EP0670761A4 - Spatter reduction technique. - Google Patents

Spatter reduction technique.

Info

Publication number
EP0670761A4
EP0670761A4 EP94900631A EP94900631A EP0670761A4 EP 0670761 A4 EP0670761 A4 EP 0670761A4 EP 94900631 A EP94900631 A EP 94900631A EP 94900631 A EP94900631 A EP 94900631A EP 0670761 A4 EP0670761 A4 EP 0670761A4
Authority
EP
European Patent Office
Prior art keywords
spatter
inert gas
welding
retardant liquid
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP94900631A
Other languages
German (de)
French (fr)
Other versions
EP0670761A1 (en
Inventor
Alan Parry
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Otavius Pty Ltd
Original Assignee
Otavius Pty Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Otavius Pty Ltd filed Critical Otavius Pty Ltd
Publication of EP0670761A1 publication Critical patent/EP0670761A1/en
Publication of EP0670761A4 publication Critical patent/EP0670761A4/en
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/38Selection of media, e.g. special atmospheres for surrounding the working area
    • B23K35/383Selection of media, e.g. special atmospheres for surrounding the working area mainly containing noble gases or nitrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/224Anti-weld compositions; Braze stop-off compositions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/16Arc welding or cutting making use of shielding gas
    • B23K9/173Arc welding or cutting making use of shielding gas and of a consumable electrode

Definitions

  • the invention relates to the metal-inert gas (MIG) arc welding process in which an inert gas is directed around an electrode while effecting arc welding
  • the problem to which this invention is directed relates to build up of spatter during the welding process.
  • spatter will collect and adhere on all of parts adjacent a welding arc apparatus including a gas cowl and the nozzle through which the continuously feeding metal rod is being directed. Such spatter will build up to interfere with both the welding process and the free exiting of either the consumable metal rod or the free flow of the inert gas.
  • this invention can be said to reside in the method of injecting into an inert gas as it is being supplied to the welding head during the welding process, a liquid selected so that when this substance reaches the weld site it will have the capability to reduce the capacity for any spatter being formed to adhere to adjacent materials.
  • spatter retardant liquid material is injected so that it is substantially dispersed within the inert gas such that it will exit with the inert gas during the welding process.
  • inert gas is introduced into a reservoir of the spatter retardant liquid and bubbled through the liquid thereby forming a dispersion or fine mist of the spatter retardant liquid in the inert gas.
  • This method of injecting the spatter retardant liquid into the inert gas is particularly preferred because it appears that only a sufficient quantity of spatter retardant liquid is introduced into the inert gas, thereby avoiding any problems which can occur when an excessive quantity of the liquid is introduced into the inert gas.
  • the spatter retardant liquid that has been found to be particularly advantageous in this application comprises a mixture of one or more hydrocarbon liquids, preferably a petroleum distillate.
  • hydrocarbon liquids preferably a petroleum distillate.
  • material produced by distillation within the range of 250°C to 400°C has been found to be suitable.
  • the material commonly available under the name "diesel fuel” is an example of a material suitable for use in the spatter reduction technique of the present invention.
  • the injection of the spatter retardant liquid into the gas can be achieved by other means, for example, in several trials, I injected a very small quantity of diesel fuel in distributed manner into the gas supply of a MIG welder using a conventionally available device known as a lubricator.
  • a lubricator This was a prep-air airline lubricator of a type that is conventionally available in engineering and which allows a diesel fuel drip to be injected into the gas line at a rate proportional to the volume of inert gas passing through it, giving a smooth flow of diesel via a combination ball check and metering of valve which automatically adjusts diesel feed according to gas demands from downstream.
  • a supply of diesel fuel can be kept in a filled bowl with an adjustment allowing for change of the feed rate which is adjusted for each application but once set is constant through the period of an application.
  • the gas that I have used this with in the example is argon.
  • the invention can also reside in the method of welding which comprises the steps of introducing the spatter retardant liquid into the inert gas line during the welding process.
  • the invention can reside in a welding apparatus comprising an inert gas welding system including an inert gas supply, and means in-line to introduce a selected spatter retardant liquid during the welding process.
  • the source of the spatter retardant liquid is a sealed container disposed between the inert gas supply means and the welding hand piece, and in which the inert gas passes, through an inlet into the container and through the spatter retardant liquid in bubble form, the inert gas collecting in a space above the surface of the liquid, a portion of the spatter retardant liquid being entrained in the inert gas as a dispersion or a fine mist, the inert gas and entrained gas being subsequently delivered to a weld site through the welding hand piece.
  • One of the advantages of the arrangement described is that it can be provided on an ongoing continuous basis so that down time from spatter build-up can be significantly reduced.
  • FIG. 1 shows in schematic outline the apparatus according a first embodiment of the present invention
  • FIG 2 illustrates an apparatus in accordance with a second aspect of the present invention.
  • FIG 1 there is a work piece 1 on which a weld 2 is being formed.
  • a MIG handpiece includes a cowl 3 for directing gas around the nozzle 4 and the metal welding rod 5.
  • the metal rod 5 is fed through the nozzle 4 by drive means (not shown) and is consumed during the welding process.
  • An inert gas supply is provided through conduit 6 from a sealed container 7 in which there is a reservoir of the spatter retardant liquid used for the method.
  • the liquid is chosen for its effectiveness so that it will be capable of forming a mist and therefore be able to be transferred in a stable form to an outlet of the handpiece.
  • the material used in this instance is a liquid containing petroleum distillate, mineral oil and corrosion inhibitors.
  • a material is available from CRC Chemicals Australia Ply Ltd, its characteristics being those set out hereunder, namely;-
  • inlet tube 9 With spatter retardant liquid in the chamber, there is a gas inlet directed through inlet tube 9 such that the gas will issue in bubble form and therefore cause some splashing and vapourisation so that this is collected in space 10 above the level of the liquid 8.
  • An external level indicator 11 is supplied through control valve 12 and this in turn is supplied from a gas regulator connected to a gas supply bottle at 13.
  • spatter retardant liquid coats the adjacent surfaces such as the nozzle 4 and the cowl 3, which coating, in the vicinity of an oxygen excluding gas, will not readily burn and therefore will act to effect an interface surface which will be only slowly vapourised in the vicinity of the general heat of the world but will be rapidly vapourised when hit by spatter.
  • the rate of providing of the liquid would in this case be sufficient to replace the coating as it is vapourised with the slower radiant heat from the arc.
  • FIG 2 illustrates a second embodiment of the present invention.
  • the arrangement depicted in FIG 2 shares many common features with the embodiment of FIG 1 and like parts have been given like numerals.
  • Shown in the drawing is a workpiece 1 in which a weld is being formed.
  • An MIG hand piece includes a cowl 3 for directing gas around a nozzle 4 and a metal welding rod 5.
  • the welding rod 5 is fed through the nozzle 4 by drive means (not shown) and is consumed during the welding process.
  • An inert gas supply is provided through conduit 6 from an in-line liquid distributor 14.
  • the liquid distributor 14 receives an on demand supply of gas through conduit 15.
  • the spatter retardant liquid 16 comprises diesel fuel and is held in a bowl in the distributor 14. Through an adjustable setting of the head 17 controls the distribution of the liquid in a dispersed manner into the gas.
  • the material can be introduced and be maintained within the gas line and not acceptably interact with the inert gas to the detriment of the arc process.
  • Materials other than diesel fuel therefore can be selected having these characteristics and other oil or petroleum distillates may be suitable.
  • Selected hydrocarbon materials can provide when introduced in the vicinity of the weld a reduction of the ability of spatter to stick and to the extent that there are other compounds and materials which provide this purpose, the invention is directed to introducing these in liquid form into the gas.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Arc Welding In General (AREA)

Abstract

A method of metal-inert gas arc welding which reduces spatter in the welding process, wherein a liquid (8), preferably a hydrocarbon, is dispersed in the inert gas during the welding process. At a weld site (2) the use of the liquid (8) dispersed in the gas prevents any spatter formed from adhering to any surfaces adjacent the welding hand piece (3). The liquid may be dispersed in the gas by passing the gas through the liquid in a container (7) located between the gas supply (12, 13) and the welding hand piece (3), or may be injected into the gas as a vapour or fine mist.

Description

SPATTER REDUCTION TECHNIQUE
TECHNICAL FIELD
The invention relates to the metal-inert gas (MIG) arc welding process in which an inert gas is directed around an electrode while effecting arc welding
BACKGROUND ART
The problem to which this invention is directed relates to build up of spatter during the welding process.
Conventionally, spatter will collect and adhere on all of parts adjacent a welding arc apparatus including a gas cowl and the nozzle through which the continuously feeding metal rod is being directed. Such spatter will build up to interfere with both the welding process and the free exiting of either the consumable metal rod or the free flow of the inert gas.
Many attempts have been made to overcome this problem. The problem is especially serious where this type of welding is used as a part of a robotic welding process so that it becomes very difficult to know when spatter has reduced the welding efficiency and the component parts have to be removed for cleaning.
DISCLOSURE OF THE INVENTION
I have found a technique which reduces these difficulties with spatter which will be useful for all welding applications where an inert gas is used to blanket an electric arc.
In one form this invention can be said to reside in the method of injecting into an inert gas as it is being supplied to the welding head during the welding process, a liquid selected so that when this substance reaches the weld site it will have the capability to reduce the capacity for any spatter being formed to adhere to adjacent materials.
In preference, the spatter retardant liquid material is injected so that it is substantially dispersed within the inert gas such that it will exit with the inert gas during the welding process.
In a preferred embodiment of the present invention, inert gas is introduced into a reservoir of the spatter retardant liquid and bubbled through the liquid thereby forming a dispersion or fine mist of the spatter retardant liquid in the inert gas. This method of injecting the spatter retardant liquid into the inert gas is particularly preferred because it appears that only a sufficient quantity of spatter retardant liquid is introduced into the inert gas, thereby avoiding any problems which can occur when an excessive quantity of the liquid is introduced into the inert gas.
The spatter retardant liquid that has been found to be particularly advantageous in this application comprises a mixture of one or more hydrocarbon liquids, preferably a petroleum distillate. In trials material produced by distillation within the range of 250°C to 400°C has been found to be suitable. The material commonly available under the name "diesel fuel" is an example of a material suitable for use in the spatter reduction technique of the present invention.
The injection of the spatter retardant liquid into the gas can be achieved by other means, for example, in several trials, I injected a very small quantity of diesel fuel in distributed manner into the gas supply of a MIG welder using a conventionally available device known as a lubricator. This was a prep-air airline lubricator of a type that is conventionally available in engineering and which allows a diesel fuel drip to be injected into the gas line at a rate proportional to the volume of inert gas passing through it, giving a smooth flow of diesel via a combination ball check and metering of valve which automatically adjusts diesel feed according to gas demands from downstream.
A supply of diesel fuel can be kept in a filled bowl with an adjustment allowing for change of the feed rate which is adjusted for each application but once set is constant through the period of an application.
My trials so far have indicated that by the introduction of small quantities of diesel fuel into the gas line in the manner described there results an welding in which spatter simply does not appear to build up at all on the adjacent metal parts of the welding torch.
The gas that I have used this with in the example is argon.
The invention can also reside in the method of welding which comprises the steps of introducing the spatter retardant liquid into the inert gas line during the welding process.
Alternatively, the invention can reside in a welding apparatus comprising an inert gas welding system including an inert gas supply, and means in-line to introduce a selected spatter retardant liquid during the welding process.
Preferably, the source of the spatter retardant liquid is a sealed container disposed between the inert gas supply means and the welding hand piece, and in which the inert gas passes, through an inlet into the container and through the spatter retardant liquid in bubble form, the inert gas collecting in a space above the surface of the liquid, a portion of the spatter retardant liquid being entrained in the inert gas as a dispersion or a fine mist, the inert gas and entrained gas being subsequently delivered to a weld site through the welding hand piece. While it is most convenient to introduce the spatter retardant material in the gas line, it would be appear to be possible to introduce the liquid in dispersed form in the vicinity of the outlet head other than in-line if necessary in that this would have the same effect but it would appear to be somewhat more awkward to introduce in this location.
One of the advantages of the arrangement described is that it can be provided on an ongoing continuous basis so that down time from spatter build-up can be significantly reduced.
BRIEF DESCRIPTION OF THE DRAWINGS
For a better understanding of the invention it will now be described with the assistance of drawings in which ;-
FIG. 1 shows in schematic outline the apparatus according a first embodiment of the present invention; and
FIG 2 illustrates an apparatus in accordance with a second aspect of the present invention.
BEST MODE FOR CARRYING OUT THE INVENTION
Referring to FIG 1 there is a work piece 1 on which a weld 2 is being formed.
A MIG handpiece includes a cowl 3 for directing gas around the nozzle 4 and the metal welding rod 5. The metal rod 5 is fed through the nozzle 4 by drive means (not shown) and is consumed during the welding process.
An inert gas supply is provided through conduit 6 from a sealed container 7 in which there is a reservoir of the spatter retardant liquid used for the method. The liquid is chosen for its effectiveness so that it will be capable of forming a mist and therefore be able to be transferred in a stable form to an outlet of the handpiece.
The material used in this instance is a liquid containing petroleum distillate, mineral oil and corrosion inhibitors. Such a material is available from CRC Chemicals Australia Ply Ltd, its characteristics being those set out hereunder, namely;-
Appearance and Odour: Green liquid, pleasant odour
Boiling point/melting point: 193 C (initial)
Vapour Pressure: 0.23mm Hg
Percent Volatiles: 82% w/w
Specific gravity: 0.81 @ 25 C
Flash point: 79 C coc
Flammability limits: LEL: 1.4% UEL: 12%
Autoignition temperature: 550 C Solubility: Negligible in water, dissolves in most organic solvents
Evaporation Rate: 0.05 (n Butyl Acetate = 1)
Vapour density: Heavier than air
Freezing point: N/A
With spatter retardant liquid in the chamber, there is a gas inlet directed through inlet tube 9 such that the gas will issue in bubble form and therefore cause some splashing and vapourisation so that this is collected in space 10 above the level of the liquid 8.
An external level indicator 11 is supplied through control valve 12 and this in turn is supplied from a gas regulator connected to a gas supply bottle at 13.
The result has been that spatter has not continued to stick on the respective metal parts in the adjacent vicinity of the welding arc with enormous advantage to industrial processes.
It is assumed that the spatter retardant liquid coats the adjacent surfaces such as the nozzle 4 and the cowl 3, which coating, in the vicinity of an oxygen excluding gas, will not readily burn and therefore will act to effect an interface surface which will be only slowly vapourised in the vicinity of the general heat of the world but will be rapidly vapourised when hit by spatter.
Such rapid vapourisation would appear to effect a retardation of any sticking of the spatter on the adjacent parts.
The rate of providing of the liquid would in this case be sufficient to replace the coating as it is vapourised with the slower radiant heat from the arc.
FIG 2 illustrates a second embodiment of the present invention. The arrangement depicted in FIG 2 shares many common features with the embodiment of FIG 1 and like parts have been given like numerals. Shown in the drawing is a workpiece 1 in which a weld is being formed. An MIG hand piece includes a cowl 3 for directing gas around a nozzle 4 and a metal welding rod 5. The welding rod 5 is fed through the nozzle 4 by drive means (not shown) and is consumed during the welding process.
An inert gas supply is provided through conduit 6 from an in-line liquid distributor 14. The liquid distributor 14 receives an on demand supply of gas through conduit 15. The spatter retardant liquid 16 comprises diesel fuel and is held in a bowl in the distributor 14. Through an adjustable setting of the head 17 controls the distribution of the liquid in a dispersed manner into the gas.
Materials that could be selected therefore will provide a lower volatility or flash point, will generally not cause obnoxious fumes either to the welder or to the environment or to the workpiece and obviously will be relatively economic to provide.
Also, it is preferable that the material can be introduced and be maintained within the gas line and not acceptably interact with the inert gas to the detriment of the arc process.
Materials other than diesel fuel therefore can be selected having these characteristics and other oil or petroleum distillates may be suitable.
Throughout this specification the purpose has been to illustrate the invention and not to limit this. It is considered for instance it could apply to tungsten inert gas welding as well as any other system where any inert gas is used in an arc welding process and in which spatter has otherwise been a problem.
Selected hydrocarbon materials can provide when introduced in the vicinity of the weld a reduction of the ability of spatter to stick and to the extent that there are other compounds and materials which provide this purpose, the invention is directed to introducing these in liquid form into the gas.

Claims

1. A method of reducing the effect of spatter in a welding process, including the steps of injecting a spatter retardant liquid into an inert gas to be used during a metal-inert gas welding process, the liquid forming a dispersion in the inert gas.
2. A method of reducing the effect of spatter according to claim 1 , whereby at a weld site spatter formed during the process has a reduced tendency to adhere to surfaces adjacent a welding hand piece.
3. A method of reducing the effect of spatter according to claim 1 , in which the spatter retardant liquid is dispersed in the gas as a vapour and exits the welding hand piece with the inert gas.
4. A method of reducing the effect of spatter according to claim 1 , in which the spatter retardant liquid is dispersed in the inert gas as a fine mist.
5. A method of reducing the effect of spatter according to any one of the preceding claims, in which the spatter retardant liquid is a mixture of one or more hydrocarbon liquids.
6. A method of reducing the effect of spatter according to claim 5, in which the spatter retardant liquid is a petroleum distillate with a boiling point in the range 250-400 C.
7. A method of reducing the effect of spatter according to any one of the preceding claims, in which the spatter retardant liquid additionally contains mineral oil and corrosion inhibitors.
8. A method of reducing the effect of spatter according to any one of the preceding claims, in which the spatter retardant liquid is introduced into the inert gas by passing the inert gas through the spatter retardant liquid thereby entraining a portion of the spatter retardant liquid in the inert gas as a fine mist or vapour.
9. A method of reducing the effect of spatter according to any one of claims 1-7, in which the spatter retardant liquid is introduced into the inert gas using a prep-air airline lubricator to inject a constant flow of liquid into the inert gas.
10. A method of metal-inert gas welding including the steps of injecting a spatter retardant liquid into the inert gas during the welding process.
11. A method of metal-inert gas welding according to claim 10, in which the spatter retardant liquid is a mixture of one or more hydrocarbons.
12. A method of metal-inert gas welding according to claim 11 , in which the liquid additionally contains mineral oil and corrosion inhibitors.
13. A method of metal-inert gas welding according to any one of claims 10-12, in which the spatter retardant liquid is dispersed in the inert gas as a vapour.
14. A method of metal-inert gas welding according to any one of claims 10-12, in which the spatter retardant liquid is dispersed in the inert gas as a fine mist.
15. An apparatus for metal-inert gas welding, including, an inert gas supply means connected to a welding hand piece, a source of spatter retardant liquid, means for introducing the spatter retardant liquid into the inert gas so as to deliver a mixture of spatter retardant liquid dispersed in the inert gas at a site to be welded.
16. An apparatus for metal-inert gas welding according to claim 15, in which the source of the spatter retardant liquid is a sealed container disposed between the inert gas supply means and the welding hand piece, and in which the inert gas is adapted to pass through an inlet into the container and through the spatter retardant liquid in bubble form, the inert gas collecting in a space above the surface of the liquid, a portion of the spatter retardant liquid being entrained in the inert gas as a dispersion or a fine mist, the inert gas and entrained gas being subsequently delivered to a weld site through the welding hand piece.
17. A method for reducing the effect of spatter in a welding process substantially as hereinbefore described with reference to the accompanying drawings. 18. A method of metal-inert gas welding substantially as hereinbefore described with reference to the accompanying drawings.
19. An apparatus for metal-inert gas welding substantially as hereinbefore described with reference to figure 1 or figure 2 of the accompanying representations.
EP94900631A 1992-11-24 1993-11-24 Spatter reduction technique. Withdrawn EP0670761A4 (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
AUPL6007/92 1992-11-24
AUPL600792 1992-11-24
AUPL859893 1993-05-04
AUPL8598/92 1993-05-04
PCT/AU1993/000596 WO1994012312A1 (en) 1992-11-24 1993-11-24 Spatter reduction technique

Publications (2)

Publication Number Publication Date
EP0670761A1 EP0670761A1 (en) 1995-09-13
EP0670761A4 true EP0670761A4 (en) 1997-05-21

Family

ID=25644373

Family Applications (1)

Application Number Title Priority Date Filing Date
EP94900631A Withdrawn EP0670761A4 (en) 1992-11-24 1993-11-24 Spatter reduction technique.

Country Status (3)

Country Link
EP (1) EP0670761A4 (en)
CA (1) CA2150001A1 (en)
WO (1) WO1994012312A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4426993C1 (en) * 1994-07-29 1995-09-28 Hans Hoffmann Appts. for spraying anti-adhesion medium into nozzle of protective gas welding torch
DE19507472C2 (en) * 1995-03-03 1999-09-02 Electro Chem Eng Gmbh Gas or current nozzle of an inert gas welding system
WO2007062458A1 (en) * 2005-12-02 2007-06-07 Newcastle Innovation Limited Anti-spatter formulation

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2768278A (en) * 1954-06-11 1956-10-23 Union Carbide & Carbon Corp Gas shielded metal arc welding
EP0020174A1 (en) * 1979-05-31 1980-12-10 Air Products And Chemicals, Inc. Method of doping shielding gas for use in welding
US4609804A (en) * 1983-08-25 1986-09-02 Toyota Jidosha Kabushiki Kaisha Arc welding apparatus

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1963729A (en) * 1932-04-01 1934-06-19 Gen Electric Arc welding
US3586818A (en) * 1969-07-08 1971-06-22 Paul V Blake Spatter protecting nozzle coating
DE2140274A1 (en) * 1971-08-11 1973-02-15 Bbc Brown Boveri & Cie Oleic coating - to prevent adhesion of excess weld metal splashes during welding
GB9002480D0 (en) * 1990-02-05 1990-04-04 Ramforce Services Limited Weld shroud

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2768278A (en) * 1954-06-11 1956-10-23 Union Carbide & Carbon Corp Gas shielded metal arc welding
EP0020174A1 (en) * 1979-05-31 1980-12-10 Air Products And Chemicals, Inc. Method of doping shielding gas for use in welding
US4609804A (en) * 1983-08-25 1986-09-02 Toyota Jidosha Kabushiki Kaisha Arc welding apparatus

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of WO9412312A1 *

Also Published As

Publication number Publication date
CA2150001A1 (en) 1994-06-09
EP0670761A1 (en) 1995-09-13
WO1994012312A1 (en) 1994-06-09

Similar Documents

Publication Publication Date Title
CA1267939A (en) Welding apparatus and method for depositing wear surfacing material and a substrate having a weld bead thereon
US5155330A (en) Method and apparatus for GMAW welding
US4745256A (en) Narrow substrate having weld bead of powdered metal
US5603854A (en) Spatter reduction technique
US2768278A (en) Gas shielded metal arc welding
EP0584000B2 (en) Shielding gases for arc welding
DE3625659C2 (en)
WO1994008747A1 (en) Drill pipe hardband removal and build up
CA2536366C (en) Gas metal arc welding of coated steels
EP0670761A1 (en) Spatter reduction technique
AU670656B2 (en) Spatter reduction technique
US2211448A (en) Utilization of volatile fluxes in welding operations
DE102006021727A1 (en) Build-up welding method for producing high wear-resistant surfaces comprises feeding a wire electrode and a powder into an electric arc so that they melt together
Holliday Gas-metal arc welding
EP1970154A1 (en) Method for thermal cutting and joining
DE10019095B4 (en) Process for plasma powder soldering
US3002085A (en) Gas-shielded metal-arc welding process
CA2462735C (en) Method and apparatus for initiating welding arc using chemical spray
Ali et al. Laser-assisted GMAW hardfacing
US11772182B2 (en) Systems and methods for gas control during welding wire pretreatments
DE977223C (en) Process for inert gas arc welding of metals and alloys with a consumable electrode
DE606765C (en) Process for spraying on hard-to-melt metals
SU1763125A1 (en) Method of electric arc surfacing of powders with use of magnetic arc field and device therefor
DE2736650A1 (en) Gas soldering appts. with detachable nozzle - where nozzle provides small dia. flame with relatively low temp.
JPS5847223B2 (en) Youyukinzokufunshiyutsusouchi

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19950623

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB IT

A4 Supplementary search report drawn up and despatched

Effective date: 19970404

AK Designated contracting states

Kind code of ref document: A4

Designated state(s): DE FR GB IT

17Q First examination report despatched

Effective date: 19981016

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20000202