EP0689301A1 - System of omnidirectional antennae having angular and polarisation diversity - Google Patents

System of omnidirectional antennae having angular and polarisation diversity Download PDF

Info

Publication number
EP0689301A1
EP0689301A1 EP95401471A EP95401471A EP0689301A1 EP 0689301 A1 EP0689301 A1 EP 0689301A1 EP 95401471 A EP95401471 A EP 95401471A EP 95401471 A EP95401471 A EP 95401471A EP 0689301 A1 EP0689301 A1 EP 0689301A1
Authority
EP
European Patent Office
Prior art keywords
antenna
plane
orthogonal
planes
antenna system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
EP95401471A
Other languages
German (de)
French (fr)
Inventor
Jean-Jacques Depriester
Adrian Condeescu
Philippe Henaux
Abdelkrim Tahani
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Telediffusion de France ets Public de Diffusion
Original Assignee
Telediffusion de France ets Public de Diffusion
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Telediffusion de France ets Public de Diffusion filed Critical Telediffusion de France ets Public de Diffusion
Publication of EP0689301A1 publication Critical patent/EP0689301A1/en
Ceased legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/29Combinations of different interacting antenna units for giving a desired directional characteristic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q7/00Loop antennas with a substantially uniform current distribution around the loop and having a directional radiation pattern in a plane perpendicular to the plane of the loop
    • H01Q7/06Loop antennas with a substantially uniform current distribution around the loop and having a directional radiation pattern in a plane perpendicular to the plane of the loop with core of ferromagnetic material
    • H01Q7/08Ferrite rod or like elongated core

Definitions

  • the invention relates to a system of omnidirectional transmitting-receiving antennas with angular diversity and polarization, usable on transceivers or simple portable receivers, used in paging.
  • paging systems such as the RDS system for " Radio Data System " in Anglo-Saxon language
  • digital data for managing or using this network are broadcast on the carrier wave of a modulation broadcasting signal. frequency of band II.
  • the data disseminated can be very diverse in nature and are generally disseminated in the form of messages intended for subscribers.
  • Paging is, today, a means of communication widely used by a category of users called to move often, using various means of locomotion, in very varied geographical environments.
  • the receiver In general, the receiver, or even the transceiver, is intended to be worn by its user, either inside a jacket pocket or, for example, hung on his belt. The user is unaware and has no concern whatsoever of whether the receiver, or the transceiver, is correctly oriented towards the transmitter which is broadcasting the messages.
  • receivers or transceivers are very compact and normally equipped with an integrated antenna which determines their dimensional characteristics. This antenna, generally sensitive to the magnetic component of the carrier electromagnetic wave, component H, is most often formed by a very selective and gain-optimized metal frame, which gives the antenna thus formed a radiation pattern of unidirectional type, with good directivity.
  • the polarization of the waves emitted by the installations of the diffusers, or radiotelephony is in general either horizontal, or vertical, very rarely circular or oblique.
  • this type of antenna does not have, due to its one-way radiation pattern, a capacity to receive, or transmit, radio signals in all azimuthal directions, which normally further imposes on the user. an orientation of its receiver, or of its transceiver, in the horizontal plane.
  • this type of antenna as shown in FIG. 1 for a metal frame antenna, with or without a ferrite core, present a unidirectional radiation pattern in two orthogonal planes, the antennas then being placed so that one of the planes is the horizontal plane, the other plane, vertical, having to correspond to the plane of polarization of the electromagnetic wave scattered, which of course implies two orientations for optimal reception.
  • the object of the present invention is to remedy the aforementioned drawbacks, by implementing an omnidirectional transmitting-receiving antenna system with angular diversity and polarization for which the contingencies relating to the orientation of the antenna system for optimal reception or transmission-reception are substantially eliminated.
  • Another object of the present invention is, in in particular, the implementation of a system of transmit-receive antennas having a substantially omnidirectional radiation pattern in one plane, the horizontal plane.
  • Another object of the present invention is, moreover, the implementation of a system of transmit-receive antennas having a unidirectional radiation pattern in two other planes, the three planes being orthogonal to each.
  • the omnidirectional transmitting and receiving antenna system with angular diversity and polarization, object of the present invention is remarkable in that it comprises a first unidirectional radioelectric antenna in a first direction defined by two orthogonal planes, forming main planes. of this antenna, one of the planes defining a first plane, and a second radio antenna unidirectional with respect to a second direction defined by two orthogonal planes, forming main planes of this antenna, one of the planes defining a second plane.
  • the first and second antennas are placed so that the first and second planes are orthogonal, the first and second directions are orthogonal.
  • the antenna system thus formed has a bidirectional radiation pattern in a third plane, orthogonal to the first and second plane and formed by a main plane of the first respectively second antenna, and by a unidirectional radiation pattern in the first respectively the second plan.
  • a coupling circuit makes it possible, on reception, to switch the output of the antenna system to one or other of the first or second antenna, as a function of the relative level of radio signal received at the output of each antenna.
  • the antenna system object of the present invention, finds application in paging and, more generally, in radiocommunication or radiotelephony. mobile.
  • FIGS. 2a to 2e and 2f A more detailed description of an omnidirectional transmitting-receiving antenna system with angular diversity and polarization, in accordance with the object of the present invention, will now be given in conjunction with FIGS. 2a to 2e and 2f.
  • the antenna system object of the present invention, has a first radio antenna, denoted 1, unidirectional in a first direction, this direction, denoted OX in FIG. 2a, being defined by two planes orthogonal, the planes OX, OZ respectively OX, OY.
  • the above-mentioned planes form the main planes of this antenna 1, one of the planes, the plane OX, OZ defining a first plane, denoted C in FIG. 2a.
  • the antenna system object of the present invention, also includes a second unidirectional radio antenna, denoted 2, in a second direction, the direction OY in FIG. 2b, this direction being defined by two orthogonal planes, OX, OY, respectively OY, OZ. These two planes form main planes of the antenna 2, one of the planes, the plane OY, OZ defining a second plane, denoted B in FIG. 2b.
  • the first 1 and the second antenna 2 are placed in the vicinity of one another so that the first C and the second plane B are orthogonal, the first and the second direction OX, respectively OY are also orthogonal.
  • the substantially omnidirectional radiation pattern of the antenna system thus formed also includes a unidirectional radiation pattern in the first C respectively in the second B plane, as shown in Figures 2e and 2d.
  • a coupling circuit 3 makes it possible to ensure at reception an output switching of the antenna system on either of the first or second antenna 1,2, depending on the level relative radio signal received at the output of each antenna.
  • the antenna system which is the subject of the present invention can be used both for reception and for transmission, owing to the dual nature of the radiation pattern in reception, respectively in emission, these radiation patterns.
  • radiation being, in accordance with the classical theory of antennas, identical to transmission and reception.
  • the paging function is not necessary, it can then be canceled.
  • FIGS. 3a and 3b A more detailed description of an omnidirectional antenna system with angular diversity and polarization, object of the present invention, will now be given in conjunction with FIGS. 3a and 3b within the non-limiting framework of an application to paging for example .
  • the first antenna 1 is a metal frame antenna surrounding the actual body of the receiver R and the second antenna 2 is a ferrite core frame antenna.
  • the metal frame antenna 1 surrounds, for example, the circuits of the receiver R, as shown in FIG. 3a, and is housed in the housing, not shown, of the receiving device, which of course includes a supply battery P in electrical energy.
  • the second antenna 2 also comprises a metal frame 20 with which is also associated a ferrite core 21.
  • the second antenna with ferrite core is placed in the vicinity of one of the sides of the metal frame constituting the first antenna 1 for example.
  • the orthogonal induction flows received by the first 1 and the second antenna 2 are shown in the directions OX and OY.
  • the plane B is the plane of the sheet containing the figure 3b
  • the plane A is a horizontal plane orthogonal to the plane of the sheet containing the Figure 3b
  • the plane C is a vertical plane orthogonal to the plane of the sheet containing Figure 3b.
  • the OXYZ coordinate system respectively O'X'Y'Z 'corresponds to the oxyz coordinate system of Figures 2a to 2e.
  • FIGS. 4a, 4b and 4c the polar diagrams of respective radiation received by the first and the second antenna are shown in the directions OX and OY.
  • the antenna system object of the present invention, offers the possibility of a quasi-omnidirectional reception in the horizontal plane A thanks to the coupling circuit 3, which allows, thanks to an electronic control system which will described below in conjunction with FIG. 5, to switch over the choice of one or the other constituent antenna of the antenna system according to the invention.
  • the coupling circuit 3 may advantageously include a switch 35 formed by at least one double-channel switch, denoted 351, this double-channel switch comprising a first input connected to the first antenna 1 and a second input channel connected to the second antenna 2. It is indicated that the first and the second antenna 1,2 are connected to the aforementioned input channels and each have tuning capacities, noted Ca1, Ca2.
  • the output of the dual-channel switch 351 in fact comprises a first and a second output channel, the first output channel, in the case where the antenna system, object of the present invention is produced for a receiver of paging type, being directly connected to a reception chain, designated by RECEIVER, of the conventional type.
  • the reception chain usually comprises a radio frequency stage, a radio frequency filter, a mixer circuit supplied by a local oscillator and an intermediate frequency filter, itself followed by an intermediate frequency amplifier and a frequency demodulator device intermediate.
  • the second output channel of the dual-channel switch 351 can then be directly connected to the reference voltage or ground voltage of the device.
  • the coupling circuit 3 comprises a control chain for the dual-channel switch 351 as a function of the signal level delivered by the output of the antenna system.
  • control chain advantageously comprises a field level detector 31 whose input is directly connected to the intermediate frequency amplifier of the receiver, this detector delivering a signal of level denoted U0, and a threshold comparator circuit 32 receiving the signal of level U0 and a determined threshold value, denoted U1.
  • a circuit 33 of the flip-flop type is also provided in the aforementioned control chain, this flip-flop receiving the signal delivered by the comparator 32 on comparison of the level signal with the threshold signal U1.
  • An output Q of the circuit 33 of the bistable flip-flop type makes it possible to directly control the double-track switch 351 of the switch 35 as a function of an error criterion, which will be explained later in the description.
  • the aforementioned control chain also includes a logic circuit 34 whose inputs are connected to the outputs Q ⁇ and supplemented output Q ⁇ of the flip-flop circuit 33 and one output of which is connected to a microprocessor 36, which allows resetting to zero on the RESET input of the flip-flop circuit 33.
  • the logic circuit 34 comprises for example two parallel channels each comprising a timing circuit 341,342 and an ET 343,344 type logic circuit.
  • One input of each AND type logic circuit is connected to the complemented output Q ⁇ and at output Q via the timing circuit 341, respectively at output Q and at the complemented output Q ⁇ through the timing circuit 342 of the flip-flop 33.
  • the output of the AND logic circuits 343 and 344 is connected to an OR type logic circuit 345, which delivers a weak field presence signal Uf to the microprocessor 36.
  • the field level detector 31 provides an instantaneous voltage U0 proportional to the field level electromagnetic HF received by the second antenna 2 activated by default.
  • the comparator circuit 32 receives the level signal U0 corresponding to the electromagnetic field received at time T0, and the reference voltage U1 corresponding to the switching threshold.
  • the value of the switching threshold is determined as a function of the minimum signal-to-noise ratio for which the bit error rate on the R.D.S. for example is still acceptable.
  • the flip-flop circuit 33 therefore receives the control information from the comparator 32 and in turn activates the first metal frame antenna 1 while the second antenna with ferrite core 2 is inhibited.
  • logic circuit 34 it is in fact understood that this makes it possible to generate, from the switching information, the above-mentioned time constant ⁇ making it possible to define the error criterion previously mentioned in the description. If in the aforementioned time interval ⁇ the second antenna 2 with ferrite core is activated again, then the output OR logic circuit 345 generates for the microprocessor 36 so-called weak field information Uf, indicating in fact that the level of the received field is less than the minimum threshold defined by the threshold value U1. The microprocessor 36 makes it possible to reset the flip-flop 33 to zero by the RESET command.
  • the previous description of the omnidirectional antenna system with angular diversity and polarization, object of the present invention concerned the case of a paging receiver of the R.D.S. type. for example.
  • the antenna system, object of the present invention can, if necessary, be used as omnidirectional transmission-reception antenna system for example in the field of application of the radiotelephone.
  • the dual-channel switch 351 can be associated with another dual-channel switch, denoted 352.
  • the switch 352 in fact comprises a first and a second switch.
  • a channel of the first and second switch is connected for example to a transmitter circuit, denoted TRANSMITTER, while the other channel of the first switch is connected to the input terminal of the receiver and in particular to the radio frequency stage of it. this.
  • the other channel of the second switch is connected for example to the ground or reference voltage of the device.
  • the switched channels of the first and second switches are connected respectively to the first output channel and to the second output channel of the first switch 351.
  • the second double-channel switch 352 has two switching positions, denoted I respectively II.
  • the switching of the two switches of the second double-channel switch 352 is carried out by means of the microprocessor 36 for example, which conventionally makes it possible to switch over to the reception position according to position I, the connection of the first double switch channel 351 then being reduced to that previously described in the description in the case of the RDS type receiver or on the contrary in position II, position in which the first 1 and the second antenna 2 are supplied in parallel by the transmitter circuit.

Abstract

The system includes first and second antennae (1,2) which are unidirectional in first and second directions respectively defined by two orthogonal planes (B,C). The first and second directions are orthogonal and a radiation diagram which is sensitive to an omnidirectional radiation diagram is formed by a bidirectional radiation diagram in a third plane (A) orthogonal to the first and second planes. The first antenna is rectangular and formed from strip metal and is on top of the second, ferrite antenna (2). The two vertical sections of the rectangular antenna provides two radiation patterns in a first plane (B). the horizontal sections of the rectangular antenna provide two radiation patterns in a second orthogonal plane (C) The ferrite antenna provides a radiation pattern in the third orthogonal plane (A). Each antenna output passes to a switch (3) which is connected to a receiver. Switching between antennae allows transmission or reception in any three dimensional angle and any polarisation. <IMAGE>

Description

L'invention concerne un système d'antennes d'émission-réception omnidirectionnel à diversité angulaire et de polarisation, utilisable sur des émetteurs-récepteurs ou simples récepteurs portatifs, utilisés en radiomessagerie.The invention relates to a system of omnidirectional transmitting-receiving antennas with angular diversity and polarization, usable on transceivers or simple portable receivers, used in paging.

Dans les systèmes de radiomessagerie, tels que le système R.D.S. pour "Radio Data System" en langage anglo-saxon, des données numériques de gestion ou d'utilisation de ce réseau sont diffusées sur l'onde porteuse d'un signal de radiodiffusion en modulation de fréquence de la bande II. Les données diffusées peuvent être de nature très diverses et sont généralement diffusées sous forme de messages destinés à des abonnés.In paging systems, such as the RDS system for " Radio Data System " in Anglo-Saxon language, digital data for managing or using this network are broadcast on the carrier wave of a modulation broadcasting signal. frequency of band II. The data disseminated can be very diverse in nature and are generally disseminated in the form of messages intended for subscribers.

La radiomessagerie est, aujourd'hui, un moyen de communication très largement utilisé par une catégorie d'utilisateurs appelés à se déplacer souvent, en utilisant des moyens de locomotion divers, dans des milieux géographiques très variés.Paging is, today, a means of communication widely used by a category of users called to move often, using various means of locomotion, in very varied geographical environments.

En général, le récepteur, voire l'émetteur-récepteur, est destiné à être porté par son utilisateur, soit à l'intérieur d'une poche de veste soit par exemple accroché à sa ceinture.
L'utilisateur ignore et ne se préoccupe aucunement de savoir si le récepteur, ou l'émetteur-récepteur, est orienté correctement vis-à-vis de l'émetteur qui diffuse les messages. En effet, les récepteurs ou émetteurs-récepteurs sont très compacts et normalement équipés d'une antenne intégrée qui détermine leurs caractéristiques dimensionnelles. Cette antenne, sensible en général à la composante magnétique de l'onde électromagnétique porteuse, composante H, est le plus souvent constituée par un cadre métallique très sélectif et optimisé en gain, ce qui confère à l'antenne ainsi formée un diagramme de rayonnement de type unidirectionnel, présentant une bonne directivité.
In general, the receiver, or even the transceiver, is intended to be worn by its user, either inside a jacket pocket or, for example, hung on his belt.
The user is unaware and has no concern whatsoever of whether the receiver, or the transceiver, is correctly oriented towards the transmitter which is broadcasting the messages. Indeed, receivers or transceivers are very compact and normally equipped with an integrated antenna which determines their dimensional characteristics. This antenna, generally sensitive to the magnetic component of the carrier electromagnetic wave, component H, is most often formed by a very selective and gain-optimized metal frame, which gives the antenna thus formed a radiation pattern of unidirectional type, with good directivity.

Afin que la réception, et, le cas échéant, l'émission, soit efficace, il est nécessaire que l'orientation de ce type d'antenne classique soit réalisée en fonction de la polarisation de l'onde porteuse. La polarisation des ondes émises par les installations des diffuseurs, ou de radiotéléphonie, est en général soit horizontale, soit verticale, très rarement circulaire ou oblique.In order that the reception, and, if applicable, the emission, is effective, it is necessary that the orientation of this type of conventional antenna is carried out as a function of the polarization of the carrier wave. The polarization of the waves emitted by the installations of the diffusers, or radiotelephony, is in general either horizontal, or vertical, very rarely circular or oblique.

Dans le cas où une telle antenne classique n'est pas orientée en conséquence, elle ne peut permettre de recevoir l'onde porteuse polarisée ainsi que mentionné précédemment, ce qui conduit à une perte de signal détecté non négligeable, de l'ordre de 20dB à 35dB lorsque l'orientation de l'antenne est en quadrature par rapport à l'axe privilégié de polarisation du champ.In the case where such a conventional antenna is not oriented accordingly, it cannot make it possible to receive the polarized carrier wave as mentioned previously, which leads to a significant loss of detected signal, of the order of 20dB at 35dB when the orientation of the antenna is quadrature with respect to the privileged axis of polarization of the field.

En outre, ce type d'antenne ne présente pas, en raison de son diagramme de rayonnement de type unidirectionnel, une capacité à recevoir, ou émettre, des signaux radioélectriques dans toutes les directions azimutales, ce qui normalement impose en outre à l'utilisateur une orientation de son récepteur, ou de son émetteur-récepteur, dans le plan horizontal. Au mieux, ce type d'antenne, ainsi que représenté en figure 1 pour une antenne cadre métallique, avec ou sans noyau de ferrite, présente-t-il un diagramme de rayonnement unidirectionnel dans deux plans orthogonaux, les antennes étant alors placées de façon que l'un des plans soit le plan horizontal, l'autre plan, vertical, devant correspondre au plan de polarisation de l'onde électromagnétique diffusée, ce qui bien entendu implique deux orientations pour une réception optimale.In addition, this type of antenna does not have, due to its one-way radiation pattern, a capacity to receive, or transmit, radio signals in all azimuthal directions, which normally further imposes on the user. an orientation of its receiver, or of its transceiver, in the horizontal plane. At best, does this type of antenna, as shown in FIG. 1 for a metal frame antenna, with or without a ferrite core, present a unidirectional radiation pattern in two orthogonal planes, the antennas then being placed so that one of the planes is the horizontal plane, the other plane, vertical, having to correspond to the plane of polarization of the electromagnetic wave scattered, which of course implies two orientations for optimal reception.

La présente invention a pour but de remédier aux inconvénients précités, par la mise en oeuvre d'un système d'antennes d'émission-réception omnidirectionnel à diversité angulaire et de polarisation pour lequel les contingences relatives à l'orientation du système d'antennes pour une réception, ou émission-réception, optimale, sont sensiblement supprimées.The object of the present invention is to remedy the aforementioned drawbacks, by implementing an omnidirectional transmitting-receiving antenna system with angular diversity and polarization for which the contingencies relating to the orientation of the antenna system for optimal reception or transmission-reception are substantially eliminated.

Un autre objet de la présente invention est, en particulier, la mise en oeuvre d'un système d'antennes d'émission-réception présentant un diagramme de rayonnement sensiblement omnidirectionnel dans un plan, le plan horizontal.Another object of the present invention is, in in particular, the implementation of a system of transmit-receive antennas having a substantially omnidirectional radiation pattern in one plane, the horizontal plane.

Un autre objet de la présente invention, est, en outre, la mise en oeuvre d'un système d'antennes d'émission-réception présentant un diagramme de rayonnement unidirectionnel dans deux autres plans, les trois plans étant orthogonaux chacun à chacun.Another object of the present invention is, moreover, the implementation of a system of transmit-receive antennas having a unidirectional radiation pattern in two other planes, the three planes being orthogonal to each.

Le système d'antennes d'émission-réception omnidirectionnel à diversité angulaire et de polarisation, objet de la présente invention, est remarquable en ce qu'il comprend une première antenne radioélectrique unidirectionnelle dans une première direction définie par deux plans orthogonaux, formant plans principaux de cette antenne, l'un des plans définissant un premier plan, et une deuxième antenne radioélectrique unidirectionnelle par rapport à une deuxième direction définie par deux plans orthogonaux, formant plans principaux de cette antenne, l'un des plans définissant un deuxième plan. La première et la deuxième antenne sont placées de façon que le premier et le deuxième plan étant orthogonaux, la première et la deuxième direction sont orthogonales. Le système d'antennes ainsi formé présente un diagramme de rayonnement bidirectionnel dans un troisième plan, orthogonal au premier et deuxième plan et formé par un plan principal de la première respectivement deuxième antenne, et par un diagramme de rayonnement unidirectionnel dans le premier respectivement le deuxième plan. Un circuit de couplage permet d'assurer, en réception, une commutation de sortie du système d'antenne sur l'une ou l'autre des première ou deuxième antenne, en fonction du niveau relatif de signal radioélectrique reçu en sortie de chaque antenne.The omnidirectional transmitting and receiving antenna system with angular diversity and polarization, object of the present invention, is remarkable in that it comprises a first unidirectional radioelectric antenna in a first direction defined by two orthogonal planes, forming main planes. of this antenna, one of the planes defining a first plane, and a second radio antenna unidirectional with respect to a second direction defined by two orthogonal planes, forming main planes of this antenna, one of the planes defining a second plane. The first and second antennas are placed so that the first and second planes are orthogonal, the first and second directions are orthogonal. The antenna system thus formed has a bidirectional radiation pattern in a third plane, orthogonal to the first and second plane and formed by a main plane of the first respectively second antenna, and by a unidirectional radiation pattern in the first respectively the second plan. A coupling circuit makes it possible, on reception, to switch the output of the antenna system to one or other of the first or second antenna, as a function of the relative level of radio signal received at the output of each antenna.

Le système d'antennes, objet de la présente invention, trouve application à la radiomessagerie et, de manière plus générale, à la radiocommunication ou radiotéléphonie mobile.The antenna system, object of the present invention, finds application in paging and, more generally, in radiocommunication or radiotelephony. mobile.

Il sera mieux compris à la lecture de la description et à l'observation des dessins dans lesquels, outre la figure 1 relative à l'art antérieur,

  • les figures 2a, 2b, 2c, 2d, 2e et 2f représentent différents diagrammes de rayonnement d'antennes constitutives du système d'antennes et le système d'antennes, objet de la présente invention,
  • les figures 3a et 3b représentent un mode de réalisation pratique du système d'antennes, objet de la présente invention,
  • les figures 4a, 4b et 4c représentent les diagrammes de rayonnement dans trois plans orthogonaux du système d'antennes, objet de l'invention, tel que représenté en figures 3a, 3b,
  • la figure 5 représente un schéma synoptique du circuit de couplage du système d'antennes, objet de la présente invention,
  • la figure 6 représente un chronogramme du commandement séquentiel de la commutation en réception entre la première et la deuxième antenne.
It will be better understood on reading the description and on observing the drawings in which, in addition to FIG. 1 relating to the prior art,
  • FIGS. 2a, 2b, 2c, 2d, 2e and 2f represent different radiation patterns of antennas constituting the antenna system and the antenna system, object of the present invention,
  • FIGS. 3a and 3b represent a practical embodiment of the antenna system, object of the present invention,
  • FIGS. 4a, 4b and 4c represent the radiation diagrams in three orthogonal planes of the antenna system, object of the invention, as shown in FIGS. 3a, 3b,
  • FIG. 5 represents a block diagram of the coupling circuit of the antenna system, object of the present invention,
  • FIG. 6 represents a chronogram of the sequential command of the switching in reception between the first and the second antenna.

Une description plus détaillée d'un système d'antennes d'émission-réception omnidirectionnel à diversité angulaire et de polarisation, conforme à l'objet de la présente invention, sera maintenant donnée en liaison avec les figures 2a à 2e et 2f.A more detailed description of an omnidirectional transmitting-receiving antenna system with angular diversity and polarization, in accordance with the object of the present invention, will now be given in conjunction with FIGS. 2a to 2e and 2f.

Conformément aux figures précitées, on indique que le système d'antennes, objet de la présente invention, présente une première antenne radioélectrique, notée 1, unidirectionnelle dans une première direction, cette direction, notée OX sur la figure 2a, étant définie par deux plans orthogonaux, les plans OX,OZ respectivement OX,OY. Les plans précités forment plans principaux de cette antenne 1, l'un des plans, le plan OX,OZ définissant un premier plan, noté C sur la figure 2a.In accordance with the aforementioned figures, it is indicated that the antenna system, object of the present invention, has a first radio antenna, denoted 1, unidirectional in a first direction, this direction, denoted OX in FIG. 2a, being defined by two planes orthogonal, the planes OX, OZ respectively OX, OY. The above-mentioned planes form the main planes of this antenna 1, one of the planes, the plane OX, OZ defining a first plane, denoted C in FIG. 2a.

Le système d'antennes, objet de la présente invention, comporte également une deuxième antenne radioélectrique unidirectionnelle, notée 2, dans une deuxième direction, la direction OY sur la figure 2b, cette direction étant définie par deux plans orthogonaux, OX,OY, respectivement OY,OZ. Ces deux plans forment plans principaux de l'antenne 2, l'un des plans, le plan OY,OZ définissant un deuxième plan, noté B sur la figure 2b. La première 1 et la deuxième antenne 2 sont placées au voisinage l'une de l'autre de façon que le premier C et le deuxième plan B étant orthogonaux, la première et la deuxième direction OX, respectivement OY soient également orthogonales. Ceci permet d'obtenir, pour le système d'antennes 1,2 un diagramme de rayonnement sensiblement omnidirectionnel, formé par un diagramme de rayonnement bidirectionnel dans un troisième plan A, tel que représenté en figure 2c. Le plan A est orthogonal au premier et au deuxième plan et est formé par un plan principal de la première respectivement de la deuxième antenne 1,2. Le diagramme de rayonnement sensiblement omnidirectionnel du système d'antennes ainsi formé comprend également un diagramme de rayonnement unidirectionnel dans le premier C respectivement dans le deuxième B plan, ainsi que représenté sur les figures 2e et 2d.The antenna system, object of the present invention, also includes a second unidirectional radio antenna, denoted 2, in a second direction, the direction OY in FIG. 2b, this direction being defined by two orthogonal planes, OX, OY, respectively OY, OZ. These two planes form main planes of the antenna 2, one of the planes, the plane OY, OZ defining a second plane, denoted B in FIG. 2b. The first 1 and the second antenna 2 are placed in the vicinity of one another so that the first C and the second plane B are orthogonal, the first and the second direction OX, respectively OY are also orthogonal. This makes it possible to obtain, for the antenna system 1,2, a substantially omnidirectional radiation pattern, formed by a bidirectional radiation pattern in a third plane A, as shown in FIG. 2c. The plane A is orthogonal to the first and to the second plane and is formed by a main plane of the first respectively of the second antenna 1,2. The substantially omnidirectional radiation pattern of the antenna system thus formed also includes a unidirectional radiation pattern in the first C respectively in the second B plane, as shown in Figures 2e and 2d.

Enfin, ainsi que représenté en figure 2f, un circuit de couplage 3 permet d'assurer en réception une commutation de sortie du système d'antennes sur l'une ou l'autre des première ou deuxième antenne 1,2, en fonction du niveau relatif de signal radioélectrique reçu en sortie de chaque antenne.Finally, as shown in FIG. 2f, a coupling circuit 3 makes it possible to ensure at reception an output switching of the antenna system on either of the first or second antenna 1,2, depending on the level relative radio signal received at the output of each antenna.

On comprend bien sûr que le système d'antennes, objet de la présente invention, peut être utilisé tant à la réception qu'à l'émission, en raison du caractère dual du diagramme de rayonnement en réception, respectivement en émission, ces diagrammes de rayonnement étant, conformément à la théorie classique des antennes, identiques à l'émission et à la réception.It will of course be understood that the antenna system which is the subject of the present invention can be used both for reception and for transmission, owing to the dual nature of the radiation pattern in reception, respectively in emission, these radiation patterns. radiation being, in accordance with the classical theory of antennas, identical to transmission and reception.

Bien entendu, dans le cadre d'un dispositif récepteur de radiomessagerie, la fonction d'émission n'est pas nécessaire, celle-ci pouvant alors être supprimée.Of course, as part of a receiving device the paging function is not necessary, it can then be canceled.

Une description plus détaillée d'un système d'antennes omnidirectionnel à diversité angulaire et de polarisation, objet de la présente invention, sera maintenant donnée en liaison avec les figures 3a et 3b dans le cadre non limitatif d'une application à la radiomessagerie par exemple.A more detailed description of an omnidirectional antenna system with angular diversity and polarization, object of the present invention, will now be given in conjunction with FIGS. 3a and 3b within the non-limiting framework of an application to paging for example .

Ainsi que représenté sur la figure 3a précitée, la première antenne 1 est une antenne à cadre métallique entourant le corps proprement dit du récepteur R et la deuxième antenne 2 est une antenne à cadre à noyau de ferrite. L'antenne à cadre métallique 1 entoure par exemple les circuits du récepteur R, ainsi que représenté sur la figure 3a, et est logée dans le boîtier, non représenté, de l'appareil récepteur, lequel comprend bien entendu une pile P d'alimentation en énergie électrique.As shown in FIG. 3a above, the first antenna 1 is a metal frame antenna surrounding the actual body of the receiver R and the second antenna 2 is a ferrite core frame antenna. The metal frame antenna 1 surrounds, for example, the circuits of the receiver R, as shown in FIG. 3a, and is housed in the housing, not shown, of the receiving device, which of course includes a supply battery P in electrical energy.

La deuxième antenne 2 comprend également un cadre métallique 20 auquel est en outre associé un noyau de ferrite 21. La deuxième antenne à noyau de ferrite est placée au voisinage de l'un des côtés du cadre métallique constitutif de la première antenne 1 par exemple.The second antenna 2 also comprises a metal frame 20 with which is also associated a ferrite core 21. The second antenna with ferrite core is placed in the vicinity of one of the sides of the metal frame constituting the first antenna 1 for example.

La configuration ainsi réalisée permet bien entendu, pour une position donnée du récepteur dans l'espace, de recevoir dans toutes les positions azimutales, c'est-à-dire pour toute orientation du récepteur dans le plan A, un niveau de signal convenable grâce à la différence orthogonale des diagrammes de rayonnement polaire relatifs à chacune des antennes, ainsi que représenté sur la figure 2c.The configuration thus produced naturally allows, for a given position of the receiver in space, to receive in all azimuth positions, that is to say for any orientation of the receiver in the plane A, a suitable signal level thanks unlike the orthogonal polar radiation diagrams relating to each of the antennas, as shown in Figure 2c.

Sur la figure 3b, on a représenté, pour le mode de réalisation de la figure 3a, les flux d'induction orthogonaux reçus par la première 1 et la deuxième antenne 2 dans les directions OX et OY. On comprend ainsi que, dans la représentation de la figure 3b, le plan B est le plan de la feuille contenant la figure 3b, le plan A est un plan horizontal orthogonal au plan de la feuille contenant la figure 3b et le plan C est un plan vertical orthogonal au plan de la feuille contenant la figure 3b. Le repère OXYZ, respectivement O'X'Y'Z' correspond au repère oxyz des figures 2a à 2e. Sur les figures 4a, 4b et 4c, on a représenté les diagrammes polaires de rayonnement respectif reçu par la première et la deuxième antenne dans les directions OX et OY.In FIG. 3b, for the embodiment of FIG. 3a, the orthogonal induction flows received by the first 1 and the second antenna 2 are shown in the directions OX and OY. It is thus understood that, in the representation of FIG. 3b, the plane B is the plane of the sheet containing the figure 3b, the plane A is a horizontal plane orthogonal to the plane of the sheet containing the Figure 3b and the plane C is a vertical plane orthogonal to the plane of the sheet containing Figure 3b. The OXYZ coordinate system, respectively O'X'Y'Z 'corresponds to the oxyz coordinate system of Figures 2a to 2e. In FIGS. 4a, 4b and 4c, the polar diagrams of respective radiation received by the first and the second antenna are shown in the directions OX and OY.

On comprend ainsi que le système d'antennes, objet de la présente invention, offre la possibilité d'une réception quasi-omnidirectionnelle dans le plan horizontal A grâce au circuit de couplage 3, lequel permet, grâce à un système de commande électronique qui sera décrit ci-après en liaison avec la figure 5, d'effectuer une commutation sur le choix de l'une ou l'autre antenne constitutive du système d'antennes selon l'invention.It is thus understood that the antenna system, object of the present invention, offers the possibility of a quasi-omnidirectional reception in the horizontal plane A thanks to the coupling circuit 3, which allows, thanks to an electronic control system which will described below in conjunction with FIG. 5, to switch over the choice of one or the other constituent antenna of the antenna system according to the invention.

D'une manière générale, ainsi que représenté sur la figure 5, on indique que le circuit de couplage 3 peut avantageusement comporter un commutateur 35 formé par au moins un commutateur double voie, noté 351, ce commutateur double voie comprenant une première voie d'entrée reliée à la première antenne 1 et une deuxième voie d'entrée reliée à la deuxième antenne 2. On indique que la première et la deuxième antenne 1,2 sont reliées aux voies d'entrée précitées et comportent chacune des capacités d'accord, notées Ca₁, Ca₂. La sortie du commutateur double voie 351 comporte en fait une première et une deuxième voie de sortie, la première voie de sortie, dans le cas où le système d'antennes, objet de la présente invention est réalisé pour un récepteur de type radiomessagerie, étant directement relié à une chaîne de réception, désignée par RECEPTEUR, de type classique. La chaîne de réception, ou récepteur, comprend de manière habituelle un étage radiofréquence, un filtre radiofréquence, un circuit mélangeur alimenté par un oscillateur local et un filtre à fréquence intermédiaire, suivi lui-même d'un amplificateur à fréquence intermédiaire et d'un dispositif démodulateur à fréquence intermédiaire. La deuxième voie de sortie du commutateur double voie 351 peut alors être directement reliée à la tension de référence ou tension de masse du dispositif.In general, as shown in FIG. 5, it is indicated that the coupling circuit 3 may advantageously include a switch 35 formed by at least one double-channel switch, denoted 351, this double-channel switch comprising a first input connected to the first antenna 1 and a second input channel connected to the second antenna 2. It is indicated that the first and the second antenna 1,2 are connected to the aforementioned input channels and each have tuning capacities, noted Ca₁, Ca₂. The output of the dual-channel switch 351 in fact comprises a first and a second output channel, the first output channel, in the case where the antenna system, object of the present invention is produced for a receiver of paging type, being directly connected to a reception chain, designated by RECEIVER, of the conventional type. The reception chain, or receiver, usually comprises a radio frequency stage, a radio frequency filter, a mixer circuit supplied by a local oscillator and an intermediate frequency filter, itself followed by an intermediate frequency amplifier and a frequency demodulator device intermediate. The second output channel of the dual-channel switch 351 can then be directly connected to the reference voltage or ground voltage of the device.

En outre, le circuit de couplage 3 comporte une chaîne de commande du commutateur double voie 351 en fonction du niveau de signal délivré par la sortie du système d'antennes.In addition, the coupling circuit 3 comprises a control chain for the dual-channel switch 351 as a function of the signal level delivered by the output of the antenna system.

Dans un mode de réalisation non limitatif, tel que représenté en figure 5, la chaîne de commande comporte avantageusement un détecteur 31 de niveau de champ dont l'entrée est directement connectée à l'amplificateur à fréquence intermédiaire du récepteur, ce détecteur délivrant un signal de niveau noté U₀, et un circuit comparateur à seuil 32 recevant le signal de niveau U₀ et une valeur de seuil déterminée, notée U₁.In a nonlimiting embodiment, as shown in FIG. 5, the control chain advantageously comprises a field level detector 31 whose input is directly connected to the intermediate frequency amplifier of the receiver, this detector delivering a signal of level denoted U₀, and a threshold comparator circuit 32 receiving the signal of level U₀ and a determined threshold value, denoted U₁.

Un circuit 33 de type bascule bistable est en outre prévu dans la chaîne de commande précitée, cette bascule recevant le signal délivré par le comparateur 32 sur comparaison du signal de niveau au signal de seuil U1. Une sortie Q du circuit 33 de type bascule bistable permet de commander directement le commutateur double voie 351 du commutateur 35 en fonction d'un critère d'erreur, lequel sera explicité ultérieurement dans la description.A circuit 33 of the flip-flop type is also provided in the aforementioned control chain, this flip-flop receiving the signal delivered by the comparator 32 on comparison of the level signal with the threshold signal U1. An output Q of the circuit 33 of the bistable flip-flop type makes it possible to directly control the double-track switch 351 of the switch 35 as a function of an error criterion, which will be explained later in the description.

On indique enfin que la chaîne de commande précitée comporte également un circuit logique 34 dont les entrées sont connectées aux sortie Q ¯

Figure imgb0001
et sortie complémentée Q ¯
Figure imgb0002
du circuit bascule 33 et dont une sortie est connectée à un microprocesseur 36, lequel permet une remise à zéro sur l'entrée RESET du circuit bascule 33. Le circuit logique 34 comporte par exemple deux voies en parallèle comportant chacune un circuit de temporisation 341,342 et un circuit logique de type ET 343,344. Une entrée de chaque circuit logique de type ET est reliée à la sortie complémentée Q ¯
Figure imgb0003
et à la sortie Q par l'intermédiaire du circuit de temporisation 341, respectivement à la sortie Q et à la sortie complémentée Q ¯
Figure imgb0004
par l'intermédiaire du circuit de temporisation 342 de la bascule bistable 33. La sortie des circuits logiques ET 343 et 344 est reliée à un circuit logique de type OU 345, lequel délivre un signal de présence champ faible Uf au microprocesseur 36.Finally, it is indicated that the aforementioned control chain also includes a logic circuit 34 whose inputs are connected to the outputs Q ¯
Figure imgb0001
and supplemented output Q ¯
Figure imgb0002
of the flip-flop circuit 33 and one output of which is connected to a microprocessor 36, which allows resetting to zero on the RESET input of the flip-flop circuit 33. The logic circuit 34 comprises for example two parallel channels each comprising a timing circuit 341,342 and an ET 343,344 type logic circuit. One input of each AND type logic circuit is connected to the complemented output Q ¯
Figure imgb0003
and at output Q via the timing circuit 341, respectively at output Q and at the complemented output Q ¯
Figure imgb0004
through the timing circuit 342 of the flip-flop 33. The output of the AND logic circuits 343 and 344 is connected to an OR type logic circuit 345, which delivers a weak field presence signal Uf to the microprocessor 36.

Le mode opératoire de la chaîne de commande précédemment décrite en liaison avec la figure 5, sera décrit en liaison avec la figure 6, laquelle représente un chronogramme montrant le déroulement séquentiel de la commande du système d'antennes, objet de la présente invention, telle que décrite en liaison avec la figure 5.

  • Une détection du niveau de champ radioélectrique instantané reçu à l'instant T₀ sur l'antenne 2 commutée par défaut, l'antenne à cadre métallique à noyau de ferrite, est tout d'abord effectuée, cette détection étant effectuée par le détecteur de niveau de champ 31 en sortie de l'amplificateur à fréquence intermédiaire.
  • Une comparaison de ce niveau reçu à l'instant T₀ est effectuée avec le niveau de seuil U1 par le comparateur 32, ce niveau de seuil U₁ définissant le seuil de commutation.
  • Si U₀ < U₁, alors, le circuit comparateur 32 déclenche la bascule 33, laquelle commande l'activation de l'antenne à cadre métallique 1 par commande de commutation du commutateur à double voie 351.
  • Une activation de la constante de temps r introduite par le circuit de retard 341 est en même temps effectuée.
  • Si U₀ < U₁ pendant la durée définie par la constante de temps τ précitée, alors, le dispositif engendre une information d'erreur par l'intermédiaire de la porte OU 345, confirmant la présence d'un champ faible, signal Uf, sur la première et sur la deuxième antenne.
The operating mode of the control chain previously described in connection with FIG. 5, will be described in conjunction with FIG. 6, which represents a timing diagram showing the sequential sequence of control of the antenna system, object of the present invention, such as as described in connection with FIG. 5.
  • A detection of the instantaneous radio field level received at time T₀ on the antenna 2 switched by default, the antenna with a metal frame with a ferrite core, is first carried out, this detection being carried out by the level detector field 31 at the output of the intermediate frequency amplifier.
  • A comparison of this level received at time T₀ is carried out with the threshold level U1 by the comparator 32, this threshold level U₁ defining the switching threshold.
  • If U₀ <U₁, then, the comparator circuit 32 triggers the flip-flop 33, which controls the activation of the metal frame antenna 1 by switching command of the two-way switch 351.
  • An activation of the time constant r introduced by the delay circuit 341 is carried out at the same time.
  • If U₀ <U₁ during the duration defined by the above-mentioned time constant τ, then the device generates error information via the OR gate 345, confirming the presence of a weak field, signal Uf, on the first and on the second antenna.

On comprend bien sûr que du point de vue du mode opératoire de la chaîne de commande représentée en figure 5, que le détecteur de niveau de champ 31 fournit une tension U₀ instantanée et proportionnelle au niveau de champ électromagnétique HF capté par la deuxième antenne 2 activée par défaut.It is of course understood that from the point of view of the operating mode of the control chain shown in FIG. 5, that the field level detector 31 provides an instantaneous voltage U₀ proportional to the field level electromagnetic HF received by the second antenna 2 activated by default.

Le circuit comparateur 32 reçoit le signal de niveau U₀ correspondant au champ électromagnétique reçu à l'instant T₀, et la tension de référence U₁ correspondant au seuil de commutation. La valeur du seuil de commutation est déterminée en fonction du rapport signal à bruit minimal pour lequel le taux d'erreur bit sur les données R.D.S. par exemple est encore acceptable.The comparator circuit 32 receives the level signal U₀ corresponding to the electromagnetic field received at time T₀, and the reference voltage U₁ corresponding to the switching threshold. The value of the switching threshold is determined as a function of the minimum signal-to-noise ratio for which the bit error rate on the R.D.S. for example is still acceptable.

Le comparateur 32 fournit en sortie un état logique, lequel commande le circuit bascule 33 suivant les relations ci-après :
   U₀(T₀) < U₁ ---> sortie comparateur = 1
   U0(T₀) > U₁ ---> sortie comparateur = 0.
Comparator 32 outputs a logic state, which controls flip-flop circuit 33 according to the following relationships:
U₀ (T₀) <U₁ ---> comparator output = 1
U0 (T₀)> U₁ ---> comparator output = 0.

Le circuit bascule 33 reçoit donc l'information de commande issue du comparateur 32 et à son tour active la première antenne à cadre métallique 1 pendant que la deuxième antenne à noyau de ferrite 2 est inhibée.The flip-flop circuit 33 therefore receives the control information from the comparator 32 and in turn activates the first metal frame antenna 1 while the second antenna with ferrite core 2 is inhibited.

Dans le circuit logique 34, on comprend en fait que celui-ci permet d'engendrer, à partir de l'information de commutation, la constante de temps τ précitée permettant de définir le critère d'erreur précédemment mentionné dans la description. Si dans l'intervalle de temps τ précité la deuxième antenne 2 à noyau de ferrite est de nouveau activée, alors, le circuit logique OU de sortie 345 engendre pour le microprocesseur 36 une information dite de champ faible Uf, indiquant en fait que le niveau du champ reçu est inférieur au seuil minimal défini par la valeur de seuil U₁. Le microprocesseur 36 permet d'assurer la remise à zéro de la bascule 33 par la commande RESET.In logic circuit 34, it is in fact understood that this makes it possible to generate, from the switching information, the above-mentioned time constant τ making it possible to define the error criterion previously mentioned in the description. If in the aforementioned time interval τ the second antenna 2 with ferrite core is activated again, then the output OR logic circuit 345 generates for the microprocessor 36 so-called weak field information Uf, indicating in fact that the level of the received field is less than the minimum threshold defined by the threshold value U₁. The microprocessor 36 makes it possible to reset the flip-flop 33 to zero by the RESET command.

La description précédente du système d'antennes omnidirectionnel à diversité angulaire et de polarisation, objet de la présente invention, concernait le cas d'un récepteur de radiomessagerie de type R.D.S. par exemple.The previous description of the omnidirectional antenna system with angular diversity and polarization, object of the present invention, concerned the case of a paging receiver of the R.D.S. type. for example.

Bien entendu, le système d'antennes, objet de la présente invention, peut, le cas échéant, être utilisé comme système d'antennes d' émission-réception omnidirectionnel par exemple dans le domaine d'application du radiotéléphone. Dans ce cas, ainsi qu'on l'a également représenté en figure 5, au commutateur double voie 351 peut être associé un autre commutateur double voie, noté 352. Le commutateur 352 comprend en fait un premier et un deuxième commutateur. Une voie du premier et du deuxième commutateur est reliée par exemple à un circuit émetteur, noté EMETTEUR, alors que l'autre voie du premier commutateur est reliée à la borne d'entrée du récepteur et en particulier à l'étage radiofréquence de celui-ci. L'autre voie du deuxième commutateur est reliée par exemple à la tension de masse ou de référence du dispositif. Les voies commutées du premier et du deuxième commutateur sont reliées respectivement à la première voie de sortie et à la deuxième voie de sortie du premier commutateur 351. Ainsi, le deuxième commutateur double voie 352 comporte-t-il deux positions de commutation, notées I respectivement II. La commutation des deux commutateurs du deuxième commutateur double voie 352 est effectuée par l'intermédiaire du microprocesseur 36 par exemple, lequel permet, de manière classique, d'assurer la commutation en position de réception selon la position I, la connexion du premier commutateur double voie 351 étant alors ramenée à celle précédemment décrite dans la description dans le cas du récepteur de type R.D.S. ou au contraire en position II, position dans laquelle la première 1 et la deuxième antenne 2 sont alimentées en parallèle par le circuit émetteur. Bien entendu, on indique que la commutation de la position I de réception à la position II d'émission et réciproquement, est commandée par l'intermédiaire du microprocesseur 36 de manière classique, conformément au processus de commande des dispositifs émetteurs-récepteurs connus. A ce titre, cette commutation ne sera pas décrite plus en détail. On comprend également qu'afin, le cas échéant, de tenir compte des disparités de rendement ou de diagramme de rayonnement de la première et de la deuxième antenne à l'émission, des dispositifs, non représentés sur la figure 5, peuvent être prévus afin d'équilibrer les niveaux d'émission de la première respectivement de la deuxième antenne.Of course, the antenna system, object of the present invention, can, if necessary, be used as omnidirectional transmission-reception antenna system for example in the field of application of the radiotelephone. In this case, as also shown in FIG. 5, the dual-channel switch 351 can be associated with another dual-channel switch, denoted 352. The switch 352 in fact comprises a first and a second switch. A channel of the first and second switch is connected for example to a transmitter circuit, denoted TRANSMITTER, while the other channel of the first switch is connected to the input terminal of the receiver and in particular to the radio frequency stage of it. this. The other channel of the second switch is connected for example to the ground or reference voltage of the device. The switched channels of the first and second switches are connected respectively to the first output channel and to the second output channel of the first switch 351. Thus, the second double-channel switch 352 has two switching positions, denoted I respectively II. The switching of the two switches of the second double-channel switch 352 is carried out by means of the microprocessor 36 for example, which conventionally makes it possible to switch over to the reception position according to position I, the connection of the first double switch channel 351 then being reduced to that previously described in the description in the case of the RDS type receiver or on the contrary in position II, position in which the first 1 and the second antenna 2 are supplied in parallel by the transmitter circuit. Of course, it is indicated that the switching from the receiving position I to the transmitting position II and vice versa, is controlled by means of the microprocessor 36 in a conventional manner, in accordance with the process for controlling known transceiver devices. As such, this switching will not be described in more detail. It is also understood that in order, if necessary, to take into account the disparities in efficiency or radiation pattern of the first and second antenna on transmission, devices, not shown in FIG. 5, can be provided in order to balance the emission levels of the first respectively of the second antenna.

On a ainsi décrit un système d'antennes d'émission-réception omnidirectionnel à diversité angulaire et de polarisation particulièrement performant. En particulier, dans le cas d'une utilisation dans un dispositif de radio-messagerie par exemple, celui-ci permet en permanence d'obtenir une réception omnidirectionnelle des messages transmis par des systèmes tels que le système R.D.S. par exemple.A particularly efficient omnidirectional angular diversity and polarization transmit-receive antenna system has thus been described. In particular, in the case of use in a radio paging device for example, this permanently makes it possible to obtain an omnidirectional reception of the messages transmitted by systems such as the R.D.S. for example.

Claims (5)

Système d'antennes d'émission-réception omnidirectionnel à diversité angulaire et de polarisation, caractérisé en ce qu'il comporte : - une première antenne radioélectrique unidirectionnelle dans une première direction définie par deux plans orthogonaux, formant plans principaux de cette antenne et l'un des plans définissant un premier plan (C), - une deuxième antenne radioélectrique unidirectionnelle dans une deuxième direction, définie par deux plans orthogonaux, formant plans principaux de cette antenne et l'un des plans définissant un deuxième plan (B), la première et la deuxième antenne étant placées de façon que, le premier et le deuxième plan étant orthogonaux, la première et la deuxième direction soient orthogonales, ce qui permet d'obtenir pour ledit système d'antennes un diagramme de rayonnement sensiblement omnidirectionnel formé par un diagramme de rayonnement bidirectionnel dans un troisième plan (A), orthogonal au premier et deuxième plan et formé par un plan principal de la première respectivement deuxième antenne, et par un diagramme de rayonnement unidirectionnel dans le premier (C) respectivement le deuxième (B) plan, - des moyens de couplage permettant d'assurer, en réception, une commutation de sortie du système d'antenne sur l'une ou l'autre des première ou deuxième antenne en fonction du niveau relatif de signal radioélectrique reçu en sortie de chaque antenne. Omnidirectional transmitting and receiving antenna system with angular diversity and polarization, characterized in that it comprises: a first unidirectional radio antenna in a first direction defined by two orthogonal planes, forming main planes of this antenna and one of the planes defining a first plane (C), - a second unidirectional radio antenna in a second direction, defined by two orthogonal planes, forming main planes of this antenna and one of the planes defining a second plane (B), the first and the second antenna being placed so that the first and the second plane being orthogonal, the first and second directions are orthogonal, which makes it possible to obtain for said antenna system a substantially omnidirectional radiation pattern formed by a bidirectional radiation pattern in a third plane (A), orthogonal to the first and second plane and formed by a main plane of the first respectively second antenna, and by a unidirectional radiation pattern in the first (C) respectively the second (B) plane, coupling means making it possible to ensure, on reception, an output switching of the antenna system on one or the other of the first or second antenna as a function of the relative level of radio signal received at the output of each antenna. Système d'antennes selon la revendication 1, caractérisé en ce que la première antenne est une antenne à cadre métallique et la deuxième antenne une antenne cadre à noyau de ferrite, l'antenne à noyau de ferrite étant placée au voisinage de l'un des côtés du cadre formant l'antenne à cadre métallique.Antenna system according to claim 1, characterized in that the first antenna is a metal frame antenna and the second antenna a ferrite core antenna, the ferrite core antenna being placed in the vicinity of one of the sides of the frame forming the metal frame antenna. Système d'antennes selon l'une des revendications précédentes, caractérisé en ce que lesdits moyens de couplage comprennent un commutateur double voie, une première voie d'entrée étant reliée à la première antenne et une deuxième voie d'entrée étant reliée à la deuxième antenne, la sortie dudit commutateur double-voie, constituant sortie dudit système d'antennes, étant destinée à être connectée, en réception, à l'entrée radiofréquence d'un récepteur.Antenna system according to one of the preceding claims, characterized in that said coupling means comprise a double-channel switch, a first input channel being connected to the first antenna and a second input channel being connected to the second antenna, the output of said double-channel switch, constituting output of said antenna system, being intended to be connected, in reception, at the radio frequency input of a receiver. Système d'antennes selon la revendication 3, caractérisé en ce qu'il comporte en outre des moyens de commande desdits moyens de couplage en fonction du niveau du signal délivré par la sortie dudit système d'antennes.Antenna system according to claim 3, characterized in that it further comprises means for controlling said coupling means as a function of the level of the signal delivered by the output of said antenna system. Système d'antennes selon la revendication 4, caractérisé en ce que lesdits moyens de couplage comportent au moins : - un circuit détecteur de niveau de champ radioélectrique, délivrant un signal de niveau, - un circuit comparateur à seuil recevant ledit signal de niveau et délivrant un signal de comparaison, - un circuit de type bascule bistable recevant ledit signal de comparaison, une sortie dudit circuit de type bascule bistable commandant directement des moyens de couplage en fonction d'un critère d'erreur. Antenna system according to claim 4, characterized in that said coupling means comprise at least: - a radio field level detector circuit, delivering a level signal, a threshold comparator circuit receiving said level signal and delivering a comparison signal, a circuit of flip-flop type receiving said comparison signal, an output of said circuit of flip-flop type directly controlling coupling means according to an error criterion.
EP95401471A 1994-06-24 1995-06-21 System of omnidirectional antennae having angular and polarisation diversity Ceased EP0689301A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9407826A FR2721756B1 (en) 1994-06-24 1994-06-24 Omnidirectional transmitting and receiving antenna system with angular diversity and polarization.
FR9407826 1994-06-24

Publications (1)

Publication Number Publication Date
EP0689301A1 true EP0689301A1 (en) 1995-12-27

Family

ID=9464647

Family Applications (1)

Application Number Title Priority Date Filing Date
EP95401471A Ceased EP0689301A1 (en) 1994-06-24 1995-06-21 System of omnidirectional antennae having angular and polarisation diversity

Country Status (4)

Country Link
EP (1) EP0689301A1 (en)
JP (1) JPH0846558A (en)
FI (1) FI953123A (en)
FR (1) FR2721756B1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0783190A1 (en) * 1996-01-02 1997-07-09 Texas Instruments Deutschland Gmbh Passive entry x-y-z transponder antenna
GB2314462A (en) * 1996-06-17 1997-12-24 Nec Corp Loop antenna
GB2393856A (en) * 2002-08-15 2004-04-07 Antenova Ltd Diversity and isolation techniques for dielectric antennas
EP1630977A1 (en) * 2004-08-23 2006-03-01 Research In Motion Limited Mobile wireless communications device with polarization diversity wireless local area network (LAN) antenna and related method
US7912435B2 (en) 2004-08-23 2011-03-22 Research In Motion Limited Mobile wireless communications device with diversity wireless local area network (LAN) antenna and related methods
DE10162907B4 (en) * 2000-12-21 2013-01-17 Lear Corp. Remote access device with inductive multi-frame antenna

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1207595A (en) * 1968-03-25 1970-10-07 Pye Ltd Aerials
US3683389A (en) * 1971-01-20 1972-08-08 Corning Glass Works Omnidirectional loop antenna array
US4155091A (en) * 1977-09-12 1979-05-15 Iec Electronics Corporation Compact omnidirectional antenna array
WO1989010012A1 (en) * 1988-04-11 1989-10-19 Motorola, Inc. Balanced low profile hybrid antenna
EP0350006A2 (en) * 1988-07-05 1990-01-10 Nec Corporation Antenna structure used in portable radio device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1207595A (en) * 1968-03-25 1970-10-07 Pye Ltd Aerials
US3683389A (en) * 1971-01-20 1972-08-08 Corning Glass Works Omnidirectional loop antenna array
US4155091A (en) * 1977-09-12 1979-05-15 Iec Electronics Corporation Compact omnidirectional antenna array
WO1989010012A1 (en) * 1988-04-11 1989-10-19 Motorola, Inc. Balanced low profile hybrid antenna
EP0350006A2 (en) * 1988-07-05 1990-01-10 Nec Corporation Antenna structure used in portable radio device

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0783190A1 (en) * 1996-01-02 1997-07-09 Texas Instruments Deutschland Gmbh Passive entry x-y-z transponder antenna
GB2314462A (en) * 1996-06-17 1997-12-24 Nec Corp Loop antenna
US6008761A (en) * 1996-06-17 1999-12-28 Nec Corporation Loop antenna
GB2314462B (en) * 1996-06-17 2000-11-08 Nec Corp Loop antenna
DE10162907B4 (en) * 2000-12-21 2013-01-17 Lear Corp. Remote access device with inductive multi-frame antenna
GB2393856A (en) * 2002-08-15 2004-04-07 Antenova Ltd Diversity and isolation techniques for dielectric antennas
EP1630977A1 (en) * 2004-08-23 2006-03-01 Research In Motion Limited Mobile wireless communications device with polarization diversity wireless local area network (LAN) antenna and related method
US7912435B2 (en) 2004-08-23 2011-03-22 Research In Motion Limited Mobile wireless communications device with diversity wireless local area network (LAN) antenna and related methods
US8503959B2 (en) 2004-08-23 2013-08-06 Research In Motion Limited Mobile wireless communications device with diversity wireless local area network (LAN) antenna and related methods
US8918072B2 (en) 2004-08-23 2014-12-23 Blackberry Limited Mobile wireless communications device with polarization diversity wireless local area network (LAN) antenna and related methods

Also Published As

Publication number Publication date
JPH0846558A (en) 1996-02-16
FR2721756A1 (en) 1995-12-29
FR2721756B1 (en) 1996-08-23
FI953123A (en) 1995-12-25
FI953123A0 (en) 1995-06-22

Similar Documents

Publication Publication Date Title
CA1298617C (en) Rf and light signals transmitting system, particularly for space telecommunications
OA10623A (en) Multifunctional interactive communications system with transmission and reception of circular / elliptical polarized signals
FR2699743A1 (en) Diversity antenna structure with closely spaced antennas.
EP1074065B1 (en) Antenna system for tracking moving satellites
EP1175741B1 (en) Multimedia two-way communication terminal
FR2498336A1 (en) LINEAR POLARIZATION ELECTROMAGNETIC WAVE TRANSMISSION DEVICE
EP0860953B1 (en) Method of radiotelephone communication between a base station and a mobile telephone by means of a repeater
EP0901184A1 (en) Calibration method for transmit and/or receive chains driving an active array, and corresponding mobile station
CA2282679C (en) Antenna for transmitting and/or receiving signals with rectilinear polarisation
FR2697700A1 (en) A device for correcting a frequency shift due to the Doppler effect in a transmission system.
EP0689301A1 (en) System of omnidirectional antennae having angular and polarisation diversity
EP1026775A1 (en) Antenna set for a satellite mobile phone and a mobile equipped with this antenna system
WO1999056347A1 (en) Apparatus for tracking moving satellites
EP0532383B1 (en) Method and device for simultaneous information transmission between mobiles and a reception station
EP0370862A1 (en) Method and system for signal transmission
EP2446507B1 (en) Method of helping to steer an antenna, power-assisted steering antenna using this method and mobile terminal comprising such an antenna
EP0504275B1 (en) Process and device for transmitting video signals in a confined medium
FR2724492A1 (en) OMNIDIRECTIONAL EMISSION-RECEPTION ANTENNA SYSTEM MULTIPOLARIZATION WITH SUBSTANTIALLY CIRCULAR RADIATION DIAGRAM
EP0865220A1 (en) Method of configuring cells in a digital cellular radiocommunication system
EP0971486B1 (en) Mobile radio terminal comprising at least two antennas with polarization diversity for the reception of signals
WO1998017013A1 (en) Interface device of bi-directional connection of currents carrying low voltage/radiofrequency
EP0429349A1 (en) Method and device for transmission of broadband signals with a mobile equipment
FR2705464A1 (en) Tracking system for estimating the pointing error of a microwave antenna.
CA2002465A1 (en) Process for the furtive exchange of electromagnetic signals between a first and a second transmitter-receiver station and method of implementing same
FR2690585A1 (en) Digitally modulated laser beam for bidirectional communication between satellites - has laser transmitter-receiver with digital modulation and second beacon aligning laser beam

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): NL SE

17P Request for examination filed

Effective date: 19951128

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

17Q First examination report despatched

Effective date: 20010222

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN REFUSED

18R Application refused

Effective date: 20010817