EP0674102A2 - Alternating current ignition with optimized electronic circuit - Google Patents

Alternating current ignition with optimized electronic circuit Download PDF

Info

Publication number
EP0674102A2
EP0674102A2 EP95102930A EP95102930A EP0674102A2 EP 0674102 A2 EP0674102 A2 EP 0674102A2 EP 95102930 A EP95102930 A EP 95102930A EP 95102930 A EP95102930 A EP 95102930A EP 0674102 A2 EP0674102 A2 EP 0674102A2
Authority
EP
European Patent Office
Prior art keywords
semiconductor switch
ignition
voltage
circuit
ignition system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP95102930A
Other languages
German (de)
French (fr)
Other versions
EP0674102B1 (en
EP0674102A3 (en
Inventor
Michael Daetz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Volkswagen AG
Mercedes Benz Group AG
Original Assignee
Daug Deutsche Automobil Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=6513598&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0674102(A2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Daug Deutsche Automobil Gmbh filed Critical Daug Deutsche Automobil Gmbh
Publication of EP0674102A2 publication Critical patent/EP0674102A2/en
Publication of EP0674102A3 publication Critical patent/EP0674102A3/en
Application granted granted Critical
Publication of EP0674102B1 publication Critical patent/EP0674102B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P3/00Other installations
    • F02P3/02Other installations having inductive energy storage, e.g. arrangements of induction coils
    • F02P3/04Layout of circuits
    • F02P3/055Layout of circuits with protective means to prevent damage to the circuit, e.g. semiconductor devices or the ignition coil
    • F02P3/0552Opening or closing the primary coil circuit with semiconductor devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P15/00Electric spark ignition having characteristics not provided for in, or of interest apart from, groups F02P1/00 - F02P13/00 and combined with layout of ignition circuits
    • F02P15/10Electric spark ignition having characteristics not provided for in, or of interest apart from, groups F02P1/00 - F02P13/00 and combined with layout of ignition circuits having continuous electric sparks

Definitions

  • the invention relates to an AC ignition system with at least one ignition output stage according to the preamble of patent claim 1.
  • Such an alternating current ignition system is known from DE-OS 39 28 726, which has the advantage over conventional ignition systems, for example so-called transistor ignitions with static high voltage distribution, that small and thus inexpensive ignition coils can be used. This enables the ignition point to be reached quickly in the ⁇ s range. Furthermore, according to the above. Document ensures the optimal ignition in that it remains switched on for the entire burning time, regardless of the speed, during which it generates a bipolar spark current.
  • FIG. 1 Such an alternating current ignition system known from the above-mentioned document is shown in FIG. 1.
  • reference number Z denotes an ignition output stage, which has an ignition coil Tr with a primary and secondary coil, a semiconductor switch T connected in series with the primary coil and an oscillating circuit capacitor C and an energy recovery diode D, which are also arranged in series with the primary winding.
  • a current measuring resistor R1 for detecting the actual value of the Primary coil current provided.
  • a control and regulating circuit 1 takes over the control of the semiconductor switch T via its control electrode, for which purpose the voltage drop across the resistor R1 and the voltage U T occurring at the semiconductor switch T are supplied via the circuit node A.
  • the control and regulating circuit 1 is supplied with a control signal containing the ignition signal via its connection U st .
  • a switching power supply (not shown in FIG. 1) generates an operating voltage U B of 180 V, which is applied to the primary coil of the ignition coil Tr.
  • the switched-mode power supply in turn, is powered by an on-board battery.
  • the ignition output stage Z is operated in current mode, i. H. the semiconductor switch T is turned on until a certain current through the primary coil is reached. At this time, the semiconductor switch T turns off, so that the energy stored in the primary coil can charge the capacitor C. This leads to an approximately sinusoidal curve of the voltage applied to the semiconductor switch T. The negative half-wave of the oscillation is limited by diode D to small voltage amplitudes. During this phase of the current flow through the diode D, the semiconductor switch T should be switched on again. At this point in time, the switch-on losses are also very low, since the voltage applied to the semiconductor switch has almost the value zero.
  • the actual value of the current flowing through the primary winding is usually measured via the voltage drop across the resistor R1. After reaching the desired value of the current, the semiconductor switch T is switched off, with the result that the voltage across the resistor R1 drops very quickly. Immediate Various measures are known to prevent the semiconductor switch from being switched on again.
  • One of the known measures consists in evaluating the voltage U T present at the semiconductor switch T. According to FIG. 1, this is done by connecting point A of semiconductor switch T with the primary winding of ignition coil Tr to control and regulating circuit 1 and evaluating it there.
  • this solution has the disadvantage that it can only be prevented from being switched on again when the voltage U T is greater than the supply voltage U B. Therefore, in order to prevent vibrations for the period of time until the voltage U T has reached the value of the supply voltage U B , an additional lock, for. B. can be used via a timer. Such an additional lock must also be provided if the voltage U T at the semiconductor switch T falls below the value of the supply voltage U B again in order to achieve the above-mentioned advantage of switching at a voltage value of almost zero.
  • the disadvantage of such a timing element that can be implemented in a simple manner is that the switch-off threshold of the primary current is influenced. If multiple primaries are present, is also disadvantageous in that then the detection of the voltages U T generated at the semiconductor switches T depending on the primary circuit must be made at least once, even if the evaluation of the primary currents is done only once for the entire ignition system.
  • Another known solution uses a monostable multivibrator to prevent the semiconductor switch T from being switched on again for a defined period of time.
  • This solution with a defined time delay has the disadvantage that the time delay to be selected is a function of the selected primary current and also depends on whether the spark gap has already broken through on the secondary side of the ignition coil or not.
  • the tolerances of all time-determining components are also included in the time delay to be selected. Therefore, safe operation of the power stage cannot be ensured in all cases with this solution.
  • the object of the present invention is to provide an AC ignition system of the type mentioned at the outset, which has a simple circuit for controlling the semiconductor switch and with which a safe operation of the ignition system is ensured.
  • the resonant circuit capacitor - as is known from the above-mentioned DE-OS 39 28 726 - can be arranged parallel to the semiconductor switch.
  • a particularly advantageous embodiment is obtained when the resonant circuit capacitor is connected in parallel to the primary coil of the ignition coil.
  • the voltage load on the capacitor is thereby reduced by approximately 20%, so that a more cost-effective component can then be used.
  • an alternating current ignition system has a plurality of ignition output stages, all ignition output stages each containing an energy recovery diode.
  • the diodes are connected to form a wired-or circuit in order to be able to lead their diode currents to a single resistor, the voltage drop of which then serves as a trigger signal for switching the semiconductor switch on again.
  • the evaluation of the diode current is advantageously carried out only once for the entire system and not for each individual channel.
  • a clamping circuit for limiting the voltage applied to the semiconductor switch, which is constructed from a voltage divider and a comparator connected downstream of it.
  • the voltage divider is connected directly to the circuit node connecting the semiconductor switch to the primary coil; the output of the comparator, on the other hand, directly controls the control electrode of the semiconductor switch.
  • Such a clamping circuit can reliably prevent the maximum permissible voltages at the semiconductor switch, the energy recovery diode and the resonant circuit capacitor from being exceeded. Because without such a clamping circuit, correspondingly high safety distances from the maximum permissible values would have to be maintained to compensate for tolerances, with a negative cost consequence with regard to the components used.
  • the clamping circuit has the effect that the voltage U T at the semiconductor switch is limited to a value which is only slightly less than the maximum permissible value. As a result, the components used can be used close to their load limit.
  • Such a clamp circuit has the advantage over the usual use of Zener diodes that little chip area is consumed when the circuit is implemented in integrated circuit technology, since a large number of Zener voltages occur in the kV range in the case of the high voltages which occur during AC ignition. Diodes would be required, so that this would lead to a high chip area consumption.
  • bipolar transistors In ignition systems, it is known to use bipolar transistors, power MOS field-effect transistors or IGBT transistors (isolated gate bipolar transistors) as semiconductor switches.
  • IGBT transistors isolated gate bipolar transistors
  • An advantageous embodiment of the invention is also achieved with a MOS-controlled thyristor (MCT) as a semiconductor switch.
  • MCT thyristors MOS-controlled thyristors
  • the circuit diagram of an alternating current ignition system according to FIG. 2 shows, compared to that according to FIG. 1, a resistor R2 connected in series with the energy recovery diode D.
  • the current through this diode D begins to flow in the negative half-wave of the voltage oscillation generated by the capacitor C and the primary coil of the ignition coil Tr.
  • the voltage drop which then arises at this resistor R2 is fed to the control and regulating circuit 1, so that this voltage signal can serve as a trigger signal for switching the semiconductor switch T on again. Since only small voltages are present at the semiconductor switch T at this time, the switching on can take place without electrical losses.
  • the current is then taken over by the semiconductor switch T at the zero crossing of the oscillation.
  • the value of the resistor R2 is measured with a low resistance, so that the voltage drop across it is sufficient to control an electronic switch, for example a bipolar transistor. Compared to the circuit according to FIG. 1, the line between the semiconductor switch T circuit nodes connecting the primary coil and the control circuit 1 are eliminated.
  • the exemplary embodiment according to FIG. 3 differs from that according to FIG. 2 in that the resonant circuit capacitor C is connected in parallel with the primary coil of the ignition coil Tr and also in that a MOS-controlled thyristor (MCT) is used as the semiconductor switch T.
  • MCT MOS-controlled thyristor
  • Such an MCT thyristor combines the advantageous properties of the thyristors, such as high dielectric strength, low forward losses and high specific current carrying capacity, with the ability to switch off the power semiconductors used to date, such as bipolar transistors, power MOS field-effect transistors or IGBT transistors.
  • the advantage that is achieved with the parallel connection of the resonant circuit capacitor C to the primary coil is that the voltage load on this capacitor is reduced by approximately 20%, so that a less expensive component can be used.
  • the voltage drop across the resistor R1 is still fed to the control and regulating circuit 1 in order to detect the actual value of the primary coil current.
  • the circuit according to FIG. 4 shows an AC ignition system with four ignition output stages Z1 to Z4.
  • Each of these ignition output stages contains an ignition coil Tr1 to Tr4, in each case a resonant circuit capacitor C1 to C4 connected in parallel to the primary coil, a semiconductor switch T1 to T4 each connected in series with the primary coil and a recovery diode D1 to D4 connected in parallel to the semiconductor switch.
  • diodes D1 to D4 are each connected with their cathode to the circuit node connecting the semiconductor switch to the primary coil, the anodes of which are led to a single resistor R2, which in turn is at reference potential.
  • a corresponding wired-or circuit is also implemented for the source electrodes of the semiconductor switches T1 to T4 by means of a single resistor R1, the voltage drop of which serves to determine the actual value of the primary coil current for all ignition output stages Z1 to Z4.
  • the resonant circuit capacitors C1 to C4 can also be connected in parallel to the semiconductor switches T1 to T4 in accordance with the reference symbols C1 'to C4' instead of in parallel with the primary coils.
  • FIG. 5 shows a circuit arrangement for an AC ignition system according to FIG. 2 with an oscillating circuit capacitance C 'arranged parallel to the semiconductor switch T, which can also be arranged parallel to the primary coil according to FIG. 3 (see reference symbol C).
  • this FIG. 5 contains a clamping circuit 2 for voltage limitation at the semiconductor switch T.
  • This clamping circuit 2 prevents the maximum permissible voltage at the semiconductor switch T of the diode D and the resonant circuit capacitor C or C 'from being exceeded. Without such a clamping circuit, correspondingly high safety distances from the maximum permissible values would have to be maintained to compensate for tolerances.
  • the clamp circuit 2 causes, for example, the voltage generated across the semiconductor switch T U T is limited to a value which is only slightly lower than the maximum permissible value.
  • the expensive components, that is to say the semiconductor switch T, the resonant circuit capacitor C or C ′ and the energy recovery diode D can thus be used close to their load limits.
  • the clamping circuit 2 shown in FIG. 5 is constructed with a voltage divider R4 / R5 and a comparator K connected downstream.
  • the voltage divider R4 / R5 is connected to the connection point A, which connects the semiconductor switch T to the primary coil, whereas the output of the comparator K on the one hand directly to the control electrode of the semiconductor switch T and on the other hand via a resistor R6 to the output of the control and regulating circuit 1 is connected.
  • An accurate and temperature-stable reference voltage source U ref serves as a comparison standard for limiting the voltage U T generated at the semiconductor switch T by supplying it to the non-inverting input of the comparator K.
  • the tap of the voltage divider R4 / R5 is present at the inverting input of the comparator K.
  • the voltage U T generated at the semiconductor switch T is divided down by this voltage divider R4 / R5 and compared with the reference voltage U ref by the comparator circuit K.
  • the output of the comparator K controls the semiconductor switch T, whereby a high accuracy and long-term constancy of the limiting voltage is achieved.
  • FIG. 6 A circuit design of the clamp circuit according to FIG. 5 is shown in FIG. 6, where the comparator K is constructed with an npn transistor T5 and a pnp transistor T6.
  • the base electrode of the transistor T5 is connected to the voltage divider R4 / R5, while its emitter electrode is connected to the reference voltage source U ref via a resistor R7 and its collector electrode is led to the base electrode of the transistor T6.
  • the base electrode of transistor T6 is connected on the one hand to the reference potential via a resistor R8 and on the other hand to the emitter electrode of transistor T6 via a resistor R9.
  • the emitter electrode of the transistor T6 is connected to the battery voltage U Bat .
  • the collector electrode of transistor T6 forms the output of the comparator.
  • the base voltage of the transistor T5 rises to a value which is greater than the sum of its base-emitter voltage and the reference voltage U ref , this transistor T5 becomes conductive.
  • the collector current of the transistor T5 can drive the transistor T6, which amplifies this current and thus drives the semiconductor switch T.
  • the resistor circuit with the resistors R7 to R9 is designed so that a quick response without over- and undershoots is achieved.
  • this clamping circuit 2 according to FIG. 6 offers the advantage of a small chip area consumption compared to the usual use of Zener diodes. Because using Zener diodes would be in the kV range due to the high voltages that occur with AC ignition very many zener diodes required. A corresponding implementation in integrated circuit technology with these Zener diodes would require a large chip area.
  • An MCT thyristor can also be provided for the semiconductor switch T in the AC ignition systems according to FIGS. 4 and 5.
  • a clamping circuit 2 according to FIG. 5 or 6 can be provided for all ignition output stages Z1 to Z4.

Abstract

The ignition system has at least one ignition end stage (Z) with an ignition coil (Tr), having primary and secondary windings, a transistor (T), in series with the primary winding and a capacitor (C) forming an oscillation circuit with the primary winding. An energy recovery diode (D) is connected across the transistor, with the current through the diode acting as the trigger signal for switching in the transistor. Pref. the current through the diode is detected by a series resistance (R2), with a clamping circuit (2) limiting the voltage for the switching transistor, provided by a voltage divider and a comparator, with its output coupled to the transistor control electrode.

Description

Die Erfindung betrifft eine Wechselstrom-Zündanlage mit wenigstens einer Zündendstufe gemäß dem Oberbegriff des Patentanspruches 1.The invention relates to an AC ignition system with at least one ignition output stage according to the preamble of patent claim 1.

Eine solche Wechselstrom-Zündanlage ist aus der DE-OS 39 28 726 bekannt, die gegenüber herkömmlichen Zündanlagen, beispielsweise sogenannten Transistor-Zündungen mit ruhender Hochspannungsverteilung, den Vorteil hat, daß kleine und somit kostengünstige Zündspulen einsetzbar sind. Dadurch wird ein schnelles Erreichen des Zündzeitpunktes im µs-Bereich erreicht. Ferner wird gemäß der o. g. Druckschrift die optimale Zündung dadurch sichergestellt, daß sie für die gesamte Brenndauer, unabhängig von der Drehzahl eingeschaltet bleibt, während der sie einen bipolaren Funkenbrennstrom erzeugt.Such an alternating current ignition system is known from DE-OS 39 28 726, which has the advantage over conventional ignition systems, for example so-called transistor ignitions with static high voltage distribution, that small and thus inexpensive ignition coils can be used. This enables the ignition point to be reached quickly in the µs range. Furthermore, according to the above. Document ensures the optimal ignition in that it remains switched on for the entire burning time, regardless of the speed, during which it generates a bipolar spark current.

Eine solche aus der o. g. Druckschrift bekannte Wechselstrom-Zündanlage ist in Figur 1 dargestellt. Dort ist mit dem Bezugszeichen Z eine Zündendstufe bezeichnet, die eine Zündspule Tr mit einer Primär- und Sekundärspule, einen in Reihe zur Primärspule geschalteten Halbleiterschalter T sowie einen Schwingkreiskondensator C und eine Energierückgewinnungsdiode D, die ebenfalls in Reihe zur Primärwicklung angeordnet sind, aufweist. Ferner ist in Reihe zum Halbleiterschalter T ein Strommeßwiderstand R1 zur Erfassung des Istwertes des Primärspulenstromes vorgesehen. Eine Steuer- und Regelschaltung 1 übernimmt die Steuerung des Halbleiterschalters T über dessen Steuerelektrode, wozu ihr der Spannungsabfall an dem Widerstand R1 sowie die an dem Halbleiterschalter T auftretende Spannung UT über den Schaltungsknoten A zugeführt wird. Der Steuer- und Regelschaltung 1 wird über dessen Anschluß Ust ein das Zündsignal enthaltendes Steuersignal zugeführt. Ein in der Figur 1 nicht dargestelltes Schaltnetzteil erzeugt eine Betriebsspannung UB von 180 V, die an die Primärspule der Zündspule Tr angelegt wird. Das Schaltnetzteil seinerseits wird von einer Bordbatterie gespeist.Such an alternating current ignition system known from the above-mentioned document is shown in FIG. 1. There, reference number Z denotes an ignition output stage, which has an ignition coil Tr with a primary and secondary coil, a semiconductor switch T connected in series with the primary coil and an oscillating circuit capacitor C and an energy recovery diode D, which are also arranged in series with the primary winding. Furthermore, in series with the semiconductor switch T is a current measuring resistor R1 for detecting the actual value of the Primary coil current provided. A control and regulating circuit 1 takes over the control of the semiconductor switch T via its control electrode, for which purpose the voltage drop across the resistor R1 and the voltage U T occurring at the semiconductor switch T are supplied via the circuit node A. The control and regulating circuit 1 is supplied with a control signal containing the ignition signal via its connection U st . A switching power supply (not shown in FIG. 1) generates an operating voltage U B of 180 V, which is applied to the primary coil of the ignition coil Tr. The switched-mode power supply, in turn, is powered by an on-board battery.

Die Zündendstufe Z wird im Current-Mode betrieben, d. h. der Halbleiterschalter T wird so lange eingeschaltet, bis ein bestimmter Strom durch die Primärspule erreicht ist. Zu diesem Zeitpunkt schaltet der Halbleiterschalter T ab, so daß die in der Primärspule gespeicherte Energie den Kondensator C aufladen kann. Dies führt zu einem annähernd sinusförmigen Verlauf der am Halbleiterschalter T anliegenden Spannung. Dabei wird die negative Halbwelle der Schwingung durch die Diode D auf kleine Spannungsamplituden begrenzt. Während dieser Phase des Stromflusses durch die Diode D soll der Halbleiterschalter T wieder eingeschaltet werden. Zu diesem Zeitpunkt sind auch die Einschaltverluste sehr gering, da die an dem Halbleiterschalter anliegende Spannung nahezu den Wert Null aufweist.The ignition output stage Z is operated in current mode, i. H. the semiconductor switch T is turned on until a certain current through the primary coil is reached. At this time, the semiconductor switch T turns off, so that the energy stored in the primary coil can charge the capacitor C. This leads to an approximately sinusoidal curve of the voltage applied to the semiconductor switch T. The negative half-wave of the oscillation is limited by diode D to small voltage amplitudes. During this phase of the current flow through the diode D, the semiconductor switch T should be switched on again. At this point in time, the switch-on losses are also very low, since the voltage applied to the semiconductor switch has almost the value zero.

Der Istwert des durch die Primärwicklung fließenden Stromes wird üblicherweise über den Spannungsabfall an dem Widerstand R1 gemessen. Nach dem Erreichen des Sollwertes des Stromes wird der Halbleiterschalter T abgeschaltet, mit der Folge, daß die Spannung an dem Widerstand R1 sehr schnell abfällt. Um ein sofortiges Wiedereinschalten des Halbleiterschalters zu verhindern, sind verschiedene Maßnahmen bekannt.The actual value of the current flowing through the primary winding is usually measured via the voltage drop across the resistor R1. After reaching the desired value of the current, the semiconductor switch T is switched off, with the result that the voltage across the resistor R1 drops very quickly. Immediate Various measures are known to prevent the semiconductor switch from being switched on again.

Eine der bekannten Maßnahmen besteht darin, die an dem Halbleiterschalter T anstehende Spannung UT auszuwerten. Nach Figur 1 erfolgt dies dadurch, daß der Verbindungspunkt A des Halbleiterschalters T mit der Primärwicklung der Zündspule Tr auf die Steuer- und Regelschaltung 1 geführt ist und dort ausgewertet wird. Diese Lösung hat jedoch den Nachteil, daß das Wiedereinschalten erst bei Werten der Spannung UT verhindert werden kann, die größer als die Versorgungsspannung UB ist. Daher muß zur Verhinderung von Schwingungen für die Zeitdauer bis die Spannung UT den Wert der Versorgungsspannung UB erreicht hat, eine zusätzliche Sperre, z. B. über ein Zeitglied, verwendet werden. Ebenso muß eine solche zusätzliche Sperre vorgesehen werden, wenn die Spannung UT am Halbleiterschalter T wieder unter den Wert der Versorgungsspannung UB fällt, um den o. g. Vorteil des Schaltens bei einem Spannungswert von nahezu Null zu erreichen. Der Nachteil eines solchen auf einfache Weise zu realisierenden Zeitgliedes ist jedoch, daß die Abschaltschwelle des Primärstromes beeinflußt wird. Wenn mehrere Primärstromkreise vorhanden sind, ist ferner nachteilig, daß dann die Erfassung der an den Halbleiterschaltern T erzeugten Spannungen UT mindestens einmal je Primärstromkreis erfolgen muß, auch wenn die Auswertung der Primärströme nur einmal für die gesamte Zündanlage erfolgt.One of the known measures consists in evaluating the voltage U T present at the semiconductor switch T. According to FIG. 1, this is done by connecting point A of semiconductor switch T with the primary winding of ignition coil Tr to control and regulating circuit 1 and evaluating it there. However, this solution has the disadvantage that it can only be prevented from being switched on again when the voltage U T is greater than the supply voltage U B. Therefore, in order to prevent vibrations for the period of time until the voltage U T has reached the value of the supply voltage U B , an additional lock, for. B. can be used via a timer. Such an additional lock must also be provided if the voltage U T at the semiconductor switch T falls below the value of the supply voltage U B again in order to achieve the above-mentioned advantage of switching at a voltage value of almost zero. However, the disadvantage of such a timing element that can be implemented in a simple manner is that the switch-off threshold of the primary current is influenced. If multiple primaries are present, is also disadvantageous in that then the detection of the voltages U T generated at the semiconductor switches T depending on the primary circuit must be made at least once, even if the evaluation of the primary currents is done only once for the entire ignition system.

Eine andere bekannte Lösung setzt eine monostabile Kippstufe (Mono-Flop) ein, um das Wiedereinschalten des Halbleiterschalters T für eine definierte Zeitdauer zu verhindern. Diese Lösung mit einer definierten Zeitverzögerung hat den Nachteil, daß die zu wählende Zeitverzögerung zum einen eine Funktion des gewählten Primärstromes ist und zum anderen auch davon abhängt, ob auf der Sekundärseite der Zündspule der Durchbruch der Funkenstrecke bereits erfolgt ist oder nicht. Letztlich gehen auch die Toleranzen aller zeitbestimmenden Bauelemente in die zu wählende Zeitverzögerung ein. Daher kann mit dieser Lösung nicht in allen Fällen ein sicherer Betrieb der Endstufe sichergestellt werden.Another known solution uses a monostable multivibrator to prevent the semiconductor switch T from being switched on again for a defined period of time. This solution with a defined time delay has the disadvantage that the time delay to be selected is a function of the selected primary current and also depends on whether the spark gap has already broken through on the secondary side of the ignition coil or not. Ultimately, the tolerances of all time-determining components are also included in the time delay to be selected. Therefore, safe operation of the power stage cannot be ensured in all cases with this solution.

Die Aufgabe der vorliegenden Erfindung besteht darin, eine Wechselstrom-Zündanlage der eingangs genannten Art anzugeben, die eine einfache Schaltung zur Steuerung des Halbleiterschalters aufweist und mit der ein sicherer Betrieb der Zündanlage sichergestellt ist.The object of the present invention is to provide an AC ignition system of the type mentioned at the outset, which has a simple circuit for controlling the semiconductor switch and with which a safe operation of the ignition system is ensured.

Diese Aufgabe wird durch die kennzeichnenden Merkmale des Patentanspruches 1 gelöst, wonach der Stromfluß durch die Diode als Steuersignal für den Halbleiterschalter verwendet wird. Somit dient der beginnende Stromfluß durch die Energierückgewinnungsdiode als Triggersignal für das Wiedereinschalten des Halbleiterschalters. In vorteilhafter Weise liegen zu diesem Zeitpunkt nur kleine Spannungen am Halbleiterschalter an, wodurch das Einschalten ohne elektrische Verluste erfolgen kann. Der Strom wird dann im Nulldurchgang der von dem Kondensator und der Primärspule erzeugten Schwingungen vom Halbleiterschalter übernommen. Vorzugsweise wird der Stromfluß durch die Energierückgewinnungsdiode durch einen in Reihe zu dieser Diode geschalteten niederohmigen Widerstand detektiert.This object is achieved by the characterizing features of claim 1, according to which the current flow through the diode is used as a control signal for the semiconductor switch. Thus, the beginning of current flow through the energy recovery diode serves as a trigger signal for switching the semiconductor switch on again. Advantageously, only small voltages are present at the semiconductor switch at this point in time, as a result of which switching on can take place without electrical losses. The current is then taken over by the semiconductor switch at the zero crossing of the vibrations generated by the capacitor and the primary coil. The current flow through the energy recovery diode is preferably detected by a low-resistance resistor connected in series with this diode.

Bei einer Ausführungsform der erfindungsgemäßen Wechselstrom-Zündanlage kann der Schwingkreiskondensator - wie es aus der o. g. DE-OS 39 28 726 bekannt ist - parallel zum Halbleiterschalter angeordnet werden.In one embodiment of the AC ignition system according to the invention, the resonant circuit capacitor - as is known from the above-mentioned DE-OS 39 28 726 - can be arranged parallel to the semiconductor switch.

Eine besonders vorteilhafte Ausführungsform ergibt sich dann, wenn der Schwingkreiskondensator parallel zur Primärspule der Zündspule geschaltet wird. Die Spannungsbelastung des Kondensators wird dadurch um ca. 20 % vermindert, so daß dann ein kostengünstigeres Bauelement einsetzbar ist.A particularly advantageous embodiment is obtained when the resonant circuit capacitor is connected in parallel to the primary coil of the ignition coil. The voltage load on the capacitor is thereby reduced by approximately 20%, so that a more cost-effective component can then be used.

In der Regel weist eine Wechselstrom-Zündanlage mehrere Zündendstufen auf, wobei alle Zündendstufen jeweils eine Energierückgewinnungsdiode enthalten. Bei einer solchen Ausführungsform der Erfindung sind die Dioden unter Bildung einer Wired-Or-Schaltung verbunden, um deren Diodenströme auf einen einzigen Widerstand führen zu können, dessen Spannungsabfall dann als Triggersignal zum Wiedereinschalten der Halbleiterschalter dient. In vorteilhafter Weise wird dadurch die Auswertung des Diodenstromes nur einmal für die gesamte Anlage und nicht für jeden einzelnen Kanal durchgeführt.As a rule, an alternating current ignition system has a plurality of ignition output stages, all ignition output stages each containing an energy recovery diode. In such an embodiment of the invention, the diodes are connected to form a wired-or circuit in order to be able to lead their diode currents to a single resistor, the voltage drop of which then serves as a trigger signal for switching the semiconductor switch on again. In this way, the evaluation of the diode current is advantageously carried out only once for the entire system and not for each individual channel.

Weiterhin ist bei einer weiteren bevorzugten Weiterbildung der Erfindung eine Klemmschaltung zur Begrenzung der an dem Halbleiterschalter anliegenden Spannung vorgesehen, die aus einem Spannungsteiler und einem diesem nachgeschalteten Komparator aufgebaut ist. Dabei ist der Spannungsteiler direkt an den den Halbleiterschalter mit der Primärspule verbindenden Schaltungsknoten angeschlossen; der Ausgang des Komparators dagegen steuert direkt die Steuerelektrode des Halbleiterschalters. Mit einer solchen Klemmschaltung können Überschreitungen der maximal zulässigen Spannungen an dem Halbleiterschalter, der Energierückgewinnungsdiode und des Schwingkreiskondensators sicher verhindert werden. Denn ohne eine solche Klemmschaltung müßten zum Ausgleich von Toleranzen entsprechend hohe Sicherheitsabstände von den maximal zulässigen Werten eingehalten werden, mit einer negativen Kostenfolge bezüglich der verwendeten Bauelemente. Die Klemmschaltung bewirkt, daß die Spannung UT am Halbleiterschalter auf einen Wert begrenzt wird, der nur wenig geringer als der maximal zulässige Wert ist. Dadurch können die verwendeten Bauelemente bis nahe an ihre Belastungsgrenze ausgenutzt werden.Furthermore, in a further preferred development of the invention, a clamping circuit is provided for limiting the voltage applied to the semiconductor switch, which is constructed from a voltage divider and a comparator connected downstream of it. The voltage divider is connected directly to the circuit node connecting the semiconductor switch to the primary coil; the output of the comparator, on the other hand, directly controls the control electrode of the semiconductor switch. Such a clamping circuit can reliably prevent the maximum permissible voltages at the semiconductor switch, the energy recovery diode and the resonant circuit capacitor from being exceeded. Because without such a clamping circuit, correspondingly high safety distances from the maximum permissible values would have to be maintained to compensate for tolerances, with a negative cost consequence with regard to the components used. The clamping circuit has the effect that the voltage U T at the semiconductor switch is limited to a value which is only slightly less than the maximum permissible value. As a result, the components used can be used close to their load limit.

Ferner bietet eine solche Klemmschaltung gegenüber der üblichen Verwendung von Zener-Dioden den Vorteil, daß bei einer Realisierung der Schaltung in integrierter Schaltungstechnik wenig Chipfläche verbraucht wird, da bei den hohen, bei der Wechselstrom-Zündung auftretenden Spannungen im kV-Bereich sehr viele Zener-Dioden erforderlich wären, so daß dies zu einem hohen Chipflächenverbrauch führen würde.Furthermore, such a clamp circuit has the advantage over the usual use of Zener diodes that little chip area is consumed when the circuit is implemented in integrated circuit technology, since a large number of Zener voltages occur in the kV range in the case of the high voltages which occur during AC ignition. Diodes would be required, so that this would lead to a high chip area consumption.

Bei Zündanlagen ist es bekannt, als Halbleiterschalter Bipolartransistoren, Leistungs-MOS-Feldeffekttransistoren oder IGBT-Transistoren (Isolated-Gate-Bipolar-Transistor) einzusetzen. Eine vorteilhafte Ausführungsform der Erfindung wird auch mit einem MOS-Controlled-Thyristor (MCT) als Halbleiterschalter erzielt. Mit solchen MCT-Thyristoren vereinigen sich die vorteilhaften Eigenschaften der Thyristoren, wie hohe Spannungsfestigkeit, geringe Durchlaßverluste und große spezifische Stromtragfähigkeit mit der Eigenschaft der Abschaltbarkeit der bisher verwendeten Leistungshalbleiter.In ignition systems, it is known to use bipolar transistors, power MOS field-effect transistors or IGBT transistors (isolated gate bipolar transistors) as semiconductor switches. An advantageous embodiment of the invention is also achieved with a MOS-controlled thyristor (MCT) as a semiconductor switch. With such MCT thyristors, the advantageous properties of the thyristors, such as high dielectric strength, low forward losses and high specific current carrying capacity, are combined with the ability to switch off the power semiconductors previously used.

Im folgenden soll die Erfindung anhand von Ausführungsbeispielen im Zusammenhang mit den Figuren dargestellt und erläutert werden. Es zeigen:

Figur 2
ein Schaltbild einer ersten Ausführungsform der erfindungsgemäßen Wechselstrom-Zündung,
Figur 3
ein Schaltbild einer weiteren Ausführungsform der erfindungsgemäßen Wechselstrom-Zündung mit einem MCT-Thyristor als Halbleiterschalter,
Figur 4
ein Schaltbild einer weiteren Ausführungsform der erfindungsgemäßen Wechselstrom-Zündung mit vier Zündendstufen,
Figur 5
ein Schaltbild einer erfindungsgemäßen Ausführungsform der Wechselstrom-Zündung mit einer Klemmschaltung und
Figur 6
ein detailliertes Schaltbild einer Klemmschaltung gemäß Figur 5.
The invention is to be illustrated and explained below using exemplary embodiments in conjunction with the figures. Show it:
Figure 2
2 shows a circuit diagram of a first embodiment of the alternating current ignition according to the invention,
Figure 3
1 shows a circuit diagram of a further embodiment of the AC ignition according to the invention with an MCT thyristor as a semiconductor switch,
Figure 4
2 shows a circuit diagram of a further embodiment of the AC ignition according to the invention with four ignition output stages,
Figure 5
a circuit diagram of an embodiment of the AC ignition according to the invention with a clamping circuit and
Figure 6
5 shows a detailed circuit diagram of a clamping circuit according to FIG. 5.

Das Schaltbild einer Wechselstrom-Zündanlage nach Figur 2 zeigt gegenüber demjenigen nach Figur 1 einen in Reihe zur Energierückgewinnungsdiode D geschalteten Widerstand R2. Der Strom durch diese Diode D beginnt in der negativen Halbwelle der von dem Kondensator C und der Primärspule der Zündspule Tr erzeugten Spannungsschwingung zu fließen. Der dann an diesem Widerstand R2 entstehende Spannungsabfall wird der Steuer- und Regelschaltung 1 zugeführt, so daß dieses Spannungssignal als Triggersignal zum Wiedereinschalten des Halbleiterschalters T dienen kann. Da zu diesem Zeitpunkt nur kleine Spannungen an dem Halbleiterschalter T anliegen, kann das Einschalten ohne elektrische Verluste erfolgen. Der Strom wird dann beim Nulldurchgang der Schwingung vom Halbleiterschalter T übernommen. Der Wert des Widerstandes R2 wird niederohmig bemessen, so daß die an ihm abfallende Spannung ausreicht, einen elektronischen Schalter, beispielsweise einen Bipolartransistor anzusteuern. Gegenüber der Schaltung nach Figur 1 kann somit die Leitung zwischen dem den Halbleiterschalter T mit der Primärspule verbindenden Schaltungsknoten und der Steuer- und Regelschaltung 1 entfallen.The circuit diagram of an alternating current ignition system according to FIG. 2 shows, compared to that according to FIG. 1, a resistor R2 connected in series with the energy recovery diode D. The current through this diode D begins to flow in the negative half-wave of the voltage oscillation generated by the capacitor C and the primary coil of the ignition coil Tr. The voltage drop which then arises at this resistor R2 is fed to the control and regulating circuit 1, so that this voltage signal can serve as a trigger signal for switching the semiconductor switch T on again. Since only small voltages are present at the semiconductor switch T at this time, the switching on can take place without electrical losses. The current is then taken over by the semiconductor switch T at the zero crossing of the oscillation. The value of the resistor R2 is measured with a low resistance, so that the voltage drop across it is sufficient to control an electronic switch, for example a bipolar transistor. Compared to the circuit according to FIG. 1, the line between the semiconductor switch T circuit nodes connecting the primary coil and the control circuit 1 are eliminated.

Das Ausführungsbeispiel nach Figur 3 unterscheidet sich von demjenigen nach Figur 2 einmal dadurch, daß der Schwingkreiskondensator C parallel zur Primärspule der Zündspule Tr geschaltet ist und ferner, daß als Halbleiterschalter T ein MOS-Controlled-Thyristor (MCT) verwendet wird. Ein solcher MCT-Thyristor vereinigt die vorteilhaften Eigenschaften der Thyristoren, wie hohe Spannungsfestigkeit, geringe Durchlaßverluste und große spezifische Stromtragfähigkeit mit der Eigenschaft der Abschaltbarkeit der bisher verwendeten Leistungshalbleiter, wie beispielsweise Bipolartransistoren, Leistungs-MOS-Feldeffekttransistoren oder IGBT-Transistoren.The exemplary embodiment according to FIG. 3 differs from that according to FIG. 2 in that the resonant circuit capacitor C is connected in parallel with the primary coil of the ignition coil Tr and also in that a MOS-controlled thyristor (MCT) is used as the semiconductor switch T. Such an MCT thyristor combines the advantageous properties of the thyristors, such as high dielectric strength, low forward losses and high specific current carrying capacity, with the ability to switch off the power semiconductors used to date, such as bipolar transistors, power MOS field-effect transistors or IGBT transistors.

Der Vorteil, der mit der Parallelschaltung des Schwingkreiskondensators C zur Primärspule erreicht wird, besteht darin, daß die Spannungsbelastung dieses Kondensators um ca. 20 % vermindert wird, so daß ein kostengünstigeres Bauteil einsetzbar ist.The advantage that is achieved with the parallel connection of the resonant circuit capacitor C to the primary coil is that the voltage load on this capacitor is reduced by approximately 20%, so that a less expensive component can be used.

Bei den Schaltungen nach den Figuren 2 und 3 wird nach wie vor der Spannungsabfall über dem Widerstand R1 der Steuer- und Regelschaltung 1 zugeführt, um den Istwert des Primärspulenstromes zu detektieren.In the circuits according to FIGS. 2 and 3, the voltage drop across the resistor R1 is still fed to the control and regulating circuit 1 in order to detect the actual value of the primary coil current.

Die Schaltung nach Figur 4 zeigt eine Wechselstrom-Zündanlage mit vier Zündendstufen Z1 bis Z4. Jede dieser Zündendstufen enthält eine Zündspule Tr1 bis Tr4, jeweils einen parallel zur Primärspule geschalteten Schwingkreiskondensator C1 bis C4, einen jeweils in Reihe zur Primärspule geschalteten Halbleiterschalter T1 bis T4 und jeweils eine parallel zum Halbleiterschalter geschaltete Rückgewinnungsdiode D1 bis D4.The circuit according to FIG. 4 shows an AC ignition system with four ignition output stages Z1 to Z4. Each of these ignition output stages contains an ignition coil Tr1 to Tr4, in each case a resonant circuit capacitor C1 to C4 connected in parallel to the primary coil, a semiconductor switch T1 to T4 each connected in series with the primary coil and a recovery diode D1 to D4 connected in parallel to the semiconductor switch.

Diese Dioden D1 bis D4 sind jeweils mit ihrer Kathode an den den Halbleiterschalter mit der Primärspule verbindenden Schaltungsknoten angeschlossen, wobei deren Anoden auf einen einzigen Widerstand R2 geführt sind, der seinerseits auf Bezugspotential liegt. Durch diese mit den Dioden D1 bis D4 realisierte Wired-Or-Schaltung braucht die Auswertung des Diodenstromes nur einmal für die gesamte Wechselstrom-Zündanlage und nicht für jeden Kanal einzeln durchgeführt werden.These diodes D1 to D4 are each connected with their cathode to the circuit node connecting the semiconductor switch to the primary coil, the anodes of which are led to a single resistor R2, which in turn is at reference potential. Through this wired-or circuit realized with the diodes D1 to D4, the evaluation of the diode current only needs to be carried out once for the entire AC ignition system and not for each channel individually.

Eine entsprechende Wired-Or-Schaltung ist auch für die Source-Elektroden der Halbleiterschalter T1 bis T4 mittels eines einzigen Widerstandes R1 realisiert, dessen Spannungsabfall zur Bestimmung des Istwertes des Primärspulenstromes für alle Zündendstufen Z1 bis Z4 dient.A corresponding wired-or circuit is also implemented for the source electrodes of the semiconductor switches T1 to T4 by means of a single resistor R1, the voltage drop of which serves to determine the actual value of the primary coil current for all ignition output stages Z1 to Z4.

Die Schwingkreiskondensatoren C1 bis C4 können anstatt in Parallelschaltung zu den Primärspulen auch parallel zu den Halbleiterschaltern T1 bis T4 entsprechend den Bezugszeichen C1' bis C4' geschaltet werden.The resonant circuit capacitors C1 to C4 can also be connected in parallel to the semiconductor switches T1 to T4 in accordance with the reference symbols C1 'to C4' instead of in parallel with the primary coils.

Die Figur 5 zeigt eine Schaltungsanordnung für eine Wechselstrom-Zündanlage gemäß der Figur 2 mit einer parallel zum Halbleiterschalter T angeordneten Schwingkreiskapazität C', die gemäß Figur 3 auch parallel zur Primärspule angeordnet werden kann (siehe Bezugszeichen C). Gegenüber den Schaltungen nach den Figuren 2 und 3 enthält diese Figur 5 eine Klemmschaltung 2 zur Spannungsbegrenzung an dem Halbleiterschalter T. Diese Klemmschaltung 2 verhindert ein Überschreiten der maximal zulässigen Spannung an dem Halbleiterschalter T der Diode D und des Schwingkreiskondensators C bzw. C'. Ohne eine solche Klemmschaltung müßten zum Ausgleich von Toleranzen entsprechend hohe Sicherheitsabstände von den maximal zulässigen Werten eingehalten werden.FIG. 5 shows a circuit arrangement for an AC ignition system according to FIG. 2 with an oscillating circuit capacitance C 'arranged parallel to the semiconductor switch T, which can also be arranged parallel to the primary coil according to FIG. 3 (see reference symbol C). Compared to the circuits according to FIGS. 2 and 3, this FIG. 5 contains a clamping circuit 2 for voltage limitation at the semiconductor switch T. This clamping circuit 2 prevents the maximum permissible voltage at the semiconductor switch T of the diode D and the resonant circuit capacitor C or C 'from being exceeded. Without such a clamping circuit, correspondingly high safety distances from the maximum permissible values would have to be maintained to compensate for tolerances.

Dabei wären maßgebliche Toleranzen, wie die Kapazitätstoleranzen des Schwingkreiskondensators C bzw. C', die Induktivitätstoleranzen der Zündspule Tr, die Toleranzen in der Stromregelung und die Toleranzen der Lastbedingungen auf der Sekundärseite der Zündspule Tr zu beachten. Die Berücksichtigung all dieser Toleranzen würde zu sehr hohen Sicherheitsabständen und damit zu entsprechend hohen Kosten führen. Die Klemmschaltung 2 bewirkt also, daß beispielsweise die an dem Halbleiterschalter T erzeugte Spannung UT auf einen Wert begrenzt wird, der nur wenig geringer als der maximal zulässige Wert ist. Somit können die teuren Bauelemente, also der Halbleiterschalter T, der Schwingkreiskondensator C bzw. C' sowie die Energierückgewinnungsdiode D nahe bis an ihre Belastungsgrenzen ausgenutzt werden.Relevant tolerances, such as the capacitance tolerances of the resonant circuit capacitor C or C ', the inductance tolerances of the ignition coil Tr, the tolerances in the current control and the tolerances of the load conditions on the secondary side of the ignition coil Tr would have to be observed. Taking all of these tolerances into account would lead to very high safety margins and thus correspondingly high costs. Thus, the clamp circuit 2 causes, for example, the voltage generated across the semiconductor switch T U T is limited to a value which is only slightly lower than the maximum permissible value. The expensive components, that is to say the semiconductor switch T, the resonant circuit capacitor C or C ′ and the energy recovery diode D can thus be used close to their load limits.

Die in der Figur 5 dargestellte Klemmschaltung 2 ist mit einem Spannungsteiler R4/R5 und einem diesem nachgeschalteten Komparator K aufgebaut. Der Spannungsteiler R4/R5 ist an den Verbindungspunkt A, der den Halbleiterschalter T mit der Primärspule verbindet, angeschlossen, wogegen der Ausgang des Komparators K einerseits direkt auf die Steuerelektrode des Halbleiterschalters T und andererseits über einen Widerstand R6 mit dem Ausgang der Steuer- und Regelschaltung 1 verbunden ist. Eine genaue und temperaturstabile Referenzspannungsquelle Uref dient als Vergleichsnormal für die Begrenzung der an dem Halbleiterschalter T erzeugten Spannung UT, indem sie dem nicht-invertierenden Eingang des Komparators K zugeführt wird. An dem invertierenden Eingang des Komparators K liegt der Abgriff des Spannungsteilers R4/R5 an. Die an dem Halbleiterschalter T erzeugte Spannung UT wird durch diesen Spannungsteiler R4/R5 heruntergeteilt und durch die Komparatorschaltung K mit der Referenzspannung Uref verglichen. Der Ausgang des Komparators K steuert den Halbleiterschalter T an, wodurch eine hohe Genauigkeit und Langzeitkonstanz der Begrenzungsspannung erreicht wird.The clamping circuit 2 shown in FIG. 5 is constructed with a voltage divider R4 / R5 and a comparator K connected downstream. The voltage divider R4 / R5 is connected to the connection point A, which connects the semiconductor switch T to the primary coil, whereas the output of the comparator K on the one hand directly to the control electrode of the semiconductor switch T and on the other hand via a resistor R6 to the output of the control and regulating circuit 1 is connected. An accurate and temperature-stable reference voltage source U ref serves as a comparison standard for limiting the voltage U T generated at the semiconductor switch T by supplying it to the non-inverting input of the comparator K. The tap of the voltage divider R4 / R5 is present at the inverting input of the comparator K. The voltage U T generated at the semiconductor switch T is divided down by this voltage divider R4 / R5 and compared with the reference voltage U ref by the comparator circuit K. The output of the comparator K controls the semiconductor switch T, whereby a high accuracy and long-term constancy of the limiting voltage is achieved.

Eine schaltungstechnische Ausführung der Klemmschaltung nach Figur 5 zeigt die Figur 6, wo der Komparator K mit einem npn-Transistor T5 und einem pnp-Transistor T6 aufgebaut ist. Die Basis-Elektrode des Transistors T5 ist mit dem Spannungsteiler R4/R5 verbunden, während dessen Emitter-Elektrode über einen Widerstand R7 an der Referenzspannungsquelle Uref anliegt und dessen Kollektor-Elektrode auf die Basis-Elektrode des Transistors T6 geführt ist. Ferner ist die Basis-Elektrode des Transistors T6 einerseits über einen Widerstand R8 mit dem Bezugspotential und andererseits über einen Widerstand R9 mit der Emitter-Elektrode des Transistors T6 verbunden. Ferner ist die genannte Emitter-Elektrode des Transistors T6 an die Batteriespannung UBat angeschlossen. Die Kollektor-Elektrode des Transistors T6 bildet den Ausgang des Komparators. Wenn die Basisspannung des Transistors T5 auf einen Wert ansteigt, der größer ist als die Summe von dessen Basis-Emitterspannung und der Referenzspannung Uref, wird dieser Transistor T5 leitend. Somit kann der Kollektorstrom des Transistors T5 den Transistor T6 ansteuern, der diesen Strom verstärkt und damit den Halbleiterschalter T ansteuert. Die Widerstandsbeschaltung mit den Widerständen R7 bis R9 ist so ausgelegt, daß ein schnelles Ansprechen ohne Über- und Unterschwingungen erreicht wird.A circuit design of the clamp circuit according to FIG. 5 is shown in FIG. 6, where the comparator K is constructed with an npn transistor T5 and a pnp transistor T6. The base electrode of the transistor T5 is connected to the voltage divider R4 / R5, while its emitter electrode is connected to the reference voltage source U ref via a resistor R7 and its collector electrode is led to the base electrode of the transistor T6. Furthermore, the base electrode of transistor T6 is connected on the one hand to the reference potential via a resistor R8 and on the other hand to the emitter electrode of transistor T6 via a resistor R9. Furthermore, the emitter electrode of the transistor T6 is connected to the battery voltage U Bat . The collector electrode of transistor T6 forms the output of the comparator. If the base voltage of the transistor T5 rises to a value which is greater than the sum of its base-emitter voltage and the reference voltage U ref , this transistor T5 becomes conductive. Thus, the collector current of the transistor T5 can drive the transistor T6, which amplifies this current and thus drives the semiconductor switch T. The resistor circuit with the resistors R7 to R9 is designed so that a quick response without over- and undershoots is achieved.

Wird diese Klemmschaltung 2 nach Figur 6 als integrierte Schaltung ausgeführt, bietet sie gegenüber der üblichen Verwendung von Zener-Dioden den Vorteil eines geringen Chipflächenverbrauchs. Denn bei der Verwendung von Zener-Dioden wären aufgrund der bei der Wechselstrom-Zündung auftretenden hohen Spannungen im kV-Bereich sehr viele Zener-Dioden erforderlich. Eine entsprechende Realisierung in integrierter Schaltungstechnik mit diesen Zener-Dioden würde einen hohen Chipflächenbedarf erfordern.If this clamping circuit 2 according to FIG. 6 is designed as an integrated circuit, it offers the advantage of a small chip area consumption compared to the usual use of Zener diodes. Because using Zener diodes would be in the kV range due to the high voltages that occur with AC ignition very many zener diodes required. A corresponding implementation in integrated circuit technology with these Zener diodes would require a large chip area.

Auch bei den Wechselstrom-Zündanlagen gemäß den Figuren 4 und 5 kann für den Halbleiterschalter T ebenfalls ein MCT-Thyristor vorgesehen werden.An MCT thyristor can also be provided for the semiconductor switch T in the AC ignition systems according to FIGS. 4 and 5.

Ferner kann bei einer Zündanlage nach Figur A für alle Zündendstufen Z1 bis Z4 jeweils eine Klemmschaltung 2 gemäß Figur 5 oder Figur 6 vorgesehen werden.Furthermore, in an ignition system according to FIG. A, a clamping circuit 2 according to FIG. 5 or 6 can be provided for all ignition output stages Z1 to Z4.

Claims (7)

Wechselstrom-Zündanlage mit wenigstens einer Zündendstufe (Z, Z1 ... Z4), bestehend aus einer Zündspule (Tr, Tr1 ... Tr4) mit Primär- und Sekundärwicklung, einem in Reihe zur Primärwicklung geschalteten Halbleiterschalter (T, T1 ... T4), einem Schwingkreiskondensator (C, C1 ... C4), der zur Erzeugung eines bipolaren Wechselstromes mit der Primärspule einen Schwingkreis bildet und einer parallel zum Halbleiterschalter (T, T1 ... T4) angeordneten Energierückgewinnungsdiode (D, D1 ... D4), dadurch gekennzeichnet, daß der Stromfluß durch die Energierückgewinnungsdiode (D, D1 ... D4) als Steuersignal für den Halbleiterschalter (T, T1 ... T4) verwendet wird.AC ignition system with at least one ignition output stage (Z, Z1 ... Z4), consisting of an ignition coil (Tr, Tr1 ... Tr4) with primary and secondary winding, a semiconductor switch (T, T1 ... connected in series with the primary winding T4), a resonant circuit capacitor (C, C1 ... C4) which forms a resonant circuit with the primary coil to generate a bipolar alternating current and an energy recovery diode (D, D1 ... ...) arranged parallel to the semiconductor switch (T, T1 ... T4) D4), characterized in that the current flow through the energy recovery diode (D, D1 ... D4) is used as a control signal for the semiconductor switch (T, T1 ... T4). Wechselstrom-Zündanlage nach Anspruch 1, dadurch gekennzeichnet, daß der Stromfluß mit einem in Reihe zur Energierückgewinnungsdiode (D, D1 ... D4) geschalteten Widerstand (R2) erfaßt wird.AC ignition system according to claim 1, characterized in that the current flow is detected with a resistor (R2) connected in series with the energy recovery diode (D, D1 ... D4). Wechselstrom-Zündanlage nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß der Schwingkreiskondensator (C, C1 ... C4) parallel zum Halbleiterschalter (T, T1 ... T4) geschaltet ist.AC ignition system according to Claim 1 or 2, characterized in that the resonant circuit capacitor (C, C1 ... C4) is connected in parallel with the semiconductor switch (T, T1 ... T4). Wechselstrom-Zündanlage nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß der Schwingkreiskondensator (C, C1 ... C4) parallel zur Primärspule der Zündspule (T, T1 ... T4) geschaltet ist.AC ignition system according to claim 1 or 2, characterized in that the resonant circuit capacitor (C, C1 ... C4) is connected in parallel to the primary coil of the ignition coil (T, T1 ... T4). Wechselstrom-Zündanlage mit wenigstens zwei Zündendstufen (Z1 ... Z4) nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, daß die Dioden (D1 ... D4) verbunden sind und die Auswertung des durch die Dioden fließenden Stromes mittels eines einzigen, an den Verbindungspunkt der Dioden angeschlossenen Widerstands (R2) erfolgt.AC ignition system with at least two ignition output stages (Z1 ... Z4) according to one of the preceding claims, characterized in that the diodes (D1 ... D4) are connected and the evaluation of the current flowing through the diodes by means of a single, to the Connection point of the diodes connected resistor (R2) takes place. Wechselstrom-Zündanlage nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, daß zur Begrenzung der an dem Halbleiterschalter (T, T1 ... T4) erzeugten Spannung (UT) eine Klemmschaltung (2) vorgesehen ist, daß diese Klemmschaltung (2) aus einem Spannungsteiler (R4/R5) und einem diesem nachgeschalteten Komparator (K) aufgebaut ist und daß der Spannungsteiler (R4/R5) an dem den Halbleiterschalter (T, T1 ... T4) und die Primärspule verbindenden Schaltungszweig angeschlossen ist und der Ausgang des Komparators (K) auf die Steuerelektrode des Halbleiterschalters (T, T1 ... T4) geführt ist.AC ignition system according to one of the preceding claims, characterized in that a clamping circuit (2) is provided to limit the voltage (U T ) generated at the semiconductor switch (T, T1 ... T4), that this clamping circuit (2) consists of a Voltage divider (R4 / R5) and a comparator (K) connected downstream of it is constructed and that the voltage divider (R4 / R5) is connected to the circuit branch connecting the semiconductor switch (T, T1 ... T4) and the primary coil and the output of the comparator (K) on the control electrode of the semiconductor switch (T, T1 ... T4) is performed. Wechselstrom-Zündanlage nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, daß als Halbleiterschalter (T, T1 ... T4) ein MOS-Controlled-Thyristor (MCT) eingesetzt wird.AC ignition system according to one of the preceding claims, characterized in that a MOS-controlled thyristor (MCT) is used as the semiconductor switch (T, T1 ... T4).
EP95102930A 1994-03-23 1995-03-02 Alternating current ignition with optimized electronic circuit Expired - Lifetime EP0674102B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4409984 1994-03-23
DE4409984A DE4409984B4 (en) 1994-03-23 1994-03-23 AC ignition with optimized electronic circuit

Publications (3)

Publication Number Publication Date
EP0674102A2 true EP0674102A2 (en) 1995-09-27
EP0674102A3 EP0674102A3 (en) 1996-01-10
EP0674102B1 EP0674102B1 (en) 1997-11-12

Family

ID=6513598

Family Applications (1)

Application Number Title Priority Date Filing Date
EP95102930A Expired - Lifetime EP0674102B1 (en) 1994-03-23 1995-03-02 Alternating current ignition with optimized electronic circuit

Country Status (5)

Country Link
US (1) US5506478A (en)
EP (1) EP0674102B1 (en)
JP (1) JP3834761B2 (en)
DE (2) DE4409984B4 (en)
ES (1) ES2113132T3 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19700179C2 (en) * 1997-01-04 1999-12-30 Bosch Gmbh Robert Ignition system for an internal combustion engine
AT518968A1 (en) * 2016-07-08 2018-02-15 Ge Jenbacher Gmbh & Co Og Control device for a plurality of actuators of an internal combustion engine

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19539915B4 (en) * 1995-10-27 2007-06-28 Elan Schaltelemente Gmbh & Co. Kg Method for monitoring such as standstill and / or Einrichtdrehzahlüberwachung a drive, in particular highly dynamic servo drive, and load relay in particular for use in a corresponding method
DE19953334C2 (en) * 1999-11-05 2002-05-08 Siemens Ag Remote readable identification tag and method for operating several such identification tags
US6899092B2 (en) * 2002-07-27 2005-05-31 Ulf Arens System and method for increasing spark current to spark plugs
US7929266B2 (en) * 2007-12-19 2011-04-19 Freescale Semiconductor, Inc. Electronic device operable to protect a power transistor when used in conjunction with a transformer
JP2009185690A (en) * 2008-02-06 2009-08-20 Honda Motor Co Ltd Transistor type ignition device for internal combustion engine
US7944678B2 (en) * 2008-09-11 2011-05-17 Robertshaw Controls Company Low voltage power supply for spark igniter and flame sense
FR2988233B1 (en) * 2012-03-16 2015-05-29 Renault Sa RADIO FREQUENCY IGNITION OF MOTOR VEHICLE MOTOR
ITUB20151983A1 (en) * 2015-07-08 2017-01-08 Eldor Corp Spa ELECTRONIC IGNITION SYSTEM FOR AN ENDOTHERMAL ENGINE AND METHOD OF PILOTING OF THE SAME

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0034787A1 (en) * 1980-02-21 1981-09-02 Siemens Aktiengesellschaft Ignition system for internal-combustion engines
EP0070572A1 (en) * 1981-07-22 1983-01-26 Siemens Aktiengesellschaft Internal-combustion engine ingnition system
DE4237271A1 (en) * 1992-11-04 1994-05-05 Vogt Electronic Ag Ignition control for internal combustion engines
DE4409985A1 (en) * 1994-03-23 1995-09-28 Daug Deutsche Automobilgesells AC ignition system imposing lower voltage stress on capacitor

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE34787C (en) * J. DARLING in Glasgow, Lanark, Nordbritannien Side coupling for railway vehicles
US3394689A (en) * 1966-08-25 1968-07-30 Laurence W. Bell Resonant ignition system
IT1009972B (en) * 1973-04-27 1976-12-20 British Leyland Uk Ltd IGNITION COIL
US3945362A (en) * 1973-09-17 1976-03-23 General Motors Corporation Internal combustion engine ignition system
FR2465894A1 (en) * 1979-09-21 1981-03-27 Psa Grpt Int Eco Rech Develop ELECTRONIC DEVICE FOR CONTROLLING AN IGNITION COIL FOR AN INTERNAL COMBUSTION ENGINE
JPS60209667A (en) * 1984-04-02 1985-10-22 Nippon Denso Co Ltd Ignition device for internal-combustion engine
DE3928726A1 (en) * 1989-08-30 1991-03-07 Vogt Electronic Ag IGNITION SYSTEM WITH CURRENT-CONTROLLED SEMICONDUCTOR CIRCUIT

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0034787A1 (en) * 1980-02-21 1981-09-02 Siemens Aktiengesellschaft Ignition system for internal-combustion engines
EP0070572A1 (en) * 1981-07-22 1983-01-26 Siemens Aktiengesellschaft Internal-combustion engine ingnition system
DE4237271A1 (en) * 1992-11-04 1994-05-05 Vogt Electronic Ag Ignition control for internal combustion engines
EP0596471A2 (en) * 1992-11-04 1994-05-11 VOGT electronic AG Alternative current ignition system for combustion engines with control of the ignition energy
DE4409985A1 (en) * 1994-03-23 1995-09-28 Daug Deutsche Automobilgesells AC ignition system imposing lower voltage stress on capacitor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19700179C2 (en) * 1997-01-04 1999-12-30 Bosch Gmbh Robert Ignition system for an internal combustion engine
AT518968A1 (en) * 2016-07-08 2018-02-15 Ge Jenbacher Gmbh & Co Og Control device for a plurality of actuators of an internal combustion engine
AT518968B1 (en) * 2016-07-08 2019-05-15 Ge Jenbacher Gmbh & Co Og Control device for a plurality of actuators of an internal combustion engine
US10995725B2 (en) 2016-07-08 2021-05-04 Innio Jenbacher Gmbh & Co Og Control device for a multiplicity of actuators of an internal combustion engine

Also Published As

Publication number Publication date
DE4409984B4 (en) 2004-05-06
DE4409984A1 (en) 1995-09-28
JPH07279803A (en) 1995-10-27
DE59500964D1 (en) 1997-12-18
US5506478A (en) 1996-04-09
ES2113132T3 (en) 1998-04-16
EP0674102B1 (en) 1997-11-12
EP0674102A3 (en) 1996-01-10
JP3834761B2 (en) 2006-10-18

Similar Documents

Publication Publication Date Title
DE102005022309B4 (en) Semiconductor device
EP0423885A1 (en) Current supply with inrush current limitation
DE19746112A1 (en) Power converter arrangement
DE2738186A1 (en) ZERO VOLTAGE SOLID STATE RELAY
EP0674102B1 (en) Alternating current ignition with optimized electronic circuit
DE2809439A1 (en) SWITCHING DEVICE FOR CONTROLLING THE BASE CURRENT OF A POWER TRANSISTOR OPERATED AS A SWITCHING TRANSISTOR
DE1952576A1 (en) Switching device for a load circuit
DE1903638C3 (en) Condenser ignition system for internal combustion engines
DE2906961C2 (en) Circuit arrangement with a field-controlled thyristor
DE2842726C3 (en) Circuit arrangement with a high-voltage power transistor
DE2829828C2 (en) Ignition system intended for an internal combustion engine
DE2235573A1 (en) ELECTRONIC DRIVER CIRCUIT FOR SEMICONDUCTOR SWITCH
DE1638065A1 (en) Temperature compensated voltage regulator for battery chargers in motor vehicles
DE102006038474A1 (en) power converters
EP0893884B1 (en) Device for controlling a gate turn-off thyristor
DE2126428C3 (en) Battery-fed transistor ignition system for internal combustion engines
EP0652639B1 (en) Driver circuit
DE3611297C2 (en)
DE1539221B2 (en) IGNITION DEVICE FOR COMBUSTION MACHINERY
DE3427520C2 (en)
DE4409985A1 (en) AC ignition system imposing lower voltage stress on capacitor
EP0622902A2 (en) Solid-state relay
DE2518881B2 (en) IGNITION ARRANGEMENT FOR COMBUSTION MACHINERY
EP0024523A1 (en) Single-ended forward converter for generating electrically separated d.c. output voltages
DE3338627A1 (en) Drive circuit for a solid-state switch which consists of a series circuit of a bipolar transistor and a field-effect transistor

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): DE ES FR GB NL SE

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): DE ES FR GB NL SE

17P Request for examination filed

Effective date: 19960520

17Q First examination report despatched

Effective date: 19961112

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE ES FR GB NL SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19971112

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19971114

REF Corresponds to:

Ref document number: 59500964

Country of ref document: DE

Date of ref document: 19971218

ET Fr: translation filed
NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2113132

Country of ref document: ES

Kind code of ref document: T3

PLBQ Unpublished change to opponent data

Free format text: ORIGINAL CODE: EPIDOS OPPO

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

26 Opposition filed

Opponent name: VOGT ELECTRONIC AG

Effective date: 19980811

PLBF Reply of patent proprietor to notice(s) of opposition

Free format text: ORIGINAL CODE: EPIDOS OBSO

PLBF Reply of patent proprietor to notice(s) of opposition

Free format text: ORIGINAL CODE: EPIDOS OBSO

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: VOLKSWAGEN AKTIENGESELLSCHAFT

Owner name: DAIMLERCHRYSLER AG

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

PLBO Opposition rejected

Free format text: ORIGINAL CODE: EPIDOS REJO

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

APAC Appeal dossier modified

Free format text: ORIGINAL CODE: EPIDOS NOAPO

APAE Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOS REFNO

APAC Appeal dossier modified

Free format text: ORIGINAL CODE: EPIDOS NOAPO

APBU Appeal procedure closed

Free format text: ORIGINAL CODE: EPIDOSNNOA9O

PLBN Opposition rejected

Free format text: ORIGINAL CODE: 0009273

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: OPPOSITION REJECTED

27O Opposition rejected

Effective date: 20040208

APAH Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOSCREFNO

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20120403

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20120323

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20120322

Year of fee payment: 18

Ref country code: SE

Payment date: 20120322

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20120327

Year of fee payment: 18

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130303

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20130302

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20131129

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 59500964

Country of ref document: DE

Effective date: 20131001

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131001

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130402

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130302

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20140610

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130303