EP0687735B1 - Method for enzymatic transesterification - Google Patents

Method for enzymatic transesterification Download PDF

Info

Publication number
EP0687735B1
EP0687735B1 EP95109242A EP95109242A EP0687735B1 EP 0687735 B1 EP0687735 B1 EP 0687735B1 EP 95109242 A EP95109242 A EP 95109242A EP 95109242 A EP95109242 A EP 95109242A EP 0687735 B1 EP0687735 B1 EP 0687735B1
Authority
EP
European Patent Office
Prior art keywords
process according
propane
enzyme reactor
transesterification
fractionation column
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP95109242A
Other languages
German (de)
French (fr)
Other versions
EP0687735A1 (en
Inventor
Jürgen Dr. Heidlas
Heinz-Rüdiger Dr. Vollbrecht
Jan Dr. Cully
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Evonik Operations GmbH
Original Assignee
SKW Trostberg AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SKW Trostberg AG filed Critical SKW Trostberg AG
Publication of EP0687735A1 publication Critical patent/EP0687735A1/en
Application granted granted Critical
Publication of EP0687735B1 publication Critical patent/EP0687735B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/64Fats; Fatty oils; Ester-type waxes; Higher fatty acids, i.e. having at least seven carbon atoms in an unbroken chain bound to a carboxyl group; Oxidised oils or fats
    • C12P7/6436Fatty acid esters
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/62Carboxylic acid esters
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/64Fats; Fatty oils; Ester-type waxes; Higher fatty acids, i.e. having at least seven carbon atoms in an unbroken chain bound to a carboxyl group; Oxidised oils or fats
    • C12P7/6436Fatty acid esters
    • C12P7/6445Glycerides
    • C12P7/6454Glycerides by esterification
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/64Fats; Fatty oils; Ester-type waxes; Higher fatty acids, i.e. having at least seven carbon atoms in an unbroken chain bound to a carboxyl group; Oxidised oils or fats
    • C12P7/6436Fatty acid esters
    • C12P7/6445Glycerides
    • C12P7/6458Glycerides by transesterification, e.g. interesterification, ester interchange, alcoholysis or acidolysis

Definitions

  • the present invention relates to a process for the enzymatic transesterification in liquid propane.
  • Biocatalysts have proven to be useful alternatives in preparative organic chemistry, especially in the past 10 years.
  • properties of the enzymes such as their selectivity and / or specificity in relation to the relevant substrates and in relation to the products are of particular interest, since the analogous synthetic steps known from classical chemistry can usually only be carried out at a much higher cost.
  • the latter reaction can be carried out by reacting a carboxylic acid ester with alcohols (alcoholysis), with carboxylic acids or with other carboxylic acid esters.
  • lipases are used to modify fats and oils by means of transesterification. Examples of this are the patents US 42 75 011, US 42 68 527 and US 44 20 560, in which a method for producing glycerides by using lipases and a method for producing cocoa butter substitutes by transesterification and a method for modification of fats and oils are described.
  • Hydrolases are also used to select selected glycerides (US Pat. No. 2,485,779).
  • the British patent GB 15 77 933 deals with the transesterification of fats for the food industry by lipases.
  • the enzymatic treatment steps are either completely solvent-free or in organic solvents, such as e.g. Hexane.
  • US 4 925 790 has e.g. the subject of a process in which enzyme-catalyzed conversion processes are carried out under supercritical conditions, the solvents used being, inter alia, Carbon dioxide, oxygen or ethylene can be called.
  • a major advantage of these enzyme reactions is the utilization of the enzyme selectivities and specificities and the fact that the products are solvent-free.
  • compressed carbon dioxide has a solvent capacity for water. Although this can be seen as an advantage in principle with regard to hydrolysis reactions and esterifications, it is extremely difficult to use both carbon dioxide and water to adjust the free as well as the enzyme-bound water content. In particular, the enzyme-bound water content is of great importance, since it significantly influences the enzyme activity. Experience has shown that enzyme reactions in compressed carbon dioxide easily get out of their "water balance" and are therefore difficult to control. Compressed carbon dioxide also has a satisfactory dissolving capacity for lipophilic substances such as fats and oils only at relatively high pressures (> 300 bar); Another disadvantage is the high pressure caused high costs that make the production of numerous products uneconomical.
  • This task was solved by a process for the enzymatic transesterification in liquid propane with the aid of a device comprising an enzyme reactor, a fractionation column and an extract separator, the transesterification in the enzyme reactor taking place at temperatures ⁇ 60 ° C and a pressure between 10 and 200 bar, and the Propane density ⁇ 0.4 g / cm 3 and preferably between 0.4 and 0.55 g / cm 3 .
  • the transesterification preferably follows the direct current principle.
  • the process is preferably carried out in an enzyme reactor which is designed in a compact design as a fixed bed reactor and which contains enzymes immobilized on an inert carrier material.
  • the suitable enzymes preferably lipases or esterases, are fixed for this purpose on materials with the largest possible inner and / or outer surfaces, for which purpose preferably organic polymers such as polypropylene, for example in the form of Accurel, inorganic adsorbents such as Celite, or ion exchange resins are used.
  • the propane is brought to the system pressure essential to the invention by means of a high-pressure pump (1), which is between 10 and 200 bar and in a preferred process variant between 20 and 100 bar, in particular between 30 and 50 bar, in each case the pressure must always be so high that the physical state of the propane in the enzyme reactor (2) and in the fractionation column (6) is not gaseous but liquid at the temperatures according to the invention.
  • a high-pressure pump (1) which is between 10 and 200 bar and in a preferred process variant between 20 and 100 bar, in particular between 30 and 50 bar, in each case the pressure must always be so high that the physical state of the propane in the enzyme reactor (2) and in the fractionation column (6) is not gaseous but liquid at the temperatures according to the invention.
  • lipophilic compounds are used according to the invention which have ester functions, preferably triglycerides, which are premixed in a suitable stoichiometric ratio with the corresponding reactants, such as mono- or polyhydric alcohols or carboxylic acids.
  • the reaction mixture presented is usually conveyed from the substrate supply (3) by means of a high-pressure screw conveyor (in the case of solid substrate mixtures) or a high-pressure pump (in the case of pumpable substrate mixtures) (4) into the enzyme reactor (2), in which the actual reaction takes place.
  • the substrate mixture fed in dissolved in the compressed propane passes through the enzyme reactor (2), which is thermostatted to temperatures of ⁇ 60 ° C.
  • the temperature range according to the invention which is preferably ⁇ 50 ° C and particularly preferably 10-50 ° C, i.e. Room temperature was also included in order to avoid thermal inactivation of the enzymes and to ensure the optimal solubility of the reactants involved and the products.
  • the product mixture is passed into the fractionation column.
  • the reaction products such as mono- and / or diglycerides or intermolecular carboxylic acid esters of the Fatty acid esters or the intramolecular carboxylic acid esters can be fractionated in the propane.
  • the loaded propane is heated to a temperature at which the solubility of the product components differs.
  • the fractionation column (6) separates the top and bottom products, the bottom product being insoluble or only slightly soluble in propane, whereas the top product is discharged together with the propane.
  • this is fed to an extract separator (7) after the fractionation, in which the propane e.g. is freed from the remaining compounds by further increasing the temperature and / or reducing the pressure.
  • the products formed during the transesterification can be taken directly from the bottom of the fractionation column and / or from the extract separator (7) working as a product separator.
  • the purified propane is cooled on a heat exchanger (8), condensed if necessary and collected in the gas receiver (9) before it is reintroduced into the cycle.
  • the process according to the invention has proven to be of particular economic interest in transesterification reactions in which the focus is on the substrate and product specificities / selectivities of the enzymes.
  • the method according to the invention is preferably used for transesterification reactions which are stereochemically directed and are used to resolve racemates of optically active compounds.
  • the propane was evaporated in the extract separator (7) by lowering the pressure to 6 bar at 60 ° C. Mono- and diglycerides could be removed from the bottom of the column and the fatty acid esters from the extract separator (7).
  • the enzyme reaction was run for 6 hours with no apparent loss of enzyme activity or changes in the product range.
  • An immobilizate consisting of 20 g of lipase from Candida cylindraceae (100,000 U / g) on 60 g of Celite was placed in the enzyme reactor (2).
  • the pressure was kept at 40 bar by means of a high-pressure pump (1) in the enzyme reactor (2) and in the fractionation column (6) and 2 kg of propane were circulated per hour.
  • the enzyme reactor (2) was at 45 ° C, the fractionation column (6) at 85 ° C.
  • 150 g of a mixture of 136 g of a fish oil (iodine number 256) and 14 g of ethanol (95%) from the substrate stock (3) were fed into the enzyme reactor per hour via the high-pressure pump (4) (2) fed.
  • the substrates had been completely converted after passing through the enzyme reactor (2).
  • the propane was evaporated in the extract separator (7) by lowering the pressure to 6 bar at 55 ° C. After fractionation in column (6), a mixture of mono- and diglycerides with an iodine number of 301 was removed from the bottom. An ester fraction which had an iodine number of 181 could be obtained from the extract separator (7).
  • oil-free lecithin with a high content of lysophosphatidylcholine, which has very good emulsifier properties, could be removed from the bottom of the column.
  • a fraction consisting of oil and fatty acid esters could be obtained from the extract separator (7).
  • the propane was evaporated by lowering the pressure to 6 bar at 60 ° C.
  • An immobilizate from 15 g of porcine pancreatic lipase to 60 g of Celite was placed in the enzyme reactor (2).
  • the pressure was kept at 42 bar by means of a high-pressure pump (1) in the enzyme reactor (2) and in the fractionation column (6) and 2 kg of propane were circulated per hour.
  • the enzyme reactor (2) was heated to 40 ° C., the fractionation column (6) with a temperature gradient of 90 ° C. in the top area and 85 ° C. in the bottom area.
  • 100 g of a mixture of 72 g of ⁇ -decalactone and 22 g of tetradecanol (stoichiometric ratio 1: 0.3) from the substrate template (3) were fed into the enzyme reactor (2) per hour via the high-pressure pump (4).
  • the conversion of the substrates was complete after passing through the enzyme reactor (2).
  • the bottom (S) -4-hydroxydecanoic acid tetradecyl ester was enantiomerically pure at 95% e.e. be removed;
  • the non-transesterified lactone could be removed from the extract separator (7), in which the propane was evaporated by reducing the pressure to 6 bar at 50 ° C.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Genetics & Genomics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Immobilizing And Processing Of Enzymes And Microorganisms (AREA)
  • Enzymes And Modification Thereof (AREA)

Description

Die vorliegende Erfindung betrifft ein Verfahren zur enzymatischen Umesterung in flüssigem Propan.The present invention relates to a process for the enzymatic transesterification in liquid propane.

Biokatalysatoren haben sich vor allem in den vergangenen 10 Jahren als zweckmäßige Alternativen in der präparativen organischen Chemie erwiesen. In der Praxis der organischen Chemie sind insbesondere Eigenschaften der Enzyme wie deren Selektivität und/oder Spezifität gegenüber den relevanten Substraten sowie gegenüber den Produkten von besonderem Interesse, da die aus der klassischen Chemie bekannten analogen Syntheseschritte meist nur mit einem weit höheren Aufwand durchzuführen sind.Biocatalysts have proven to be useful alternatives in preparative organic chemistry, especially in the past 10 years. In the practice of organic chemistry, properties of the enzymes such as their selectivity and / or specificity in relation to the relevant substrates and in relation to the products are of particular interest, since the analogous synthetic steps known from classical chemistry can usually only be carried out at a much higher cost.

In diesem Zusammenhang interessieren hauptsächlich Biokatalysatoren vom allgemeinen Typ der Hydrolasen und insbesondere der Lipasen, die an Vorgägen um die Fettspaltung beteiligt sind, die aber auch in der Lage sind, andere organische Estergruppen enzymatisch zu verändern. Prinzipiell katalysieren Lipasen und Esterasen folgende Reaktionen:

  • Estersynthese (Alkohol + Carbonsäure)
  • Esterspaltung (Esterhydrolyse)
  • Umesterung
Of particular interest in this context are biocatalysts of the general type of hydrolases and in particular lipases, which are involved in processes relating to fat cleavage, but which are also capable of enzymatically changing other organic ester groups. In principle, lipases and esterases catalyze the following reactions:
  • Ester synthesis (alcohol + carboxylic acid)
  • Ester cleavage (ester hydrolysis)
  • Transesterification

Die letztgenannte Reaktion kann durch Umsetzung eines Carbonsäureesters mit Alkoholen (Alkoholyse), mit Carbonsäuren oder mit anderen Carbonsäureestern erfolgen.The latter reaction can be carried out by reacting a carboxylic acid ester with alcohols (alcoholysis), with carboxylic acids or with other carboxylic acid esters.

Im Bereich der Lebensmitteltechnologie sind zahlreiche Verfahren vorbeschrieben, bei denen Lipasen zur Modifizierung von Fetten und Ölen mit Hilfe der Umesterung eingesetzt werden. Beispielhaft sind an dieser Stelle die Patentschriften US 42 75 011, US 42 68 527 und US 44 20 560 genannt, in denen eine Methode zur Herstellung von Glyceriden durch Heranziehung von Lipasen bzw. eine Methode zur Herstellung von Kakaobutterersatz durch Umesterung und eine Methode zur Modifizierung von Fetten und Ölen beschrieben sind.In the field of food technology, numerous processes are described in which lipases are used to modify fats and oils by means of transesterification. Examples of this are the patents US 42 75 011, US 42 68 527 and US 44 20 560, in which a method for producing glycerides by using lipases and a method for producing cocoa butter substitutes by transesterification and a method for modification of fats and oils are described.

Auch zur Selektion ausgewählter Glyceride werden Hydrolasen herangezogen (US 24 85 779). Die britische Patentschrift GB 15 77 933 beschäftigt sich mit der Umesterung von Fetten für die Lebensmittelindustrie durch Lipasen.Hydrolases are also used to select selected glycerides (US Pat. No. 2,485,779). The British patent GB 15 77 933 deals with the transesterification of fats for the food industry by lipases.

Allen genannten Verfahren ist zu eigen, daß die enzymatischen Behandlungsschritte entweder völlig lösemittelfrei oder in organischen Lösemitteln, wie z.B. Hexan, durchgeführt werden.It is characteristic of all of the processes mentioned that the enzymatic treatment steps are either completely solvent-free or in organic solvents, such as e.g. Hexane.

In jüngster Zeit sind auch enzymatische Verfahren beschrieben worden, bei denen verdichtete Gase als Lösemittel eingesetzt werden. US 4 925 790 hat z.B. ein Verfahren zum Gegenstand, bei dem enzymkatalysierte Umsetzungsprozesse unter superkritischen Bedingungen durchgeführt werden, wobei als Lösemittel u.a. Kohlendioxid, Sauerstoff oder Ethylen genannt werden.Recently, enzymatic processes have also been described in which compressed gases are used as solvents. US 4 925 790 has e.g. the subject of a process in which enzyme-catalyzed conversion processes are carried out under supercritical conditions, the solvents used being, inter alia, Carbon dioxide, oxygen or ethylene can be called.

Ein wesentlicher Vorteil dieser Enzymreaktionen ist in der Ausnutzung der Enzymselektivitäten und -spezifitäten und in der Lösemittelfreiheit der Produkte zu sehen.A major advantage of these enzyme reactions is the utilization of the enzyme selectivities and specificities and the fact that the products are solvent-free.

Es ist allerdings zu beobachten, daß bei der enzymatischen Umsetzung lipophiler Substrate im wesentlichen zwei Probleme auftreten: Verdichtetes Kohlendioxid besitzt in Abhängigkeit von den Zustandsparametern ein Lösevermögen für Wasser. Obwohl darin im Hinblick auf Hydrolysereaktionen und Veresterungen prinzipiell ein Vorteil gesehen werden kann, ist es bei der Verwendung von Kohlendioxid äußerst schwierig, sowohl den freien als auch den enzymgebundenen Wassergehalt einzustellen. Insbesondere dem enzymgebundenen Wassergehalt kommt aber eine große Bedeutung zu, da er die Enzymaktivität wesentlich mitbestimmt. Die Erfahrung lehrt, daß Enzymreaktionen in verdichtetem Kohlendioxid sehr leicht aus ihrem "Wassergleichgewicht" geraten und somit schwer kontrollierbar werden. Verdichtetes Kohlendioxid besitzt außerdem für lipophile Stoffe, wie Fette und Öle, nur bei relativ hohen Drücken (> 300 bar) eine befriedigende Lösekapazität; einen weiteren Nachteil stellen somit die von den hohen Drücken verursachten hohen Kosten dar, die die Herstellung zahlreicher Produkte unwirtschaftlich werden lassen.However, it can be observed that there are essentially two problems with the enzymatic conversion of lipophilic substrates: Depending on the state parameters, compressed carbon dioxide has a solvent capacity for water. Although this can be seen as an advantage in principle with regard to hydrolysis reactions and esterifications, it is extremely difficult to use both carbon dioxide and water to adjust the free as well as the enzyme-bound water content. In particular, the enzyme-bound water content is of great importance, since it significantly influences the enzyme activity. Experience has shown that enzyme reactions in compressed carbon dioxide easily get out of their "water balance" and are therefore difficult to control. Compressed carbon dioxide also has a satisfactory dissolving capacity for lipophilic substances such as fats and oils only at relatively high pressures (> 300 bar); Another disadvantage is the high pressure caused high costs that make the production of numerous products uneconomical.

Bereits aus der älteren Patentliteratur ist bekannt, daß verdichtetes Propan im unterkritischen Zustand ein sehr gutes Lösevermögen für lipophile Stoffe besitzt. So beansprucht die US-Schrift 2 682 551 ein Verfahren zur Extraktion von Ölsaaten, wie Baumwollsamen, Sojabohnen oder Leinsamen, mit flüssigem Propan.It is already known from the older patent literature that compressed propane in the subcritical state has a very good dissolving power for lipophilic substances. For example, US Pat. No. 2,682,551 claims a process for the extraction of oil seeds, such as cottonseed, soybean or linseed, with liquid propane.

Da verdichtetes Propan nahe den kritischen Zustandsdaten (Pc = 42 bar; Tc = 96 °C) eine gewisse Selektivität gegenüber manchen lipophilen Verbindungen zeigt, wurde dieses als "revers" bekannte Löseverhalten von der Lebensmittelindustrie genutzt, um Speiseöle aufzuarbeiten. So ist in der US-Patentschrift Nr. 2 660 590 eine Methode zur Fraktionierung von Fetten und Ölen beschrieben, mit deren Hilfe Phospholipide und Farbstoffe aus dem Rohöl entfernt werden.Since compressed propane shows a certain selectivity towards some lipophilic compounds near the critical state data (P c = 42 bar; T c = 96 ° C), this dissolving behavior, known as "revers", was used by the food industry to process edible oils. For example, US Pat. No. 2,660,590 describes a method for fractionating fats and oils by means of which phospholipids and dyes are removed from the crude oil.

Für Wasser ist verdichtetes Propan aufgrund seiner hydrophoben Eigenschaften ein nur sehr schlechtes Lösemittel, weshalb Hydrolysereaktionen und Veresterungen nicht ohne weiteres in Propan durchgeführt werden können. Da demzufolge Wasser über Propan als Lösemittel nur schlecht zu- bzw. abgeführt werden kann, ist aber auf der anderen Seite davon auszugehen, daß Umesterungen ohne direkte Beteiligung von Wasser gut zu kontrollieren sind.Due to its hydrophobic properties, compressed propane is only a very poor solvent for water, which is why hydrolysis reactions and esterifications cannot easily be carried out in propane. Since water can consequently only be poorly supplied or discharged using propane as the solvent, on the other hand it can be assumed that transesterifications can be controlled well without direct involvement of water.

Dieser Umstand wird bereits in einem Verfahren genutzt, bei dem mit Hilfe von verdichtetem Propan Speiseöle mit einem Gehalt an niedrig gesättigten Fettsäuren durch eine enzymatische Umesterung hergestellt werden (WO 91/08 676). Das flüssige Propan wird gemäß dem beschriebenen Herstellungsprozeß in einen Hochdruck-Wirbelschichtreaktor geleitet, der ein Trägermaterial mit immobilisierten Enzymen enthält. Die Umesterungsreaktion erfolgt im Gegenstromprinzip und einem Konzentrationsgradienten folgend, wobei in einer bevorzugten Verfahrensvariante die eigentliche Umesterung in einem separaten Druckbehälter erfolgt. Das umgeesterte Triglycerid wird an der Behälterbasis abgezogen und durch Strippen von Propan befreit. Die ausgetauschten Fettsäurekomponenten werden im Kopfbereich des Behälters gesammelt und zur Propanabtrennung einem Verdampfer zugeleitet.This fact is already used in a process in which with the help of compressed propane, edible oils containing low saturated fatty acids are produced by an enzymatic transesterification (WO 91/08 676). According to the manufacturing process described, the liquid propane is passed into a high-pressure fluidized bed reactor which contains a carrier material with immobilized enzymes. The transesterification reaction follows the countercurrent principle and follows a concentration gradient, with the actual transesterification taking place in a separate pressure vessel in a preferred process variant. The transesterified triglyceride is drawn off at the base of the container and stripped of propane. The exchanged Fatty acid components are collected in the top area of the container and sent to an evaporator for propane separation.

Als gravierende Nachteile dieses enzymatischen Verfahrens zur Herstellung eines Speiseöls mit umgeesterten niedrig gesättigten Fettsäureestern haben sich allerdings sowohl der nur sehr enge Temperaturbereich von 70 °C bis 90 °C erwiesen, in dem die Umesterungsreaktion durchgeführt werden kann, als auch die geringe Propandichte von 0,25 bis 0,4 g/cm3, die streng einzuhalten ist, um die Wirkung des Gegenstromprinzips nicht zu beeinträchtigen.The serious disadvantages of this enzymatic process for the production of an edible oil with transesterified, low saturated fatty acid esters have proven to be the very narrow temperature range from 70 ° C to 90 ° C, in which the transesterification reaction can be carried out, and the low propane density of 0. 25 to 0.4 g / cm 3 , which must be strictly observed so as not to impair the effect of the countercurrent principle.

Ein weiterer wirtschaftlicher Nachteil ist in der räumlichen Trennung von Wirbelschichtbereich und dem eigentlichen Enzymreaktor zu sehen, da sie aufwendige verfahrenstechnische In-Prozess-Maßnahmen (Meß- und Regeltechnik) sowie konstruktionstechnische Vorkehrungen vorraussetzt.Another economic disadvantage is the spatial separation of the fluidized bed area and the actual enzyme reactor, since it requires complex process engineering in-process measures (measurement and control technology) as well as constructional precautions.

Hinzu kommt außerdem, daß die genannte Umesterung gemäß Verfahrensbeschreibung bei tieferen Temperaturen in Propan nicht durchzuführen ist, weshalb für diesen Fall als Lösemittel Ethan empfohlen wird.In addition, according to the process description, the transesterification mentioned cannot be carried out at lower temperatures in propane, which is why ethane is recommended as the solvent for this case.

Es hat sich daher die Aufgabe gestellt, ein Verfahren bereitzustellen, mit dem in einem kompakten Festbettreaktor enzymatische Umesterungsreaktionen in flüssigem Propan auch bei Temperaturen unter 70 °C und im Gleichstrom möglich werden.It is therefore an object of the present invention to provide a process which enables enzymatic transesterification reactions in liquid propane in a compact fixed bed reactor even at temperatures below 70 ° C. and in cocurrent.

Gelöst wurde diese Aufgabenstellung durch ein Verfahren zur enzymatischen Umesterung in flüssigem Propan mit Hilfe einer Vorrichtung umfassend einen Enzymreaktor, eine Fraktionierkolonne und einen Extraktabscheider, wobei die Umesterung im Enzymreaktor bei Temperaturen ≤ 60 °C und einem Druck zwischen 10 und 200 bar erfolgt, und die Propandichte ≥ 0,4 g/cm3 und vorzugsweise zwischen 0,4 und 0,55 g/cm3 beträgt. Vorzugsweise folgt die Umesterung dem Gleichstromprinzip.This task was solved by a process for the enzymatic transesterification in liquid propane with the aid of a device comprising an enzyme reactor, a fractionation column and an extract separator, the transesterification in the enzyme reactor taking place at temperatures ≤ 60 ° C and a pressure between 10 and 200 bar, and the Propane density ≥ 0.4 g / cm 3 and preferably between 0.4 and 0.55 g / cm 3 . The transesterification preferably follows the direct current principle.

Bei der Verwirklichung der Erfindung hat sich überraschend gezeigt, daß die enzymatische Umesterung bei Drücken unter 200 bar und Reaktionstemperaturen ≤ 60 °C zum einen deutlich schneller abläuft als in organischen Lösemitteln, wie z.B. Hexan, aber auch deutlich schneller als unter lösemittelfreien Bedingungen. Zum anderen haben sich die Enzymaktivitäten unter den erfindungsgemäßen Bedingungen im Festbettreaktor als äußerst stabil und daher auch gut kontrollierbar erwiesen, was keinesfalls zu erwarten war. Hinzu kommen überraschend gute Raum/Zeit-Ausbeuten, die aufgrund der vorliegenden Erfahrungen mit geringeren Propandichten in diesem Ausmaß ebenfalls nicht vorhersehbar waren.In the implementation of the invention, it has surprisingly been found that the enzymatic transesterification at pressures below 200 bar and reaction temperatures ≤ 60 ° C on the one hand runs significantly faster than in organic solvents such as hexane, but also significantly faster than under solvent-free conditions. On the other hand, the enzyme activities under the conditions according to the invention in the fixed bed reactor have proven to be extremely stable and therefore also easy to control, which was by no means to be expected. In addition, there are surprisingly good space / time yields which, based on the experience available with lower propane densities, were also not predictable to this extent.

Das Verfahren wird vorzugsweise in einem Enzymreaktor durchgeführt, der in kompakter Bauweise als Festbettreaktor ausgelegt ist und der auf inertem Trägermaterial immobilisierte Enzyme enthält. Die geeigneten Enzyme, vorzugsweise Lipasen oder Esterasen, werden hierfür auf Materialien mit möglichst großen inneren und/oder äußeren Oberflächen fixiert, wofür bevorzugt organische Polymere, wie Polypropylen bspw. in Form von Accurel, anorganische Adsorbentien, wie Celite, oder Ionenaustauscherharze Verwendung finden.The process is preferably carried out in an enzyme reactor which is designed in a compact design as a fixed bed reactor and which contains enzymes immobilized on an inert carrier material. The suitable enzymes, preferably lipases or esterases, are fixed for this purpose on materials with the largest possible inner and / or outer surfaces, for which purpose preferably organic polymers such as polypropylene, for example in the form of Accurel, inorganic adsorbents such as Celite, or ion exchange resins are used.

Entsprechend dem Verfahren der vorliegenden Erfindung wird das Propan mittels einer Hochdruckpumpe (1) auf den erfindungswesentlichen Systemdruck gebracht, der zwischen 10 und 200 bar und in einer bevorzugten Verfahrensvariante zwischen 20 und 100 bar, insbesondere zwischen 30 und 50 bar liegt, wobei in jedem Fall der Druck stets so hoch sein muß, daß der Aggregatzustand des Propan sowohl im Enzymreaktor (2) als auch in der Fraktionierkolonne (6) bei den Temperaturen gemäß Erfindung nicht gasförmig sondern flüssig ist.According to the method of the present invention, the propane is brought to the system pressure essential to the invention by means of a high-pressure pump (1), which is between 10 and 200 bar and in a preferred process variant between 20 and 100 bar, in particular between 30 and 50 bar, in each case the pressure must always be so high that the physical state of the propane in the enzyme reactor (2) and in the fractionation column (6) is not gaseous but liquid at the temperatures according to the invention.

Für die Umesterung entsprechend der vorliegenden Erfindung kommen prinzipiell drei verschiedene Reaktionspartner in Frage: ein- oder mehrwertige Alkohole, Säuren (insbesondere Carbonsäuren) aber auch Ester. Aufgrund der physikalischen und physikalisch-chemischen Eigenschaften, insbesondere im Hinblick auf die erfindungsgemäße Fraktionierung der Reaktionsprodukte, haben sich für das vorliegende Verfahren kurzkettige aliphatische Alkohole mit 1-6 C-Atomen, wie z.B. Ethanol als besonders geeignet erwiesen.In principle, three different reactants can be used for the transesterification according to the present invention: monohydric or polyhydric alcohols, acids (especially carboxylic acids) but also esters. Due to the physical and physico-chemical properties, in particular with regard to the fractionation of the reaction products according to the invention, have for the The present process has proven to be particularly suitable for short-chain aliphatic alcohols with 1-6 C atoms, such as ethanol.

Auf Seite der Edukte werden gemäß Erfindung lipophile Verbindungen eingesetzt, die Esterfunktionen besitzen, bevorzugt Triglyceride, die mit den entsprechenden Reaktionspartnern, wie ein- oder mehrwertige Alkohole oder Carbonsäuren, im geeigneten stöchiometrischen Verhältnis vorgemischt werden. Das vorgelegte Reaktionsgemisch wird üblicherweise aus der Substratvorlage (3) mittels einer Hochdruckförderschnecke (bei festen Substratgemischen) oder einer Hochdruckpumpe (bei pumpfähigen Substratgemischen) (4) in den Enzymreaktor (2) gefördert, in dem die eigentliche Umsetzung erfolgt. Das eingespeiste Substratgemisch durchläuft im verdichteten Propan gelöst den Enzymreaktor (2), der auf Temperaturen ≤ 60 °C thermostatisiert ist. Der erfindungsgemäße Temperaturbereich, der vorzugsweise ≤ 50 °C und besonders bevorzugt 10-50 °C ist, d.h. auch die Raumtemperatur miteinschließt, wurde gewählt, um eine thermische Inaktivierung der Enzyme zu vermeiden und die optimale Löslichkeit der beteiligten Reaktionspartner sowie der Produkte sicherzustellen.On the educt side, lipophilic compounds are used according to the invention which have ester functions, preferably triglycerides, which are premixed in a suitable stoichiometric ratio with the corresponding reactants, such as mono- or polyhydric alcohols or carboxylic acids. The reaction mixture presented is usually conveyed from the substrate supply (3) by means of a high-pressure screw conveyor (in the case of solid substrate mixtures) or a high-pressure pump (in the case of pumpable substrate mixtures) (4) into the enzyme reactor (2), in which the actual reaction takes place. The substrate mixture fed in dissolved in the compressed propane passes through the enzyme reactor (2), which is thermostatted to temperatures of ≤ 60 ° C. The temperature range according to the invention, which is preferably ≤ 50 ° C and particularly preferably 10-50 ° C, i.e. Room temperature was also included in order to avoid thermal inactivation of the enzymes and to ensure the optimal solubility of the reactants involved and the products.

Die eigentliche Umsetzung der Reaktanten findet im Enzymreaktor (2) statt, wobei es sich als empfehlenswert erwiesen hat, die zugeführte Substratmenge über eine analytische Kontrolle der umgesetzten Mengen am Ausgang des Enzymreaktors (2) mit Hilfe eines Analysators (5) zu regeln.The actual conversion of the reactants takes place in the enzyme reactor (2), it having proven to be advisable to regulate the amount of substrate supplied via an analytical control of the amounts converted at the outlet of the enzyme reactor (2) with the aid of an analyzer (5).

Nach der enzymatischen Umesterung im Reaktor wird das Produktgemisch in die Fraktionierkolonne geleitet. Um die Fraktionierung dort erfolgreich abschließen zu können, ist während der Umesterung bzw. bereits bei der Zusammenstellung der Reaktionspartner vorzugsweise darauf zu achten, daß sich die entstehenden Produkte im Molekulargewicht und/oder in der Molekülpolarität möglichst deutlich unterscheiden. Hinzu kommt als wesentliche Vorbedingung für die Wirtschaftlichkeit des Verfahrens gemäß Erfindung, daß die Reaktionsprodukte, wie Mono- und/oder Diglyceride oder auch intermolekulare Carbonsäureester von den Fettsäurestern bzw. den intramolekularen Carbonsäureestern im Propan fraktioniert werden können.After the enzymatic transesterification in the reactor, the product mixture is passed into the fractionation column. In order to be able to successfully complete the fractionation there, it should preferably be ensured during the transesterification or already when the reactants are being put together that the resulting products differ as clearly as possible in molecular weight and / or molecular polarity. In addition, the essential prerequisite for the economy of the process according to the invention is that the reaction products, such as mono- and / or diglycerides or intermolecular carboxylic acid esters of the Fatty acid esters or the intramolecular carboxylic acid esters can be fractionated in the propane.

In der Fraktionierkolonne (6) wird das beladene Propan auf eine Temperatur erwärmt, bei der sich die Löslichkeit der Produktkomponenten unterscheidet. Dies bedeutet für das erfindungsgemäße Verfahren, daß die Temperatur des Propans 120 °C nicht überschreitet und vorzugsweise zwischen 50 °C und 100 °C liegt. Als Konsequenz erfolgt gemäß Erfindung in der Fraktionierkolonne (6) eine Auftrennung in Kopf- und Sumpfprodukt, wobei das Sumpfprodukt nicht mehr oder nur wenig in Propan löslich ist, wogegen das Kopfprodukt gemeinsam mit dem Propan ausgetragen wird. Zur optimalen Produktauftrennung hat es sich als durchaus vorteilhaft erwiesen, in der Fraktionierkolonne einen zur Kolonnenbasis hin abnehmenden Temperaturgradienten aufzubauen.In the fractionation column (6), the loaded propane is heated to a temperature at which the solubility of the product components differs. For the process according to the invention, this means that the temperature of the propane does not exceed 120 ° C. and is preferably between 50 ° C. and 100 ° C. As a consequence, according to the invention, the fractionation column (6) separates the top and bottom products, the bottom product being insoluble or only slightly soluble in propane, whereas the top product is discharged together with the propane. For optimal product separation, it has proven to be quite advantageous to build up a temperature gradient decreasing towards the column base in the fractionation column.

Gegebenenfalls kann es sich beim erfindungsgemäßen Verfahren als nützlich erweisen, zwei oder mehr Fraktionierkolonnen hintereinander zu schalten, die bei unterschiedlichen Temperaturen bzw. Temperaturgradienten betrieben werden können.In the process according to the invention, it may prove useful to connect two or more fractionation columns in series, which can be operated at different temperatures or temperature gradients.

Daß in der Fraktionierkolonne (6) somit eine deutlich höhere Temperatur als im Enzymreaktor (2) eingestellt wird, ist im sogenannten "inversen Löseverhalten" des Propans begründet: Die Eigenschaften von verdichtetem Propan im unterkritischen Zustand (P < 42 bar; T < 96 °C) entsprechen denen eines unpolaren organischen Lösemittels, und sind bei den gegebenen Zustandsparametern des Verfahrens gemäß Erfindung geeignet, ein breites Spektrum lipophiler Stoffe in Lösung zu bringen; hierzu zählen Tri-, Di- und Monoglyceride, natürliche und derivatisierte Phospholipide sowie inter- und intramolekulare Fettsäureester. Andererseits können aber die meisten Vertreter dieser Klassen in nahe kritischem (nahe unter- bis nahe überkritischem) Propan bei den gegebenen Bedingungen voneinander getrennt werden. Die vorliegende Erfindung nutzt dieses inverse Löseverhalten von Propan aus, um das Verfahren in einer bevorzugten Variante kontinuierlich im Kreisprozeß zu fahren.The fact that a significantly higher temperature is set in the fractionation column (6) than in the enzyme reactor (2) is due to the so-called "inverse dissolution behavior" of propane: the properties of compressed propane in the subcritical state (P <42 bar; T <96 ° C) correspond to those of a non-polar organic solvent and, given the state parameters of the method according to the invention, are suitable for dissolving a broad spectrum of lipophilic substances; these include tri-, di- and monoglycerides, natural and derivatized phospholipids as well as inter- and intramolecular fatty acid esters. On the other hand, most representatives of these classes can be separated from each other in near critical (near subcritical to near supercritical) under the given conditions. The present invention takes advantage of this inverse dissolution behavior of propane in order to run the process in a preferred variant continuously in a cycle.

Zur Aufreinigung des Kopfproduktes wird dieses im Anschluß an die Fraktionierung einem Extraktabscheider (7) zugeführt, in dem das Propan z.B. durch weitere Temperaturerhöhung und/oder Druckabsenkung von den verbliebenen Verbindungen befreit wird.To purify the overhead product, this is fed to an extract separator (7) after the fractionation, in which the propane e.g. is freed from the remaining compounds by further increasing the temperature and / or reducing the pressure.

Die bei der Umesterung entstehenden Produkte können auf diese Weise direkt dem Sumpf der Fraktionierkolonne und/oder dem als Produktseparator arbeitenden Extraktabscheider (7) entnommen werden.In this way, the products formed during the transesterification can be taken directly from the bottom of the fractionation column and / or from the extract separator (7) working as a product separator.

Das aufgereinigte Propan wird in der weiteren bevorzugten Kreislauffolge an einem Wärmetauscher (8) gekühlt, ggf. kondensiert und in der Gasvorlage (9) gesammelt, bevor es erneut in den Kreislauf eingeschleust wird.In the further preferred cycle sequence, the purified propane is cooled on a heat exchanger (8), condensed if necessary and collected in the gas receiver (9) before it is reintroduced into the cycle.

Als wirtschaftlich besonders interessant hat sich das erfindungsgemäße Verfahren bei Umesterungsreaktionen erwiesen, bei denen die Substrat- und Produktspezifitäten/-selektivitäten der Enzyme im Vordergrund stehen. So wird das Verfahren gemäß Erfindung vorzugsweise für Umesterungsreaktionen herangezogen, die stereochemisch gerichtet sind und der Racematspaltung optisch aktiver Verbindungen dienen.The process according to the invention has proven to be of particular economic interest in transesterification reactions in which the focus is on the substrate and product specificities / selectivities of the enzymes. Thus, the method according to the invention is preferably used for transesterification reactions which are stereochemically directed and are used to resolve racemates of optically active compounds.

Die breite Anwendbarkeit des erfindungsgemäßen Verfahrens soll durch die nachfolgenden Beispiele verdeutlicht werden:The following examples illustrate the broad applicability of the method according to the invention:

Beispiele:Examples: Vergleichsbeispiel 1:Comparative Example 1: (Umesterung ohne eigentliches Lösemittel; Vergleich zum Versuchsbeispiel 1)(Transesterification without actual solvent; comparison to test example 1)

Eine Mischung aus 269 g Sojaöl und 31 g 95 %igem Ethanol (Substratmischung A) wurden mit 15 g Lipase aus Rhizopus oryzae (150.000 U/g) bei 45 °C 1 Stunde gerührt.A mixture of 269 g of soybean oil and 31 g of 95% ethanol (substrate mixture A) was stirred with 15 g of Rhizopus oryzae lipase (150,000 U / g) at 45 ° C. for 1 hour.

Die Analyse der Umsatzrate nach 1 h Reaktionszeit ergab, daß 20% der Triglyceride in Mono- und Diglyceride umgesetzt worden waren.Analysis of the conversion rate after a reaction time of 1 h showed that 20% of the triglycerides had been converted into mono- and diglycerides.

Vergleichsbeispiel 2Comparative Example 2 (Umesterung mit Hexan als Lösemittel; Vergleich zum Versuchsbeispiel 1)(Transesterification with hexane as solvent; comparison to experimental example 1)

300 g der Substratmischung A wurden in 3,56 kg Hexan (ρ = 0,66, V = 5,4 l) gelöst und mit 75 g eines Enzymimmobilisates von Lipase aus Rhizopus oryzae (150.000 U/g) auf Accurel EP 100 (15 g Lipase auf 60 g Accurel 100) unter Rückflußkühlung bei 45 °C 1 Stunde gerührt.300 g of substrate mixture A were dissolved in 3.56 kg of hexane (ρ = 0.66, V = 5.4 l) and mixed with 75 g of an enzyme immobilizate of lipase from Rhizopus oryzae (150,000 U / g) on Accurel EP 100 (15 g lipase to 60 g Accurel 100) stirred under reflux at 45 ° C for 1 hour.

Die Analyse der Umsatzrate nach 1 h Reaktionszeit ergab, daß 35% der Triglyceride in Mono- und Diglyceride umgesetzt worden waren.Analysis of the conversion rate after a reaction time of 1 h showed that 35% of the triglycerides had been converted into mono- and diglycerides.

Versuchsbeispiel 1Experimental example 1

Die Versuchsbeispiele 1 bis 6 wurden in einer Anlage durchgeführt, deren Aufbau dem in Zeichnung 1 dargestellten Verfahrensfließbild folgt.The experimental examples 1 to 6 were carried out in a plant, the structure of which follows the process flow diagram shown in drawing 1.

In den Enzymreaktor (2) wurden 75 g des Immobilisates aus dem Vergleichsbeispiel 2 gefüllt. Der Systemdruck des Propans wurde im Enzymreaktor (2) und in der Fraktionierkolonne (6) mittels Hochdruckpumpe (1) auf 42 bar Druck gebracht. Der Enzymreaktor (2) war auf 45 °C, die Fraktionierkolonne (6) auf einen Gradienten von 93 °C im Kopfbereich und 88 °C im Sumpfbereich temperiert.75 g of the immobilizate from comparative example 2 were introduced into the enzyme reactor (2). The system pressure of the propane was brought to 42 bar pressure in the enzyme reactor (2) and in the fractionation column (6) by means of a high pressure pump (1). The enzyme reactor (2) was heated to 45 ° C., the fractionation column (6) to a gradient of 93 ° C. in the top area and 88 ° C. in the bottom area.

Mittels der Hochdruckpumpe (1) wurden pro Stunde 2,7 kg Propan (ρ = 0,5; V = 5,4 l) in der Anlage umgewälzt, wobei mittels Hochdruckpumpe (4) kontinuierlich 300 g des Substratgemisches A eingespeist wurden. Nach Durchlauf des Enzymreaktors (2) wurde am Ausgang des Reaktors im by-pass eine Produktanalyse (5) durchgeführt. Die Umsetzung war unter diesen Bedingungen vollständig; Ethanol war nicht mehr nachweisbar. Das mit Produkt beladene Propan wurde anschließend in die Fraktionierkolonne (6) geführt, wo sich unter den Zustandsbedingungen Mono- und Diglyceride im Kolonnensumpf anreicherten (Reinheit 95 %); die Fettsäureester konnten als Kopfprodukte, im Propan gelöst, in den Extraktabscheider (7) ausgetragen werden, wo sie vom Propan abgetrennt wurden. Das Propan wurde im Extraktabscheider (7) durch Druckabsenkung auf 6 bar bei 60 °C verdampft. Mono- und Diglyceride konnten aus dem Kolonnensumpf und die Fettsäureester aus dem Extraktabscheider (7) abgezogen werden. Die Enzymreaktion wurde 6 Stunden ohne erkennbaren Verlust an Enzymaktivität oder Veränderungen im Produktspektrum betrieben.Using the high-pressure pump (1), 2.7 kg of propane (ρ = 0.5; V = 5.4 l) were circulated in the system per hour, with 300 g of the substrate mixture A being fed continuously by means of the high-pressure pump (4). After passing through the enzyme reactor (2), a product analysis (5) was carried out at the outlet of the reactor in the by-pass. The implementation was complete under these conditions; Ethanol was no longer detectable. The propane loaded with product was then passed into the fractionation column (6), where mono- and diglycerides accumulated in the column bottom under the conditions (purity 95%); the fatty acid esters could be used as overhead products, dissolved in propane, in the Extract separators (7) are discharged where they have been separated from the propane. The propane was evaporated in the extract separator (7) by lowering the pressure to 6 bar at 60 ° C. Mono- and diglycerides could be removed from the bottom of the column and the fatty acid esters from the extract separator (7). The enzyme reaction was run for 6 hours with no apparent loss of enzyme activity or changes in the product range.

Versuchsbeispiel 2Experimental example 2

In den Enzymreaktor (2) wurde ein Immobilisat von 15 g Lipase aus Penicilium roquefortii (30.000 U/g) auf 60 g Polypropylen (Accurel 100) eingefüllt. Der Druck wurde mittels Hochdruckpumpe (1) im Enzymreaktor (2) und in der Fraktionierkolonne (6) auf 45 bar gehalten und 2 kg Propan in der Stunde umgewälzt. Der Enzymreaktor (2) war auf 45 °C, die Fraktionierkolonne (6) auf 93 °C temperiert. Über die Hochdruckförderschnecke (4) wurden pro Stunde 200 g eines Gemisches aus 184 g Butterfett und 16 g Ethanol (95%-ig) aus der Substratvorlage (3) in den Enzymreaktor (2) eingespeist. Die Umsetzung der Substrate erfolgte unter den beschriebenen Bedingungen vollständig. Durch die Fraktionierung in der Kolonne (6) konnte dem Sumpf ein Gemisch aus Mono- und Diglyceriden entnommen werden. Aus dem Extraktabscheider (7) war eine Esterfraktion zu gewinnen, die eine angenehme, "apfelartige" Aromanote besaß. Im Extraktabscheider (7) wurde das Propan durch Druckabsenkung auf 6 bar bei 45 °C verdampft.An immobilizate of 15 g lipase from Penicilium roquefortii (30,000 U / g) on 60 g polypropylene (Accurel 100) was introduced into the enzyme reactor (2). The pressure was kept at 45 bar by means of a high-pressure pump (1) in the enzyme reactor (2) and in the fractionation column (6) and 2 kg of propane were circulated per hour. The enzyme reactor (2) was at 45 ° C, the fractionation column (6) at 93 ° C. Via the high-pressure screw conveyor (4), 200 g of a mixture of 184 g of butterfat and 16 g of ethanol (95% strength) from the substrate stock (3) were fed into the enzyme reactor (2) per hour. The substrates were completely converted under the conditions described. A fraction of mono- and diglycerides was removed from the bottom by fractionation in column (6). An ester fraction could be obtained from the extract separator (7), which had a pleasant, "apple-like" aroma note. In the extract separator (7) the propane was evaporated by lowering the pressure to 6 bar at 45 ° C.

Versuchsbeispiel 3Experimental example 3

Im Enzymreaktor (2) wurde ein Immobilisat bestehend aus 20 g Lipase von Candida cylindraceae (100.000 U/g) auf 60 g Celite vorgelegt. Der Druck wurde mittels Hochdruckpumpe (1) im Enzymreaktor (2) und in der Fraktionierkolonne (6) bei 40 bar gehalten und 2 kg Propan pro Stunde umgewälzt. Der Enzymreaktor (2) war auf 45 °C, die Fraktionierkolonne (6) auf 85 °C temperiert. Über die Hochdruckpumpe (4) wurden pro Stunde 150 g eines Gemisches aus 136 g eines Fischöles (Jodzahl 256) und 14 g Ethanol (95 %-ig) aus der Substratvorlage (3) in den Enzymreaktor (2) eingespeist. Die Umsetzung der Substrate war nach Durchlaufen des Enzymreaktors (2) vollständig erfolgt. Im Extraktabscheider (7) wurde das Propan durch Druckabsenkung auf 6 bar bei 55 °C verdampft. Nach der Fraktionierung in der Kolonne (6) wurde dem Sumpf ein Gemisch aus Mono- und Diglyceriden mit einer Jodzahl von 301 entnommen. Aus dem Extraktabscheider (7) konnte eine Esterfraktion gewonnen werden, die eine Jodzahl von 181 besaß.An immobilizate consisting of 20 g of lipase from Candida cylindraceae (100,000 U / g) on 60 g of Celite was placed in the enzyme reactor (2). The pressure was kept at 40 bar by means of a high-pressure pump (1) in the enzyme reactor (2) and in the fractionation column (6) and 2 kg of propane were circulated per hour. The enzyme reactor (2) was at 45 ° C, the fractionation column (6) at 85 ° C. 150 g of a mixture of 136 g of a fish oil (iodine number 256) and 14 g of ethanol (95%) from the substrate stock (3) were fed into the enzyme reactor per hour via the high-pressure pump (4) (2) fed. The substrates had been completely converted after passing through the enzyme reactor (2). The propane was evaporated in the extract separator (7) by lowering the pressure to 6 bar at 55 ° C. After fractionation in column (6), a mixture of mono- and diglycerides with an iodine number of 301 was removed from the bottom. An ester fraction which had an iodine number of 181 could be obtained from the extract separator (7).

Versuchsbeispiel 4Experimental example 4

In den Enzymreaktor (2) wurden 100 g eines Immobilisates der Lipase von Mucor miehei auf einem Ionenaustauscherharz (Novo, Lipozym TM) eingebracht. Der Druck wurde mittels Hochdruckpumpe (1) im Enzymreaktor (2) und in der Fraktionierkolonne (6) auf 50 bar gehalten und 2 kg Propan in der Stunde umgewälzt. Der Enzymreaktor (2) war auf 30 °C, die Fraktionierkolonne (6) auf 65 °C temperiert. Über die Hochdruckpumpe (4) wurden pro Stunde 250 g eines Gemisches aus 232 g Soja-Rohlecithin und 18 g Ethanol (95 %-ig) aus der Substratvorlage (3) in den Enzymreaktor (2) eingespeist. Die Umsetzung der Substrate war nach Durchlaufen des Enzymreaktors (2) vollständig und kein Ethanol war mehr nachweisbar. Nach der Kolonnenfraktionierung konnte aus dem Kolonnensumpf ölfreies Lecithin mit einem hohen Gehalt an lyso-Phosphatidylcholin entnommen werden, das sehr gute Emulgatoreigenschaften besitzt. Aus dem Extraktabscheider (7) war eine Fraktion bestehend aus Öl und Fettsäureestern zu gewinnen. Im Extraktabscheider (7) wurde das Propan durch Druckabsenkung auf 6 bar bei 60 °C verdampft.100 g of a Mucor miehei lipase immobilized on an ion exchange resin (Novo, Lipozym ™) were introduced into the enzyme reactor (2). The pressure was kept at 50 bar by means of a high-pressure pump (1) in the enzyme reactor (2) and in the fractionation column (6) and 2 kg of propane were circulated per hour. The enzyme reactor (2) was heated to 30 ° C, the fractionation column (6) to 65 ° C. 250 g of a mixture of 232 g of crude soy lecithin and 18 g of ethanol (95%) from the substrate stock (3) were fed into the enzyme reactor (2) per hour via the high-pressure pump (4). The conversion of the substrates was complete after passing through the enzyme reactor (2) and no more ethanol was detectable. After the column fractionation, oil-free lecithin with a high content of lysophosphatidylcholine, which has very good emulsifier properties, could be removed from the bottom of the column. A fraction consisting of oil and fatty acid esters could be obtained from the extract separator (7). In the extract separator (7) the propane was evaporated by lowering the pressure to 6 bar at 60 ° C.

Versuchsbeispiel 5Experimental example 5

Im Enzymreaktor (2) wurde ein Immobilisat aus 15 g Schweinepankreaslipase auf 60 g Celite vorgelegt. Der Druck wurde mittels Hochdruckpumpe (1) im Enzymreaktor (2) und in der Fraktionierkolonne (6) bei 42 bar gehalten und 2 kg Propan in der Stunde umgewälzt.An immobilizate from 15 g of porcine pancreatic lipase to 60 g of Celite was placed in the enzyme reactor (2). The pressure was kept at 42 bar by means of a high-pressure pump (1) in the enzyme reactor (2) and in the fractionation column (6) and 2 kg of propane were circulated per hour.

Der Enzymreaktor (2) war auf 40 °C, die Fraktionierkolonne (6) mit einem Temperaturgradienten von 90 °C im Kopfbereich und 85 °C im Sumpfbereich temperiert. Über die Hochdruckpumpe (4) wurden pro Stunde 100 g eines Gemisches aus 72 g γ-Decalacton und 22 g Tetradecanol (stöchiometrisches Verhältnis 1:0,3) aus der Substratvorlage (3) in den Enzymreaktor (2) eingespeist. Die Umsetzung der Substrate war nach Durchlaufen des Enzymreaktors (2) vollständig. Durch die Fraktionierung des Produktgemisches in der Kolonne (6) konnte dem Sumpf (S)-4-Hydroxydecansäuretetradecylester in einer Enantiomerenreinheit von 95 % e.e. entnommen werden; dem Extraktabscheider (7), in dem das Propan durch Druckabsenkung auf 6 bar bei 50 °C verdampft wurde, konnte das nicht umgeesterte Lacton entnommen werden.The enzyme reactor (2) was heated to 40 ° C., the fractionation column (6) with a temperature gradient of 90 ° C. in the top area and 85 ° C. in the bottom area. 100 g of a mixture of 72 g of γ-decalactone and 22 g of tetradecanol (stoichiometric ratio 1: 0.3) from the substrate template (3) were fed into the enzyme reactor (2) per hour via the high-pressure pump (4). The conversion of the substrates was complete after passing through the enzyme reactor (2). By fractionating the product mixture in column (6), the bottom (S) -4-hydroxydecanoic acid tetradecyl ester was enantiomerically pure at 95% e.e. be removed; The non-transesterified lactone could be removed from the extract separator (7), in which the propane was evaporated by reducing the pressure to 6 bar at 50 ° C.

Versuchsbeispiel 6Experimental example 6

Im Enzymreaktor (2) wurde ein Immobilisat aus 15 g Lipase von Candida rugosa (30 000 U/g) auf 60 g Polypropylen (Accurel 100) vorgelegt. Mittels Hochdruckpumpe (1) wurde im Enzymreaktor (2) und der Fraktionierkolonne (6) ein Druck von 45 bar gehalten und pro Stunde 2 kg Propan umgewälzt. Der Enzymreaktor (2) war auf 40°C, die Fraktionierkolonne (6) auf 95°C temperiert. Über die Hochdruckpumpe (4) wurden pro Stunde 50 g eines Gemisches aus 43 g R,S-Ethyl-6-methoxy-2-naphthyl-propionat und 7 g Tetradecanol aus der Substratvorlage (3) in den Enzymreaktor (2) eingespeist. Nach der Umsetzungsreaktion und der Fraktionierung konnte dem Sumpf der Fraktionierkolonne (6) (S)-Tetradecyl-6-methoxy-2-naphthyl-propionat in einer Enantiomerenreinheit von 80 % e.e. entnommen werden. Aus dem Extraktabscheider (7) wurde das nicht umgesetzte Substrat isoliert.An immobilizate composed of 15 g of Candida rugosa lipase (30,000 U / g) on 60 g of polypropylene (Accurel 100) was placed in the enzyme reactor (2). A pressure of 45 bar was maintained in the enzyme reactor (2) and the fractionation column (6) by means of a high-pressure pump (1) and 2 kg of propane were circulated per hour. The enzyme reactor (2) was at 40 ° C, the fractionation column (6) at 95 ° C. 50 g of a mixture of 43 g of R, S-ethyl-6-methoxy-2-naphthyl-propionate and 7 g of tetradecanol from the substrate template (3) were fed into the enzyme reactor (2) per hour via the high-pressure pump (4). After the reaction and the fractionation, the bottom of the fractionation column (6) (S) -tetradecyl-6-methoxy-2-naphthyl-propionate in an enantiomeric purity of 80% e.e. be removed. The unreacted substrate was isolated from the extract separator (7).

Claims (15)

  1. Process for enzymatic transesterification in liquid propane, characterized in that the transesterification is performed in an apparatus comprising an enzyme reactor, a fractionation column and an extract separator, and the transesterification takes place in the enzyme reactor at temperatures of 60°C or less and a pressure between 10 and 200 bar, the density of the propane in the enzyme reactor being 0.4 g/cm3 or greater.
  2. Process according to claim 1, characterized in that the enzyme reactor contains enzymes immobilized on inert support material.
  3. Process according to claim 2, characterized in that organic polymers, inorganic adsorbers or ion exchange resins are used as support material.
  4. Process according to any one of claims 1 to 3, characterized in that lipases or/and esterases are used as enzymes.
  5. Process according to any one of claims 1 to 4, characterized in that the temperature of the propane in the enzyme reactor is 50°C or less.
  6. Process according to any one of claims 1 to 5, characterized in that the pressure of the propane in the enzyme reactor is between 30 and 50 bar.
  7. Process according to any one of claims 1 to 6, characterized in that the temperature of the propane in the fractionation column does not exceed 120°C and is preferably between 50 and 100°C.
  8. Process according to any one of claims 1 to 7, characterized in that a separation into top product and bottom product takes place in the fractionation column
  9. Process according to claim 8, characterized in that a temperature gradient is created in the fractionation column.
  10. Process according to any one of claims 1 to 9, characterized in that lipophilic compounds with ester functions, preferably triglycerides, are used as educts.
  11. Process according to any one of claims 1 to 10, characterized in that univalent or polyvalent alcohols and carboxylic acids are used as reactants.
  12. Process according to claim 11, characterized in that short-chain aliphatic alcohols are used as alcohols.
  13. Process according to any one of claims 1 to 12, characterized in that the process is practiced continuously in the circulatory process.
  14. Process according to any one of claims 1 to 13, characterized in that a heat exchanger and a gas receiver follow the extract separator.
  15. Process according to any one of claims 1 to 14, characterized in that the transesterification reaction serves for the racemation of optically active compounds.
EP95109242A 1994-06-15 1995-06-14 Method for enzymatic transesterification Expired - Lifetime EP0687735B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4420733A DE4420733A1 (en) 1994-06-15 1994-06-15 Process for enzymatic transesterification
DE4420733 1994-06-15

Publications (2)

Publication Number Publication Date
EP0687735A1 EP0687735A1 (en) 1995-12-20
EP0687735B1 true EP0687735B1 (en) 1997-05-07

Family

ID=6520535

Family Applications (1)

Application Number Title Priority Date Filing Date
EP95109242A Expired - Lifetime EP0687735B1 (en) 1994-06-15 1995-06-14 Method for enzymatic transesterification

Country Status (5)

Country Link
EP (1) EP0687735B1 (en)
JP (1) JPH08274A (en)
DE (2) DE4420733A1 (en)
DK (1) DK0687735T3 (en)
ES (1) ES2104448T3 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL1004886C2 (en) * 1996-12-23 1998-06-24 Univ Utrecht Semiconductor devices and method for making them.
ZA985396B (en) * 1997-06-21 1999-01-25 Givaudan Roure Int Fragrance precursor compounds

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2485779A (en) 1949-10-25 Selective enzyme hydrolysis
US2660590A (en) 1947-05-16 1953-11-24 Kellogg M W Co Fractionation of fatty materials
US2682551A (en) 1948-03-09 1954-06-29 Chemical Foundation Inc Recovery of fatty oils
GB1577933A (en) 1976-02-11 1980-10-29 Unilever Ltd Fat process and composition
JPS5571797A (en) 1978-11-21 1980-05-30 Fuji Oil Co Ltd Manufacture of cacao butter substitute fat
JPS5584397A (en) 1978-12-20 1980-06-25 Ajinomoto Kk Fat and oil ester exchange using lipase
US4420560A (en) 1981-11-17 1983-12-13 Fuji Oil Company, Limited Method for modification of fats and oils
US4925790A (en) 1985-08-30 1990-05-15 The Regents Of The University Of California Method of producing products by enzyme-catalyzed reactions in supercritical fluids
AU6785490A (en) 1989-12-18 1991-06-20 Kraft General Foods, Inc. Low-saturate edible oils and transesterification methods for production thereof

Also Published As

Publication number Publication date
DE59500221D1 (en) 1997-06-12
DK0687735T3 (en) 1997-11-03
DE4420733A1 (en) 1995-12-21
ES2104448T3 (en) 1997-10-01
EP0687735A1 (en) 1995-12-20
JPH08274A (en) 1996-01-09

Similar Documents

Publication Publication Date Title
DE60032337T2 (en) LIPASE CATALYSED GREASING OF FISH OILS
EP0249282B1 (en) Fractionation of fat blends
US4004041A (en) Production of liquid edible oil from palm oil or similar oils
US9303231B2 (en) Method for continuously enriching an oil produced by microalgae with ethyl esters of DHA
WO2003010323A1 (en) Method and device for obtaining fatty acid esters from native oils and fats by means of the enzymatic separation thereof
Çiftçi et al. Conversion of olive pomace oil to cocoa butter-like fat in a packed-bed enzyme reactor
EP1582594A2 (en) Improved enzymatic process for the preparation of polyunsaturated fatty acid triglycerides
DE69929740T2 (en) Process for the hydrolysis of fats and oils
DE602004006267T2 (en) METHOD FOR THE INTERESTERIFICATION OF GLYCERIDE FAT
EP0687735B1 (en) Method for enzymatic transesterification
KR910011144A (en) Edible oil containing saturated fatty acid and preparation method thereof using transesterification reaction
EP2298727B1 (en) Method for producing esters of short-chains alcohols from triglyceride-rich oils
CN112980898B (en) Method for concentrating DHA in schizochytrium limacinum grease
EP0417823A2 (en) Transesterification
KR102520377B1 (en) Method for preparing triglyceride with high purity by using short path distillation or wet fractionation
DE10220525A1 (en) Process for the production of C4-C12 fatty acids
EP0032434B1 (en) Process for deodorizing edible oil
King Sub-and supercritical fluid processing of agrimaterials: extraction, fractionation and reaction modes
DE102005061098A1 (en) Preparation of diglyceride (diacylglycerine), useful as e.g. food additives, comprises enzymatic esterification of free fatty acid from soap stick of the refined fatty acid of vegetable oil, with glycerine in the presence of lipase
EP2179047B1 (en) Lipophilic preparations
DE69819738T2 (en) METHOD FOR ENZYMATIC SYNTHESIS OF SACCHARID ESTERS
US6825368B2 (en) Method for producing a fatty acid
DE3928383C1 (en)
JPH0783718B2 (en) Process for producing 1,3-distearo-2-olein
US9296977B2 (en) Method for producing fatty acid composition

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): BE CH DE DK ES FR GB LI NL SE

17P Request for examination filed

Effective date: 19960103

17Q First examination report despatched

Effective date: 19960226

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE CH DE DK ES FR GB LI NL SE

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: A. BRAUN, BRAUN, HERITIER, ESCHMANN AG PATENTANWAE

Ref country code: CH

Ref legal event code: EP

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19970509

REF Corresponds to:

Ref document number: 59500221

Country of ref document: DE

Date of ref document: 19970612

ET Fr: translation filed
REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2104448

Country of ref document: ES

Kind code of ref document: T3

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19980518

Year of fee payment: 4

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DK

Payment date: 19980525

Year of fee payment: 4

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19980615

Year of fee payment: 4

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 19980616

Year of fee payment: 4

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990614

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 19990615

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 19990630

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990630

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990630

BERE Be: lapsed

Owner name: SKW TROSTBERG A.G.

Effective date: 19990630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000101

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19990614

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20000101

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20010517

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20010531

Year of fee payment: 7

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20010604

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020615

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020630

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020630

EUG Se: european patent has lapsed
REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20110622

Year of fee payment: 17

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 59500221

Country of ref document: DE

Effective date: 20130101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130101