EP0681340A1 - Radarabsorbierende Fensterverglasung oder Fassadenverkleidung - Google Patents

Radarabsorbierende Fensterverglasung oder Fassadenverkleidung Download PDF

Info

Publication number
EP0681340A1
EP0681340A1 EP95105001A EP95105001A EP0681340A1 EP 0681340 A1 EP0681340 A1 EP 0681340A1 EP 95105001 A EP95105001 A EP 95105001A EP 95105001 A EP95105001 A EP 95105001A EP 0681340 A1 EP0681340 A1 EP 0681340A1
Authority
EP
European Patent Office
Prior art keywords
layer
arrangement according
outer layer
arrangement
radar
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP95105001A
Other languages
English (en)
French (fr)
Other versions
EP0681340B1 (de
Inventor
Andreas Dr. Frye
Heimfrid Dr. Gerke
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Airbus Defence and Space GmbH
Original Assignee
Daimler Benz Aerospace AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daimler Benz Aerospace AG filed Critical Daimler Benz Aerospace AG
Publication of EP0681340A1 publication Critical patent/EP0681340A1/de
Application granted granted Critical
Publication of EP0681340B1 publication Critical patent/EP0681340B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q17/00Devices for absorbing waves radiated from an antenna; Combinations of such devices with active antenna elements or systems
    • H01Q17/007Devices for absorbing waves radiated from an antenna; Combinations of such devices with active antenna elements or systems with means for controlling the absorption

Definitions

  • the invention relates to a radar-absorbing arrangement for a window glazing or facade cladding in a double-layer construction with a layer partially reflecting electromagnetic radiation arranged in the area of the outer layer and a further reflecting layer arranged in the area of the inner layer at a distance of about a quarter of the operating wavelength.
  • window glazing is described in a double-layer construction, which suppresses the reflection of incident electromagnetic radiation according to the principle of the Jaumann absorber.
  • An arrangement of parallel wires is provided in the outer pane instead of the known resistance layer.
  • the reflection of the radiation penetrating the glazing takes place by means of a metal layer evaporated onto the inner pane.
  • the reflective layer arranged in the region of the inner layer consists of parallel, wire-shaped electrical conductor sections which are arranged in an ordered geometric pattern.
  • FIG. 1 shows a double-layer construction of insulating glazing.
  • the outer pane 2 is arranged at a distance from the inner pane 6 by means of an evacuated or gas-filled intermediate space 4.
  • a facade cladding can also be designed in the same construction.
  • the inner pane 6 is designed as a double pane, a layer 7 of conductor sections L running in parallel being inserted between the individual panes of the double pane.
  • the outer and inner disks 2, 6 can be provided with optically or thermally active coatings if required.
  • the outer layer 1 of the outer pane 2 consists of a purely optically effective coating
  • the inner layer 3 is designed as a heat-insulating coating with a very low electrical conductivity.
  • the coating 3 can be made of metal oxide, for example.
  • the coatings 5 and 8 of the inner pane 6 can also be applied if necessary. However, it should be noted here that these layers have only a very low conductivity in order not to influence the effectiveness of the electrically conductive conductor sections L of layer 7.
  • the arrangement uses the functional principle of the Jaumann absorber, two reflecting layers must be present, the spacing of which from one another essentially depends on the operating frequency of the incident electromagnetic radiation R.
  • the electromagnetic radiation R initially falls on the outer layer 1 of the outer pane 2 or directly on the outer pane 2.
  • the natural reflection of the outer layer or pane is preferably used. If this should not be sufficient, the degree of reflection can be increased, for example, by a vapor-deposited metal layer 1.
  • the second reflection plane is formed by the reflective layer 7 in the area of the inner pane (s) 6.
  • the electrically effective part of the layer 7 consists of parallel, wire-shaped electrical conductor sections L, the preferred direction of which is set as a function of the polarization of the electromagnetic radiation R incident at the installation location. A certain proportion of the transmission T of electromagnetic radiation is tolerated.
  • the thickness of the outer pane 2 is between 8 and 14 mm, that of the inner pane between 6 and 10 mm.
  • the width of the space 4 is set in the range from 12 to 20 mm.
  • the length of the conductor sections L is selected in the range between 5 and 80 cm.
  • the distance d between two adjacent conductor sections L is approximately 10 to 40 mm, the width b of a conductor section is less than 0.5 mm.
  • the dimensioning of the arrangement in the context of these parameters determines the amplitude and the phase shift of the portion of the electromagnetic radiation reflected on the layer 7. Together with the reflection on the outer pane 2, this results in the intensity of the reflection suppression of the overall construction.
  • the reflection plane formed from the conductor sections L results in a reflection intensity which corresponds to a realized resistance of approximately 120 to 180 ⁇ / ⁇ of a surface whose position is at a greater distance from the outer pane 2 than the actual distance between the reflecting ones Layer 7 and the outer pane 2 is.
  • the conditions for a Jaumann absorber are met.
  • the reflective layer is applied to the inside of the outer pane / layer 2 instead of the coating 3.
  • Various designs of the reflective layer 7 have proven to be advantageous.
  • An obvious construction method consists in the use of wire sections which are applied to the pane / layer 2 or 6 in the specified dimensioning.
  • Tungsten wires have proven to be particularly suitable here, because their small thickness means that they can hardly be perceived optically in window glazing.
  • electrically conductive fibers have also proven useful for producing the reflective layer. Electrically conductive fibers, wires or the like can also be used. be incorporated into a textile fabric.
  • a design has proven particularly suitable for window glazing, in which conductive elements L have been applied to a plastic film, for example made of polyvinyl butyral (PVB).
  • the radar-absorbing arrangement according to the invention is not only suitable for window glazing, but in the same way also for similarly constructed facade cladding.
  • window glasses known non-conductive building materials such as building ceramics, fiber cement or laminated material are used in construction. Thermally insulating insulation materials are also suitable.
  • the position and the arrangement of the conductor sections within the described construction methods can easily be adapted to the conditions at the installation site. Furthermore, an adjustment can also be made in that the required distance from the reflecting surface of the outer layer 2 can be adjusted to a limited extent by the phase-dependent shift in the reflection of the reflecting layer 7.
  • the arrangement of the conductor sections L according to the invention does not act in the specified dimensioning like a construction with area-distributed, frequency-selective radiation elements, but the entirety of the conductor sections L produces the reflection behavior of a homogeneous layer with defined surface conductivity, which acts at a virtual location.
  • the arrangement with window glazing has the advantage of high optical transparency.

Landscapes

  • Laminated Bodies (AREA)
  • Building Environments (AREA)

Abstract

Die Erfindung betrifft eine radarabsorbierende Anordnung für Fensterverglasungen oder Fassadenverkleidungen, bei der im Bereich der Außenschicht auf eine elektrisch wirksame Widerstandsschicht verzichtet werden kann, während die im Bereich der Innenschicht angebrachte Struktur von Leiterabschnitten an den am Einbauort gewünschten Reflexionsgrad anpaßbar ist. <IMAGE>

Description

  • Die Erfindung betrifft eine radarabsorbierende Anordnung für eine Fensterverglasung oder Fassadenverkleidung in Doppelschichtbauweise mit einer im Bereich der Außenschicht angeordneten elektromagnetische Strahlung teilweise reflektierenden Schicht und einer im Bereich der Innenschicht im Abstand von etwa einem Viertel der Betriebswellenlänge angeordneten weiteren reflektierenden Schicht.
  • In der Patentschrift 42 27 032 C1 ist eine Fensterverglasung in Doppelschichtbauweise beschrieben, die nach dem Prinzip des Jaumann-Absorbers die Reflexion einfallender elektromagnetischer Strahlung unterdrückt. Dabei ist in der Außenscheibe anstelle der bekannten Widerstandsschicht eine Anordnung paralleler Drähte vorgesehen. Die Reflexion der die Verglasung durchdringenden Strahlung findet mittels einer auf die Innenscheibe aufgedampften Metallschicht statt. Bei der technischen Dimensionierung und Herstellung ergibt sich jedoch das Problem, daß neben der geforderten Präzision und Reproduzierbarkeit der Drahteinlagen die hochleitfähige innenseitig angeordnete Reflexionsschicht unter den gleichen Präzisionsanforderungen herzustellen und einzubauen ist.
  • Weiterhin ist aus dem Gebrauchsmuster G 89 15 902.0 ein Fassadenaufbau für Hochbauten bekannt geworden, der wiederum in Doppelschichtbauweise hergestellt wird und der ebenfalls nach dem Prinzip der Interferenzauslösung einfallende elektromagnetische Strahlung absorbiert. Hierbei ist besonders die Widerstandsschicht Ursache für Probleme hinsichtlich der Reproduzierbarkeit bei der Herstellung.
  • Es ist deshalb Aufgabe der Erfindung, eine Bauweise für radarabsorbierende Fensterverglasungen oder Fassadenverkleidungen anzugeben, die das Herstellverfahren vereinfacht und die eine Anpassung der elektrischen Eigenschaften an die am Einbauort vorgegebenen Verhältnisse erlaubt.
  • Die Aufgabe wird erfindungsgemäß dadurch gelöst, daß die im Bereich der Innenschicht angeordnete reflektierende Schicht aus parallel zueinanderliegenden, drahtförmigen elektrischen Leiterabschnitten besteht, die in einem geordneten geometrischen Muster angeordnet sind.
  • Weitere vorteilhafte Ausgestaltungen der Anordnung sind in den Unteransprüchen beschrieben.
  • Die besonderen Vorteile der erfindungsgemäßen Bauweise liegen zum einen in der erheblich erleichterten und preisgünstigeren Herstellbarkeit und zum anderen in der umfangreichen Anpassungsfähigkeit der Anordnung an die elektromagnetischen und baumechanischen Gegebenheiten am Einbauort.
  • Ausführungsbeispiele der Erfindung sind in der Zeichnung dargestellt und werden im folgenden näher beschrieben. Es zeigen:
  • Fig. 1
    einen Schnitt durch eine Isolierverglasung mit zwei Scheiben;
    Fig. 2
    eine Variante einer radarabsorbierenden Doppelschichtanordnung.
  • Das Ausführungsbeispiel in Fig. 1 zeigt eine Doppelschichtbauweise einer Isolierverglasung. Die Außenscheibe 2 ist mittels eines evakuierten oder gasgefüllten Zwischenraumes 4 von der Innenscheibe 6 beabstandet angeordnet. In der gleichen Bauweise kann auch eine Fassadenverkleidung gestaltet sein.
  • Die Innenscheibe 6 ist hierbei als Doppelscheibe ausgeführt, wobei zwischen den Einzelscheiben der Doppelscheibe eine Schicht 7 aus parallel verlaufenden Leiterabschnitten L eingefügt ist. Die Außen- und die Innenscheibe 2,6 können bei Bedarf mit optisch bzw. thermisch wirksamen Beschichtungen versehen sein. So besteht die außenliegende Schicht 1 der Außenscheibe 2 aus einer rein optisch wirksamen Beschichtung, während die innenliegende Schicht 3 als wärmedämmende Beschichtung mit einer sehr geringen elektrischen Leitfähigkeit ausgeführt ist. Die Beschichtung 3 kann beispielsweise aus Metalloxid hergestellt sein. Die Beschichtungen 5 und 8 der Innenscheibe 6 können ebenfalls bei Bedarf aufgebracht sein. Es ist hierbei jedoch zu beachten, daß diese Schichten eine nur sehr geringe Leitfähigkeit aufweisen, um die Wirksamkeit der elektrisch leitfähigen Leiterabschnitte L der Schicht 7 nicht zu beeinflussen.
  • Da die Anordnung das Funktionsprinzip des Jaumann-Absorbers benutzt, müssen zwei reflektierende Schichten vorhanden sein, deren Abstand zueinander im wesentlichen von der Betriebsfrequenz der einfallenden elektromagnetischen Strahlung R abhängig ist. Wie in Fig. 1 dargestellt, fällt die elektromagnetische Strahlung R zunächst auf die Außenschicht 1 der Außenscheibe 2 bzw. direkt auf die Außenscheibe 2. Hierbei wird vorzugsweise die natürliche Reflexion der Außenschicht bzw. -scheibe ausgenutzt. Falls diese nicht ausreichen sollte, kann der Reflexionsgrad beispielsweise durch eine aufgedampfte Metallschicht 1 erhöht werden.
  • Die zweite Reflexionsebene wird durch die reflektierende Schicht 7 im Bereich der Innenscheibe(n) 6 gebildet. Der elektrisch wirksame Teil der Schicht 7 besteht aus parallel zueinanderliegenden, drahtförmigen elektrischen Leiterabschnitten L, deren Vorzugsrichtung abhängig von der Polarisation der am Einbauort einfallenden elektromagnetischen Strahlung R eingestellt wird. Ein bestimmter Anteil der Transmission T elektromagnetischer Strahlung wird dabei toleriert. Bei einer Dimensionierung der Anordnung für eine Betriebsfrequenz von etwa 1 GHz ergeben sich folgende vorteilhafte Bemaßungen: Die Dicke der Außenscheibe 2 beträgt zwischen 8 und 14 mm, die der Innenscheibe zwischen 6 und 10 mm. Die Weite des Zwischenraumes 4 wird im Bereich von 12 bis 20 mm eingestellt. Die Länge der Leiterabschnitte L wird im Bereich zwischen 5 und 80 cm gewählt. Der Abstand d zweier benachbarter Leiterabschnitte L beträgt etwa 10 bis 40 mm, die Breite b eines Leiterabschnittes ist kleiner als 0,5 mm. Die Dimensionierung der Anordnung im Rahmen dieser Parameter bestimmt die Amplitude und die Phasenverschiebung des an der Schicht 7 reflektierten Anteils der elektromagnetischen Strahlung. Hieraus ergibt sich zusammen mit der Reflexion an der Außenscheibe 2 die Intensität der Reflexionsunterdrückung der Gesamtbauweise.
  • Bei der vorgegebenen Dimensionierung ergibt sich für die aus den Leiterabschnitten L gebildete Reflexionsebene eine Reflexionsintensität, die einem realisierten Widerstand von etwa 120 bis 180 Ω/□ einer Oberfläche entspricht, deren Lage einen größeren Abstand zur äußeren Scheibe 2 hat als der tatsächliche Abstand zwischen der reflektierenden Schicht 7 und der Außenscheibe 2 ist. Somit sind unter der Voraussetzung, daß die reflektierende Oberfläche der Außenscheibe 2 und der fiktive Reflexionsort der reflektierenden Schicht 7 etwa ein Viertel der Betriebswellenlänge voneinander beabstandet sind, die Bedingungen für einen Jaumann-Absorber erfüllt.
  • Die Fig. 2 zeigt eine Variante der bereits beschriebenen Bauweise. Hierbei wird die reflektierende Schicht auf der Innenseite der Außenscheibe/-schicht 2 anstelle der Beschichtung 3 angebracht. Durch Abwandlung der oben genannten Dimensionierungsvorschriften werden ebenso die Bedingungen für einen Jaumann-Absorber erfüllt.
  • Als vorteilhaft haben sich verschiedene Ausführungen der reflektierenden Schicht 7 erwiesen. Eine naheliegende Bauweise besteht in der Verwendung von Drahtabschnitten, die in der angegebenen Dimensionierung auf die Scheibe/Schicht 2 bzw. 6 aufgebracht werden. Als besonders geeignet haben sich hierbei Wolframdrähte erwiesen, die aufgrund ihrer geringen Dicke in einer Fensterverglasung kaum noch optisch wahrgenommen werden können. Je nach Anwendungsfall haben sich auch elektrisch leitfähige Fasern zur Herstellung der reflektierenden Schicht bewährt. Ebenso können elektrisch leitfähige Fasern, Drähte o.ä. in einem textilen Gewebe eingearbeitet sein. Für Fensterverglasungen hat sich eine Bauweise als besonders geeignet erwiesen, bei der leitfähige Elemente L auf einer Kunststoffolie, beispielsweise aus Polyvinylbutyral (PVB), aufgebracht worden sind.
  • Die erfindungsgemäße radarabsorbierende Anordnung eignet sich nicht nur für Fensterverglasungen, sondern in gleicher Weise auch für ähnlich aufgebaute Fassadenverkleidungen. Anstelle der Fenstergläser werden im Bauwesen bekannte nicht leitfähige Baustoffe wie Baukeramik, Faserzement oder Schichtpreß-Werkstoff eingesetzt. Thermisch wirksame Isolierdämmstoffe sind ebenfalls geeignet.
  • Beim Herstellprozeß sind die Lage und die Anordnung der Leiterabschnitte innerhalb der beschriebenen Bauweisen leicht an die am Einbauort gegebenen Verhältnisse anzupassen. Weiterhin kann eine Anpassung auch dadurch erfolgen, daß der erforderliche Abstand zur reflektierenden Oberfläche der Außenschicht 2 durch die phasenbedingte Verschiebung der Reflexion der reflektierenden Schicht 7 eingeschränkt einstellbar ist. Die erfindungsgemäße Anordnung der Leiterabschnitte L wirkt in der angegebenen Dimensionierung nicht wie eine Bauweise mit flächig verteilten, frequenzselektiv wirksamen Strahlungselementen, sondern die Gesamtheit der Leiterabschnitte L erzeugt das Reflexionsverhalten einer homogenen Schicht mit definierter Oberflächenleitfähigkeit, die an einem virtuellen Ort wirkt.
  • Darüber hinaus weist die Anordnung bei Fensterverglasungen den Vorteil einer hohen optischen Transparenz auf.

Claims (13)

  1. Radarabsorbierende Anordnung für eine Fensterverglasung oder Fassadenverkleidung in Doppelschichtbauweise mit einer im Bereich der Außenschicht angeordneten elektromagnetische Strahlung teilweise reflektierenden Schicht und einer im Bereich der Innenschicht im Abstand von etwa einem Viertel der Betriebswellenlänge angeordneten weiteren reflektierenden Schicht, dadurch gekennzeichnet, daß die im Bereich der Innenschicht (6) angeordnete reflektierende Schicht (7) aus parallel zueinander liegenden, drahtförmigen elektrischen Leiterabschnitten (L) besteht, die in einem geordneten geometrischen Muster angeordnet sind.
  2. Anordnung nach Anspruch 1, dadurch gekennzeichnet, daß die reflektierende Schicht (7) aus elektrisch leitfähigen Fasern besteht.
  3. Anordnung nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß die elektrisch leitfähigen Elemente (L) in einem textilen Gewebe eingearbeitet sind.
  4. Anordnung nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß die elektrisch leitfähigen Elemente (L) auf einer Kunststoffolie aufgebracht sind.
  5. Anordnung nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß die reflektierende Schicht (7) auf einer Oberfläche (5) der Innenschicht (6) angebracht ist.
  6. Anordnung nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß die Innenschicht (6) als Doppelschicht ausgeführt ist, in der die reflektierende Schicht (7) angeordnet ist.
  7. Anordnung nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß die Innen- und/oder Außenschicht (2,6) aus Floatglas bestehen.
  8. Anordnung nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß die Innenschicht (6) und/oder Außenschicht (2) als Verbundsicherheitsglas ausgeführt ist.
  9. Anordnung nach Anspruch 7 oder 8, dadurch gekennzeichnet, daß die reflektierende Schicht (7) im Verbundsicherheitsglas angeordnet ist.
  10. Anordnung nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß die Innen- und/oder Außenschicht (2,6) aus einem baukeramischen Material besteht.
  11. Anordnung nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß die Innen- und/oder Außenschicht (2,6) aus Faserzement besteht.
  12. Anordnung nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß die Innen- und/oder Außenschicht (2,6) aus einem Schichtpreß-Werkstoff besteht.
  13. Anordnung nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß die Innen- und/oder Außenschicht (2,6) aus einem Isolierdämmstoff besteht.
EP95105001A 1994-05-06 1995-04-04 Radarabsorbierende Fensterverglasung oder Fassadenverkleidung Expired - Lifetime EP0681340B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4416165 1994-05-06
DE4416165A DE4416165C2 (de) 1994-05-06 1994-05-06 Radarabsorbierende Anordnung für eine Fensterverglasung oder Fassadenverkleidung

Publications (2)

Publication Number Publication Date
EP0681340A1 true EP0681340A1 (de) 1995-11-08
EP0681340B1 EP0681340B1 (de) 1999-10-27

Family

ID=6517568

Family Applications (1)

Application Number Title Priority Date Filing Date
EP95105001A Expired - Lifetime EP0681340B1 (de) 1994-05-06 1995-04-04 Radarabsorbierende Fensterverglasung oder Fassadenverkleidung

Country Status (2)

Country Link
EP (1) EP0681340B1 (de)
DE (2) DE4416165C2 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19707585A1 (de) * 1997-02-26 1998-09-03 Bosch Gmbh Robert Gehäuse mit radarabsorbierenden Eigenschaften
EP1039577A2 (de) * 1999-03-26 2000-09-27 DaimlerChrysler AG Radarabsorbierende Verbundglasscheibe

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19756718B4 (de) * 1997-12-19 2004-03-25 Eads Deutschland Gmbh Fassadenplatte und Fassade für eine Gebäudewand
DE10018276A1 (de) * 2000-04-13 2001-10-25 Saint Gobain Sekurit D Gmbh Verbundscheibe

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0238291A1 (de) * 1986-03-18 1987-09-23 Nippon Carbon Co., Ltd. Absorber für elektromagnetische Wellen
EP0405077A1 (de) * 1989-06-06 1991-01-02 Daimler-Benz Aerospace Aktiengesellschaft Fassadenaufbau von Hochbauten
EP0413580A1 (de) * 1989-08-18 1991-02-20 Pilkington Plc Platte zur elektromagnetischen Abschirmung
DE4006352A1 (de) * 1990-03-01 1991-09-05 Dornier Luftfahrt Radarabsorber
DE4008660A1 (de) * 1990-03-17 1991-09-19 Messerschmitt Boelkow Blohm Fensterverglasung fuer hochbauten
EP0499868A2 (de) * 1991-02-06 1992-08-26 Flachglas Aktiengesellschaft Verglasungselement mit niedrigem Radarreflexionsgrad
DE4227032C1 (de) * 1992-08-14 1993-09-30 Deutsche Aerospace Fensterverglasung

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0238291A1 (de) * 1986-03-18 1987-09-23 Nippon Carbon Co., Ltd. Absorber für elektromagnetische Wellen
EP0405077A1 (de) * 1989-06-06 1991-01-02 Daimler-Benz Aerospace Aktiengesellschaft Fassadenaufbau von Hochbauten
DE8915902U1 (de) * 1989-06-06 1992-02-13 Messerschmitt-Bölkow-Blohm GmbH, 8012 Ottobrunn Fassadenaufbau von Hochbauten
EP0413580A1 (de) * 1989-08-18 1991-02-20 Pilkington Plc Platte zur elektromagnetischen Abschirmung
DE4006352A1 (de) * 1990-03-01 1991-09-05 Dornier Luftfahrt Radarabsorber
DE4008660A1 (de) * 1990-03-17 1991-09-19 Messerschmitt Boelkow Blohm Fensterverglasung fuer hochbauten
EP0499868A2 (de) * 1991-02-06 1992-08-26 Flachglas Aktiengesellschaft Verglasungselement mit niedrigem Radarreflexionsgrad
DE4227032C1 (de) * 1992-08-14 1993-09-30 Deutsche Aerospace Fensterverglasung
EP0583557A1 (de) * 1992-08-14 1994-02-23 Daimler-Benz Aerospace Aktiengesellschaft Fensterverglasung

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19707585A1 (de) * 1997-02-26 1998-09-03 Bosch Gmbh Robert Gehäuse mit radarabsorbierenden Eigenschaften
EP1039577A2 (de) * 1999-03-26 2000-09-27 DaimlerChrysler AG Radarabsorbierende Verbundglasscheibe
EP1039577A3 (de) * 1999-03-26 2003-01-02 DaimlerChrysler AG Radarabsorbierende Verbundglasscheibe

Also Published As

Publication number Publication date
DE59507115D1 (de) 1999-12-02
EP0681340B1 (de) 1999-10-27
DE4416165A1 (de) 1995-11-09
DE4416165C2 (de) 1998-10-15

Similar Documents

Publication Publication Date Title
DE69924092T2 (de) Glaspaneel
DE3610486A1 (de) Transparente verglasungstafeln
EP2098674A1 (de) Licht erzeugendes Wandelement
EP0499868B1 (de) Verglasungselement mit niedrigem Radarreflexionsgrad
EP0583557B1 (de) Fensterverglasung
EP0681340B1 (de) Radarabsorbierende Fensterverglasung oder Fassadenverkleidung
EP1778944B1 (de) Radarabschirmende verglasung
DE3716766A1 (de) Verglasungstafel
DE4008660C2 (de)
DE3807600C2 (de) Niederreflektierender, hochtransparenter in Durch- als auch in Außenansicht neutral wirkender Sonnenschutz- und/oder wärmedämmender Belag für ein Substrat aus transparentem Material, Verfahren zur Herstellung des Belags sowie Verwendungen des Belags
DE9014083U1 (de) Mehrschichtisolierglasscheibe
DE4101074C2 (de) Verglasungselement mit niedrigem Reflexionsgrad für Radarstrahlung
CH588008A5 (en) Thermal insulation window with vacuum cavity - has transparent panels with heat reflecting layer and edge seals
DE8609411U1 (de) Strahlenschutzvorrichtung zur Verminderung von in einen Lebensraum eindringender Strahlung
DE19929081C2 (de) Radarabsorbierende Verbundglasscheibe
EP1039577B1 (de) Radarabsorbierende Verbundglasscheibe
DE4401675C2 (de) Isolierglasscheibe mit hoher Reflexionsdämpfung für Radarstrahlung
DE102008063396A1 (de) Mehrscheiben-Isolierglas mit einer niedrigemittierenden Beschichtung
EP0657613B1 (de) Fensterverglasung
EP0446408B1 (de) Reflexionsarmes Wandelement für Radarstrahlung
DE19756718B4 (de) Fassadenplatte und Fassade für eine Gebäudewand
DE10217045A1 (de) Passivhaus-taugliches Verglasungselement
DE4331235C1 (de) Fensterverglasung
DE3900857A1 (de) Fassadenaufbau von hochbauten in waermedaemmender ausbildung und verfahren zur herstellung einer waermedaemmung
EP1273558A1 (de) Verfahren zur Herstellung eines wärmereflektierenden Schichtsystems für transparente Substrate und danach hergestelltes Schichtsystem

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): CH DE FR GB LI LU

17P Request for examination filed

Effective date: 19951021

17Q First examination report despatched

Effective date: 19980525

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE FR GB LI LU

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19991103

REF Corresponds to:

Ref document number: 59507115

Country of ref document: DE

Date of ref document: 19991202

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 20120426

Year of fee payment: 18

Ref country code: CH

Payment date: 20120420

Year of fee payment: 18

Ref country code: DE

Payment date: 20120420

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20120507

Year of fee payment: 18

Ref country code: GB

Payment date: 20120419

Year of fee payment: 18

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20130404

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131101

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130430

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130404

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130430

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20131231

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 59507115

Country of ref document: DE

Effective date: 20131101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130404