EP0684625B1 - Hochleistungsvakuumelektronenröhre mit einer durch Zwangsdurchlauf gekühlter Anode - Google Patents

Hochleistungsvakuumelektronenröhre mit einer durch Zwangsdurchlauf gekühlter Anode Download PDF

Info

Publication number
EP0684625B1
EP0684625B1 EP95401110A EP95401110A EP0684625B1 EP 0684625 B1 EP0684625 B1 EP 0684625B1 EP 95401110 A EP95401110 A EP 95401110A EP 95401110 A EP95401110 A EP 95401110A EP 0684625 B1 EP0684625 B1 EP 0684625B1
Authority
EP
European Patent Office
Prior art keywords
anode
conduits
sections
section
tube according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP95401110A
Other languages
English (en)
French (fr)
Other versions
EP0684625A1 (de
Inventor
Olivier Friquet
Régis Combet
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Thales Electron Devices SA
Original Assignee
Thomson Tubes Electroniques
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thomson Tubes Electroniques filed Critical Thomson Tubes Electroniques
Publication of EP0684625A1 publication Critical patent/EP0684625A1/de
Application granted granted Critical
Publication of EP0684625B1 publication Critical patent/EP0684625B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J19/00Details of vacuum tubes of the types covered by group H01J21/00
    • H01J19/28Non-electron-emitting electrodes; Screens
    • H01J19/32Anodes
    • H01J19/36Cooling of anodes

Definitions

  • the invention relates to very large electronic tubes powers of the triode and especially tetrode type, with radial structure, that is to say in which a cathode of general cylindrical structure based circular radially emits electrons to an anode also cylindrical which surrounds and is coaxial with the cathode. Grids of electron extraction, also cylindrical, are interposed between the cathode and anode.
  • the powers considered here are of the order of a megawatt, for frequencies of several tens to several hundred megahertz.
  • the voltage between the anode and the cathode is several kilovolts.
  • the anode receives almost all of the electron current emitted by the cathode and modulated by the grid (s). Kinetic energy of electrons striking the anode is converted into heat.
  • the power flow received by the anode is very high (order of magnitude: one kilowatt per square centimeter anode surface area for areas of several hundred centimeters squares).
  • the anode is a cylinder about 20 to 40 cm in diameter and several tens of centimeters high.
  • the references of the drawing are as follows: anode 10; grooves 12; a first cooling jacket 14 surrounding the anode to channel the water along the outer wall surface of the anode; a second jacket 16 defines the water inlet chamber; the second folder 16 surrounds the first and communicates on one side with it, for example at the bottom of the anode, through an opening 18; a duct 20 pressurized water supply which opens in the second jacket; a conduit 22 for evacuating water and steam bubbles.
  • Others elements of the figure are the classic elements of an electron tube: cathode 24 with its external connections 26 and 28 (for a cathode with direct heating); grid 30 with its external connection 32; connection anode 34 brazed at the foot of the anode.
  • connections are cylindrical and intended to be inserted in a suitable support not represented.
  • the connections are separated by ceramic spacers 36.
  • the enclosure delimited by the interior wall surface of the anode, the inner wall surface of the connections, and the spacers of ceramic, is under vacuum.
  • the cooling jackets are not under empty.
  • An object of the present invention is to seek means to dissipate on the anode a power much higher than that which allows the construction of the collector of US Patent 3,414,757 and much greater than it allows the construction of patent FR-A-2 627 898.
  • the order of quantity sought is a doubling of the powers compared to this last, which is considerable.
  • the invention consists of an electronic vacuum tube of very high power according to claim 1 and a method of manufacturing such an electronic tube according to claim 11.
  • an electronic vacuum tube of very high power having a cylindrical anode (i.e. an anode whose interior wall surface is essentially cylindrical in its part active opposite an equally cylindrical cathode) formed by at least a cylindrical section (i.e.
  • This structure makes it possible in particular to maintain a speed also water as high as possible in all of the conduits, and very good uniformity of cooling.
  • the distribution structure is preferably conical and without pressure losses.
  • the conduits are of completely circular section (closed) and extend linearly over the entire height of the anode (preferably rigorously parallel to the axis of the cylindrical anode); these are not so no open rectangular grooves formed by machining the outer wall surface of the anode and then closed with a jacket outside.
  • the cooling efficiency is considerably improved; and this is all the more so if it is further provided that the conduits are drilled closer to the inner wall surface than to the wall surface outside of the anode.
  • section cooling ducts rectangular would leave fatal overheating zones for the power tube: these overheating zones are the corners of the section rectangular, where the cooling water circulates less well.
  • the anode cylindrical is formed of cylindrical sections of copper whose edge is silver and which are brazed on each other by their edges silvered without addition of solder material other than silvering of slices, so that there are no stray drips of material from solder.
  • the anode has very fine linear conduits leading to each other on the edges of the sections adjacent cylindrical, avoiding the risk of material sinking solder which could at least partially block the conduits and which does not would not be cleanable given the fineness of the conduits.
  • an important aspect of the invention is the operation brazing by silvering (electroplating in principle) of the wafers individual cylindrical sections then superposition of these sections in an oven under conditions of temperature and atmosphere suitable for form a silver solder between the silver slices in contact.
  • the anode cylindrical is pierced with fine conduits parallel to the axis of the anode and more closer to the inner surface of the anode wall than to the surface exterior of this wall.
  • FIG 2 there is shown the anode of a power tube according to the invention, with its cooling system.
  • the other elements of the tube are not shown so as not to weigh down figure and can if desired be similar to those in figure 1.
  • the anode body is conventionally generally constituted by a cylinder of revolution of axis 100 open at its lower part, and closed at its upper part.
  • the upper part is essentially shaped like disc transverse to axis 100, provided with a pumping rod.
  • the anode consists of several superimposed sections. Each section consists of a generally cylindrical section, the section upper being however constituted both by a cylindrical section and by the upper closing disc of the anode.
  • the section upper 180 is divided into a cylindrical part 200 and the disc of closure 220.
  • the pumping cap is designated by the reference 240; he is placed in the center of the disc 220; it is intended to be closed tightly after a vacuum has been made in the tube.
  • Each section has a cylindrical wall (with a surface inner wall and an outer wall surface), and two slices end, respectively an upper edge and an edge lower.
  • the sections are planar (plane perpendicular to the axis 100 of the tube.
  • the anode sections are soldered to each other by their facing slices, i.e. the bottom slice of a section is brazed on the upper edge of a section located immediately below; the plans of these sections are designated by the references 260, 280, 300.
  • the plane 280 is the soldering plane of the lower section of section 160 and upper section of section 140.
  • Centering pins 320 are provided in these plans, to positioning the different ones exactly with respect to each other sections; exact positioning is necessary as well to ensure a exact coaxial centering of the sections only to ensure, as we will see further on, the alignment of the cooling ducts of the different sections.
  • Several centering pins 320 are provided in each plane of soldering, only one being shown in Figure 2 in each plane.
  • the pawns are for example small vertical cylinders inserted in facing bores formed in the slices of two adjacent sections.
  • the anode has rectilinear cooling ducts, extending over the entire height of the anode.
  • Two conduits 340 and 360 are visible in Figure 2: these are those in the axial section plane of the vacuum tube.
  • the conduits are drilled in the thickness of the wall of the sections. They are as numerous and as fine as possible so as to cool the entire anode wall as evenly as possible. Their diameter is for example a few millimeters (section of a few square millimeters to a few tens of square millimeters), and they're very close together: spacing of a few millimeters also. As example, 3 to 5 millimeters in diameter and 2 to 5 millimeters in spacing between conduits are preferred dimensions. In an example of realization, there are about 160 conduits distributed in a crown all around the anode about thirty centimeters in diameter. Diameters and spacings are then about 3mm.
  • the conduits are preferably section holes circular, because the circulation of the coolant (in principle water under pressure) is then optimal: if there were angles, the fluid would risk to improperly cool the angles.
  • the conduits straight are preferably closer to the inner wall surface of the anode only from the outer wall surface.
  • the space between the edge of a conduit and the internal wall surface of the anode may be a few millimeters, for example 3 to 5 millimeters.
  • the thickness of the anode wall can be 15 to 30 millimeters. Cooling is therefore better ensured by circulating the water closer to the inner wall surface where produces heat generation.
  • the ducts are distributed regularly in a crown all around the anode.
  • the centering pins 320 are of preferably located outside this crown so as not to hinder the regular distribution of the conduits around the anode.
  • Figure 3 shows a cross section on axis 100, by one of the soldering planes, and there sees this crown of conduits.
  • conduits are placed at proximity to the internal surface of the anode wall, at a distance of this surface approximately equal to the diameter of the holes and the holes are distributed all around the anode being separated from each other by a distance approximately equal to their diameter.
  • the height of the anode is several tens of centimeters. For these heights, it would be practically impossible to drill holes circular by a drill a few millimeters in diameter and it is one of the reasons for the constitution of the anode into several brazed sections: height of each section is chosen compatible with practical possibility to drill fine holes on this height. In practice, we can drill holes over a height that does not exceed 20 or 25 times the diameter of the hole. For holes 3 to 5 millimeters in diameter, we will superimpose sections anode that does not exceed 10 centimeters high. As the height of the anode is much greater than 30 times the diameter of the conduits, and even greater than 40 or 50 times this diameter, several sections of anode overlays are required.
  • the cooling ducts lead to the part upper section 180. They form a crown openings and the cooling water will be distributed in these openings by a conical structure of fluid supply, which will be discussed later.
  • a cylindrical jacket 380 surrounding the anode there is only one shirt and not two shirts as it was case in the prior art.
  • the water recovery configuration is by example as follows: radial holes are drilled all around the outer surface of the wall of the lower section 120 and make communicate the downstream end of each vertical duct with the outside of the anode wall. Two radial holes 440, 460 are visible in Figure 2; these are those which are in the section plane of the figure and which communicate with conduits 340 and 360 respectively.
  • Shirt cylindrical 380 constitutes a water confinement space. It's closed at its lower part by a ring 400. In the example shown, the anode connection 420 is supported on this ring.
  • the 380 shirt is by elsewhere closed at its upper part by a plate 480 in which is provided an opening 500 for water supply and an opening 520 water drain.
  • the conical structure of pressure water distribution is placed inside the shirt 380, so that water comes from the opening 500, passes into the conical structure without leakage towards the interior of jacket 380 and then goes into the cooling ducts in the thickness of the anode wall, and finally goes up through the jacket 380 until the discharge opening 520.
  • the conical structure is therefore constituted in the manner next: a 540 hollow conical block (due to the presence of the pump 240) is mounted on the closing disc 220 of the anode.
  • This block 540 is screwed onto the anode (threaded bores 550 provided in the section terminal 180) after a vacuum has been made in the tube and the rod pumping was permanently closed.
  • the outer wall surface of the block 540 is conical and defines a first surface delimiting a channel conical 560 along which the water circulates (from top to bottom, i.e. from the supply opening 500 towards the opening openings of the conduits cooling such as 340 and 360).
  • a second block 580 whose interior wall surface is conical defines a second delimitation surface of channel 560.
  • the top of block 580 comprises a central duct 570 whose peripheral edge 590 is applied against the inner surface of the closure plate 480 around of the opening 500, so that the water brought under pressure into this opening is forced into the conical channel 560 between the conical surfaces of the two blocks 540 and 580.
  • the opening 580 is preferably formed at the center of plate 480 to be in line with the anode, the conical blocks also being in the axis of the anode.
  • Channel 560 may have an annular cross section extending narrowing from the top to the bottom of the conical structure, i.e. the taper angle of the inner wall surface of block 580 is preferably smaller than the taper angle of the wall surface outside of block 540.
  • the interior surface of block 540 and / or the exterior surface of the block 58 could be machined so as to gradually constitute juxtaposed channels distributed in a crown and each opening into look of a respective rectilinear conduit of the anode, but it is not mandatory: the surfaces of blocks 540 and 580 can be smooth. In this last case, there is a certain pressure drop at the point where channel 560 continuous annular joins the discontinuous openings of the the anode, but this pressure drop is not very significant.
  • the upper conical block 580 can be screwed onto the lower block 540, for example by eight bolts distributed around the structure, penetrating in threaded bores 600 formed in the upper section 180 of the anode.
  • the upper conical block is not screwed but is simply clamped between the top closure plate 480 of the sleeve 380 and the upper disc of the anode. Bolts tightening pass through openings 620 of plate 480, then into openings 640 of the conical block and are screwed into the bores 600.
  • a pressure water supply system not shown is connected to the opening 500 of the upper plate 480.
  • the manufacturing process for this anode consists in making separately the different cylindrical sections 120, 140, 160, 180 in separately machining different copper blocks. Internal wall surfaces and external sections are machined to the desired shape and dimensions so that the sections can then be superimposed axially and then form the desired complete anode. Drilling of straight ducts are made in the wall of each section, as well as the holes in front receive the centering pins 320.
  • the diameters of the conduits are in practical at least one twentieth of the height of the cylindrical section in which they are drilled (below the drilling becomes very difficult, or even impossible); this diameter is however at least forty or fifty times smaller than the total height of the anode.
  • the positions of centering holes and conduits are perfectly defined by relation to others so that the conduits are facing each other when overlapping sections.
  • the slices are then machined to be perfectly flat and perpendicular to the axis of the cylinders.
  • the slices intended to be juxtaposed with another slice are then silver plated by electrolytic process.
  • the sections are superimposed to each other without any further supply of soldering material between two adjacent sections, only the very thin electrolytic deposit constituting the solder material.
  • the assembly of axially superimposed sections is placed in an oven at a sufficient temperature (around 820 ° C), preferably in a reducing atmosphere, to constitute a silver solder between adjacent sections.
  • the solder is actually a diffusion silver in the copper which leads to the formation of an Ag / Cu eutectic at 780 ° C.
  • a final machining of the tube (turning) can take place to adjust the internal and external wall surfaces of the anode.
  • the other electrodes cathode, grids
  • ceramic spacers vacuum-tight metal / metal and metal / ceramic solders
  • the electronic tube according to the invention can withstand a power dissipation exceeding 2 megawatts, and even 2.5 megawatts (2 kW / cm 2 on an area greater than 1000 cm 2 ).
  • Water is brought under pressure through the inlet pipe 500 and it circulates at high speed in the fine pipes of the anode. It is brought to high temperature and comes to a boil.
  • the vapor bubbles which form are immediately removed thanks to the high speed of circulation of the water, contrary to what happened in the cooling systems of the prior art in which, to promote the formation of bubbles, one placed obstacles (grooves) which necessarily slowed down the circulation of water.
  • the cooling is considerably improved by this rapid evacuation of water and bubbles.
  • the conical structure of water supply which distributes water uniformly, without voluntary pressure loss to ensure this uniformity, also improves the speed of flow therefore cooling. Cooling is also improved by the fact that the conduits have a circular section and not rectangular or square. It is improved by the fact that the conduits are not placed around the anode but in the same wall of the anode, and moreover closer to the inner wall surface than to the outer wall surface.
  • the cooling is further improved thanks to the fineness of the channels (which makes it possible to place very many channels very close to each other), this fineness being made possible in this case by the production of the anode in several sections brazed together. on others.
  • soldering operation without the addition of solder material reported but with just a thin silver electrolytic layer an integral part of the anode sections, prevents any sagging solder material in undesirable locations. Indeed, when welds two pieces by inserting a solder bead between the two pieces, there are two risks: first the risk of the material sinking while it bottom, hence the presence of solder material in undesirable places; he it would be unacceptable for example that solder material flows into the thin conduits, risking to partially or totally obstruct them and thus causing an absence of local cooling detrimental to the tube.

Landscapes

  • Physical Vapour Deposition (AREA)
  • X-Ray Techniques (AREA)
  • Common Detailed Techniques For Electron Tubes Or Discharge Tubes (AREA)

Claims (12)

  1. Hochleistungsvakuumelektronenröhre mit einer im wesentlichen zylindrischen Anode, die eine Anode umfaßt, die aus wenigstens einem im Ganzen genommen zylindrischen Teil (120, 140, 160, 180) besteht, wobei die zylindrische Seitenwand jedes Teils von zahlreichen sich in Längsrichtung erstreckenden Durchführungen (340, 360) für die Zirkulation des Kühlfluids durchbohrt ist, die sich geradlinig entlang der gesamten Höhe des Teils erstrecken und alle an einem Ende der Anode in einen Aufbau (540, 580) zur Verteilung des mit erhöhter Zirkulation fließenden Kühlwassers einmünden, dadurch gekennzeichnet, daß dieser Aufbau die Gesamtheit der sich in Längsrichtung erstreckenden und in das Ende der Anode einmündenden Durchführungen gleichmäßig versorgt.
  2. Röhre nach Anspruch 1, dadurch gekennzeichnet, daß die Anode mehrere zylindrische Teile umfaßt, die in Achsrichtung aufeinandergelegt sind, wobei jeweils eines auf das andere gelötet ist und jede Durchführung eines Teils genau der entsprechenden Durchführung eines angrenzenden Teils gegenüberliegt.
  3. Röhre nach einem Ansprüche 1 und 2, dadurch gekennzeichnet, daß der Aufbau zur gleichmäßigen Verteilung des Kühlwassers in dem obersten Teil der Anode, d. h. oben auf der Röhre in ihrer normalen Arbeitsposition, angeordnet ist.
  4. Röhre nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß die Durchführungsbohrungen durch die Stärke der Seitenwand der Anode dichter an der Innenfläche der Seitenwand als an der Außenfläche der Seitenwand liegen.
  5. Röhre nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß der Querschnitt der Durchführung einige Quadratmillimeter bis einige zehn Quadratmillimeter beträgt, wobei die Höhe der Anode einige zehn Zentimeter beträgt.
  6. Röhre nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß die Durchführungen Bohrungen mit kreisförmigem Querschnitt sind, die in der Nähe der Innenfläche der seitenwand der Anode in einem Abstand zu dieser Fläche angeordnet sind, der ungefähr dem Durchmesser der Bohrungen entspricht und die Bohrungen um die ganze Anode herum verteilt sind, wobei sie jeweils durch einen Abstand voneinander getrennt sind, der ungefähr ihrem Durchmesser entspricht.
  7. Vakuumelektronenröhre nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Durchführungen kreisförmige Bohrungen sehr kleinen Durchmessers sind, wobei der Durchmesser wenigstens dreißigmal und vorzugsweise vierzig- bis fünfzigmal so klein wie die Höhe der Anode ist.
  8. Elektronenröhre nach einem der vorgehenden Ansprüche, dadurch gekennzeichnet, daß der Aufbau zur Verteilung des Kühlwassers eine kegelförmige Struktur aufweist.
  9. Röhre nach Anspruch 8, dadurch gekennzeichnet, daß die kegelförmige Struktur einen ersten Block (540) mit einer eine kegelförmige Außenfläche aufweisenden Wand und einen zweiten Block (580) mit einer eine kegelförmige Innenfläche aufweisenden Wand umfaßt, die den ersten Block derart umgibt, daß zwischen den Wänden ein Kanal (560) für die Zirkulation des Wassers gebildet wird, wobei die sich in Längsrichtung erstreckenden Durchführungen zwischen den beiden kegelförmigen Wänden an deren Fußpunkt angeordnet sind und ein Einlaß (500) für das unter Druck stehende Wasser am obersten Teil des zwischen den beiden kegelförmigen Wänden gebildeten Kanals vorgesehen ist.
  10. Elektronenröhre nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, daß die Anode von einem Mantel (380) für die Rückgewinnung des Kühlfluids umgeben ist, wobei das stromabwärts gelegene äußere Ende der sich in Längsrichtung erstreckenden Durchführungen für die Zirkulation des Fluids an den Mantel anschließt.
  11. Verfahren zur Herstellung einer Hochleistungsvakuumelektronenröhre nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß bei der Herstellung der Anode mehrere zylindrische Teile aus Kupfer maschinell gefertigt werden, die Schnittfläche der Teile versilbert wird, die Teile in Achsrichtung Schnittfläche gegen Schnittfläche übereinandergelegt werden und die Gesamtheit aus übereinandergelegten Teilen bei einer Temperatur und während einer Zeitdauer in einen Ofen gesetzt wird, die ausreichen, um eine Silber-Kupfer-Lötverbindung zwischen den Teilen herzustellen, ohne zwischen die Teile mit versilberten Schnittflächen eingebrachtes Lötmaterial zuzugeben.
  12. Verfahren nach Anspruch 11, dadurch gekennzeichnet, daß in die zylindrischen Teile vor dem Übereinanderlegen und Löten zahlreiche zylinderförmige Durchführungen gebohrt werden, wobei die Durchführungen in die seitenwand der Teile parallel zur Achse der Teile und entlang der gesamten Höhe der Teile gebohrt werden und die Durchführungen der verschiedenen Teile an entsprechenden Stellen jedes Teils sehr präzise plaziert werden, damit alle Durchführungen eines Teils den entsprechenden Durchführungen eines angrenzenden Teils beim Übereinanderlegen der Teile gegenüberliegen.
EP95401110A 1994-05-27 1995-05-12 Hochleistungsvakuumelektronenröhre mit einer durch Zwangsdurchlauf gekühlter Anode Expired - Lifetime EP0684625B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9406464 1994-05-27
FR9406464A FR2720550B1 (fr) 1994-05-27 1994-05-27 Tube électronique à vide de très forte puissance à anode refroidie par circulation forcée.

Publications (2)

Publication Number Publication Date
EP0684625A1 EP0684625A1 (de) 1995-11-29
EP0684625B1 true EP0684625B1 (de) 1999-02-10

Family

ID=9463583

Family Applications (1)

Application Number Title Priority Date Filing Date
EP95401110A Expired - Lifetime EP0684625B1 (de) 1994-05-27 1995-05-12 Hochleistungsvakuumelektronenröhre mit einer durch Zwangsdurchlauf gekühlter Anode

Country Status (5)

Country Link
US (1) US5705881A (de)
EP (1) EP0684625B1 (de)
JP (1) JPH07326292A (de)
DE (1) DE69507740T2 (de)
FR (1) FR2720550B1 (de)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2428513A (en) * 2005-07-20 2007-01-31 E2V Tech Collector cooling arrangement
CN109767962B (zh) * 2018-12-29 2021-04-02 中国电子科技集团公司第十二研究所 一种一体化冷却的速调管高频结构

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1326936A (fr) * 1962-06-28 1963-05-10 Siemens Ag Tube à décharge électrique ou tube électronique de grande puissance
US3414757A (en) * 1965-10-07 1968-12-03 Varian Associates High power beam tube having improved beam collector and method of fabricating same
GB1138874A (en) * 1966-05-31 1969-01-01 English Electric Valve Co Ltd Improvements in and relating to the cooling of electron beam tubes
US3845341A (en) * 1973-08-01 1974-10-29 Aerojet General Co Actively cooled anode for current-carrying component
FR2627898B1 (fr) * 1988-02-26 1990-06-22 Thomson Csf Tube electronique refroidi par circulation d'un fluide
FR2627899B1 (fr) * 1988-02-26 1990-06-22 Thomson Csf Tube electronique de puissance refroidi par circulation d'un fluide

Also Published As

Publication number Publication date
FR2720550B1 (fr) 1996-12-06
DE69507740T2 (de) 1999-09-02
JPH07326292A (ja) 1995-12-12
FR2720550A1 (fr) 1995-12-01
EP0684625A1 (de) 1995-11-29
US5705881A (en) 1998-01-06
DE69507740D1 (de) 1999-03-25

Similar Documents

Publication Publication Date Title
EP3405723B1 (de) Kondensationswärmetauscher mit einer wärmetauschervorrichtung
EP1636818B1 (de) Röntgengeneratorröhre mit einem ausrichtbaren zielträgersystem
EP0684625B1 (de) Hochleistungsvakuumelektronenröhre mit einer durch Zwangsdurchlauf gekühlter Anode
FR2736769A1 (fr) Procede de reparation d'une boite a fluide de refroidissement d'une barre statorique d'un alternateur electrique
EP1468425B1 (de) Langzeitlagerungseinrichtung von produkten mit hoher wärmeabstrahlung
EP3465030B1 (de) Kryogene vorrichtung mit kompaktem wärmetauscher
CA2386372C (fr) Cylindre de coulee continue de bande metallique comprenant un circuit de refroidissement
WO2019137840A1 (fr) Creuset froid et collecteur de refroidissement associe pour dispositif de chauffage par induction
FR2533307A1 (fr) Procede pour chauffer par induction des pieces a une temperature uniforme, notamment pour fabriquer des radiateurs de vehicule automobile
EP2251611A1 (de) Modulelement für Heizgerät mit Wärmeübertragungsflüssigkeit, und elektrisches Heizgerät, das aus mindestens einem solchen Element besteht
EP0048690B1 (de) Hochstabilisierte Gasentladungsröhre für Laserstrahlung mit hoher Leistung
FR2496337A1 (fr) Structure d'aimants permanents pour tubes electroniques a faisceau lineaire
EP2251612A1 (de) Elektrisches Heizgerät mit Wärmeübertragungsflüssigkeit, das aus gegossenen Modulelementen besteht
EP0330542B1 (de) Leistungsröhre mit einem Flüssigkeitskühlkreislauf
FR2494036A1 (fr) Ligne a retard pour tube a ondes progressives, a refroidissement par caloducs, et tube a ondes progressives comportant une telle ligne
EP3553443A1 (de) Thermosiphon und gepulstes wärmeübertragungsrohr mit vereinfachter herstellung
FR2585598A1 (fr) Procede de fabrication par coulee d'une piece metallique munie interieurement d'une partie evidee entouree par un tube
FR2972890A1 (fr) Systeme inductif pouvant servir de creuset froid
WO2023104911A1 (fr) Element d'un equipement de chauffage par induction apte a recevoir un fluide de refroidissement
EP2674015B1 (de) Induktiver plasmabrenner
FR2878944A1 (fr) Dispositif d'echange de chaleur entre un premier et un second fluides et procedes de realisation d'un module d'echange de chaleur
BE545711A (de)
FR2627898A1 (fr) Tube electronique refroidi par circulation d'un fluide
FR3104045A1 (fr) Molette de soudage.
FR2925757A1 (fr) Refroidissement d'un tube electronique

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB

17P Request for examination filed

Effective date: 19960119

17Q First examination report despatched

Effective date: 19960911

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB

REF Corresponds to:

Ref document number: 69507740

Country of ref document: DE

Date of ref document: 19990325

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19990414

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20040510

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20040512

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20040520

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050512

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20051201

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20050512

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060131

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20060131