EP0687572A1 - Thermosensitive recording method - Google Patents
Thermosensitive recording method Download PDFInfo
- Publication number
- EP0687572A1 EP0687572A1 EP95201340A EP95201340A EP0687572A1 EP 0687572 A1 EP0687572 A1 EP 0687572A1 EP 95201340 A EP95201340 A EP 95201340A EP 95201340 A EP95201340 A EP 95201340A EP 0687572 A1 EP0687572 A1 EP 0687572A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- acid
- process according
- recording process
- silver salt
- silver
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 27
- 239000000463 material Substances 0.000 claims abstract description 90
- 238000003384 imaging method Methods 0.000 claims abstract description 41
- 239000003638 chemical reducing agent Substances 0.000 claims abstract description 28
- GGCZERPQGJTIQP-UHFFFAOYSA-N sodium;9,10-dioxoanthracene-2-sulfonic acid Chemical compound [Na+].C1=CC=C2C(=O)C3=CC(S(=O)(=O)O)=CC=C3C(=O)C2=C1 GGCZERPQGJTIQP-UHFFFAOYSA-N 0.000 claims abstract description 22
- 230000008569 process Effects 0.000 claims abstract description 19
- 238000001931 thermography Methods 0.000 claims abstract description 18
- 239000002253 acid Substances 0.000 claims abstract description 14
- 239000011230 binding agent Substances 0.000 claims abstract description 14
- UYEMGAFJOZZIFP-UHFFFAOYSA-N 3,5-dihydroxybenzoic acid Chemical compound OC(=O)C1=CC(O)=CC(O)=C1 UYEMGAFJOZZIFP-UHFFFAOYSA-N 0.000 claims abstract description 10
- 150000008064 anhydrides Chemical class 0.000 claims abstract description 8
- NLZUEZXRPGMBCV-UHFFFAOYSA-N Butylhydroxytoluene Chemical compound CC1=CC(C(C)(C)C)=C(O)C(C(C)(C)C)=C1 NLZUEZXRPGMBCV-UHFFFAOYSA-N 0.000 claims abstract description 5
- 239000012445 acidic reagent Substances 0.000 claims abstract description 5
- 125000000217 alkyl group Chemical group 0.000 claims description 9
- 125000003118 aryl group Chemical group 0.000 claims description 9
- 239000000203 mixture Substances 0.000 claims description 9
- WNLRTRBMVRJNCN-UHFFFAOYSA-N adipic acid Chemical compound OC(=O)CCCCC(O)=O WNLRTRBMVRJNCN-UHFFFAOYSA-N 0.000 claims description 8
- 239000003795 chemical substances by application Substances 0.000 claims description 8
- AQRYNYUOKMNDDV-UHFFFAOYSA-M silver behenate Chemical compound [Ag+].CCCCCCCCCCCCCCCCCCCCCC([O-])=O AQRYNYUOKMNDDV-UHFFFAOYSA-M 0.000 claims description 8
- LNTHITQWFMADLM-UHFFFAOYSA-N gallic acid Chemical compound OC(=O)C1=CC(O)=C(O)C(O)=C1 LNTHITQWFMADLM-UHFFFAOYSA-N 0.000 claims description 7
- 125000002887 hydroxy group Chemical group [H]O* 0.000 claims description 7
- YCIMNLLNPGFGHC-UHFFFAOYSA-N catechol Chemical compound OC1=CC=CC=C1O YCIMNLLNPGFGHC-UHFFFAOYSA-N 0.000 claims description 6
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 claims description 6
- CXMXRPHRNRROMY-UHFFFAOYSA-N sebacic acid Chemical compound OC(=O)CCCCCCCCC(O)=O CXMXRPHRNRROMY-UHFFFAOYSA-N 0.000 claims description 6
- 125000004432 carbon atom Chemical group C* 0.000 claims description 5
- XNGIFLGASWRNHJ-UHFFFAOYSA-N phthalic acid Chemical compound OC(=O)C1=CC=CC=C1C(O)=O XNGIFLGASWRNHJ-UHFFFAOYSA-N 0.000 claims description 5
- DZAUWHJDUNRCTF-UHFFFAOYSA-N 3-(3,4-dihydroxyphenyl)propanoic acid Chemical compound OC(=O)CCC1=CC=C(O)C(O)=C1 DZAUWHJDUNRCTF-UHFFFAOYSA-N 0.000 claims description 4
- 239000001361 adipic acid Substances 0.000 claims description 4
- 235000011037 adipic acid Nutrition 0.000 claims description 4
- 125000001931 aliphatic group Chemical group 0.000 claims description 4
- UHOVQNZJYSORNB-UHFFFAOYSA-N benzene Substances C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 claims description 4
- 125000000753 cycloalkyl group Chemical group 0.000 claims description 4
- 150000002148 esters Chemical class 0.000 claims description 4
- 229910052736 halogen Chemical group 0.000 claims description 4
- 150000002367 halogens Chemical group 0.000 claims description 4
- YDSWCNNOKPMOTP-UHFFFAOYSA-N mellitic acid Chemical compound OC(=O)C1=C(C(O)=O)C(C(O)=O)=C(C(O)=O)C(C(O)=O)=C1C(O)=O YDSWCNNOKPMOTP-UHFFFAOYSA-N 0.000 claims description 4
- BDJRBEYXGGNYIS-UHFFFAOYSA-N nonanedioic acid Chemical compound OC(=O)CCCCCCCC(O)=O BDJRBEYXGGNYIS-UHFFFAOYSA-N 0.000 claims description 4
- WLJVNTCWHIRURA-UHFFFAOYSA-N pimelic acid Chemical compound OC(=O)CCCCCC(O)=O WLJVNTCWHIRURA-UHFFFAOYSA-N 0.000 claims description 4
- 229920002037 poly(vinyl butyral) polymer Polymers 0.000 claims description 4
- CYIDZMCFTVVTJO-UHFFFAOYSA-N pyromellitic acid Chemical compound OC(=O)C1=CC(C(O)=O)=C(C(O)=O)C=C1C(O)=O CYIDZMCFTVVTJO-UHFFFAOYSA-N 0.000 claims description 4
- TYFQFVWCELRYAO-UHFFFAOYSA-N suberic acid Chemical compound OC(=O)CCCCCCC(O)=O TYFQFVWCELRYAO-UHFFFAOYSA-N 0.000 claims description 4
- ARCGXLSVLAOJQL-UHFFFAOYSA-N trimellitic acid Chemical compound OC(=O)C1=CC=C(C(O)=O)C(C(O)=O)=C1 ARCGXLSVLAOJQL-UHFFFAOYSA-N 0.000 claims description 4
- OFOBLEOULBTSOW-UHFFFAOYSA-N Propanedioic acid Natural products OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 claims description 3
- 150000007933 aliphatic carboxylic acids Chemical class 0.000 claims description 3
- 229940074391 gallic acid Drugs 0.000 claims description 3
- 235000004515 gallic acid Nutrition 0.000 claims description 3
- 239000001257 hydrogen Substances 0.000 claims description 3
- 229910052739 hydrogen Inorganic materials 0.000 claims description 3
- 125000004435 hydrogen atom Chemical class [H]* 0.000 claims description 3
- 239000001124 (E)-prop-1-ene-1,2,3-tricarboxylic acid Substances 0.000 claims description 2
- PUCYIVFXTPWJDD-UHFFFAOYSA-N 1,6-dihydroxycyclohexa-2,4-dienecarboxylic acid Chemical compound OC1C=CC=CC1(O)C(O)=O PUCYIVFXTPWJDD-UHFFFAOYSA-N 0.000 claims description 2
- TUSDEZXZIZRFGC-UHFFFAOYSA-N 1-O-galloyl-3,6-(R)-HHDP-beta-D-glucose Natural products OC1C(O2)COC(=O)C3=CC(O)=C(O)C(O)=C3C3=C(O)C(O)=C(O)C=C3C(=O)OC1C(O)C2OC(=O)C1=CC(O)=C(O)C(O)=C1 TUSDEZXZIZRFGC-UHFFFAOYSA-N 0.000 claims description 2
- RTBFRGCFXZNCOE-UHFFFAOYSA-N 1-methylsulfonylpiperidin-4-one Chemical compound CS(=O)(=O)N1CCC(=O)CC1 RTBFRGCFXZNCOE-UHFFFAOYSA-N 0.000 claims description 2
- JAHNSTQSQJOJLO-UHFFFAOYSA-N 2-(3-fluorophenyl)-1h-imidazole Chemical compound FC1=CC=CC(C=2NC=CN=2)=C1 JAHNSTQSQJOJLO-UHFFFAOYSA-N 0.000 claims description 2
- HCUZVMHXDRSBKX-UHFFFAOYSA-N 2-decylpropanedioic acid Chemical compound CCCCCCCCCCC(C(O)=O)C(O)=O HCUZVMHXDRSBKX-UHFFFAOYSA-N 0.000 claims description 2
- QJGNSTCICFBACB-UHFFFAOYSA-N 2-octylpropanedioic acid Chemical compound CCCCCCCCC(C(O)=O)C(O)=O QJGNSTCICFBACB-UHFFFAOYSA-N 0.000 claims description 2
- KPGXRSRHYNQIFN-UHFFFAOYSA-N 2-oxoglutaric acid Chemical compound OC(=O)CCC(=O)C(O)=O KPGXRSRHYNQIFN-UHFFFAOYSA-N 0.000 claims description 2
- WZHHYIOUKQNLQM-UHFFFAOYSA-N 3,4,5,6-tetrachlorophthalic acid Chemical compound OC(=O)C1=C(Cl)C(Cl)=C(Cl)C(Cl)=C1C(O)=O WZHHYIOUKQNLQM-UHFFFAOYSA-N 0.000 claims description 2
- YQUVCSBJEUQKSH-UHFFFAOYSA-N 3,4-dihydroxybenzoic acid Chemical class OC(=O)C1=CC=C(O)C(O)=C1 YQUVCSBJEUQKSH-UHFFFAOYSA-N 0.000 claims description 2
- OXTNCQMOKLOUAM-UHFFFAOYSA-N 3-Oxoglutaric acid Chemical compound OC(=O)CC(=O)CC(O)=O OXTNCQMOKLOUAM-UHFFFAOYSA-N 0.000 claims description 2
- KFIRODWJCYBBHY-UHFFFAOYSA-N 3-nitrophthalic acid Chemical compound OC(=O)C1=CC=CC([N+]([O-])=O)=C1C(O)=O KFIRODWJCYBBHY-UHFFFAOYSA-N 0.000 claims description 2
- ODBLHEXUDAPZAU-ZAFYKAAXSA-N D-threo-isocitric acid Chemical compound OC(=O)[C@H](O)[C@@H](C(O)=O)CC(O)=O ODBLHEXUDAPZAU-ZAFYKAAXSA-N 0.000 claims description 2
- 239000001263 FEMA 3042 Substances 0.000 claims description 2
- ODBLHEXUDAPZAU-FONMRSAGSA-N Isocitric acid Natural products OC(=O)[C@@H](O)[C@H](C(O)=O)CC(O)=O ODBLHEXUDAPZAU-FONMRSAGSA-N 0.000 claims description 2
- LRBQNJMCXXYXIU-PPKXGCFTSA-N Penta-digallate-beta-D-glucose Natural products OC1=C(O)C(O)=CC(C(=O)OC=2C(=C(O)C=C(C=2)C(=O)OC[C@@H]2[C@H]([C@H](OC(=O)C=3C=C(OC(=O)C=4C=C(O)C(O)=C(O)C=4)C(O)=C(O)C=3)[C@@H](OC(=O)C=3C=C(OC(=O)C=4C=C(O)C(O)=C(O)C=4)C(O)=C(O)C=3)[C@H](OC(=O)C=3C=C(OC(=O)C=4C=C(O)C(O)=C(O)C=4)C(O)=C(O)C=3)O2)OC(=O)C=2C=C(OC(=O)C=3C=C(O)C(O)=C(O)C=3)C(O)=C(O)C=2)O)=C1 LRBQNJMCXXYXIU-PPKXGCFTSA-N 0.000 claims description 2
- KDYFGRWQOYBRFD-UHFFFAOYSA-N Succinic acid Natural products OC(=O)CCC(O)=O KDYFGRWQOYBRFD-UHFFFAOYSA-N 0.000 claims description 2
- 229940091181 aconitic acid Drugs 0.000 claims description 2
- 125000004414 alkyl thio group Chemical group 0.000 claims description 2
- JFCQEDHGNNZCLN-UHFFFAOYSA-N anhydrous glutaric acid Natural products OC(=O)CCCC(O)=O JFCQEDHGNNZCLN-UHFFFAOYSA-N 0.000 claims description 2
- KDYFGRWQOYBRFD-NUQCWPJISA-N butanedioic acid Chemical compound O[14C](=O)CC[14C](O)=O KDYFGRWQOYBRFD-NUQCWPJISA-N 0.000 claims description 2
- GTZCVFVGUGFEME-IWQZZHSRSA-N cis-aconitic acid Chemical compound OC(=O)C\C(C(O)=O)=C\C(O)=O GTZCVFVGUGFEME-IWQZZHSRSA-N 0.000 claims description 2
- HNEGQIOMVPPMNR-IHWYPQMZSA-N citraconic acid Chemical compound OC(=O)C(/C)=C\C(O)=O HNEGQIOMVPPMNR-IHWYPQMZSA-N 0.000 claims description 2
- 229940018557 citraconic acid Drugs 0.000 claims description 2
- 125000004663 dialkyl amino group Chemical group 0.000 claims description 2
- VZCYOOQTPOCHFL-UPHRSURJSA-N maleic acid Chemical compound OC(=O)\C=C/C(O)=O VZCYOOQTPOCHFL-UPHRSURJSA-N 0.000 claims description 2
- 239000011976 maleic acid Substances 0.000 claims description 2
- LVHBHZANLOWSRM-UHFFFAOYSA-N methylenebutanedioic acid Natural products OC(=O)CC(=C)C(O)=O LVHBHZANLOWSRM-UHFFFAOYSA-N 0.000 claims description 2
- 125000000449 nitro group Chemical group [O-][N+](*)=O 0.000 claims description 2
- LTYHQUJGIQUHMS-UHFFFAOYSA-M silver;hexadecanoate Chemical group [Ag+].CCCCCCCCCCCCCCCC([O-])=O LTYHQUJGIQUHMS-UHFFFAOYSA-M 0.000 claims description 2
- ORYURPRSXLUCSS-UHFFFAOYSA-M silver;octadecanoate Chemical compound [Ag+].CCCCCCCCCCCCCCCCCC([O-])=O ORYURPRSXLUCSS-UHFFFAOYSA-M 0.000 claims description 2
- LRBQNJMCXXYXIU-NRMVVENXSA-N tannic acid Chemical compound OC1=C(O)C(O)=CC(C(=O)OC=2C(=C(O)C=C(C=2)C(=O)OC[C@@H]2[C@H]([C@H](OC(=O)C=3C=C(OC(=O)C=4C=C(O)C(O)=C(O)C=4)C(O)=C(O)C=3)[C@@H](OC(=O)C=3C=C(OC(=O)C=4C=C(O)C(O)=C(O)C=4)C(O)=C(O)C=3)[C@@H](OC(=O)C=3C=C(OC(=O)C=4C=C(O)C(O)=C(O)C=4)C(O)=C(O)C=3)O2)OC(=O)C=2C=C(OC(=O)C=3C=C(O)C(O)=C(O)C=3)C(O)=C(O)C=2)O)=C1 LRBQNJMCXXYXIU-NRMVVENXSA-N 0.000 claims description 2
- 235000015523 tannic acid Nutrition 0.000 claims description 2
- 229940033123 tannic acid Drugs 0.000 claims description 2
- 229920002258 tannic acid Polymers 0.000 claims description 2
- ODBLHEXUDAPZAU-UHFFFAOYSA-N threo-D-isocitric acid Natural products OC(=O)C(O)C(C(O)=O)CC(O)=O ODBLHEXUDAPZAU-UHFFFAOYSA-N 0.000 claims description 2
- GTZCVFVGUGFEME-UHFFFAOYSA-N trans-aconitic acid Natural products OC(=O)CC(C(O)=O)=CC(O)=O GTZCVFVGUGFEME-UHFFFAOYSA-N 0.000 claims description 2
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 claims description 2
- 125000003545 alkoxy group Chemical group 0.000 claims 1
- 150000002391 heterocyclic compounds Chemical class 0.000 claims 1
- IJAPPYDYQCXOEF-UHFFFAOYSA-N phthalazin-1(2H)-one Chemical compound C1=CC=C2C(=O)NN=CC2=C1 IJAPPYDYQCXOEF-UHFFFAOYSA-N 0.000 claims 1
- XKJCHHZQLQNZHY-UHFFFAOYSA-N phthalimide Chemical compound C1=CC=C2C(=O)NC(=O)C2=C1 XKJCHHZQLQNZHY-UHFFFAOYSA-N 0.000 claims 1
- 239000010410 layer Substances 0.000 description 54
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 27
- -1 argon ion Chemical class 0.000 description 24
- 230000003287 optical effect Effects 0.000 description 18
- 238000010438 heat treatment Methods 0.000 description 15
- 239000002904 solvent Substances 0.000 description 15
- 230000000052 comparative effect Effects 0.000 description 13
- 238000007639 printing Methods 0.000 description 13
- 239000000975 dye Substances 0.000 description 10
- 239000004615 ingredient Substances 0.000 description 10
- 229920000139 polyethylene terephthalate Polymers 0.000 description 10
- 239000005020 polyethylene terephthalate Substances 0.000 description 10
- 239000008199 coating composition Substances 0.000 description 9
- 238000001035 drying Methods 0.000 description 9
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 8
- 238000011156 evaluation Methods 0.000 description 8
- 150000003378 silver Chemical class 0.000 description 8
- 239000000126 substance Substances 0.000 description 8
- PQNFLJBBNBOBRQ-UHFFFAOYSA-N indane Chemical compound C1=CC=C2CCCC2=C1 PQNFLJBBNBOBRQ-UHFFFAOYSA-N 0.000 description 7
- 229910052709 silver Inorganic materials 0.000 description 7
- 239000004332 silver Substances 0.000 description 7
- 239000007787 solid Substances 0.000 description 7
- 239000011248 coating agent Substances 0.000 description 6
- 238000000576 coating method Methods 0.000 description 6
- 150000001875 compounds Chemical class 0.000 description 6
- 238000012360 testing method Methods 0.000 description 5
- 238000006243 chemical reaction Methods 0.000 description 4
- 229920001577 copolymer Polymers 0.000 description 4
- 125000000113 cyclohexyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 description 4
- 235000014113 dietary fatty acids Nutrition 0.000 description 4
- 239000000194 fatty acid Substances 0.000 description 4
- 229930195729 fatty acid Natural products 0.000 description 4
- 239000000314 lubricant Substances 0.000 description 4
- 229920000515 polycarbonate Polymers 0.000 description 4
- 239000004417 polycarbonate Substances 0.000 description 4
- 229920005989 resin Polymers 0.000 description 4
- 239000011347 resin Substances 0.000 description 4
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 3
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 3
- 150000007513 acids Chemical class 0.000 description 3
- 125000004429 atom Chemical group 0.000 description 3
- 229920002678 cellulose Polymers 0.000 description 3
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 3
- 230000006872 improvement Effects 0.000 description 3
- 230000001050 lubricating effect Effects 0.000 description 3
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 3
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 3
- 230000009467 reduction Effects 0.000 description 3
- 238000006722 reduction reaction Methods 0.000 description 3
- 238000012546 transfer Methods 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- IMROMDMJAWUWLK-UHFFFAOYSA-N Ethenol Chemical group OC=C IMROMDMJAWUWLK-UHFFFAOYSA-N 0.000 description 2
- QIGBRXMKCJKVMJ-UHFFFAOYSA-N Hydroquinone Chemical compound OC1=CC=C(O)C=C1 QIGBRXMKCJKVMJ-UHFFFAOYSA-N 0.000 description 2
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 2
- 238000005481 NMR spectroscopy Methods 0.000 description 2
- 239000004698 Polyethylene Substances 0.000 description 2
- 239000002202 Polyethylene glycol Substances 0.000 description 2
- 239000004721 Polyphenylene oxide Substances 0.000 description 2
- ZTHYODDOHIVTJV-UHFFFAOYSA-N Propyl gallate Chemical compound CCCOC(=O)C1=CC(O)=C(O)C(O)=C1 ZTHYODDOHIVTJV-UHFFFAOYSA-N 0.000 description 2
- KKEYFWRCBNTPAC-UHFFFAOYSA-N Terephthalic acid Chemical compound OC(=O)C1=CC=C(C(O)=O)C=C1 KKEYFWRCBNTPAC-UHFFFAOYSA-N 0.000 description 2
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 2
- BZHJMEDXRYGGRV-UHFFFAOYSA-N Vinyl chloride Chemical compound ClC=C BZHJMEDXRYGGRV-UHFFFAOYSA-N 0.000 description 2
- 230000004913 activation Effects 0.000 description 2
- 125000003342 alkenyl group Chemical group 0.000 description 2
- 239000002216 antistatic agent Substances 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- WPYMKLBDIGXBTP-UHFFFAOYSA-N benzoic acid Chemical compound OC(=O)C1=CC=CC=C1 WPYMKLBDIGXBTP-UHFFFAOYSA-N 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 229910003460 diamond Inorganic materials 0.000 description 2
- 239000010432 diamond Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- VFPFQHQNJCMNBZ-UHFFFAOYSA-N ethyl gallate Chemical compound CCOC(=O)C1=CC(O)=C(O)C(O)=C1 VFPFQHQNJCMNBZ-UHFFFAOYSA-N 0.000 description 2
- 150000004665 fatty acids Chemical class 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- QQVIHTHCMHWDBS-UHFFFAOYSA-N isophthalic acid Chemical compound OC(=O)C1=CC=CC(C(O)=O)=C1 QQVIHTHCMHWDBS-UHFFFAOYSA-N 0.000 description 2
- 239000010687 lubricating oil Substances 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- FBSFWRHWHYMIOG-UHFFFAOYSA-N methyl 3,4,5-trihydroxybenzoate Chemical compound COC(=O)C1=CC(O)=C(O)C(O)=C1 FBSFWRHWHYMIOG-UHFFFAOYSA-N 0.000 description 2
- 230000007935 neutral effect Effects 0.000 description 2
- 125000006574 non-aromatic ring group Chemical group 0.000 description 2
- GLDOVTGHNKAZLK-UHFFFAOYSA-N octadecan-1-ol Chemical compound CCCCCCCCCCCCCCCCCCO GLDOVTGHNKAZLK-UHFFFAOYSA-N 0.000 description 2
- 239000000049 pigment Substances 0.000 description 2
- 229920000728 polyester Polymers 0.000 description 2
- 229920000570 polyether Polymers 0.000 description 2
- 229920000573 polyethylene Polymers 0.000 description 2
- 229920001223 polyethylene glycol Polymers 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 229920002689 polyvinyl acetate Polymers 0.000 description 2
- 239000011118 polyvinyl acetate Substances 0.000 description 2
- 125000001436 propyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])[H] 0.000 description 2
- WQGWDDDVZFFDIG-UHFFFAOYSA-N pyrogallol Chemical class OC1=CC=CC(O)=C1O WQGWDDDVZFFDIG-UHFFFAOYSA-N 0.000 description 2
- 230000005855 radiation Effects 0.000 description 2
- 238000006479 redox reaction Methods 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 239000000344 soap Substances 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- 239000004094 surface-active agent Substances 0.000 description 2
- 238000007651 thermal printing Methods 0.000 description 2
- 238000010023 transfer printing Methods 0.000 description 2
- 125000003837 (C1-C20) alkyl group Chemical group 0.000 description 1
- 125000004178 (C1-C4) alkyl group Chemical group 0.000 description 1
- UXTZUUVTGMDXNG-UHFFFAOYSA-N 1,2-benzoxazine-3,4-dione Chemical compound C1=CC=C2C(=O)C(=O)NOC2=C1 UXTZUUVTGMDXNG-UHFFFAOYSA-N 0.000 description 1
- 150000005208 1,4-dihydroxybenzenes Chemical class 0.000 description 1
- OEPOKWHJYJXUGD-UHFFFAOYSA-N 2-(3-phenylmethoxyphenyl)-1,3-thiazole-4-carbaldehyde Chemical compound O=CC1=CSC(C=2C=C(OCC=3C=CC=CC=3)C=CC=2)=N1 OEPOKWHJYJXUGD-UHFFFAOYSA-N 0.000 description 1
- DFZVZKUDBIJAHK-UHFFFAOYSA-N 2-hydroxyoctadecanoic acid silver Chemical compound [Ag].OC(C(=O)O)CCCCCCCCCCCCCCCC DFZVZKUDBIJAHK-UHFFFAOYSA-N 0.000 description 1
- XOHUESSDMRKYEV-UHFFFAOYSA-N 2h-phthalazin-1-one;silver Chemical compound [Ag].C1=CC=C2C(=O)NN=CC2=C1 XOHUESSDMRKYEV-UHFFFAOYSA-N 0.000 description 1
- OROGUZVNAFJPHA-UHFFFAOYSA-N 3-hydroxy-2,4-dimethyl-2H-thiophen-5-one Chemical compound CC1SC(=O)C(C)=C1O OROGUZVNAFJPHA-UHFFFAOYSA-N 0.000 description 1
- VPWNQTHUCYMVMZ-UHFFFAOYSA-N 4,4'-sulfonyldiphenol Chemical class C1=CC(O)=CC=C1S(=O)(=O)C1=CC=C(O)C=C1 VPWNQTHUCYMVMZ-UHFFFAOYSA-N 0.000 description 1
- HRPVXLWXLXDGHG-UHFFFAOYSA-N Acrylamide Chemical class NC(=O)C=C HRPVXLWXLXDGHG-UHFFFAOYSA-N 0.000 description 1
- NLHHRLWOUZZQLW-UHFFFAOYSA-N Acrylonitrile Chemical class C=CC#N NLHHRLWOUZZQLW-UHFFFAOYSA-N 0.000 description 1
- 239000005711 Benzoic acid Substances 0.000 description 1
- 229930185605 Bisphenol Natural products 0.000 description 1
- WKBOTKDWSSQWDR-UHFFFAOYSA-N Bromine atom Chemical compound [Br] WKBOTKDWSSQWDR-UHFFFAOYSA-N 0.000 description 1
- 229920002284 Cellulose triacetate Polymers 0.000 description 1
- 239000004801 Chlorinated PVC Substances 0.000 description 1
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 1
- 229920001634 Copolyester Polymers 0.000 description 1
- 239000001856 Ethyl cellulose Substances 0.000 description 1
- ZZSNKZQZMQGXPY-UHFFFAOYSA-N Ethyl cellulose Chemical compound CCOCC1OC(OC)C(OCC)C(OCC)C1OC1C(O)C(O)C(OC)C(CO)O1 ZZSNKZQZMQGXPY-UHFFFAOYSA-N 0.000 description 1
- 239000004262 Ethyl gallate Substances 0.000 description 1
- KMTRUDSVKNLOMY-UHFFFAOYSA-N Ethylene carbonate Chemical compound O=C1OCCO1 KMTRUDSVKNLOMY-UHFFFAOYSA-N 0.000 description 1
- 239000000020 Nitrocellulose Substances 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 1
- 229920002845 Poly(methacrylic acid) Chemical class 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 239000004372 Polyvinyl alcohol Substances 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 229920002125 Sokalan® Chemical class 0.000 description 1
- HXJUTPCZVOIRIF-UHFFFAOYSA-N Tetrahydrothiophene-1,1-dioxide, Natural products O=S1(=O)CCCC1 HXJUTPCZVOIRIF-UHFFFAOYSA-N 0.000 description 1
- XTXRWKRVRITETP-UHFFFAOYSA-N Vinyl acetate Chemical compound CC(=O)OC=C XTXRWKRVRITETP-UHFFFAOYSA-N 0.000 description 1
- NNLVGZFZQQXQNW-ADJNRHBOSA-N [(2r,3r,4s,5r,6s)-4,5-diacetyloxy-3-[(2s,3r,4s,5r,6r)-3,4,5-triacetyloxy-6-(acetyloxymethyl)oxan-2-yl]oxy-6-[(2r,3r,4s,5r,6s)-4,5,6-triacetyloxy-2-(acetyloxymethyl)oxan-3-yl]oxyoxan-2-yl]methyl acetate Chemical compound O([C@@H]1O[C@@H]([C@H]([C@H](OC(C)=O)[C@H]1OC(C)=O)O[C@H]1[C@@H]([C@@H](OC(C)=O)[C@H](OC(C)=O)[C@@H](COC(C)=O)O1)OC(C)=O)COC(=O)C)[C@@H]1[C@@H](COC(C)=O)O[C@@H](OC(C)=O)[C@H](OC(C)=O)[C@H]1OC(C)=O NNLVGZFZQQXQNW-ADJNRHBOSA-N 0.000 description 1
- FJWGYAHXMCUOOM-QHOUIDNNSA-N [(2s,3r,4s,5r,6r)-2-[(2r,3r,4s,5r,6s)-4,5-dinitrooxy-2-(nitrooxymethyl)-6-[(2r,3r,4s,5r,6s)-4,5,6-trinitrooxy-2-(nitrooxymethyl)oxan-3-yl]oxyoxan-3-yl]oxy-3,5-dinitrooxy-6-(nitrooxymethyl)oxan-4-yl] nitrate Chemical compound O([C@@H]1O[C@@H]([C@H]([C@H](O[N+]([O-])=O)[C@H]1O[N+]([O-])=O)O[C@H]1[C@@H]([C@@H](O[N+]([O-])=O)[C@H](O[N+]([O-])=O)[C@@H](CO[N+]([O-])=O)O1)O[N+]([O-])=O)CO[N+](=O)[O-])[C@@H]1[C@@H](CO[N+]([O-])=O)O[C@@H](O[N+]([O-])=O)[C@H](O[N+]([O-])=O)[C@H]1O[N+]([O-])=O FJWGYAHXMCUOOM-QHOUIDNNSA-N 0.000 description 1
- 238000005299 abrasion Methods 0.000 description 1
- 239000011358 absorbing material Substances 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 150000001241 acetals Chemical class 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 150000001299 aldehydes Chemical class 0.000 description 1
- 150000005215 alkyl ethers Chemical class 0.000 description 1
- 239000004411 aluminium Substances 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- XKRFYHLGVUSROY-UHFFFAOYSA-N argon Substances [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 150000001555 benzenes Chemical class 0.000 description 1
- CCGGDOVGIDSGQN-UHFFFAOYSA-N benzo[f][1,2]benzoxazine-1,2-dione Chemical compound C1=CC=CC2=C(C(C(=O)NO3)=O)C3=CC=C21 CCGGDOVGIDSGQN-UHFFFAOYSA-N 0.000 description 1
- 235000010233 benzoic acid Nutrition 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000005282 brightening Methods 0.000 description 1
- GDTBXPJZTBHREO-UHFFFAOYSA-N bromine Substances BrBr GDTBXPJZTBHREO-UHFFFAOYSA-N 0.000 description 1
- 229910052794 bromium Inorganic materials 0.000 description 1
- 239000004202 carbamide Substances 0.000 description 1
- 150000007942 carboxylates Chemical class 0.000 description 1
- 125000002843 carboxylic acid group Chemical group 0.000 description 1
- 150000001735 carboxylic acids Chemical class 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 229920000457 chlorinated polyvinyl chloride Polymers 0.000 description 1
- 239000000460 chlorine Substances 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- 239000008119 colloidal silica Substances 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 125000003547 cyclohexylalkoxy group Chemical group 0.000 description 1
- 125000001511 cyclopentyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C1([H])[H] 0.000 description 1
- FOTKYAAJKYLFFN-UHFFFAOYSA-N decane-1,10-diol Chemical compound OCCCCCCCCCCO FOTKYAAJKYLFFN-UHFFFAOYSA-N 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 150000001991 dicarboxylic acids Chemical class 0.000 description 1
- ZBCBWPMODOFKDW-UHFFFAOYSA-N diethanolamine Chemical class OCCNCCO ZBCBWPMODOFKDW-UHFFFAOYSA-N 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 239000004205 dimethyl polysiloxane Substances 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 235000019441 ethanol Nutrition 0.000 description 1
- 125000001301 ethoxy group Chemical group [H]C([H])([H])C([H])([H])O* 0.000 description 1
- 229920001249 ethyl cellulose Polymers 0.000 description 1
- 235000019325 ethyl cellulose Nutrition 0.000 description 1
- 235000019277 ethyl gallate Nutrition 0.000 description 1
- 125000003709 fluoroalkyl group Chemical group 0.000 description 1
- NBVXSUQYWXRMNV-UHFFFAOYSA-N fluoromethane Chemical group FC NBVXSUQYWXRMNV-UHFFFAOYSA-N 0.000 description 1
- 235000021588 free fatty acids Nutrition 0.000 description 1
- 150000002334 glycols Chemical class 0.000 description 1
- 125000000623 heterocyclic group Chemical group 0.000 description 1
- 150000002430 hydrocarbons Chemical group 0.000 description 1
- 239000001023 inorganic pigment Substances 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 239000011229 interlayer Substances 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 230000002427 irreversible effect Effects 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 230000000873 masking effect Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- HNQIVZYLYMDVSB-UHFFFAOYSA-N methanesulfonimidic acid Chemical compound CS(N)(=O)=O HNQIVZYLYMDVSB-UHFFFAOYSA-N 0.000 description 1
- 125000000956 methoxy group Chemical group [H]C([H])([H])O* 0.000 description 1
- IBKQQKPQRYUGBJ-UHFFFAOYSA-N methyl gallate Natural products CC(=O)C1=CC(O)=C(O)C(O)=C1 IBKQQKPQRYUGBJ-UHFFFAOYSA-N 0.000 description 1
- DDIZAANNODHTRB-UHFFFAOYSA-N methyl p-anisate Chemical compound COC(=O)C1=CC=C(OC)C=C1 DDIZAANNODHTRB-UHFFFAOYSA-N 0.000 description 1
- 150000002762 monocarboxylic acid derivatives Chemical class 0.000 description 1
- GOQYKNQRPGWPLP-UHFFFAOYSA-N n-heptadecyl alcohol Natural products CCCCCCCCCCCCCCCCCO GOQYKNQRPGWPLP-UHFFFAOYSA-N 0.000 description 1
- SLCVBVWXLSEKPL-UHFFFAOYSA-N neopentyl glycol Chemical compound OCC(C)(C)CO SLCVBVWXLSEKPL-UHFFFAOYSA-N 0.000 description 1
- 229920001220 nitrocellulos Polymers 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 238000005580 one pot reaction Methods 0.000 description 1
- 230000005693 optoelectronics Effects 0.000 description 1
- 239000011368 organic material Substances 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 150000002989 phenols Chemical class 0.000 description 1
- 235000021317 phosphate Nutrition 0.000 description 1
- 150000003013 phosphoric acid derivatives Chemical class 0.000 description 1
- 125000005543 phthalimide group Chemical class 0.000 description 1
- 239000004014 plasticizer Substances 0.000 description 1
- 229920000435 poly(dimethylsiloxane) Polymers 0.000 description 1
- 229920002285 poly(styrene-co-acrylonitrile) Polymers 0.000 description 1
- 239000004584 polyacrylic acid Chemical class 0.000 description 1
- 238000006068 polycondensation reaction Methods 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 1
- 239000004810 polytetrafluoroethylene Substances 0.000 description 1
- 229920002451 polyvinyl alcohol Polymers 0.000 description 1
- 239000004800 polyvinyl chloride Substances 0.000 description 1
- 229920000915 polyvinyl chloride Polymers 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 239000000473 propyl gallate Substances 0.000 description 1
- 235000010388 propyl gallate Nutrition 0.000 description 1
- 229940075579 propyl gallate Drugs 0.000 description 1
- 239000011253 protective coating Substances 0.000 description 1
- 239000011241 protective layer Substances 0.000 description 1
- 229940079877 pyrogallol Drugs 0.000 description 1
- 238000002601 radiography Methods 0.000 description 1
- 239000000376 reactant Substances 0.000 description 1
- 230000036632 reaction speed Effects 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 229930195734 saturated hydrocarbon Natural products 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 150000003377 silicon compounds Chemical class 0.000 description 1
- 229920002545 silicone oil Polymers 0.000 description 1
- YRSQDSCQMOUOKO-KVVVOXFISA-M silver;(z)-octadec-9-enoate Chemical compound [Ag+].CCCCCCCC\C=C/CCCCCCCC([O-])=O YRSQDSCQMOUOKO-KVVVOXFISA-M 0.000 description 1
- CLDWGXZGFUNWKB-UHFFFAOYSA-M silver;benzoate Chemical compound [Ag+].[O-]C(=O)C1=CC=CC=C1 CLDWGXZGFUNWKB-UHFFFAOYSA-M 0.000 description 1
- MNMYRUHURLPFQW-UHFFFAOYSA-M silver;dodecanoate Chemical compound [Ag+].CCCCCCCCCCCC([O-])=O MNMYRUHURLPFQW-UHFFFAOYSA-M 0.000 description 1
- SUGXYMLKALUNIU-UHFFFAOYSA-N silver;imidazol-3-ide Chemical class [Ag+].C1=C[N-]C=N1 SUGXYMLKALUNIU-UHFFFAOYSA-N 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 238000000859 sublimation Methods 0.000 description 1
- 230000008022 sublimation Effects 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 150000003871 sulfonates Chemical class 0.000 description 1
- 239000000454 talc Substances 0.000 description 1
- 229910052623 talc Inorganic materials 0.000 description 1
- 229920005992 thermoplastic resin Polymers 0.000 description 1
- 125000000101 thioether group Chemical group 0.000 description 1
- 238000002604 ultrasonography Methods 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
- 239000001993 wax Substances 0.000 description 1
Classifications
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03C—PHOTOSENSITIVE MATERIALS FOR PHOTOGRAPHIC PURPOSES; PHOTOGRAPHIC PROCESSES, e.g. CINE, X-RAY, COLOUR, STEREO-PHOTOGRAPHIC PROCESSES; AUXILIARY PROCESSES IN PHOTOGRAPHY
- G03C1/00—Photosensitive materials
- G03C1/494—Silver salt compositions other than silver halide emulsions; Photothermographic systems ; Thermographic systems using noble metal compounds
- G03C1/498—Photothermographic systems, e.g. dry silver
- G03C1/4989—Photothermographic systems, e.g. dry silver characterised by a thermal imaging step, with or without exposure to light, e.g. with a thermal head, using a laser
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03C—PHOTOSENSITIVE MATERIALS FOR PHOTOGRAPHIC PURPOSES; PHOTOGRAPHIC PROCESSES, e.g. CINE, X-RAY, COLOUR, STEREO-PHOTOGRAPHIC PROCESSES; AUXILIARY PROCESSES IN PHOTOGRAPHY
- G03C1/00—Photosensitive materials
- G03C1/494—Silver salt compositions other than silver halide emulsions; Photothermographic systems ; Thermographic systems using noble metal compounds
- G03C1/498—Photothermographic systems, e.g. dry silver
- G03C1/49827—Reducing agents
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03C—PHOTOSENSITIVE MATERIALS FOR PHOTOGRAPHIC PURPOSES; PHOTOGRAPHIC PROCESSES, e.g. CINE, X-RAY, COLOUR, STEREO-PHOTOGRAPHIC PROCESSES; AUXILIARY PROCESSES IN PHOTOGRAPHY
- G03C1/00—Photosensitive materials
- G03C1/494—Silver salt compositions other than silver halide emulsions; Photothermographic systems ; Thermographic systems using noble metal compounds
- G03C1/498—Photothermographic systems, e.g. dry silver
- G03C1/49836—Additives
- G03C1/49845—Active additives, e.g. toners, stabilisers, sensitisers
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03C—PHOTOSENSITIVE MATERIALS FOR PHOTOGRAPHIC PURPOSES; PHOTOGRAPHIC PROCESSES, e.g. CINE, X-RAY, COLOUR, STEREO-PHOTOGRAPHIC PROCESSES; AUXILIARY PROCESSES IN PHOTOGRAPHY
- G03C2200/00—Details
- G03C2200/26—Gamma
Definitions
- the present invention relates to a direct thermal imaging process for continuous tone reproduction.
- Thermal imaging or thermography is a recording process wherein images are generated by the use of imagewise modulated thermal energy.
- thermography two approaches are known :
- Thermal dye transfer printing is a recording method wherein a dye-donor element is used that is provided with a dye layer wherefrom dyed portions or incorporated dyes are transferred onto a contacting receiver element by the application of heat in a pattern normally controlled by electronic information signals.
- Thermography is concerned with materials which are substantially not photosensitive, but are sensitive to heat or thermosensitive. Imagewise applied heat is sufficient to bring about a visible change in a thermosensitive imaging material.
- thermographic recording materials are of the chemical type. On heating to a certain conversion temperature, an irreversible chemical reaction takes place and a coloured image is produced.
- thermal printing image signals are converted into electric pulses and then through a driver circuit selectively transferred to a thermal printhead.
- the thermal printhead consists of microscopic heat resistor elements, which convert the electrical energy into heat via Joule effect.
- the electric pulses thus converted into thermal signals manifest themselves as heat transferred to the surface of the thermal paper wherein the chemical reaction resulting in colour development takes place.
- a heat-sensitive recording material is used in the form of an electrically resistive ribbon having a multilayered structure in which a carbon-loaded polycarbonate is coated with a thin aluminium film (ref. Progress in Basic Principles of Imaging Systems - Proceedings of the International Congress of Photographic Science GmbH (Cologne), 1986 ed. by Friedrich Granzer and Erik Moisar - Friedr. Vieweg & Sohn - Braunschweig/Wiesbaden Figure 6. p. 622).
- Current is injected into the resistive ribbon by electrically addressing a printhead electrode contacting the carbon-loaded substrate, thus resulting in highly localized heating of the ribbon beneath the energized electrode.
- the recording material is image-wise or pattern-wise heated by means of a modulated laser beam.
- image-wise modulated infra-red laser light is absorbed in the recording layer in infra-red light absorbing substances converting infra-red radiation into the necessary heat for the imaging reaction.
- the imagewise applied laser light has not necessarily to be infrared light since the power of a laser in the visible light range and even in the ultraviolet region can be thus high that sufficient heat is generated on absorption of the laser light in the recording material.
- laser which may be a gas laser, gas ion laser, e.g. argon ion laser, solid state laser, e.g. Nd:YAG laser, dye laser or semi-conductor laser.
- the image signals for modulating the laser beam or current in the micro-resistors of a thermal printhead are obtained directly e.g. from opto-electronic scanning devices or from an intermediary storage means, e.g. magnetic disc or tape or optical disc storage medium, optionally linked to a digital image work station wherein the image information can be processed to satisfy particular needs.
- an intermediary storage means e.g. magnetic disc or tape or optical disc storage medium
- thermographic recording material contains a polymeric binder, di- or triarylmethane thiolactone dye precursor in combination with silver behenate and 3,5-dihydroxybenzoic acid as an organic acidic reagent.
- Said reagent acts as a weak reducing agent and provides a stable one-pot coating composition.
- Other organic acidic reagents such as phthalic acid are described in column 6 of said US-P.
- Banding is a phenomenon characterized by the presence in the thermographic image of parallel stripes of different optical density in the print direction and is typical for the use of thermal printheads containing an array of geometrically juxtaposed heating resistors that may show a spread in resistance value and/or contact-pressure with the recording material.
- a direct thermal imaging process operating with a thermal printhead in conjunction with a heat-sensitive recording material capable of yielding images with maximum density higher than 2.5 and gradation sufficiently low for continuous tone reproduction as is needed e.g. in portrait reproduction for identification documents and in the medical diagnostic field based on images produced by e.g. radiography ultrasound or nuclear magnetic resonance (NMR) signals.
- NMR nuclear magnetic resonance
- a direct thermal imaging process wherein a non-photosensitive direct thermal recording material is heated dot-wise, and said direct thermal recording material comprises an imaging layer containing uniformly distributed in a film-forming polymeric binder (i) one or more substantially light-insensitive organic silver salts, said silver salt(s) being uniformly in thermal working relationship with (ii) one or more organic reducing agents therefor, however neither including 3,5-dihydroxybenzoic acid as acidic reagent nor di-tert-butyl-p-cresol as a sole reducing agent, characterized in that said imaging layer contains at least one polycarboxylic acid and/or anhydride thereof in a molar percentage of at least 20 with respect to said silver salt(s).
- Said mole percentage is preferably in the range of 20 to 30.
- thermo working relationship is meant here that said substantially light-insensitive silver salt and said organic reducing agent can react by means of heat to form metallic silver.
- said ingredients (i) and (ii) may be present in the same binder-containing layer or in different layers wherefrom by heat they can come into reactive contact with each other, e.g. by diffusion or sublimation.
- NSV numerical gradation value
- E 2 . 5 is the minimal energy in Joule applied in a dot area of 87 /1 .m x 87 /1 .m of the recording material that obtains by said energy an optical density value of 2.5
- E o . is the maximal energy in Joule applied in a dot area of the recording material that obtains by said energy an optical density value of 0.1.
- Said optical density values are values above the inherent optical density of the "unheated" recording material having always already some optical density by the inherent optical density of the imaging layer and its support.
- thermo head printer developed for thermosensitometric measurement purposes and having distinct groups of micro-resistors being arranged in succession along the width of the printhead array. From group to group said resistors receive a linearly increasing amount of electrical energy within the line time of the printer. The input of electrical energy per group of resistors is controlled by linearly increasing the period of time from group to group wherein a constant current at constant voltage is applied, said current and voltage being kept constant over the whole printing period.
- the line time is the time needed for printing one single line with the thermal head.
- the line time is a period of time of 32 ms wherein the imaging material with respect to the print array travels a distance of one pixel length, viz. 87 ⁇ m.
- the continuous tone reproduction capability of a heat-sensitive imaging material used according to the present invention is favoured by a relatively high binder to silver salt weight ratio in the imaging layer.
- a relatively high binder to silver salt weight ratio in the imaging layer Preferably said ratio is in the range of 1/2 to 6/1, and more preferably from 1/1 to 4/1.
- Substantially light-insensitive organic silver salts particularly suited for use in a direct thermal recording material according to the present invention are silver salts of aliphatic carboxylic acids known as fatty acids, wherein the aliphatic carbon chain has preferably at least 12 C-atoms, e.g. silver laurate, silver palmitate, silver stearate, silver hydroxystearate, silver oleate and silver behenate, which silver salts are also called "silver soaps”.
- Modified aliphatic carboxylic acids with thioether group as described e.g. in GB-P 1,111,492 and other organic silver salts as described in GB-P 1,439,478, e.g.
- silver benzoate and silver phthalazinone may be used likewise to produce a thermally developable silver image.
- Organic reducing agents suitable for use according to the present invention are aromatic di- and tri-hydroxy compounds having at least two hydroxy groups in ortho- or para-position on the same aromatic nucleus, e.g. benzene nucleus, more particularly e.g. hydroquinone and substituted hydroquinones, catechol, pyrogallol, gallic acid and gallic acid esters.
- aromatic di- and tri-hydroxy compounds having at least two hydroxy groups in ortho- or para-position on the same aromatic nucleus, e.g. benzene nucleus, more particularly e.g. hydroquinone and substituted hydroquinones, catechol, pyrogallol, gallic acid and gallic acid esters.
- Particularly useful are polyhydroxy spiro-bis-indane compounds, especially these corresponding to the following general formula: wherein :
- catechol-type reducing agents by which is meant reducing agents containing at least one benzene nucleus with two hydroxy groups (-OH) in ortho-position e.g. catechol, 3- (3,4-dihydroxyphenyl) propionic acid, 1,2-dihydroxybenzoic acid, gallic acid and esters e.g. methyl gallate, ethyl gallate, propyl gallate, tannic acid, and 3,4-dihydroxy-benzoic acid esters.
- auxiliary reducing agents are e.g. sterically hindered phenols, that on heating become reactive partners in the reduction of the substantially light-insensitive silver salt such as silver behenate, or are bisphenols, e.g. of the type described in US-P 3,547,648.
- the auxiliary reducing agents may be present in the imaging layer or in a polymeric binder layer adjacent thereto.
- polycarboxylic acid(s) and/or anhydrides thereof in thermal working relationship with the substantially light-insensitive silver salt has an image gradation-lowering effect as can be learned from the Examples.
- the polycarboxylic acid may be aliphatic (saturated as well as unsaturated aliphatic and likewise cycloaliphatic) as well as an aromatic polycarboxylic acid. These acids may be substituted e.g. with alkyl, hydroxyl, nitro or halogen. They may be used in anhydride form or partially esterified on the condition that at least two free carboxylic acids remain or are available in the heat recording step.
- saturated aliphatic dicarboxylic acids containing at least 4 carbon atoms e.g. : succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, nonane-dicarboxylic acid, decane-dicarboxylic acid, undecane-dicarboxylic acid.
- Suitable unsaturated dicarboxylic acids are : maleic acid, citraconic acid, itaconic acid and aconitic acid.
- a particularly effectively gradation lowering substituted polycarboxylic acid is citric acid, and derivative thereof acetonedicarboxylic acid and further iso-citric acid and a-ketoglutaric acid.
- Preferred aromatic polycarboxylic acids are ortho-phthalic acid and 3-nitro-phthalic acid, tetrachlorophthalic acid, mellitic acid, pyromellitic acid and trimellitic acid and the anhydrides thereof.
- the silver image density depends on the coverage of said substantially light-insensitive silver salts in combination with said polycarboxylic acids and reducing agent(s) and has to be preferably such that, on heating above 120 °C, an optical density of at least 2.5 can be obtained.
- the thickness of the imaging layer is preferably in the range of 5 to 50 ⁇ m.
- said substantially light-insensitive organic silver salt and said organic reducing agent are present in different layers wherefrom by heat they can come into reactive contact with each other.
- the film-forming water-insoluble polymeric binder of the imaging layer of the present direct thermal recording material is preferably a thermoplastic resin or mixture of such resins, wherein the silver salt can be dispersed homogeneously.
- a thermoplastic resin or mixture of such resins wherein the silver salt can be dispersed homogeneously.
- all kinds of natural, modified natural or synthetic water-insoluble resins may be used, e.g. cellulose derivatives such as ethylcellulose. cellulose esters, e.g.
- cellulose nitrate polymers derived from a,;8-ethy!enica!!y unsaturated compounds such as polyvinyl chloride, after-chlorinated polyvinyl chloride, copolymers of vinyl chloride and vinylidene chloride, copolymers of vinyl chloride and vinyl acetate, polyvinyl acetate and partially hydrolyzed polyvinyl acetate, polyvinyl acetals that are made from polyvinyl alcohol as starting material in which only a part of the repeating vinyl alcohol units may have reacted with an aldehyde, preferably polyvinyl butyral, copolymers of acrylonitrile and acrylamide, polyacrylic acid esters, polymethacrylic acid esters and polyethylene or mixtures thereof.
- aldehyde preferably polyvinyl butyral
- copolymers of acrylonitrile and acrylamide polyacrylic acid esters, polymethacrylic acid esters and polyethylene or mixtures thereof.
- a particularly suitable polyvinyl butyral containing a minor amount of vinyl alcohol units is marketed under the tradename BUTVAR B79 of Monsanto USA and provides a good adherence to paper and properly subbed polyester supports.
- the layer containing the organic silver salt is commonly coated from an organic solvent containing the binder in dissolved form.
- the binder of the imaging layer may be combined with waxes or "heat solvents” also called “thermal solvents” or “thermosolvents” improving the reaction speed of the redox-reaction at elevated temperature.
- heat solvent in this invention is meant a non-hydrolyzable organic material which is in solid state in the recording layer at temperatures below 50 ° C but becomes a plasticizer for the recording layer in the heated region and/or liquid solvent for at least one of the redox-reactants, e.g. the reducing agent for the organic silver salt, at a temperature above 60 ° C.
- redox-reactants e.g. the reducing agent for the organic silver salt
- the recording layer contains in admixture with said organic silver salt and reducing agents a so-called toning agent known from thermography or photo-thermography.
- Suitable toning agents are the phthalimides and phthalazinones within the scope of the general formulae described in US-P 4,082,901. Further reference is made to the toning agents described in US-P 3,074,809, 3,446,648 and 3,844,797.
- Other particularly useful toning agents are the heterocyclic toner compounds of the benzoxazine dione or naphthoxazine dione type within the scope of following general formula : in which :
- a toner compound particularly suited for use in combination with polyhydroxy benzene reducing agents is 3,4-dihydro-2,4-dioxo-1,3,2H-benzoxazine described in US-P 3,951,660.
- the imaging layer may contain other additives such as free fatty acids, antistatic agents, e.g. non-ionic antistatic agents including a fluorocarbon group as e.g. in FaC(CF 2 )sCONH-(CH 2 CH 2 0)-H, ultraviolet light absorbing compounds, white light reflecting and/or ultraviolet radiation reflecting pigments, and/or optical brightening agents.
- antistatic agents e.g. non-ionic antistatic agents including a fluorocarbon group as e.g. in FaC(CF 2 )sCONH-(CH 2 CH 2 0)-H
- ultraviolet light absorbing compounds e.g. in FaC(CF 2 )sCONH-(CH 2 CH 2 0)-H
- white light reflecting and/or ultraviolet radiation reflecting pigments e.g. in FaC(CF 2 )sCONH-(CH 2 CH 2 0)-H
- ultraviolet light absorbing compounds e.g. in FaC(CF 2 )sCONH-(CH 2 CH 2 0)
- the support for the heat-sensitive recording material according to the present invention is preferably a thin flexible carrier made e.g. from paper, polyethylene coated paper or transparent resin film, e.g. made of a cellulose ester, e.g. cellulose triacetate, polypropylene polycarbonate or polyester, e.g. polyethylene terephthalate.
- the support may be in sheet, ribbon or web form and subbed if need be to improve the adherence to the thereon coated heat-sensitive imaging layer.
- the coating of the imaging layer may proceed by any coating technique e.g. as described in Modern Coating and Drying Technology, edited by Edward D. Cohen and Edgar B. Gutoff, (1992) VCH Publishers Inc. 220 East 23rd Street, Suite 909 New York, NY 10010, U.S.A.
- Direct thermal imaging can be used for both the production of transparencies and reflection type prints.
- the support may be transparent or opaque, e.g. the support has a white light reflecting aspect.
- a paper base is used which may contain white light reflecting pigments, optionally also applied in an interlayer between the recording layer and said base.
- said base may be colourless or coloured, e.g. has a blue colour.
- the recording materials of the present invention are particularly suited for use in thermographic recording techniques operating with thermal print-heads.
- Suitable thermal printing heads are e.g. a Fujitsu Thermal Head (FTP-040 MCS001), a TDK Thermal Head F415 HH7-1089, and a Rohm Thermal Head KE 2008-F3.
- the imagewise heating of the recording material with said printheads proceeds through a contacting but removable resin sheet or web wherefrom during said heating no transfer of imaging material can take place.
- the imaging layer when being the outermost layer may contain hydrophilic finely divided (colloidal) optically transparent inert inorganic pigments such as transparent colloidal silica not masking the lateron formed silver image.
- the imaging layer is coated with a protective coating and/or contains substances having anti-sticking properties e.g. (a) lubricating agent(s).
- the outermost layer of the heat-sensitive recording material according to the present invention may comprise a dissolved lubricating material and/or a dispersed particulate lubricating material, e.g. talc particles, optionally protruding from the outermost layer.
- suitable lubricating materials are a surface active agent, a liquid lubricant, a solid lubricant or mixtures thereof.
- the surface active agents may be any agents known in the art such as carboxylates, sulfonates, phosphates, aliphatic amine salts, aliphatic quaternary ammonium salts, polyoxyethylene alkyl ethers. polyethylene glycol fatty acid esters, fluoroalkyl C 2 -C 2o aliphatic acids.
- liquid lubricants include silicone oils, synthetic oils, saturated hydrocarbons and glycols.
- solid organic lubricants include various higher alcohols such as stearyl alcohol, fatty acids and fatty acid esters.
- outermost slipping layers are mentioned layers made from a styrene-acrylonitrile copolymer or a styrene-acrylonitrile-butadiene copolymer or binder mixture hereof containing as lubricant in an amount of 0.1 to 10 % by weight with respect to said binder(s) a polysiloxane-polyether copolymer or polytetrafluoroethylene or a mixture hereof.
- Another suitable outermost slipping layer may be obtained by coating a solution of at least one silicon compound and a substance capable of forming during the coating procedure a polymer having an inorganic backbone which is an oxide of a group IVa or IVb element as described in published European patent application 0554576.
- a subbed polyethylene terephthalate support having a thickness of 100 ⁇ m was doctor blade-coated from a coating composition containing methyl ethyl ketone as a solvent and the following ingredients so as to obtain thereon after drying for 1 h at 50 ° C an imaging layer containing :
- thermo head printer developed for thermosensitometric measurement purposes and having distinct groups of micro-resistors being arranged in succession along the width of the printhead array. From group to group said resistors receive a linearly increasing amount of electrical energy within the line time of the printer.
- the input of electrical energy per group of resistors is controlled by linearly increasing the period of time from group to group wherein a constant current at constant voltage is applied, said current and voltage being kept constant over the whole printing period.
- the line time is a period of time of 32 ms wherein the imaging material with respect to the print array travels a distance of a pixel length of 87 ⁇ m.
- the print head was separated from the imaging layer by a thin intermediate material and made contact with the slipping layer of a separatable intermediate 5 ⁇ m thick polyethylene terephthalate ribbon being coated in consecutive order with a subbing layer, heat-resistant layer and said slipping layer (anti-friction layer) giving the ribbon a total thickness of 6 ⁇ m.
- Said subbing layer also called primer layer, is a layer of a copolyester being a polycondensation product of ethylene glycol, adipic acid, neopentyl glycol, terephthalic acid, isophthalic acid and glycerol.
- TEGOGLIDE 410 polyether modified polydimethylsiloxane
- the numerical gradation value (NGV) corresponding with the quotient of the fraction (2.5 - 0.1 )/(E 2 . 5 -E o . i ) was determined; herein E 2 . 5 is the energy in Joule applied in a dot area of 87 ⁇ m x 87 ⁇ m of the imaging layer that obtains by said energy an optical density value of 2.5, and E o ., is the energy in Joule applied in a dot area of the imaging layer material that obtains by said energy an optical density value of 0.1.
- the applied energy in Joule is actually the electrical input energy measured for each resistor of the thermal head.
- the recording materials A5 and A6 are invention materials, the other ones are comparative test materials.
- a subbed polyethylene terephthalate support having a thickness of 100 ⁇ m was doctor blade-coated from a coating composition containing methyl ethyl ketone as a solvent and the following ingredients so as to obtain thereon after drying for 1 h at 50 ° C an imaging layer containing :
- the recording materials B4 and B5 are invention materials whereas the recording materials B1 to B3 5 are "non-invention" comparative test materials.
- a subbed polyethylene terephthalate support having a thickness of 100 ⁇ m was doctor blade-coated from a coating composition containing methyl ethyl ketone as a solvent and the following ingredients so as to obtain thereon after drying for 1 h at 50 ° C an imaging layer containing :
- Material CO is the "blanco" material free from polyacid.
- the recording material C3 is an invention material whereas the recording materials C1 and C2 are "non-invention" comparative test materials.
- a subbed polyethylene terephthalate support having a thickness of 100 ⁇ m was doctor blade-coated from a coating composition containing methyl ethyl ketone as a solvent and the following ingredients so as to obtain thereon after drying for 1 h at 50 ° C an imaging layer containing :
- Material CO is the "blanco" material free from polyacid.
- the recording material D3 is an invention material whereas the recording materials D1 and D2 are "non-invention" comparative test materials.
- a subbed polyethylene terephthalate support having a thickness of 100 ⁇ m was doctor blade-coated from a coating composition containing methyl ethyl ketone as a solvent and the following ingredients so as to obtain thereon after drying for 1 h at 50 ° C an imaging layer containing :
- the recording material E4 is an invention materials, the other ones are “non-invention" comparative test materials.
- a subbed polyethylene terephthalate support having a thickness of 100 ⁇ m was doctor blade-coated from a coating composition containing methyl ethyl ketone as a solvent and the following ingredients so as to obtain thereon after drying for 1 h at 50 ° C an imaging layer containing :
- Material EO is a blanco material free from polyacid.
- the recording material E1 and E2 are invention materials.
- a subbed polyethylene terephthalate support having a thickness of 100 ⁇ m was doctor blade-coated from a coating composition containing methyl ethyl ketone as a solvent and the following ingredients so as to obtain thereon after drying for 1 h at 50 ° C an imaging layer containing :
- the recording materials G1 to G3 are invention materials.
- a subbed polyethylene terephthalate support having a thickness of 100 ⁇ m was doctor blade-coated from a coating composition containing methyl ethyl ketone as a solvent and the following ingredients so as to obtain thereon after drying for 1 h at 50 ° C an imaging layer containing per m 2 :
- the maximum optical density (Dmax) obtainable with di-tert-butyl-p-cresol or 3,5-dihydroxy benzoic acid as sole reducing agents is too low for defining the numerical gradation value NGV (see non-invention recording materials X2, X3, X5 and X6).
- the optical background density, also called minimum density (Dmin) is practically the same for all of the recording materials X1-X6.
Landscapes
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- General Physics & Mathematics (AREA)
- Non-Silver Salt Photosensitive Materials And Non-Silver Salt Photography (AREA)
- Heat Sensitive Colour Forming Recording (AREA)
Abstract
Description
- The present invention relates to a direct thermal imaging process for continuous tone reproduction.
- Thermal imaging or thermography is a recording process wherein images are generated by the use of imagewise modulated thermal energy.
- In thermography two approaches are known :
- 1. Direct thermal formation of a visible image pattern by imagewise heating of a recording material containing matter that by chemical or physical process changes colour or optical density.
- 2. Thermal dye transfer printing wherein a visible image pattern is formed by transfer of a coloured species from an imagewise heated donor element onto a receptor element.
- Thermal dye transfer printing is a recording method wherein a dye-donor element is used that is provided with a dye layer wherefrom dyed portions or incorporated dyes are transferred onto a contacting receiver element by the application of heat in a pattern normally controlled by electronic information signals.
- A survey of "direct thermal" imaging methods is given e.g. in the book "Imaging Systems" by Kurt I. Jacobson-Ralph E. Jacobson, The Focal Press - London and New York (1976), Chapter VII under the heading "7.1 Thermography". Thermography is concerned with materials which are substantially not photosensitive, but are sensitive to heat or thermosensitive. Imagewise applied heat is sufficient to bring about a visible change in a thermosensitive imaging material.
- Most of the "direct" thermographic recording materials are of the chemical type. On heating to a certain conversion temperature, an irreversible chemical reaction takes place and a coloured image is produced.
- A wide variety of chemical systems has been suggested some examples of which have been given on page 138 of the above mentioned book of Kurt I. Jacobson et al.. describing the production of a silver metal image by means of a thermally induced oxidation-reduction reaction of a silver soap with a reducing agent.
- As described in "Handbook of Imaging Materials", edited by Arthur S. Diamond - Diamond Research Corporation - Ventura, Calfornia, printed by Marcel Dekker, Inc. 270 Madison Avenue, New York, New York 10016 (1991), p. 498-499 in thermal printing image signals are converted into electric pulses and then through a driver circuit selectively transferred to a thermal printhead. The thermal printhead consists of microscopic heat resistor elements, which convert the electrical energy into heat via Joule effect. The electric pulses thus converted into thermal signals manifest themselves as heat transferred to the surface of the thermal paper wherein the chemical reaction resulting in colour development takes place.
- In a special embodiment of direct thermal imaging a heat-sensitive recording material is used in the form of an electrically resistive ribbon having a multilayered structure in which a carbon-loaded polycarbonate is coated with a thin aluminium film (ref. Progress in Basic Principles of Imaging Systems - Proceedings of the International Congress of Photographic Science Köln (Cologne), 1986 ed. by Friedrich Granzer and Erik Moisar - Friedr. Vieweg & Sohn - Braunschweig/Wiesbaden Figure 6. p. 622). Current is injected into the resistive ribbon by electrically addressing a printhead electrode contacting the carbon-loaded substrate, thus resulting in highly localized heating of the ribbon beneath the energized electrode.
- The fact that in using a resistive ribbon recording material heat is generated directly in the resistive ribbon and only the travelling ribbon gets hot (not the printheads) an inherent advantage in printing speed is obtained. In applying the thermal printhead technology the various elements of the thermal printhead get hot and must cool down before the printhead can print without cross-talk in a next position.
- In another embodiment of direct thermal imaging the recording material is image-wise or pattern-wise heated by means of a modulated laser beam. For example, image-wise modulated infra-red laser light is absorbed in the recording layer in infra-red light absorbing substances converting infra-red radiation into the necessary heat for the imaging reaction.
- The imagewise applied laser light has not necessarily to be infrared light since the power of a laser in the visible light range and even in the ultraviolet region can be thus high that sufficient heat is generated on absorption of the laser light in the recording material. There is no limitation on the kind of laser used which may be a gas laser, gas ion laser, e.g. argon ion laser, solid state laser, e.g. Nd:YAG laser, dye laser or semi-conductor laser.
- The use of an infrared light emitting laser and a dye-donor element containing an infrared light absorbing material is described e.g. in US-P 4,912,083. Suitable infra-red light absorbing dyes for laser- induced thermal dye transfer are described e.g. in US-P 4,948,777, which US-P documents for said dyes and lasers applied in direct thermal imaging have to be read in conjunction herewith.
- The image signals for modulating the laser beam or current in the micro-resistors of a thermal printhead are obtained directly e.g. from opto-electronic scanning devices or from an intermediary storage means, e.g. magnetic disc or tape or optical disc storage medium, optionally linked to a digital image work station wherein the image information can be processed to satisfy particular needs.
- Existing direct thermographic recording materials based on the use of organic silver salts such as silver behenate as sole imaging substances providing on reduction metallic silver in the absence of other imaging substances such as leuco dyes are, when image-wise heated with a thermal printhead, normally not suited for reproducing images with sufficiently high optical density (more than 2.5) and fairly large number of grey levels as is required for continuous tone reproduction.
- A thermographic recording material according to US-P 4,904,572 contains a polymeric binder, di- or triarylmethane thiolactone dye precursor in combination with silver behenate and 3,5-dihydroxybenzoic acid as an organic acidic reagent. Said reagent acts as a weak reducing agent and provides a stable one-pot coating composition. Other organic acidic reagents such as phthalic acid are described in column 6 of said US-P.
- In Polish patent specification 99,906 published October 15, 1979 a heat-sensitive paper has been described for use in combination with a light-sensitive recording material wherefrom photographically non- destroyed reducing agent is transferred thermally into said thermosensitive paper. That recording system is commercially known under the tradename DUAL SPECTRUM of 3M Company. In said heat-sensitive paper di-tert-butyl-p-cresol is uniformly distributed in conjunction with silver behenate and a solid dicarboxylic acid with a melting point of 120-160 °C, which acid according to an example is adipic acid used in an amount of 10 g with respect to 10 g of silver behenate. According to said specification the applied method provides copies with clear black lines on a background that does not changes color even when heated to a temperature of above +50 °C during 2 h.
- According to published European patent application No. 0 622 217 A1 relating to a method for making an image using a direct thermal imaging element, improvements in continuous tone reproduction are obtained by heating a direct thermal recording element by means of a printhead having a plurality of heating elements, characterized in that the activation of the heating elements is executed line by line with a duty cycle A representing the ratio of activation time to total line time in such a way that the following equation is satisfied :
- Although by controlling the heating of the heating elements of a thermal head in the way as described in said EP-A already an improvement in continuous tone reproduction is obtained, further improvements to lower the image gradation are still desirable from the side of the composition of the thermal recording element.
- Apart from the need of a relatively low image gradation in continuous tone reproduction it has been found experimentally by us that the "banding" structure in the image becomes less visible when lowering the gradation of the image reproduction. Banding is a phenomenon characterized by the presence in the thermographic image of parallel stripes of different optical density in the print direction and is typical for the use of thermal printheads containing an array of geometrically juxtaposed heating resistors that may show a spread in resistance value and/or contact-pressure with the recording material.
- It is an object of the present invention to provide a direct thermal imaging process operating with a thermal printhead in conjunction with a heat-sensitive recording material capable of yielding images with maximum density higher than 2.5 and gradation sufficiently low for continuous tone reproduction as is needed e.g. in portrait reproduction for identification documents and in the medical diagnostic field based on images produced by e.g. radiography ultrasound or nuclear magnetic resonance (NMR) signals.
- It is a further object of the present invention to provide a direct thermal imaging process operating with a thermal printhead in conjunction with a heat-sensitive recording material capable of yielding images substantially free from banding structure.
- In accordance with the present invention a direct thermal imaging process is provided wherein a non-photosensitive direct thermal recording material is heated dot-wise, and said direct thermal recording material comprises an imaging layer containing uniformly distributed in a film-forming polymeric binder (i) one or more substantially light-insensitive organic silver salts, said silver salt(s) being uniformly in thermal working relationship with (ii) one or more organic reducing agents therefor, however neither including 3,5-dihydroxybenzoic acid as acidic reagent nor di-tert-butyl-p-cresol as a sole reducing agent, characterized in that said imaging layer contains at least one polycarboxylic acid and/or anhydride thereof in a molar percentage of at least 20 with respect to said silver salt(s).
- Said mole percentage is preferably in the range of 20 to 30.
- By "thermal working relationship" is meant here that said substantially light-insensitive silver salt and said organic reducing agent can react by means of heat to form metallic silver. For that purpose said ingredients (i) and (ii) may be present in the same binder-containing layer or in different layers wherefrom by heat they can come into reactive contact with each other, e.g. by diffusion or sublimation.
- For evaluating the tone reproduction capabilities of a direct thermal recording material the numerical gradation value (NGV) corresponding with the quotient of the following fraction : (2.5 - 0.1)/(E2.5 - Eo.i) is determined; herein E2.5 is the minimal energy in Joule applied in a dot area of 87 /1.m x 87 /1.m of the recording material that obtains by said energy an optical density value of 2.5, and Eo., is the maximal energy in Joule applied in a dot area of the recording material that obtains by said energy an optical density value of 0.1. Said optical density values are values above the inherent optical density of the "unheated" recording material having always already some optical density by the inherent optical density of the imaging layer and its support.
- In the obtaining of optical densities 0.1 to 2.5 on the recording material solid area are printed with a thermal head printer developed for thermosensitometric measurement purposes and having distinct groups of micro-resistors being arranged in succession along the width of the printhead array. From group to group said resistors receive a linearly increasing amount of electrical energy within the line time of the printer. The input of electrical energy per group of resistors is controlled by linearly increasing the period of time from group to group wherein a constant current at constant voltage is applied, said current and voltage being kept constant over the whole printing period.
- By definition the line time is the time needed for printing one single line with the thermal head. In the here for thermosensitometric purposes applied thermal head printer the line time is a period of time of 32 ms wherein the imaging material with respect to the print array travels a distance of one pixel length, viz. 87 µm.
- The continuous tone reproduction capability of a heat-sensitive imaging material used according to the present invention is favoured by a relatively high binder to silver salt weight ratio in the imaging layer. Preferably said ratio is in the range of 1/2 to 6/1, and more preferably from 1/1 to 4/1.
- Substantially light-insensitive organic silver salts particularly suited for use in a direct thermal recording material according to the present invention are silver salts of aliphatic carboxylic acids known as fatty acids, wherein the aliphatic carbon chain has preferably at least 12 C-atoms, e.g. silver laurate, silver palmitate, silver stearate, silver hydroxystearate, silver oleate and silver behenate, which silver salts are also called "silver soaps". Modified aliphatic carboxylic acids with thioether group as described e.g. in GB-P 1,111,492 and other organic silver salts as described in GB-P 1,439,478, e.g. silver benzoate and silver phthalazinone, may be used likewise to produce a thermally developable silver image. Further are mentioned silver imidazolates and the substantially light-insensitive inorganic or organic silver salt complexes described in US-P 4,260,677.
- Organic reducing agents suitable for use according to the present invention, i.e. for the reduction of substantially light-insensitive organic silver salts, are aromatic di- and tri-hydroxy compounds having at least two hydroxy groups in ortho- or para-position on the same aromatic nucleus, e.g. benzene nucleus, more particularly e.g. hydroquinone and substituted hydroquinones, catechol, pyrogallol, gallic acid and gallic acid esters. Particularly useful are polyhydroxy spiro-bis-indane compounds, especially these corresponding to the following general formula:
- R10 represents hydrogen or alkyl, e.g. methyl or ethyl, each of R11 and R12 (same or different) represents H, an alkyl group, e.g. methyl, ethyl or propyl, an alkenyl group or a cycloalkyl group, e.g. cyclohexyl group, or R11 and R12 together represent the atoms necessary to close a homocyclic non-aromatic ring, e.g. a cylohexyl ring,
- each of R13 and R14 (same or different) represents H, an alkyl group, e.g. methyl, ethyl or propyl, an alkenyl group or a cycloalkyl group, e.g. cyclohexyl group, or R13 and R14 together represent the atoms necessary to close a homocyclic non-aromatic ring, e.g. cyclohexyl,
- each of Z1 and Z2 (same or different) represents the atoms necessary to close an aromatic ring or ring system, e.g. benzene ring, substituted with at least two hydroxyl groups in ortho- or para-position and optionally further substituted with at least one hydrocarbon group, e.g an alkyl or aryl group.
- In particular are mentioned the polyhydroxy-spiro-bis-indane compounds described in US-P 3,440,049 as photographic tanning agent, more especially 3.3,3',3'-tetramethyl-5,6,5',6'-tetrahydroxy-1,1'-spiro-bis-indane (called indane I) and 3,3,3',3'-tetramethyl-4,6,7,4',6',7'-hexahydroxy-1,1'-spiro-bis-indane (called indane II). Indane is also known under the name hydrindene.
- Preferred are catechol-type reducing agents, by which is meant reducing agents containing at least one benzene nucleus with two hydroxy groups (-OH) in ortho-position e.g. catechol, 3- (3,4-dihydroxyphenyl) propionic acid, 1,2-dihydroxybenzoic acid, gallic acid and esters e.g. methyl gallate, ethyl gallate, propyl gallate, tannic acid, and 3,4-dihydroxy-benzoic acid esters.
- The above mentioned reducing agents being considered as primary or main reducing agents may be used in conjunction with so-called auxiliary reducing agents. Such auxiliary reducing agents are e.g. sterically hindered phenols, that on heating become reactive partners in the reduction of the substantially light-insensitive silver salt such as silver behenate, or are bisphenols, e.g. of the type described in US-P 3,547,648. The auxiliary reducing agents may be present in the imaging layer or in a polymeric binder layer adjacent thereto.
- In particular the presence of polycarboxylic acid(s) and/or anhydrides thereof in thermal working relationship with the substantially light-insensitive silver salt has an image gradation-lowering effect as can be learned from the Examples.
- The polycarboxylic acid may be aliphatic (saturated as well as unsaturated aliphatic and likewise cycloaliphatic) as well as an aromatic polycarboxylic acid. These acids may be substituted e.g. with alkyl, hydroxyl, nitro or halogen. They may be used in anhydride form or partially esterified on the condition that at least two free carboxylic acids remain or are available in the heat recording step.
- Particularly suitable are saturated aliphatic dicarboxylic acids containing at least 4 carbon atoms, e.g. : succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, nonane-dicarboxylic acid, decane-dicarboxylic acid, undecane-dicarboxylic acid.
- Suitable unsaturated dicarboxylic acids are : maleic acid, citraconic acid, itaconic acid and aconitic acid. A particularly effectively gradation lowering substituted polycarboxylic acid is citric acid, and derivative thereof acetonedicarboxylic acid and further iso-citric acid and a-ketoglutaric acid.
- Preferred aromatic polycarboxylic acids are ortho-phthalic acid and 3-nitro-phthalic acid, tetrachlorophthalic acid, mellitic acid, pyromellitic acid and trimellitic acid and the anhydrides thereof.
- The silver image density depends on the coverage of said substantially light-insensitive silver salts in combination with said polycarboxylic acids and reducing agent(s) and has to be preferably such that, on heating above 120 °C, an optical density of at least 2.5 can be obtained.
- The thickness of the imaging layer is preferably in the range of 5 to 50 µm.
- According to a special embodiment said substantially light-insensitive organic silver salt and said organic reducing agent are present in different layers wherefrom by heat they can come into reactive contact with each other.
- The film-forming water-insoluble polymeric binder of the imaging layer of the present direct thermal recording material is preferably a thermoplastic resin or mixture of such resins, wherein the silver salt can be dispersed homogeneously. For that purpose all kinds of natural, modified natural or synthetic water-insoluble resins may be used, e.g. cellulose derivatives such as ethylcellulose. cellulose esters, e.g. cellulose nitrate, polymers derived from a,;8-ethy!enica!!y unsaturated compounds such as polyvinyl chloride, after-chlorinated polyvinyl chloride, copolymers of vinyl chloride and vinylidene chloride, copolymers of vinyl chloride and vinyl acetate, polyvinyl acetate and partially hydrolyzed polyvinyl acetate, polyvinyl acetals that are made from polyvinyl alcohol as starting material in which only a part of the repeating vinyl alcohol units may have reacted with an aldehyde, preferably polyvinyl butyral, copolymers of acrylonitrile and acrylamide, polyacrylic acid esters, polymethacrylic acid esters and polyethylene or mixtures thereof.
- A particularly suitable polyvinyl butyral containing a minor amount of vinyl alcohol units is marketed under the tradename BUTVAR B79 of Monsanto USA and provides a good adherence to paper and properly subbed polyester supports.
- The layer containing the organic silver salt is commonly coated from an organic solvent containing the binder in dissolved form.
- The binder of the imaging layer may be combined with waxes or "heat solvents" also called "thermal solvents" or "thermosolvents" improving the reaction speed of the redox-reaction at elevated temperature.
- By the term "heat solvent" in this invention is meant a non-hydrolyzable organic material which is in solid state in the recording layer at temperatures below 50 ° C but becomes a plasticizer for the recording layer in the heated region and/or liquid solvent for at least one of the redox-reactants, e.g. the reducing agent for the organic silver salt, at a temperature above 60 ° C. Useful for that purpose are a polyethylene glycol having a mean molecular weight in the range of 1,500 to 20,000 described in US-P 3,347,675. Further are mentioned compounds such as urea, methyl sulfonamide and ethylene carbonate being heat solvents described in US-P 3,667,959, and compounds such as tetrahydro-thiophene-1,1-dioxide, methyl anisate and 1,10-decanediol being described as heat solvents in Research Disclosure, December 1976, (item 15027) pages 26-28. Still other examples of heat solvents have been described in US-P 3,438,776, and 4,740,446, and in published EP-A 0 119 615 and 0 122 512 and DE-A 3 339 810.
- In order to obtain a neutral black image tone in the higher densities and neutral grey in the lower densities the recording layer contains in admixture with said organic silver salt and reducing agents a so-called toning agent known from thermography or photo-thermography.
- Suitable toning agents are the phthalimides and phthalazinones within the scope of the general formulae described in US-P 4,082,901. Further reference is made to the toning agents described in US-P 3,074,809, 3,446,648 and 3,844,797. Other particularly useful toning agents are the heterocyclic toner compounds of the benzoxazine dione or naphthoxazine dione type within the scope of following general formula :
- X represents O or N-alkyl;
- each of R1, R2, R3 and R4 (same or different) represents hydrogen, alkyl, e.g. C1-C20 alkyl, preferably C1-C4 alkyl, cycloalkyl e.g. cyclopentyl or cyclohexyl alkoxy, preferably methoxy or ethoxy, alkylthio with preferably up to 2 carbon atoms, hydroxy, dialkylamino of which the alkyl groups have preferably up to 2 carbon atoms or halogen, preferably chlorine or bromine; or R1 and R2 or R2 and R3 represent the ring members required to complete a fused aromatic ring, preferably a benzene ring, or R3 and R4represent the ring members required to complete a fused aromatic aromatic or cyclohexane ring. Toners within the scope of said general formula are described in GB-P 1,439,478 and US-P 3,951,660.
- A toner compound particularly suited for use in combination with polyhydroxy benzene reducing agents is 3,4-dihydro-2,4-dioxo-1,3,2H-benzoxazine described in US-P 3,951,660.
- In addition to said ingredients the imaging layer may contain other additives such as free fatty acids, antistatic agents, e.g. non-ionic antistatic agents including a fluorocarbon group as e.g. in FaC(CF2)sCONH-(CH2CH20)-H, ultraviolet light absorbing compounds, white light reflecting and/or ultraviolet radiation reflecting pigments, and/or optical brightening agents.
- The support for the heat-sensitive recording material according to the present invention is preferably a thin flexible carrier made e.g. from paper, polyethylene coated paper or transparent resin film, e.g. made of a cellulose ester, e.g. cellulose triacetate, polypropylene polycarbonate or polyester, e.g. polyethylene terephthalate. The support may be in sheet, ribbon or web form and subbed if need be to improve the adherence to the thereon coated heat-sensitive imaging layer.
- The coating of the imaging layer may proceed by any coating technique e.g. as described in Modern Coating and Drying Technology, edited by Edward D. Cohen and Edgar B. Gutoff, (1992) VCH Publishers Inc. 220 East 23rd Street, Suite 909 New York, NY 10010, U.S.A.
- Direct thermal imaging can be used for both the production of transparencies and reflection type prints. Such means that the support may be transparent or opaque, e.g. the support has a white light reflecting aspect. For example, a paper base is used which may contain white light reflecting pigments, optionally also applied in an interlayer between the recording layer and said base. In case a transparent base is used, said base may be colourless or coloured, e.g. has a blue colour.
- In the hard copy field recording materials on white opaque base are used, whereas in the medical diagnostic field black-imaged transparencies find wide application in inspection techniques operating with a light box.
- The recording materials of the present invention are particularly suited for use in thermographic recording techniques operating with thermal print-heads. Suitable thermal printing heads are e.g. a Fujitsu Thermal Head (FTP-040 MCS001), a TDK Thermal Head F415 HH7-1089, and a Rohm Thermal Head KE 2008-F3.
- In a special embodiment in order to avoid direct contact of the printheads with the outermost layer of the recording material, the imagewise heating of the recording material with said printheads proceeds through a contacting but removable resin sheet or web wherefrom during said heating no transfer of imaging material can take place.
- The imaging layer when being the outermost layer may contain hydrophilic finely divided (colloidal) optically transparent inert inorganic pigments such as transparent colloidal silica not masking the lateron formed silver image.
- In an other embodiment in order to improve resistance against abrasion which may occur by frictional contact with the printheads, the imaging layer is coated with a protective coating and/or contains substances having anti-sticking properties e.g. (a) lubricating agent(s). Thus, the outermost layer of the heat-sensitive recording material according to the present invention may comprise a dissolved lubricating material and/or a dispersed particulate lubricating material, e.g. talc particles, optionally protruding from the outermost layer. Examples of suitable lubricating materials are a surface active agent, a liquid lubricant, a solid lubricant or mixtures thereof.
- The surface active agents may be any agents known in the art such as carboxylates, sulfonates, phosphates, aliphatic amine salts, aliphatic quaternary ammonium salts, polyoxyethylene alkyl ethers. polyethylene glycol fatty acid esters, fluoroalkyl C2-C2o aliphatic acids. Examples of liquid lubricants include silicone oils, synthetic oils, saturated hydrocarbons and glycols. Examples of solid organic lubricants include various higher alcohols such as stearyl alcohol, fatty acids and fatty acid esters.
- As examples of outermost slipping layers are mentioned layers made from a styrene-acrylonitrile copolymer or a styrene-acrylonitrile-butadiene copolymer or binder mixture hereof containing as lubricant in an amount of 0.1 to 10 % by weight with respect to said binder(s) a polysiloxane-polyether copolymer or polytetrafluoroethylene or a mixture hereof.
- Another suitable outermost slipping layer may be obtained by coating a solution of at least one silicon compound and a substance capable of forming during the coating procedure a polymer having an inorganic backbone which is an oxide of a group IVa or IVb element as described in published European patent application 0554576.
- Other suitable protective layer compositions that may be applied as slipping (anti-stick) coating are described e.g. in published European patent applications (EP-A) 0 501 072 and 0 492 411. The following examples illustrate the present invention. The percentages, parts and ratios are by weight unless otherwise indicated.
-
- For the purpose of determining tone (grey value range) reproduction capabilities on the recording materials solid area are printed with a thermal head printer developed for thermosensitometric measurement purposes and having distinct groups of micro-resistors being arranged in succession along the width of the printhead array. From group to group said resistors receive a linearly increasing amount of electrical energy within the line time of the printer.
- The input of electrical energy per group of resistors is controlled by linearly increasing the period of time from group to group wherein a constant current at constant voltage is applied, said current and voltage being kept constant over the whole printing period. In the applied thermal head printer the line time is a period of time of 32 ms wherein the imaging material with respect to the print array travels a distance of a pixel length of 87 µm.
- During printing the print head was separated from the imaging layer by a thin intermediate material and made contact with the slipping layer of a separatable intermediate 5 µm thick polyethylene terephthalate ribbon being coated in consecutive order with a subbing layer, heat-resistant layer and said slipping layer (anti-friction layer) giving the ribbon a total thickness of 6 µm.
- Said subbing layer, also called primer layer, is a layer of a copolyester being a polycondensation product of ethylene glycol, adipic acid, neopentyl glycol, terephthalic acid, isophthalic acid and glycerol. On this subbing layer, a heat-resistant layer has been coated from methyl ethyl ketone containing a polycarbonate having the following structure and being applied at a coverage of 0.5 g/m2 :
- On top of said polycarbonate layer an outermost slipping layer of polyether modified polydimethylsiloxane (TEGOGLIDE 410, tradename of T.H. Goldschmidt) has been applied at 0.07 g/m2 from isopropanol.
- For evaluating the tone reproduction capabilities of the above thermosensitive recording materials A1 to A6 the numerical gradation value (NGV) corresponding with the quotient of the fraction (2.5 - 0.1 )/(E2.5 -Eo.i) was determined; herein E2.5 is the energy in Joule applied in a dot area of 87 µm x 87 µm of the imaging layer that obtains by said energy an optical density value of 2.5, and Eo., is the energy in Joule applied in a dot area of the imaging layer material that obtains by said energy an optical density value of 0.1. The applied energy in Joule is actually the electrical input energy measured for each resistor of the thermal head.
-
- The recording materials A5 and A6 are invention materials, the other ones are comparative test materials.
- As can be learned from said Table 1 a substantial lowering of gradation expressed by said numerical gradation value (NGV) is obtained with recording materials containing NPA and silver behenate in a mole/mole ratio of 0.20 and more.
-
-
- The recording materials B4 and B5 are invention materials whereas the recording materials B1 to B3 5 are "non-invention" comparative test materials.
-
-
- The recording material C3 is an invention material whereas the recording materials C1 and C2 are "non-invention" comparative test materials.
-
-
- The recording material D3 is an invention material whereas the recording materials D1 and D2 are "non-invention" comparative test materials.
-
- Printing and evaluation proceeded as described in Example 1.
-
- The recording material E4 is an invention materials, the other ones are "non-invention" comparative test materials.
- As can be learned from said Table 5 benzoic acid being a mono-carboxylic acid even when being used in a same equivalent amount of carboxylic acid groups as the ortho-phthalic acid does not yield a lowering of the gradation as expressed by numerical gradation value (NGV).
-
-
- The recording material E1 and E2 are invention materials.
-
- Printing and evaluation proceeded as described in Example 1.
-
- The recording materials G1 to G3 are invention materials.
-
- Printing and evaluation proceeded as described in Example 1.
-
- The maximum optical density (Dmax) obtainable with di-tert-butyl-p-cresol or 3,5-dihydroxy benzoic acid as sole reducing agents is too low for defining the numerical gradation value NGV (see non-invention recording materials X2, X3, X5 and X6). The optical background density, also called minimum density (Dmin) is practically the same for all of the recording materials X1-X6.
Claims (12)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP95201340A EP0687572B1 (en) | 1994-06-15 | 1995-05-23 | Thermosensitive recording method |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP94201717 | 1994-06-15 | ||
EP94201717 | 1994-06-15 | ||
EP95201340A EP0687572B1 (en) | 1994-06-15 | 1995-05-23 | Thermosensitive recording method |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0687572A1 true EP0687572A1 (en) | 1995-12-20 |
EP0687572B1 EP0687572B1 (en) | 1997-08-20 |
Family
ID=26136341
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP95201340A Expired - Lifetime EP0687572B1 (en) | 1994-06-15 | 1995-05-23 | Thermosensitive recording method |
Country Status (1)
Country | Link |
---|---|
EP (1) | EP0687572B1 (en) |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0782043A1 (en) | 1995-12-27 | 1997-07-02 | Agfa-Gevaert N.V. | Thermographic recording material which improved tone reproduction |
WO1998052100A1 (en) * | 1997-05-13 | 1998-11-19 | Imation Corp. | Gallic acid as a laser direct thermal developer |
EP0901040A1 (en) * | 1997-09-03 | 1999-03-10 | Agfa-Gevaert N.V. | Substiantially light-insensitive thermographic recording material with improved stability and image-tone |
US5922528A (en) * | 1998-03-20 | 1999-07-13 | Eastman Kodak Company | Thermographic imaging element |
US5928855A (en) * | 1998-03-20 | 1999-07-27 | Eastman Kodak Company | Thermographic imaging element |
US5928856A (en) * | 1998-03-20 | 1999-07-27 | Eastman Kodak Company | Thermographic imaging element |
US5994052A (en) * | 1998-03-20 | 1999-11-30 | Eastman Kodak Company | Thermographic imaging element |
US6066445A (en) * | 1996-12-19 | 2000-05-23 | Eastman Kodak Company | Thermographic imaging composition and element comprising said composition |
EP1006000A1 (en) * | 1998-11-30 | 2000-06-07 | Agfa-Gevaert N.V. | Label-printing process for direct thermal imaging materials including an organic silver salt |
EP1059560A1 (en) * | 1999-06-04 | 2000-12-13 | Agfa-Gevaert N.V. | Thermographic recording material with improved image tone |
US6244766B1 (en) | 1998-11-30 | 2001-06-12 | Agfa-Gevaert | Label-printing process for substantially light-insensitive elongated materials including an organic silver salt |
EP1158355A1 (en) * | 2000-05-25 | 2001-11-28 | Agfa-Gevaert N.V. | Thermographic recording material with improved image tone |
Citations (27)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3074809A (en) | 1959-10-26 | 1963-01-22 | Minnesota Mining & Mfg | Heat-sensitive copying-paper |
US3347675A (en) | 1965-06-18 | 1967-10-17 | Eastman Kodak Co | Solid homogeneous compositions containing silver halide processing agents |
GB1111492A (en) | 1964-08-14 | 1968-04-24 | Agfa Gevaert Ag | Photographic material |
US3438776A (en) | 1964-12-28 | 1969-04-15 | Eastman Kodak Co | Non-aqueous silver halide photographic process |
US3440049A (en) | 1966-06-03 | 1969-04-22 | Du Pont | Polyhydroxy-spiro-bis-indane photographic tanning agent |
US3446648A (en) | 1965-09-27 | 1969-05-27 | Minnesota Mining & Mfg | Reactive copying sheet and method of using |
GB1161777A (en) * | 1966-02-21 | 1969-08-20 | Fuji Photo Film Co Ltd | Thermally Developable Light-sensitive Elements |
GB1163187A (en) * | 1966-06-06 | 1969-09-04 | Fuji Photo Film Co Ltd | Improvements in or relating to Light-Sensitive, Heat Developable, Photographic Material |
US3547648A (en) | 1968-01-26 | 1970-12-15 | Minnesota Mining & Mfg | Copy-sheet |
US3667959A (en) | 1970-05-01 | 1972-06-06 | Eastman Kodak Co | Photosensitive and thermosensitive element,compositions and process |
US3844797A (en) | 1972-04-27 | 1974-10-29 | Agfa Gevaert | Photosensitive recording material |
US3951660A (en) | 1972-12-16 | 1976-04-20 | Agfa-Gevaert, A.G. | Dry copying material |
GB1439478A (en) | 1972-12-16 | 1976-06-16 | Agfa Gevaert Ag | Dry copying material |
US4082901A (en) | 1973-04-04 | 1978-04-04 | Agfa-Gevaert N.V. | Thermographic material |
US4260677A (en) | 1976-03-12 | 1981-04-07 | Minnesota Mining And Manufacturing Company | Thermographic and photothermographic materials having silver salt complexes therein |
DE3339810A1 (en) | 1982-11-05 | 1984-05-10 | Fuji Photo Film Co., Ltd., Minami Ashigara, Kanagawa | HEAT-DEVELOPABLE COLOR PHOTOGRAPHIC MATERIAL |
EP0119615A2 (en) | 1983-03-16 | 1984-09-26 | Fuji Photo Film Co., Ltd. | Dry image-forming process |
EP0122512A2 (en) | 1983-03-25 | 1984-10-24 | Fuji Photo Film Co., Ltd. | Dry image-forming process and material therefor |
US4740446A (en) | 1985-11-12 | 1988-04-26 | Agfa Gevaert Aktiengesellschaft | Heat development process and color photographic recording material suitable for this process |
US4904572A (en) | 1988-04-18 | 1990-02-27 | Polaroid Corporation | Thermographic recording materials and coating composition therefor |
US4912083A (en) | 1989-06-20 | 1990-03-27 | Eastman Kodak Company | Infrared absorbing ferrous complexes for dye-donor element used in laser-induced thermal dye transfer |
US4948777A (en) | 1989-06-16 | 1990-08-14 | Eastman Kodak Company | Infrared absorbing bis(chalcogenopyrylo)polymethine dyes for dye-donor element used in laser-induced thermal dye transfer |
EP0486246A1 (en) * | 1990-11-14 | 1992-05-20 | Canon Kabushiki Kaisha | Heat-developable photosensitive material |
EP0492411A1 (en) | 1990-12-21 | 1992-07-01 | Diafoil Hoechst Co., Ltd | Thermal ink transfer printing material |
EP0501072A1 (en) | 1991-02-25 | 1992-09-02 | Minnesota Mining And Manufacturing Company | Dye thermal transfer sheet with anti-stick coating |
EP0554576A1 (en) | 1992-01-28 | 1993-08-11 | Agfa-Gevaert N.V. | Dye-donor element for use according to thermal dye sublimation transfer |
EP0622217A1 (en) | 1993-04-27 | 1994-11-02 | Agfa-Gevaert N.V. | Method for making an image using a direct thermal imaging element |
-
1995
- 1995-05-23 EP EP95201340A patent/EP0687572B1/en not_active Expired - Lifetime
Patent Citations (27)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3074809A (en) | 1959-10-26 | 1963-01-22 | Minnesota Mining & Mfg | Heat-sensitive copying-paper |
GB1111492A (en) | 1964-08-14 | 1968-04-24 | Agfa Gevaert Ag | Photographic material |
US3438776A (en) | 1964-12-28 | 1969-04-15 | Eastman Kodak Co | Non-aqueous silver halide photographic process |
US3347675A (en) | 1965-06-18 | 1967-10-17 | Eastman Kodak Co | Solid homogeneous compositions containing silver halide processing agents |
US3446648A (en) | 1965-09-27 | 1969-05-27 | Minnesota Mining & Mfg | Reactive copying sheet and method of using |
GB1161777A (en) * | 1966-02-21 | 1969-08-20 | Fuji Photo Film Co Ltd | Thermally Developable Light-sensitive Elements |
US3440049A (en) | 1966-06-03 | 1969-04-22 | Du Pont | Polyhydroxy-spiro-bis-indane photographic tanning agent |
GB1163187A (en) * | 1966-06-06 | 1969-09-04 | Fuji Photo Film Co Ltd | Improvements in or relating to Light-Sensitive, Heat Developable, Photographic Material |
US3547648A (en) | 1968-01-26 | 1970-12-15 | Minnesota Mining & Mfg | Copy-sheet |
US3667959A (en) | 1970-05-01 | 1972-06-06 | Eastman Kodak Co | Photosensitive and thermosensitive element,compositions and process |
US3844797A (en) | 1972-04-27 | 1974-10-29 | Agfa Gevaert | Photosensitive recording material |
GB1439478A (en) | 1972-12-16 | 1976-06-16 | Agfa Gevaert Ag | Dry copying material |
US3951660A (en) | 1972-12-16 | 1976-04-20 | Agfa-Gevaert, A.G. | Dry copying material |
US4082901A (en) | 1973-04-04 | 1978-04-04 | Agfa-Gevaert N.V. | Thermographic material |
US4260677A (en) | 1976-03-12 | 1981-04-07 | Minnesota Mining And Manufacturing Company | Thermographic and photothermographic materials having silver salt complexes therein |
DE3339810A1 (en) | 1982-11-05 | 1984-05-10 | Fuji Photo Film Co., Ltd., Minami Ashigara, Kanagawa | HEAT-DEVELOPABLE COLOR PHOTOGRAPHIC MATERIAL |
EP0119615A2 (en) | 1983-03-16 | 1984-09-26 | Fuji Photo Film Co., Ltd. | Dry image-forming process |
EP0122512A2 (en) | 1983-03-25 | 1984-10-24 | Fuji Photo Film Co., Ltd. | Dry image-forming process and material therefor |
US4740446A (en) | 1985-11-12 | 1988-04-26 | Agfa Gevaert Aktiengesellschaft | Heat development process and color photographic recording material suitable for this process |
US4904572A (en) | 1988-04-18 | 1990-02-27 | Polaroid Corporation | Thermographic recording materials and coating composition therefor |
US4948777A (en) | 1989-06-16 | 1990-08-14 | Eastman Kodak Company | Infrared absorbing bis(chalcogenopyrylo)polymethine dyes for dye-donor element used in laser-induced thermal dye transfer |
US4912083A (en) | 1989-06-20 | 1990-03-27 | Eastman Kodak Company | Infrared absorbing ferrous complexes for dye-donor element used in laser-induced thermal dye transfer |
EP0486246A1 (en) * | 1990-11-14 | 1992-05-20 | Canon Kabushiki Kaisha | Heat-developable photosensitive material |
EP0492411A1 (en) | 1990-12-21 | 1992-07-01 | Diafoil Hoechst Co., Ltd | Thermal ink transfer printing material |
EP0501072A1 (en) | 1991-02-25 | 1992-09-02 | Minnesota Mining And Manufacturing Company | Dye thermal transfer sheet with anti-stick coating |
EP0554576A1 (en) | 1992-01-28 | 1993-08-11 | Agfa-Gevaert N.V. | Dye-donor element for use according to thermal dye sublimation transfer |
EP0622217A1 (en) | 1993-04-27 | 1994-11-02 | Agfa-Gevaert N.V. | Method for making an image using a direct thermal imaging element |
Non-Patent Citations (5)
Title |
---|
A.S.DIAMOND: "Handbook of Imaging Materials", 1991, M. DEKKER INC., NEW YORK, pages: 498 - 499 |
CHEMICAL ABSTRACTS, vol. 91, no. 18, 29 October 1979, Columbus, Ohio, US; abstract no. 149477x, A.KORCZYNSKI ET AL.: "HEAT-SENSITIVE PAPER FOR OBTAINING BLACK-AND-WHITE REPRODUCTIONS." page 587; * |
E.D.COHEN, E.B.GUTOFF: "Modern Coating and Drying Technology", 1992, VCH PUBLISHERS INC., NEW YORK |
F. GRANZER, E. MOISAR: "Proceedings of the International Congress of Photographic Science Koeln", 1986, article "Progress in Basic Principles of Imaging Systems", pages: 622 |
K.I. JACOBSON, R.E. JACOBSON: "Imaging Systems", 1976, THE FOCAL PRESS, LONDON & NEW YORK |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0782043A1 (en) | 1995-12-27 | 1997-07-02 | Agfa-Gevaert N.V. | Thermographic recording material which improved tone reproduction |
US6066445A (en) * | 1996-12-19 | 2000-05-23 | Eastman Kodak Company | Thermographic imaging composition and element comprising said composition |
WO1998052100A1 (en) * | 1997-05-13 | 1998-11-19 | Imation Corp. | Gallic acid as a laser direct thermal developer |
EP0901040A1 (en) * | 1997-09-03 | 1999-03-10 | Agfa-Gevaert N.V. | Substiantially light-insensitive thermographic recording material with improved stability and image-tone |
US5994052A (en) * | 1998-03-20 | 1999-11-30 | Eastman Kodak Company | Thermographic imaging element |
US5928856A (en) * | 1998-03-20 | 1999-07-27 | Eastman Kodak Company | Thermographic imaging element |
US5928855A (en) * | 1998-03-20 | 1999-07-27 | Eastman Kodak Company | Thermographic imaging element |
US5922528A (en) * | 1998-03-20 | 1999-07-13 | Eastman Kodak Company | Thermographic imaging element |
EP1006000A1 (en) * | 1998-11-30 | 2000-06-07 | Agfa-Gevaert N.V. | Label-printing process for direct thermal imaging materials including an organic silver salt |
WO2000032403A1 (en) * | 1998-11-30 | 2000-06-08 | Agfa-Gevaert | Label-printing process for substantially light-insensitive elongated imaging materials including an organic silver salt |
US6244766B1 (en) | 1998-11-30 | 2001-06-12 | Agfa-Gevaert | Label-printing process for substantially light-insensitive elongated materials including an organic silver salt |
EP1059560A1 (en) * | 1999-06-04 | 2000-12-13 | Agfa-Gevaert N.V. | Thermographic recording material with improved image tone |
EP1158355A1 (en) * | 2000-05-25 | 2001-11-28 | Agfa-Gevaert N.V. | Thermographic recording material with improved image tone |
Also Published As
Publication number | Publication date |
---|---|
EP0687572B1 (en) | 1997-08-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5527758A (en) | Direct thermal imaging process with improved tone reproduction | |
US5599647A (en) | New toning agents for thermographic and photothermographic materials and process | |
EP0692733B1 (en) | Direct thermal recording process | |
EP0687572B1 (en) | Thermosensitive recording method | |
US5682194A (en) | Direct thermal imaging | |
US5863859A (en) | Heat-sensitive material suited for use in direct thermal recording | |
US5559075A (en) | Recording material for direct thermal imaging | |
EP0903625B1 (en) | Thermographic recording materials | |
US5582953A (en) | Direct thermal recording process | |
EP0752616B1 (en) | New toning agents for thermographic and photothermographic materials and process | |
EP0599369B1 (en) | Thermosensitive recording material | |
US5817598A (en) | Thermal image forming process with improved slip performance therein | |
US5527757A (en) | Recording material for direct thermal imaging | |
US5885765A (en) | Thermographic recording material with improved tone reproduction | |
US5637550A (en) | Heat-sensitive recording material having image-stabilization properties | |
EP0782043B1 (en) | Thermographic recording material which improved tone reproduction | |
EP0809144A1 (en) | Substantially non-photosensitive thermographic recording material with improved stability and image-tone | |
EP0730196B1 (en) | Heat-sensitive recording material having image-stabilization properties | |
EP0775592B1 (en) | Thermal image-forming process | |
US5759953A (en) | Thermographic recording material with improved slip properties | |
EP0685760B1 (en) | Thermosensitive recording material | |
US6306573B1 (en) | Production process for a benzotriazole-containing thermographic recording material with improved stability and image-tone | |
US5854174A (en) | Substantially non-photosensitive thermographic recording material with improved stability and image-tone | |
EP0663301B1 (en) | Recording material for a direct thermal imaging process | |
EP1006406B1 (en) | Black and white thermographic recording material with improved stability to direct sunlight |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): BE DE FR GB NL |
|
17P | Request for examination filed |
Effective date: 19960620 |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
17Q | First examination report despatched |
Effective date: 19970129 |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): BE DE FR GB NL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 19970820 Ref country code: BE Effective date: 19970820 |
|
REF | Corresponds to: |
Ref document number: 69500570 Country of ref document: DE Date of ref document: 19970925 |
|
ET | Fr: translation filed | ||
NLV1 | Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act | ||
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
REG | Reference to a national code |
Ref country code: GB Ref legal event code: IF02 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: 732E |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: TP |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20140408 Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20140408 Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20140513 Year of fee payment: 20 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R071 Ref document number: 69500570 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: PE20 Expiry date: 20150522 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION Effective date: 20150522 |