | 1996-01-03 |
EP0690065B1 true EP0690065B1 (en) | 2002-10-02 |
Family
ID=6521754
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP95109922A Expired - Lifetime EP0690065B1 (en) | 1994-06-30 | 1995-06-26 | Halogenated biphenyl-2,2'-diyl-bis-diphenylphosphines, their preparation and use |
Country Status (6)
Country | Link |
---|---|
US (1) | US5621128A (en) |
EP (1) | EP0690065B1 (en) |
JP (1) | JP3802585B2 (en) |
DE (2) | DE4422672A1 (en) |
DK (1) | DK0690065T3 (en) |
ES (1) | ES2184774T3 (en) |
Families Citing this family (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19609336C1 (en) * | 1996-03-11 | 1997-03-13 | Hoechst Ag | New substd. di:phenyl-di:phosphane cpds. used e.g. as complexing agents |
JP3493266B2 (en) * | 1996-08-27 | 2004-02-03 | 高砂香料工業株式会社 | Novel optically active diphosphine compound, method for producing the compound, transition metal complex having the compound as ligand, and method for producing optically active substance using the complex |
JP3148136B2 (en) * | 1996-12-26 | 2001-03-19 | 高砂香料工業株式会社 | Novel chiral diphosphine compound, intermediate for producing the same, transition metal complex having the diphosphine compound as a ligand, and asymmetric hydrogenation catalyst containing the complex |
US5886182A (en) * | 1997-12-10 | 1999-03-23 | The Hong Kong Polytechnic University | Chiral pyridylphosphines and their application in asymmetric catalytic hydrogenation of 2-arylpropenoic acids |
US6563005B1 (en) | 1998-12-03 | 2003-05-13 | Cytec Technology Corp. | Preparation of mono- and di-arylphosphines |
FR2789992B1 (en) * | 1999-02-19 | 2001-05-25 | Rhodia Chimie Sa | PROCESS FOR PREPARING CHIRAL DIPHOSPHINES USEFUL AS LIGANDS IN THE SYNTHESIS OF COMPLEXES INTENDED FOR ASYMMETRIC CATALYSIS |
IT1308629B1 (en) * | 1999-02-23 | 2002-01-09 | Recordati Chem Pharm | PROCESS FOR THE PRODUCTION OF PAROXETIN. |
CA2385421C (en) * | 1999-09-20 | 2009-12-15 | The Penn State Research Foundation | Chiral phosphines, transition metal complexes thereof and uses thereof in asymmetric reactions |
DE10044793A1 (en) | 2000-09-11 | 2002-04-04 | Bayer Ag | diphosphines |
DE10056310A1 (en) * | 2000-11-14 | 2002-05-16 | Bayer Ag | Improved process for the production of enantiomerically pure (5,5`-dichloro-6,6`-dimethoxybiphenyl-2,2`-diyl) bis (diphenylphosphine oxides) |
FR2816946B1 (en) * | 2000-11-17 | 2004-04-02 | Ppg Sipsy | DISSYMMETRIC CHIRAL DIPHOSPHINES, THEIR USES FOR THE PREPARATION OF DIPHOSPHINO-METALLIC COMPLEXES, AND THE DIPHOSPHINO-METALLIC COMPLEXES THUS OBTAINED |
EP1448655A2 (en) * | 2001-11-13 | 2004-08-25 | E. I. du Pont de Nemours and Company | Process for preparing aromatic polymers |
AU2002332272A1 (en) * | 2002-08-29 | 2004-03-29 | Hokkaido Technology Licensing Office Co., Ltd. | High-activity catalyst containing sterically hindered phosphine |
AU2003273926A1 (en) * | 2002-10-01 | 2004-04-23 | Dieter Arlt | Isomerisation of chiral homogeneous o,o'-dihydroxybiphenyl derivatives |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
ATE128140T1 (en) * | 1989-05-18 | 1995-10-15 | Hoffmann La Roche | PHOSPHORUS COMPOUNDS. |
US5171892A (en) * | 1991-07-02 | 1992-12-15 | E. I. Du Pont De Nemours And Company | Chiral phospholanes via chiral 1,4-diol cyclic sulfates |
DE4330730A1 (en) * | 1993-09-10 | 1995-03-16 | Bayer Ag | New bisphosphines for asymmetric hydrogenation catalysts |
-
1994
- 1994-06-30 DE DE4422672A patent/DE4422672A1/en not_active Withdrawn
-
1995
- 1995-06-26 EP EP95109922A patent/EP0690065B1/en not_active Expired - Lifetime
- 1995-06-26 DE DE59510397T patent/DE59510397D1/en not_active Expired - Lifetime
- 1995-06-26 DK DK95109922T patent/DK0690065T3/en active
- 1995-06-26 ES ES95109922T patent/ES2184774T3/en not_active Expired - Lifetime
- 1995-06-28 US US08/495,978 patent/US5621128A/en not_active Expired - Lifetime
- 1995-06-29 JP JP16373395A patent/JP3802585B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
DK0690065T3 (en) | 2003-02-03 |
US5621128A (en) | 1997-04-15 |
JP3802585B2 (en) | 2006-07-26 |
JPH0853480A (en) | 1996-02-27 |
ES2184774T3 (en) | 2003-04-16 |
EP0690065A1 (en) | 1996-01-03 |
DE59510397D1 (en) | 2002-11-07 |
DE4422672A1 (en) | 1996-01-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0398132B1 (en) | Phosphorous compounds | |
EP0690065B1 (en) | Halogenated biphenyl-2,2'-diyl-bis-diphenylphosphines, their preparation and use | |
DE2463010C2 (en) | Optically active catalysts and their use | |
DE69114986T2 (en) | A phosphino-binapthyl compound and transition metal complexes thereof. | |
EP0104375B1 (en) | Phosphorus-containing biphenyl derivatives and their use in asymmetric hydrogenation and enatioselective hydrogen shifts | |
EP0646590B1 (en) | Ferrocenyldiphosphines substituted with fluoroalkyl groups as ligands for homogeneous catalysts | |
EP2459579B1 (en) | Phosphine borane compounds comprising imidazol groups and method for producing phosphine borane compounds comprising imidazol groups | |
DE69025003T2 (en) | Optically active ruthenium phosphine complex, usable as a catalyst | |
DE69512415T2 (en) | HETEROAROMATIC DIPHOSPINE AS CHIRAL LIGANDS | |
DE69014724T2 (en) | Compound of 2,2-bis (diphenylphosphino) -1,1-binaphtyl and catalytic complexes thereof. | |
EP0749973B1 (en) | Novel bisphosphines as catalysts for asymmetric reactions | |
EP2254895A1 (en) | Imidazole group-containing phosphorus compounds | |
EP0780157B1 (en) | Ruthenium complex with chiral bidentate phosphinoxazolin ligands for the enantioselective transfer hydrogenation of prochiral cetons | |
DE69721257T2 (en) | NEW CHIRAL BISPHOSPHINS | |
DE69713841T2 (en) | Optically active diphospin compounds, processes for their preparation, transition metal complexes which contain these compounds as ligand and processes for the production of optically active substances using these complexes | |
DE69105302T2 (en) | Compounds containing 2,2'-bis (diphenylphosphino) -1,1'-binaphthyl and catalytic complexes thereof. | |
EP0803510B1 (en) | 2,2'-Disubstituted 1,1'-diphosphino ferrocenes and 1',2-disubstituted 1-phosphino ferrocenes, their preparation and use and transition metal complexes containing them | |
DE69107533T2 (en) | 2,2'-bis (dicyclopentylphosphino) -1,1'-binaphthyl and metal complexes thereof. | |
DE60004759T2 (en) | Optically active diphosphine compound, intermediates for its preparation, transition metal complex containing the compound as a ligand and catalyst for asymmetric hydrogenations, which contains the complex | |
DE60203360T2 (en) | New asymmetric phosphine ligand | |
EP0512415A2 (en) | Process for the enantioselective synthesis of 2(R)-benzyl succanamide derivatives | |
EP1409493B1 (en) | Method for producing non-chiral organic compounds containing optically active hydroxy groups | |
EP1119574B1 (en) | Substituted isophosphindolines and their use | |
DE60307724T2 (en) | New diphosphine compound, intermediates for their preparation, transition metal complex containing the compound as ligand and catalyst for asymmetric hydrogenations containing the complex | |
EP1885732A2 (en) | CHIRAL DIPHOSPHONITES AS LIGANDS IN THE RUTHENIUM-CATALYSED ENANTIOSELECTIVE REDUCTION OF KETONES ß-KETO-ESTERS AND KETIMINES |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): BE CH DE DK ES FR GB IT LI LU NL |
|
17P | Request for examination filed |
Effective date: 19960703 |
|
17Q | First examination report despatched |
Effective date: 19990208 |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): BE CH DE DK ES FR GB IT LI LU NL |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REF | Corresponds to: |
Ref document number: 59510397 Country of ref document: DE Date of ref document: 20021107 |
|
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 20021217 |
|
REG | Reference to a national code |
Ref country code: DK Ref legal event code: T3 |
|
ET | Fr: translation filed | ||
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2184774 Country of ref document: ES Kind code of ref document: T3 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20030703 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: LU Payment date: 20110621 Year of fee payment: 17 Ref country code: CH Payment date: 20110614 Year of fee payment: 17 Ref country code: FR Payment date: 20110621 Year of fee payment: 17 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20110621 Year of fee payment: 17 Ref country code: GB Payment date: 20110622 Year of fee payment: 17 Ref country code: DK Payment date: 20110610 Year of fee payment: 17 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: BE Payment date: 20110614 Year of fee payment: 17 Ref country code: IT Payment date: 20110623 Year of fee payment: 17 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20110622 Year of fee payment: 17 Ref country code: ES Payment date: 20110715 Year of fee payment: 17 |
|
BERE | Be: lapsed |
Owner name: *HOECHST A.G. Effective date: 20120630 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: V1 Effective date: 20130101 |
|
REG | Reference to a national code |
Ref country code: DK Ref legal event code: EBP |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20120626 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20120626 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20130228 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 59510397 Country of ref document: DE Effective date: 20130101 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20130101 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20120630 Ref country code: NL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20130101 Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20120702 Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20120626 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20120630 Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20120630 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20120702 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FD2A Effective date: 20131018 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20120627 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20120626 |