EP0685576B1 - Electrode for electrolysis cell - Google Patents

Electrode for electrolysis cell Download PDF

Info

Publication number
EP0685576B1
EP0685576B1 EP95102062A EP95102062A EP0685576B1 EP 0685576 B1 EP0685576 B1 EP 0685576B1 EP 95102062 A EP95102062 A EP 95102062A EP 95102062 A EP95102062 A EP 95102062A EP 0685576 B1 EP0685576 B1 EP 0685576B1
Authority
EP
European Patent Office
Prior art keywords
recesses
electrode
electrode according
constructed
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP95102062A
Other languages
German (de)
French (fr)
Other versions
EP0685576A1 (en
Inventor
Robert Dr. Scannell
Bernd Dr. Busse
Helmut Vormwald
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
De Nora Deutschland GmbH
Original Assignee
Heraeus Elektrochemie GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Heraeus Elektrochemie GmbH filed Critical Heraeus Elektrochemie GmbH
Publication of EP0685576A1 publication Critical patent/EP0685576A1/en
Application granted granted Critical
Publication of EP0685576B1 publication Critical patent/EP0685576B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/02Electrodes; Manufacture thereof not otherwise provided for characterised by shape or form

Definitions

  • the invention relates to an electrode for electrolytic cells, in particular for mercury-chlor-alkali electrolytic cells with current leads via rods or current lead bolts and current distributors in the form of upright standing, spaced-apart flat profiles, the activated electrode parts of up to 2 of which are arranged on their lower edge with perpendicular to them mm thick, upright flat profiles are connected to vertical outer sides by welding, the activated electrode parts consisting of a larger number of individual elements than the current distributors, and the activated electrode parts being arranged with a gap of at least 2 mm to one another.
  • the problem of electrochemical conversion also plays an important role in membrane electrolysis cells, as can be seen from EP-PS 204 126;
  • the electrode parts adjacent to the membrane have recesses which enable improved electrochemical conversion due to the surface enlargement of the active electrode area and the gas removal.
  • the object of the invention is to design the electrodes or anodes for the chlor-alkali electrolysis cell in such a way that the gas removal is promoted from the area of the electrode gap and an interface between the anode and electrolyte in the area of the electrode gap which is as gas-free as possible is available; in addition, high energy utilization in electrolysis is to be achieved by means of low electrode voltage.
  • the recesses are U-shaped when viewed from above in cross section, with recesses in the form of a hollow cuboid in particular resulting in a large increase in the active surface area in the region of the side parts, so that there is rapid electrochemical conversion with improved efficiency.
  • Electrode elements are preferably used, the U-shaped recesses of which are made in the rolling process; An essential advantage is to be seen in the inexpensive method for producing a large number of such electrode elements, the rolled strand initially provided with recesses being broken down into the individual electrode elements by a cutting process. However, it is also possible to make the recesses by milling.
  • the electrode 1 consists of a plurality of rod-shaped electrode elements 2, which are provided on their side surfaces with recesses 3, and on their upper edge 4 are connected to current distributors 5 in the form of flat profiles by welding; on their lower edge, or in the area of their lateral surfaces 6, the electrode elements 2 have an electrocatalytic coating, which is symbolically provided with reference number 7.
  • the upper edges 8 of the rectangular profiles serving as current distributors 5 are connected to a main current distributor 9, which has a connection opening 10 for electrical and mechanical connection to a current supply bolt, not shown here; it is a so-called three-level electrode, which is known from DE-PS 29 49 495 and US-PS 43 64811. Since the side surfaces 11 are substantially larger than the base surfaces 12 of the recess, an enlarged outer surface surface of the electrode element 2 is available for the electrochemical conversion.
  • the ratio of base area to is in the range of 1: 1.5 to 1: 3, preferably 1: 2.
  • the rod-shaped electrode element 2 shown in detail has recesses 3 on its two side surfaces, which alternate with bulges 13 in a meandering manner, so that, seen in the cross section of the electrode element 2, a recess 3 is opposite a bulge 13; the ratio of the width of the recess b to the height of the recess h is in the range from 1: 2 to 1: 2.5, so that the total size of the side surfaces 11 that is available for the electrochemical conversion is significantly larger than the omitted base surfaces 12 the recess in the area of the surface of the lower edge 14 and upper edge 4 of the electrode element.
  • the electrocatalytic coating 7 is applied in the entire region of the lower edge 14, or the base surface facing the mercury, in the region of the lateral surfaces 6 of the bulges 13, the side surfaces 11 and the recess surfaces 15, it being additionally possible for the upper edge 4 of the electrode element to be included to provide electrocatalytic coating; however, it is also possible to apply the electrocatalytic coating only in the lower region of the lateral surfaces 6, side surfaces 11, bulges 13 and recesses 15 and the bottom surface in the region of the lower edge.
  • FIG. 2b shows sections of two adjacent electrode elements 2, between which a meandering electrode gap 17 is formed; Due to the meandering structure, there is not only an increase in the surface area of the active surface, but also a channeling effect for those that arise during the electrochemical reaction Gas bubbles so that a swirling of the gas bubbles within the electrolyte is largely avoided and a rapid removal of the gas bubbles is made possible.
  • the ratio of the depth t of the recesses 3 to the gap width s between the electrode elements 2 is in the range from 1: 2 to 1: 2.5.
  • the ratio of the depth u of the recess in the region of the lower edge 14 to the depth of the recess v in the region of the upper edge 4 of the recess in a ratio of 1: 1 , 8 to 2 lies.
  • the angle of inclination of the recess surface 15 to the vertical is in the range from 10 to 22 °, in a preferred embodiment approximately 15 °.
  • FIG. 4 shows a section of a rod-shaped electrode element 2 which has hollow cylindrical recesses 3, the recesses 3 and bulges 13 being arranged in a meandering manner, so that the respective recess 3 is opposite a bulge 13 at its lowest point.
  • the actual recesses 13 form hollow cylindrical segments, the secants 20 of which are predetermined by the upper edge 4 and lower edge 14 of the electrode elements.
  • the ratio of the secant length to the fictitious radius of the hollow cylinder is in the range of 1.6: 1.2.
  • FIG. 5 shows a detail of a rod-shaped electrode element 2, the recesses 3 of which are formed in the form of hollow cone segments, the recess surface 15 formed by a truncated cone in the region adjacent to the bulge 13 according to the cross section along line AB with the vertical having an angle in the range from 10 to 22 °, preferably forms 16 °.
  • an additional chimney effect to collect the gas bubbles in the lower region of the electrode and an accelerated removal of the gas bubbles instead.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Description

Die Erfindung betrifft eine Elektrode für Elektrolysezellen, insbesondere für Quecksilber-Chloralkali-Elektrolysezellen mit Stromzuführungen über Stäbe oder Stromzuführungsbolzen und Stromverteilern in Form von hochkant stehenden, mit Abstand zueinander angeordneten Flachprofilen, die an ihrer Unterkante mit senkrecht zu ihnen angeordneten aktivierten Elektrodenteilen aus bis zu 2 mm dicken, hochkant stehenden Flachprofilen mit vertikalen Außenseiten durch Verschweißen verbunden sind, wobei die aktivierten Elektrodenteile aus einer größeren Zahl von Einzelelementen bestehen als die Stromverteiler, und die aktivierten Elektrodenteile mit einem Spalt von wenigstens 2 mm zueinander angeordnet sind.The invention relates to an electrode for electrolytic cells, in particular for mercury-chlor-alkali electrolytic cells with current leads via rods or current lead bolts and current distributors in the form of upright standing, spaced-apart flat profiles, the activated electrode parts of up to 2 of which are arranged on their lower edge with perpendicular to them mm thick, upright flat profiles are connected to vertical outer sides by welding, the activated electrode parts consisting of a larger number of individual elements than the current distributors, and the activated electrode parts being arranged with a gap of at least 2 mm to one another.

Aus der US-PS 40 22 679 ist eine Elektrode für Quecksilber-Chloralkali-Elektrolysezellen mit Stromzuführungen über Stäbe oder Stromzuführungsbolzen bekannt, welche im Abstand zueinander angeordnete Flachprofile aufweist, die an ihrer Unterkante mit senkrecht zu ihnen angeordneten aktivierten Elektrodenteilen verbunden ist, wobei die aktivierten Elektrodenteile aus einer größeren Zahl von Einzelelementen bestehen, als die Stromfahrteile und die Einzelemente im Querschnitt gesehen eine sich verjüngende Unterkante aufweisen, die im wesentlichen halbkreisförmig ausgebildet ist; als problematisch erweist sich bei solchen kreis- bzw. halbkreisförmigen Ausgestaltungen die Abfuhr der bei der Elektrolyse entstehenden Gasblasen, da diese einerseits den Ionenaustausch im elektrolytischen Spalt zwischen den Halbkreisprofilen und der Quecksilberkathode behindern, andererseits keine rasche Abzugsmöglichkeit haben, so daß im unteren Bereich der Profilanode mit einer Art Gasblasen-polster gerechnet werden muß; weiterhin ist die Höhe der Aktivierungsbeschichtung auf den Elektroden verhältnismäßig hoch, so daß auch die vom Elektrodenspalt verhältnismäßig weit entfernten Bereiche mit edelmetallhaltigen Substanzen versehen sind, jedoch praktisch kaum noch zu elektrochemischen Umsetzung beitragen.From US-PS 40 22 679 an electrode for mercury-chlor-alkali electrolysis cells with current leads via rods or current lead bolts is known, which has spaced-apart flat profiles, which is connected at their lower edge to perpendicularly arranged activated electrode parts, the activated ones Electrode parts consist of a larger number of individual elements than the current parts and the individual elements have a tapering lower edge, seen in cross section, which is essentially semicircular; The removal of the gas bubbles produced during electrolysis proves to be problematic in the case of such circular or semicircular configurations, since on the one hand they hinder the ion exchange in the electrolytic gap between the semicircular profiles and the mercury cathode, and on the other hand they have no rapid possibility of removal, so that in the lower area of the profile anode a kind of gas bubble cushion must be expected; furthermore, the height of the activation coating on the electrodes is relatively high, so that the areas that are relatively far away from the electrode gap are also provided with substances containing precious metals, but practically no longer contribute to electrochemical conversion.

Weiterhin ist aus der US-PS 43 64 811 eine Anode für Quecksilber-Chloralkali-Elektrolysezellen mit Stromzuführung über einen Stab oder Bolzen bekannt, der mit aktivierten Elektrodenteilen aus Flachprofilen über der Stromverteilung dienenden und quer dazu verlaufenden Stromverteilern in Form von Rechteckprofilen verbunden ist; auch hier besteht die Gefahr der Bildung eines Gaspolsters im Elektrodenspalt, bzw. unterhalb der horizontal verlaufenden Unterkante der Elektrodenelemente, so daß eine rasche elektrochemische Umsetzung mit ausreichender Ionenzufuhr nicht möglich ist und die Umsetzung aufgrund der Gaserzeugung behindert wird; auch wenn eine günstige Stromverteilung über drei Leiterebenen mit optimal dimensionierten Flachprofilen hier möglich ist, stellt sich doch die Frage einer raschen elektro- chemischen Umsetzung im Elektrodenspalt und deren Behinderung durch Gasblasenerzeugung, bzw. Bildung eines Gaspolsters.Furthermore, from US-PS 43 64 811 an anode for mercury-chlor-alkali electrolysis cells with current supply via a rod or bolt is known, which is connected to activated electrode parts made of flat profiles above the current distribution and transverse current distributors in the form of rectangular profiles; here too there is a risk of a gas cushion being formed in the electrode gap or below the horizontally running lower edge of the electrode elements, so that rapid electrochemical conversion with sufficient ion supply is not possible and the conversion is hindered due to the gas generation; Even if a favorable current distribution over three conductor levels with optimally dimensioned flat profiles is possible here, the question arises of a rapid electrochemical conversion in the electrode gap and its hindrance due to gas bubble generation or the formation of a gas cushion.

Die Problematik der elektrochemischen Umsetzung spielt auch bei Membran-Elektrolysezellen eine wichtige Rolle, wie aus der EP-PS 204 126 zu entnehmen ist; um eine Behinderung des Stromtransports durch Gasblasen zu vermeiden und eine Verbesserung der energieausnutzung zu erzielen, weisen die der Membran benachbarten Elektrodenteile Ausnehmungen auf, die eine verbesserte elektrochemische Umsetzung aufgrund der Oberflächenvergrößerung des aktiven Elektrodenbereichs und der Gasabführung ermöglichen.The problem of electrochemical conversion also plays an important role in membrane electrolysis cells, as can be seen from EP-PS 204 126; In order to avoid a hindrance to the transport of electricity by gas bubbles and to achieve an improvement in energy efficiency, the electrode parts adjacent to the membrane have recesses which enable improved electrochemical conversion due to the surface enlargement of the active electrode area and the gas removal.

Aufgabe der Erfindung ist es, die Elektroden, bzw. Anoden für die Chloralkali-Elektrolysezelle so auszugestalten, daß der Gasabzug aus dem Bereich des Elektrodenspalts gefördert wird und eine möglichst gasblasenfreie Grenzfläche zwischen Anode und Elektrolyt im Bereich des Elektrodenspaltes zur Verfügung steht; darüberhinaus soll eine hohe Energieausnutzung bei der Elektrolyse durch niedrige Elektrodenspannung erzielt werden.The object of the invention is to design the electrodes or anodes for the chlor-alkali electrolysis cell in such a way that the gas removal is promoted from the area of the electrode gap and an interface between the anode and electrolyte in the area of the electrode gap which is as gas-free as possible is available; in addition, high energy utilization in electrolysis is to be achieved by means of low electrode voltage.

Die Aufgabe wird durch die kennzeichnenden Merkmale des Anspruchs 1 gelöst.The object is achieved by the characterizing features of claim 1.

Als besonders vorteilhaft erweist es sich, daß praktisch keine Verwirbelung des Elektrolyt-Gasgemischs im Elektrodenspalt mehr stattfindet, so daß vorteilhafterweise die Elektrodenspannung niedrig gehalten werden kann.It has proven to be particularly advantageous that there is practically no swirling of the electrolyte-gas mixture in the electrode gap, so that the electrode voltage can advantageously be kept low.

Ein weiterer Vorteil ist in der Vergrößerung der im Seitenbereich befindlichen aktiven Fläche zu sehen. In einer bevorzugten Ausführungsform sind die Ausnehmungen von oben im Querschnitt gesehen U-förmig ausgebildet, wobei sich insbesondere bei Ausnehmungen in Form eines Hohlquaders eine starke Vergrößerung der aktiven Oberfläche im Bereich der Seitenteile ergibt, so daß sich eine rasche elektrochemische Umsetzung mit verbessertem Wirkungsgrad ergibt.Another advantage is the enlargement of the active area in the side area. In a preferred embodiment, the recesses are U-shaped when viewed from above in cross section, with recesses in the form of a hollow cuboid in particular resulting in a large increase in the active surface area in the region of the side parts, so that there is rapid electrochemical conversion with improved efficiency.

Vorzugsweise werden Elektrodenelemente eingesetzt, deren U-förmige Ausnehmungen im Walzverfahren eingebracht sind; ein wesentlicher Vorteil ist in dem preisgünstigen Verfahren zur Herstellung einer Vielzahl solcher Elektrodenelemente zu sehen, wobei der zunächst mit Ausnehmungen versehene gewalzte Strang durch einen Schneidevorgang in die einzelnen Elektrodenelement zerlegt wird. Es ist jedoch auch möglich, die Ausnehmungen durch Fräsen einzubringen.Electrode elements are preferably used, the U-shaped recesses of which are made in the rolling process; An essential advantage is to be seen in the inexpensive method for producing a large number of such electrode elements, the rolled strand initially provided with recesses being broken down into the individual electrode elements by a cutting process. However, it is also possible to make the recesses by milling.

Weitere vorteilhafte Ausgestaltungen der Erfindung sind in den Unteransprüchen angegeben.Further advantageous embodiments of the invention are specified in the subclaims.

Im folgenden ist der Gegenstand der Erfindung anhand der Figuren 1, 2a, 2b, 3, 4 und 5 näher erläutert.

  • Figur 1 zeigt schematisch eine Elektrode für Elektrolysezellen, deren aktive Elektrodenelemente an ihren Seitenflächen Ausnehmungen aufweisen;
  • Figur 2a zeigt ausschnittsweise ein Elektrodenelement, an dem die geometrischen Verhältnisse der Aussparungen erkennbar sind;
  • Figur 2b zeigt ausschnittsweise zwei benachbarte Elektrodenelemente mit dazwischen liegendem Elektrodenspalt.
  • Figur 3 zeigt ausschnittsweise ein Elektrodenelement mit keilförmigen Ausnehmungen, deren kaminartiger Querschnitt sich nach oben hin verjüngt;
  • Figur 4 zeigt ausschnittsweise ein Elektrodenelement mit hohlzylindrischen Ausnehmungen;
  • Figur 5 zeigt ausschnittsweise ein Elektrodenelement mit kegelstumpfförmigen Ausnehmungen, welche sich nach oben hin verjüngen.
The subject matter of the invention is explained in more detail below with reference to FIGS. 1, 2a, 2b, 3, 4 and 5.
  • FIG. 1 schematically shows an electrode for electrolytic cells, the active electrode elements of which have recesses on their side surfaces;
  • FIG. 2a shows a section of an electrode element on which the geometrical relationships of the cutouts can be recognized;
  • FIG. 2b shows sections of two adjacent electrode elements with an electrode gap between them.
  • FIG. 3 shows a section of an electrode element with wedge-shaped recesses whose chimney-like cross section tapers towards the top;
  • FIG. 4 shows sections of an electrode element with hollow cylindrical recesses;
  • FIG. 5 shows a section of an electrode element with frustoconical recesses which taper towards the top.

Gemäß Figur 1 besteht die Elektrode 1 aus einer Vielzahl von stabförmigen Elektrodenelementen 2, die an ihren Seitenflächen mit Ausnehmungen 3 versehen sind, und an ihrer Oberkante 4 mit Stromverteilern 5 in Form von Flachprofilen durch Verschweißen verbunden sind; an ihrer Unterkante, bzw. im Bereich ihrer seitlichen Flächen 6 weisen die Elektrodenelemente 2 eine elektrokatalytische Beschichtung auf, die symbolisch mit Bezugsziffer 7 versehen ist. Die Oberkanten 8 der als Stromverteiler 5 dienenden Rechteckprofile sind mit einem Hauptstromverteiler 9 verbunden, welcher eine Anschlußöffnung 10 zur elektrischen und mechanischen Verbindung mit einem hier nicht dargestellten Stromzuführungsbolzen aufweist; es handelt sich hierbei um eine sogenannte Drei-Ebenen-Elektrode, welche aus der DE-PS 29 49 495 bzw. US-PS 43 64811 bekannt ist. Da die Seitenflächen 11 wesentlich größer sind als die Grundflächen 12 der Ausnehmung steht für die elektrochemische Umsetzung eine vergrößerte Außenoberfläche oberfläche des Elektrodenelements 2 zur Verfügung. Das Verhältnis von Grundfläche zu liegt im Bereich von 1:1,5 bis 1:3, vorzugsweise bei 1:2.According to Figure 1, the electrode 1 consists of a plurality of rod-shaped electrode elements 2, which are provided on their side surfaces with recesses 3, and on their upper edge 4 are connected to current distributors 5 in the form of flat profiles by welding; on their lower edge, or in the area of their lateral surfaces 6, the electrode elements 2 have an electrocatalytic coating, which is symbolically provided with reference number 7. The upper edges 8 of the rectangular profiles serving as current distributors 5 are connected to a main current distributor 9, which has a connection opening 10 for electrical and mechanical connection to a current supply bolt, not shown here; it is a so-called three-level electrode, which is known from DE-PS 29 49 495 and US-PS 43 64811. Since the side surfaces 11 are substantially larger than the base surfaces 12 of the recess, an enlarged outer surface surface of the electrode element 2 is available for the electrochemical conversion. The ratio of base area to is in the range of 1: 1.5 to 1: 3, preferably 1: 2.

Gemäß Figur 2a weist das ausschnittsweise dargestellte stabförmige Elektrodenelement 2 an seinen beiden Seitenflächen 11 Ausnehmungen 3 auf, welche sich mit Ausbuchtungen 13 mäanderförmig abwechseln, so daß im Querschnitt des Elektrodenelements 2 gesehen jeweils eine Ausnehmung 3 einer Ausbuchtung 13 gegenüberliegt; das Verhältnis der Breite der Ausnehmung b zur Höhe der Ausnehmung h liegt im Bereich von 1:2 bis 1:2,5, so daß die Gesamtgröße der Seitenflächen 11, die für die elektrochemische Umsetzung zur Verfügung steht wesentlich größer ist als die entfallenden Grundflächen 12 der Ausnehmung im Bereich der Fläche der Unterkante 14 und Oberkante 4 des Elektrodenelements. Die elektrokatalytische Beschichtung 7 ist im gesamten Bereich der Unterkante 14, bzw. der dem Quecksilber zugewandten Bodenfläche, im Bereich der seitlichen Flächen 6 der Ausbuchtungen 13, der Seitenflächen 11 sowie der Ausnehmungsflächen 15 aufgebracht, wobei es möglich ist zusätzlich die Oberkante 4 des Elektrodenelements mit elektrokatalytischer Beschichtung zu versehen; es ist jedoch auch möglich, die elektrokatalytische Beschichtung nur im unteren Bereich der seitlichen Flächen 6, Seitenflächen 11, Ausbuchtungen 13 und Ausnehmungen 15 sowie der Bodenfläche im Bereich der Unterkante aufzubringen.According to FIG. 2a, the rod-shaped electrode element 2 shown in detail has recesses 3 on its two side surfaces, which alternate with bulges 13 in a meandering manner, so that, seen in the cross section of the electrode element 2, a recess 3 is opposite a bulge 13; the ratio of the width of the recess b to the height of the recess h is in the range from 1: 2 to 1: 2.5, so that the total size of the side surfaces 11 that is available for the electrochemical conversion is significantly larger than the omitted base surfaces 12 the recess in the area of the surface of the lower edge 14 and upper edge 4 of the electrode element. The electrocatalytic coating 7 is applied in the entire region of the lower edge 14, or the base surface facing the mercury, in the region of the lateral surfaces 6 of the bulges 13, the side surfaces 11 and the recess surfaces 15, it being additionally possible for the upper edge 4 of the electrode element to be included to provide electrocatalytic coating; however, it is also possible to apply the electrocatalytic coating only in the lower region of the lateral surfaces 6, side surfaces 11, bulges 13 and recesses 15 and the bottom surface in the region of the lower edge.

Figur 2b zeigt ausschnittsweise zwei benachbarte Elektrodenelemente 2, zwischen denen ein mäanderförmiger Elektrodenspalt 17 ausgebildet ist; aufgrund der mäanderförmigen Struktur ergibt sich nicht nur eine Oberflächenvergrößerung der aktiven Oberfläche sondern auch zusätzlich ein Kanalisierungseffekt für die bei der elektrochemischen Umsetzung entstehenden Gasblasen, so daß eine Verwirbelung der Gasblasen innerhalb des Elektrolyten weitgehend vermieden wird und ein rascher Abzug der Gasblasen ermöglich wird. Das Verhältnis der Tiefe t der Ausnehmungen 3 zur Spaltbreite s zwischen den Elektrodenelementen 2 liegt im Bereich von 1:2 bis 1:2,5.FIG. 2b shows sections of two adjacent electrode elements 2, between which a meandering electrode gap 17 is formed; Due to the meandering structure, there is not only an increase in the surface area of the active surface, but also a channeling effect for those that arise during the electrochemical reaction Gas bubbles so that a swirling of the gas bubbles within the electrolyte is largely avoided and a rapid removal of the gas bubbles is made possible. The ratio of the depth t of the recesses 3 to the gap width s between the electrode elements 2 is in the range from 1: 2 to 1: 2.5.

Gemäß Figur 3 ist es möglich, die Ausnehmungen 3 des ausschnittsweise dargestellten stabförmigen Elektrodenelements 2 keilförmig auszugestalten, wobei das Verhältnis der Tiefe u der Ausnehmung im Bereich der Unterkante 14 zur Tiefe der Ausnehmung v im Bereich der Oberkante 4 der Ausnehmung im Verhältnis von 1:1,8 bis 2 liegt. Der Neigungswinkel der Ausnehmungsfläche 15 zur Vertikalen liegt im Bereich von 10 bis 22°, in einer bevorzugten Ausführungsform bei ca. 15°.According to FIG. 3, it is possible to design the recesses 3 of the rod-shaped electrode element 2 shown in a wedge shape, the ratio of the depth u of the recess in the region of the lower edge 14 to the depth of the recess v in the region of the upper edge 4 of the recess in a ratio of 1: 1 , 8 to 2 lies. The angle of inclination of the recess surface 15 to the vertical is in the range from 10 to 22 °, in a preferred embodiment approximately 15 °.

Aufgrund der Keilform ergibt sich im besonders aktiven Bereich des Elektrodenspalts zwischen der hier nicht dargestellten Quecksilberkathode und dem Elektrodenelement 2 eine verhältnismäßig starke Gasblasentwicklung, welche durch den sich nach unten keilförmig erweiternden Raum der Aussparungen gezielt nach oben abgeführt werden kann, wobei aufgrund des sich verjüngenden Querschnitts zusätzlich eine Art Kamineffekt zur verbesserten Ausschleusung der Gasblasen erzielt wird.Due to the wedge shape, in the particularly active area of the electrode gap between the mercury cathode (not shown here) and the electrode element 2 there is a relatively strong gas bubble development, which can be deliberately removed upwards through the wedge-shaped space of the recesses, due to the tapering cross-section a kind of chimney effect is also achieved to improve the discharge of the gas bubbles.

Figur 4 zeigt ausschnittsweise ein stabförmiges Elektrodenelement 2, das hohlzylindrische Ausnehmungen 3 aufweist, wobei die Ausnehmungen 3 und Ausbuchtungen 13 mäanderförmig angeordnet ist, so daß die jeweilige Ausnehmung 3 an ihrer tiefsten Stelle jeweils einer Ausbuchtung 13 gegenüberliegt. Die eigentlichen Ausnehmungen 13 bilden hohlzylindrische Segmente, deren Sekanten 20 durch die Oberkante 4 und Unterkante 14 der Elektrodenelemente vorgegeben sind. Das Verhältnis der Sekantenlänge zum fiktiven Radius der Hohlzylinder liegt im Bereich von 1,6:1,2.FIG. 4 shows a section of a rod-shaped electrode element 2 which has hollow cylindrical recesses 3, the recesses 3 and bulges 13 being arranged in a meandering manner, so that the respective recess 3 is opposite a bulge 13 at its lowest point. The actual recesses 13 form hollow cylindrical segments, the secants 20 of which are predetermined by the upper edge 4 and lower edge 14 of the electrode elements. The ratio of the secant length to the fictitious radius of the hollow cylinder is in the range of 1.6: 1.2.

Als vorteilhaft erweist sich bei einer solchen hohlzylindrischen Ausnehmung die verhältnismäßig einfache Herstellungsmöglichkeit der Ausnehmungen durch Fräsen.With such a hollow cylindrical recess, the relatively simple possibility of producing the recesses by milling has proven to be advantageous.

Figur 5 zeigt ausschnittsweise ein stabförmiges Elektrodenelement 2, dessen Ausnehmungen 3 in Form von Hohlkegelsegmenten ausgebildet sind, wobei die durch eine Kegelstumpfmantel gebildete Ausnehmungsfläche 15 im Nachbarbereich zur Ausbuchtung 13 gemäß Querschnitt entlang Linie AB mit der Vertikalen einen Winkel im Bereich von 10 bis 22°, vorzugsweise 16° bildet. Auch hier tritt ähnlich wie in der anhand Figur 3 beschriebenen keilförmigen Ausnehmungsausbildung ein zusätzlicher Kamineffekt zum Sammeln der Gasblasen im unteren Bereich der Elektrode und eine beschleunigte Abführung der Gasblasen statt.FIG. 5 shows a detail of a rod-shaped electrode element 2, the recesses 3 of which are formed in the form of hollow cone segments, the recess surface 15 formed by a truncated cone in the region adjacent to the bulge 13 according to the cross section along line AB with the vertical having an angle in the range from 10 to 22 °, preferably forms 16 °. Here too, similar to the wedge-shaped configuration described with reference to FIG Recess formation an additional chimney effect to collect the gas bubbles in the lower region of the electrode and an accelerated removal of the gas bubbles instead.

Claims (8)

  1. An electrode for electrolysis cells, in particular for mercury chloro-alkali electrolysis cells with current supplies via rods or current supply pins and current distributors in the form of flat sections standing on edge and arranged at a distance from each other, which are connected at their lower edge with activated electrode elements arranged perpendicularly thereto on flat sections, standing on edge, with vertical side faces, in which the activated electrode elements consist of a greater number of individual elements than the current distributors, and the activated electrode parts are arrangd with a gap of at least 2 mm from each other, characterised in that the electrode elements (2) have recesses (3) in the region of their lateral faces (6), which extend from the lower edge (14) up to the upper edge (4) of the lateral faces.
  2. An electrode according to Claim 1, characterised in that the recesses (3) are constructed in a curved shape in cross section, viewed from above.
  3. An electrode according to Claim 1 or 2, characterised in that the recesses (3) are arranged in a meander shape, so that viewed from above in each case a recess and a salient (13) situated between two recesses (3) are arranged opposite each other.
  4. An electrode according to one of Claims 1 to 3, characterised in that the recesses (3) are constructed as part of a hollow parallelepiped.
  5. An electrode according to one of Claims 1 to 3, characterised in that the recesses (3) are constructed as part of a hollow cylinder.
  6. An electrode according to one of Claims 1 to 3, characterised in that the recesses (3) are constructed as part of a hollow cone.
  7. An electrode according to one of Claims 1 to 5, characterised in that the recesses (3) are milled in.
  8. An electrode according to one of Claims 1 to 5, characterised in that the recesses (3) are rolled in.
EP95102062A 1994-06-01 1995-02-15 Electrode for electrolysis cell Expired - Lifetime EP0685576B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4419274 1994-06-01
DE4419274A DE4419274A1 (en) 1994-06-01 1994-06-01 Electrode for electrolytic cells

Publications (2)

Publication Number Publication Date
EP0685576A1 EP0685576A1 (en) 1995-12-06
EP0685576B1 true EP0685576B1 (en) 1997-04-16

Family

ID=6519605

Family Applications (1)

Application Number Title Priority Date Filing Date
EP95102062A Expired - Lifetime EP0685576B1 (en) 1994-06-01 1995-02-15 Electrode for electrolysis cell

Country Status (4)

Country Link
US (1) US5589044A (en)
EP (1) EP0685576B1 (en)
DE (2) DE4419274A1 (en)
ES (1) ES2100750T3 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5849164A (en) * 1996-06-27 1998-12-15 Eltech Systems Corporation Cell with blade electrodes and recirculation chamber
WO2000040782A1 (en) * 1999-01-08 2000-07-13 Moltech Invent S.A. Aluminium electrowinning cells with oxygen-evolving anodes
DE10013297B4 (en) * 2000-03-17 2005-06-30 Vlm Gmbh Fastening device for fastening the support of a lamp head to a support tube
WO2008132818A1 (en) * 2007-04-20 2008-11-06 Mitsui Chemicals, Inc. Electrolyzer, electrodes used therefor, and electrolysis method
US20220162762A1 (en) * 2020-11-23 2022-05-26 Lawrence Livermore National Security, Llc Corrugated electrodes for electrochemical applications
CN113355689B (en) * 2021-05-07 2023-03-31 北京蕴超仿生智能科技发展有限公司 Qinqi-dispelling and qi-dispelling cooperative confinement electrode and preparation method thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4022679A (en) * 1973-05-10 1977-05-10 C. Conradty Coated titanium anode for amalgam heavy duty cells
US3929607A (en) * 1974-02-25 1975-12-30 Ici Ltd Anodes for electrochemical processes
DE2949495C2 (en) * 1979-12-08 1983-05-11 Heraeus-Elektroden Gmbh, 6450 Hanau Electrode for electrolytic cells
GB8407871D0 (en) * 1984-03-27 1984-05-02 Ici Plc Electrode and electrolytic cell
DE3519573A1 (en) * 1985-05-31 1986-12-04 Conradty GmbH & Co Metallelektroden KG, 8505 Röthenbach ELECTRODE FOR MEMBRANE ELECTROLYSIS

Also Published As

Publication number Publication date
US5589044A (en) 1996-12-31
DE59500185D1 (en) 1997-05-22
DE4419274A1 (en) 1995-12-07
EP0685576A1 (en) 1995-12-06
ES2100750T3 (en) 1997-06-16

Similar Documents

Publication Publication Date Title
DE2262173C3 (en)
DE2806962B2 (en) Galvanic power source with comb-like interlocking bipolar electrode pairs
DE1671932B2 (en) FUEL BATTERY
DE2135873B2 (en) Cell top for amalgam high-load cells
EP0685576B1 (en) Electrode for electrolysis cell
DE3519573A1 (en) ELECTRODE FOR MEMBRANE ELECTROLYSIS
EP2156495B1 (en) Repeater unit for a fuel cell stack
EP0097991B1 (en) Membrane-electrolysis cell with vertically arranged electrodes
DE1276768B (en) Seawater battery
DE2538000B2 (en) Bipolar electrode construction for a membrane-free electrolysis cell
DE2949495C2 (en) Electrode for electrolytic cells
DE1947157B2 (en) ELECTROLYSIS CELL WITH REMOVABLE SIDE PANEL CARRYING ELECTRODES
DE2923818A1 (en) ELECTRODE COMPARTMENT
DE2845832A1 (en) DEVICE FOR DIAPHRAGMA ELECTROLYSIS
DE2616483A1 (en) ELECTRODE BLOCK
DE60008599T2 (en) END BOX FOR AN ELECTRODIALYZER AND ELECTRO-DIALYSIS METHOD
DE2904441A1 (en) TRACK SYSTEM OF ELECTROLYSIS CELLS FOR ALUMINUM PRODUCTION
DE2753885A1 (en) ELECTROLYTIC CELL
EP0150019B1 (en) Method of electrolyzing using liquid electrolytes and porous electrodes
DE4119836A1 (en) ELECTROLYSIS CELL FOR GAS DEVELOPING OR GAS-CONSUMING ELECTROLYTIC PROCESSES AND METHOD FOR OPERATING THE ELECTROLYSIS CELL
DE2312458A1 (en) ELECTROLYSIS CELL WITH VERTICAL METAL LANODES FIXED IN THE BOTTOM OF THE CELL
DE3008116A1 (en) GAS-DEVELOPING METAL ELECTRODE FOR ELECTROCHEMICAL PROCESSES
EP0685575B1 (en) Electrode for electrolysis cells
DD285125B5 (en) Electrode for gas-developing electrolytic processes
EP0203224A1 (en) Electrode structure for electrochemical cells

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19950227

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): BE DE ES FR GB IT SE

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

17Q First examination report despatched

Effective date: 19960812

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE DE ES FR GB IT SE

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19970417

REF Corresponds to:

Ref document number: 59500185

Country of ref document: DE

Date of ref document: 19970522

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2100750

Country of ref document: ES

Kind code of ref document: T3

ET Fr: translation filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19980126

Year of fee payment: 4

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 19980209

Year of fee payment: 4

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19980227

Year of fee payment: 4

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19980320

Year of fee payment: 4

26N No opposition filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990216

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990216

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990228

BERE Be: lapsed

Owner name: HERAEUS ELEKTROCHEMIE G.M.B.H.

Effective date: 19990228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19991029

EUG Se: european patent has lapsed

Ref document number: 95102062.7

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20010910

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050215

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20070216

Year of fee payment: 13

Ref country code: DE

Payment date: 20070216

Year of fee payment: 13

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20080215

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080902

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080215