EP0664123A1 - Inhibition of autoimmune diseases - Google Patents

Inhibition of autoimmune diseases Download PDF

Info

Publication number
EP0664123A1
EP0664123A1 EP94309465A EP94309465A EP0664123A1 EP 0664123 A1 EP0664123 A1 EP 0664123A1 EP 94309465 A EP94309465 A EP 94309465A EP 94309465 A EP94309465 A EP 94309465A EP 0664123 A1 EP0664123 A1 EP 0664123A1
Authority
EP
European Patent Office
Prior art keywords
compound
formula
autoimmune diseases
starch
estrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP94309465A
Other languages
German (de)
French (fr)
Inventor
Steven Harold Zuckerman
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eli Lilly and Co
Original Assignee
Eli Lilly and Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Eli Lilly and Co filed Critical Eli Lilly and Co
Publication of EP0664123A1 publication Critical patent/EP0664123A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/44Non condensed pyridines; Hydrogenated derivatives thereof
    • A61K31/445Non condensed piperidines, e.g. piperocaine
    • A61K31/4523Non condensed piperidines, e.g. piperocaine containing further heterocyclic ring systems
    • A61K31/4535Non condensed piperidines, e.g. piperocaine containing further heterocyclic ring systems containing a heterocyclic ring having sulfur as a ring hetero atom, e.g. pizotifen
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/44Non condensed pyridines; Hydrogenated derivatives thereof
    • A61K31/445Non condensed piperidines, e.g. piperocaine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/40Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with one nitrogen as the only ring hetero atom, e.g. sulpiride, succinimide, tolmetin, buflomedil
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/40Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with one nitrogen as the only ring hetero atom, e.g. sulpiride, succinimide, tolmetin, buflomedil
    • A61K31/4025Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with one nitrogen as the only ring hetero atom, e.g. sulpiride, succinimide, tolmetin, buflomedil not condensed and containing further heterocyclic rings, e.g. cromakalim
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/55Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having seven-membered rings, e.g. azelastine, pentylenetetrazole
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • A61P37/06Immunosuppressants, e.g. drugs for graft rejection
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D409/00Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms
    • C07D409/02Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing two hetero rings
    • C07D409/10Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing two hetero rings linked by a carbon chain containing aromatic rings

Definitions

  • Autoimmune diseases involve aberrant regulation of cellular and humoral mediated immunity and are frequently associated with abnormal or enhanced T cell, B cell and macrophage effector functions directed towards self antigens. The activation of these cellular components towards self antigens is believed related to the break in feedback mechanisms associated with self tolerance.
  • Autoimmune diseases encompass a whole spectrum of clinical entities and despite the differences in the target organ have many similarities. These include their preponderance in females of child bearing age with a female to male ratio varying from 50:1 in Hashimoto's throiditis to 10:1 in Systemic lupus erythematosus to 2:1 in Myasthenia gravis (Ahmed et al., Am J. Path., 121 :531 (1985)).
  • autoimmune diseases has not improved significantly over the past decade and primarily is associated with the use of nonsteroidal and steroidal anti-inflammatory agents to treat the symptoms of the disease.
  • nonsteroidal and steroidal anti-inflammatory agents to treat the symptoms of the disease.
  • generalized immunosuppression as with glucocorticoids has major liabilities in terms of side effect profile and the propensity of the immunosuppressed patient to be at greater risk for other infectious and non-infectious diseases.
  • Estrogen appears to be involved with autoimmune diseases although its role in disease progression or regression is complex and dependent on the nature of the autoimmune disease. Estrogen for example appears to have an ameliorating effect on rheumatoid arthritis while having an exacerbating effect on systemic lupus (Chander & Spector; Ann. Rheum. Dis. 50 :139). Estrogen has been demonstrated to have a suppressive role on T cell function and yet an immunostimulatory effect on B cells. Therefore, estrogen-like compounds should prove beneficial in diseases associated with activated T cells including rheumatoid arthritis, multiple sclerosis, Guillan Barre syndrome and Hashimoto's thyroiditis through inhibition of T cell function (Holmdahl, J. Autoimmun. 2 :651 (1989).
  • estrogen may have additional protective roles.
  • Marui et al. ( J. Clin. Invest. 92 :1866 (1993)) have recently reported that antioxidants suppress endothelial expression of VCAM-1.
  • VCAM-1 is the ligand for VLA-4, the T cell and macrophage integrin associated with trafficking of these cells out of the vasculature and into the perivascular space and target organs.
  • As estrogen is an antioxidant it would be anticipated that estrogen and related analogs will inhibit VLA-4 dependent trafficking of cells and thus hinder the immune cascade associated with autoimmune mediated disease.
  • This invention provides methods for inhibiting autoimmune diseases comprising administering to a human in need thereof an effective amount of a compound of formula I wherein R1 and R3 are independently hydrogen, -CH3, or wherein Ar is optionally substituted phenyl; R2 is selected from the group consisting of pyrrolidino, hexamethyleneimino, and piperidino; and pharmaceutically acceptable salts and solvates thereof.
  • the current invention concerns the discovery that a select group of 2-phenyl-3-aroylbenzothiophenes (benzothiophenes), those of formula I, are useful for inhibiting autoimmune diseases and their symptoms. It is believed the benzothiophenes disclosed are active against autoimmune diseases by inhibition of T cell function, inhibition of class II antigen expression thereby inhibiting macrophage mediated antigen presentation, and/or inhibition of release of cytokines including IL-1, TNF, and other inflammatory mediators.
  • the therapeutic and prophylactic treatments provided by this invention are practiced by administering to a human in need thereof a dose of a compound of formula I or a pharmaceutically acceptable salt or solvate thereof, that is effective to inhibit autoimmune disease or its symptoms.
  • inhibitor includes its generally accepted meaning which includes prohibiting, preventing, restraining, and slowing, stopping or reversing progression, severity or a resultant symptom.
  • the present method includes both medical therapeutic and/or prophylactic administration, as appropriate.
  • An autoimmune disease involves aberrant regulation of cellular and humoral mediated immunity and is frequently associated with abnormal or enhanced T cell, B cell, or macrophage effector functions directed toward self-antigen.
  • autoimmune diseases includes systemic lupus erythrematosas, Hashimoto's thyroiditis, myasthenia gravis, rheumatoid arthritis, multiple sclerosis, Guillan Barre syndrome, and glomerulonephritis.
  • Raloxifene is a preferred compound of this invention and it is the hydrochloride salt of a compound of formula 1 wherein R1 and R3 are hydrogen and R2 is 1-piperidinyl.
  • At least one compound of formula I is formulated with common excipients, diluents or carriers, and compressed into tablets, or formulated as elixirs or solutions for convenient oral administration, or administered by the intramuscular or intravenous routes.
  • the compounds can be administered transdermally, and may be formulated as sustained release dosage forms and the like.
  • the compounds used in the methods of the current invention can be made according to established procedures, such as those detailed in U.S. Patent Nos. 4,133,814, 4,418,068, and 4,380,635 all of which are incorporated by reference herein.
  • the process starts with a benzo[b]thiophene having a 6-hydroxyl group and a 2-(4-hydroxyphenyl) group.
  • the starting compound is protected, acylated, and deprotected to form the formula I compounds. Examples of the preparation of such compounds are provided in the U.S. patents discussed above.
  • phenyl includes phenyl and phenyl substituted once or twice with C1-C6 alkyl, C1-C4 alkoxy, hydroxy, nitro, chloro, fluoro, or tri(chloro or fluoro)methyl.
  • the compounds used in the methods of this invention form pharmaceutically acceptable acid and base addition salts with a wide variety of organic and inorganic acids and bases and include the physiologically acceptable salts which are often used in pharmaceutical chemistry. Such salts are also part of this invention.
  • Typical inorganic acids used to form such salts include hydrochloric, hydrobromic, hydroiodic, nitric, sulfuric, phosphoric, hypophosphoric and the like.
  • Such pharmaceutically acceptable salts thus include acetate, phenylacetate, trifluoroacetate, acrylate, ascorbate, benzoate, chlorobenzoate, dinitrobenzoate, hydroxybenzoate, methoxybenzoate, methylbenzoate, o-acetoxybenzoate, naphthalene-2-benzoate, bromide, isobutyrate, phenylbutyrate, ⁇ -hydroxybutyrate, butyne-1,4-dioate, hexyne-1,4-dioate, caprate, caprylate, chloride, cinnamate, citrate, formate, fumarate, glycollate, heptanoate, hippurate, lactate, malate, maleate, hydroxymaleate, malonate, mandelate, mesylate, nicotinate, isonicotinate, nitrate, oxalate, phthalate, teraphthalate, phosphate, monohydrogenphosphat
  • the pharmaceutically acceptable acid addition salts are typically formed by reacting a compound of formula I with an equimolar or excess amount of acid.
  • the reactants are generally combined in a mutual solvent such as diethyl ether or benzene.
  • the salt normally precipitates out of solution within about one hour to 10 days and can be isolated by filtration or the solvent can be stripped off by conventional means.
  • Bases commonly used for formation of salts include ammonium hydroxide and alkali and alkaline earth metal hydroxides, carbonates, as well as aliphatic and primary, secondary and tertiary amines, aliphatic diamines.
  • Bases especially useful in the preparation of addition salts include ammonium hydroxide, potassium carbonate, methylamine, diethylamine, ethylene diamine and cyclohexylamine.
  • the pharmaceutically acceptable salts generally have enhanced solubility characteristics compared to the compound from which they are derived, and thus are often more amenable to formulation as liquids or emulsions.
  • compositions can be prepared by procedures known in the art.
  • the compounds can be formulated with common excipients, diluents, or carriers, and formed into tablets, capsules, suspensions, powders, and the like.
  • excipients, diluents, and carriers that are suitable for such formulations include the following: fillers and extenders such as starch, sugars, mannitol, and silicic derivatives; binding agents such as carboxymethyl cellulose and other cellulose derivatives, alginates, gelatin, and polyvinyl pyrrolidone; moisturizing agents such as glycerol; disintegrating agents such as calcium carbonate and sodium bicarbonate; agents for retarding dissolution such as paraffin; resorption accelerators such as quaternary ammonium compounds; surface active agents such as cetyl alcohol, glycerol monostearate; adsorptive carriers such as kaolin and bentonite; and lubricants such as talc, calcium and magnesium stearate, and solid
  • the compounds can also be formulated as elixirs or solutions for convenient oral administration or as solutions appropriate for parenteral administration, for instance by intramuscular, subcutaneous or intravenous routes. Additionally, the compounds are well suited to formulation as sustained release dosage forms and the like.
  • the formulations can be so constituted that they release the active ingredient only or preferably in a particular part of the intestinal tract, possibly over a period of time.
  • the coatings, envelopes, and protective matrices may be made, for example, from polymeric substances or waxes.
  • a compound of formula I required to inhibit an autoimmune disease or its symptoms, according to this invention, will depend upon the severity of the condition, the route of administration, and related factors that will be decided by the attending physician. Generally, accepted and effective daily doses will be from about 0.1 to about 1000 mg/day, and more typically from about 50 to about 200 mg/day. Such dosages will be administered to a subject in need thereof from once to about three times each day, or more often as needed to effectively treat or prevent the disease(s) or symptom(s).
  • a compound of formula I in the form of an acid addition salt, as is customary in the administration of pharmaceuticals bearing a basic group, such as the piperidino ring. It is preferred to administer a compound of the invention to an aging human (e.g. a post-menopausal female). For such purposes the following oral dosage forms are available.
  • Active ingredient means a compound of formula I.
  • Hard gelatin capsules are prepared using the following: Ingredient Quantity (mg/capsule) Active ingredient 0.1 - 1000 Starch, NF 0 - 650 Starch flowable powder 0 - 650 Silicone fluid 350 centistokes 0 - 15 The ingredients are blended, passed through a No. 45 mesh U.S. sieve, and filled into hard gelatin capsules.
  • a tablet formulation is prepared using the ingredients below:
  • Ingredient Quantity (mg/tablet) Active ingredient 0.1 - 1000 Cellulose, microcrystalline 0 - 650 Silicon dioxide, fumed 0 - 650 Stearate acid 0 - 15 The components are blended and compressed to form tablets.
  • tablets each containing 0.1 - 1000 mg of Active ingredient are made up as follows:
  • the Active ingredient, starch, and cellulose are passed through a No. 45 mesh U.S. sieve and mixed thoroughly.
  • the solution of polyvinylpyrrolidone is mixed with the resultant powders which are then passed through a No. 14 mesh U.S. sieve.
  • the granules so produced are dried at 50°-60° C and passed through a No. 18 mesh U.S. sieve.
  • the sodium carboxymethyl starch, magnesium stearate, and talc previously passed through a No. 60 U.S. sieve, are then added to the granules which, after mixing, are compressed on a tablet machine to yield tablets.
  • Active ingredient 0.1 - 1000 mg Sodium carboxymethyl cellulose 50 mg Syrup 1.25 mg Benzoic acid solution 0.10 mL Flavor q.v. Color q.v. Purified water to 5 mL
  • the Active ingredient is passed through a No. 45 mesh U.S. sieve and mixed with the sodium carboxymethyl cellulose and syrup to form a smooth paste.
  • the benzoic acid solution, flavor, and color are diluted with some of the water and added, with stirring. Sufficient water is then added to produce the required volume.
  • mice Four to thirty female mice, aged approximately 8-10 weeks, are ovariectomized. Administration of a compound of the invention is begun within three weeks after castration on the experimental group. After one week of administration of a compound of formula 1, the mice are immunized with rat type II collagen. The mice are graded for clinical severity of arthritis, as set out in Holmdahl et al. , Arthritis Rheum., 29 , 106 (1986), herein incorporated by reference. Sera are collected, and assayed for anti-type II collagen reactive antibodies. At the termination of the experiment, spleen cells are obtained from the mice for determination of T cell activity.
  • Activity is illustrated by a reduction in titer of anti-collagen type II antibodies determined by conventional ELISA assay. Reduction in T-cell reactivity to type II collagen presented to splenic T-cells by antigen presenting cells is evaluated by quantitation of DNA synthesis by thymidine uptake. Finally, clinical severity of disease is evaluated daily by defining first signs of erythema and swelling of one or more limbs. Clinical assessment is correlated with histologic examination.
  • mice are fed animal chow and water ad libitum.
  • the experimental group receives a compound of formula 1, and all rats receive rat cord generally as described in Arnason et al. , Arch. Neurol., 21 , 103-108 (1969), incorporated herein by reference.
  • the rats are graded for signs of experimental allergic encephalomyelitis (EAE).
  • EAE experimental allergic encephalomyelitis
  • Activity is illustrated by the ability of a compound to inhibit EAE.
  • mice Between five and fifty mice (MRL/lpr and NZB) are used. Reduction of anti-DNA antibodies, quantitated by ELISA, as well as changes in survival time and histologic exam of kidneys are evaluated parameters. The mice are dosed with compounds of the invention and are evaluated using the above parameters for disease progression.
  • the women are post-menopausal, i.e., have ceased menstruating for between 6 and 12 months prior to the study's initiation, suffer from an autoimmune disease which exhibits symptoms, but otherwise are in good general health,. Because of the idiosyncratic and subjective nature of these disorders, the study has a placebo control group, i.e., the women are divided into two groups, one of which receives a compound of formula 1 as the active agent and the other receives a placebo. Women in the test group receive between 50-200 mg of the drug per day by the oral route. They continue this therapy for 3-12 months.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Epidemiology (AREA)
  • Immunology (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Transplantation (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Organic Chemistry (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Pyrrole Compounds (AREA)
  • Hydrogenated Pyridines (AREA)

Abstract

A method of inhibiting autoimmune diseases comprising administering to a human in need thereof an effective amount of a compound having the formula
Figure imga0001

   wherein R¹ and R³ are independently hydrogen, -CH₃,
Figure imga0002

wherein Ar is optionally substituted phenyl;
   R² is selected from the group consisting of pyrrolidine, hexamethyleneamino, and piperidino; or a pharmaceutically acceptable salt of solvate thereof.

Description

  • Autoimmune diseases involve aberrant regulation of cellular and humoral mediated immunity and are frequently associated with abnormal or enhanced T cell, B cell and macrophage effector functions directed towards self antigens. The activation of these cellular components towards self antigens is believed related to the break in feedback mechanisms associated with self tolerance. Autoimmune diseases encompass a whole spectrum of clinical entities and despite the differences in the target organ have many similarities. These include their preponderance in females of child bearing age with a female to male ratio varying from 50:1 in Hashimoto's throiditis to 10:1 in Systemic lupus erythematosus to 2:1 in Myasthenia gravis (Ahmed et al., Am J. Path., 121:531 (1985)). In addition, these diseases are all characterized by their chronicity, the tendency of clinical remission and "flare ups" for poorly understood reasons, and the involvement of other organs. While the presence of autoantibodies, inappropriate expression of class II antigens, macrophage activation and T cell infiltration to the target organ have been described in essentially all of the autoimmune diseases, neither the triggering mechanisms which result in disease activation nor disease progression are well understood. Accordingly, therapy for these diseases is largely unsatisfactory and involves the use of gold salts, methotrexate, antimalarials, glucocorticoids (methylprednisolone), and other immunosuppressives as well as plasmaphoresis and attempts at inducing tolerance. Treatment of autoimmune diseases has not improved significantly over the past decade and primarily is associated with the use of nonsteroidal and steroidal anti-inflammatory agents to treat the symptoms of the disease. Clearly while suppression of the specific immune response directed against the host is necessary, generalized immunosuppression as with glucocorticoids has major liabilities in terms of side effect profile and the propensity of the immunosuppressed patient to be at greater risk for other infectious and non-infectious diseases.
  • Estrogen appears to be involved with autoimmune diseases although its role in disease progression or regression is complex and dependent on the nature of the autoimmune disease. Estrogen for example appears to have an ameliorating effect on rheumatoid arthritis while having an exacerbating effect on systemic lupus (Chander & Spector; Ann. Rheum. Dis. 50:139). Estrogen has been demonstrated to have a suppressive role on T cell function and yet an immunostimulatory effect on B cells. Therefore, estrogen-like compounds should prove beneficial in diseases associated with activated T cells including rheumatoid arthritis, multiple sclerosis, Guillan Barre syndrome and Hashimoto's thyroiditis through inhibition of T cell function (Holmdahl, J. Autoimmun. 2:651 (1989).
  • In addition to the suppressive effects of estrogen on T cells, estrogen may have additional protective roles. Marui et al., (J. Clin. Invest. 92:1866 (1993)) have recently reported that antioxidants suppress endothelial expression of VCAM-1. VCAM-1 is the ligand for VLA-4, the T cell and macrophage integrin associated with trafficking of these cells out of the vasculature and into the perivascular space and target organs. As estrogen is an antioxidant, it would be anticipated that estrogen and related analogs will inhibit VLA-4 dependent trafficking of cells and thus hinder the immune cascade associated with autoimmune mediated disease.
  • Estrogen plays a detrimental role in other autoimmune diseases including systemic lupus and glomerulonephritis, diseases associated with immune complexes. While the mechanism(s) responsible for estrogen mediated disease progression are not known, the ability of estrogen to increase Fc mediated phagocytosis (Friedman et al., J. Clin. Invest. 75:162 (1985), and class II antigen expression and IL-1 production by macrophages from estrogen treated rodents (Flynn, Life Sci., 38:2455 (1986) has been reported. Enhancement of these macrophage mediated effector functions would be expected to contribute towards the immune cascade associated with self destruction.
  • This invention provides methods for inhibiting autoimmune diseases comprising administering to a human in need thereof an effective amount of a compound of formula I
    Figure imgb0001

       wherein R¹ and R³ are independently hydrogen, -CH₃,
    Figure imgb0002

    or
    Figure imgb0003

    wherein Ar is optionally substituted phenyl;
       R² is selected from the group consisting of pyrrolidino, hexamethyleneimino, and piperidino; and pharmaceutically acceptable salts and solvates thereof.
  • The current invention concerns the discovery that a select group of 2-phenyl-3-aroylbenzothiophenes (benzothiophenes), those of formula I, are useful for inhibiting autoimmune diseases and their symptoms. It is believed the benzothiophenes disclosed are active against autoimmune diseases by inhibition of T cell function, inhibition of class II antigen expression thereby inhibiting macrophage mediated antigen presentation, and/or inhibition of release of cytokines including IL-1, TNF, and other inflammatory mediators. The therapeutic and prophylactic treatments provided by this invention are practiced by administering to a human in need thereof a dose of a compound of formula I or a pharmaceutically acceptable salt or solvate thereof, that is effective to inhibit autoimmune disease or its symptoms.
  • The term "inhibit" includes its generally accepted meaning which includes prohibiting, preventing, restraining, and slowing, stopping or reversing progression, severity or a resultant symptom. As such, the present method includes both medical therapeutic and/or prophylactic administration, as appropriate.
  • An autoimmune disease involves aberrant regulation of cellular and humoral mediated immunity and is frequently associated with abnormal or enhanced T cell, B cell, or macrophage effector functions directed toward self-antigen. Examples of autoimmune diseases includes systemic lupus erythrematosas, Hashimoto's thyroiditis, myasthenia gravis, rheumatoid arthritis, multiple sclerosis, Guillan Barre syndrome, and glomerulonephritis.
  • Raloxifene is a preferred compound of this invention and it is the hydrochloride salt of a compound of formula 1 wherein R¹ and R³ are hydrogen and R² is 1-piperidinyl.
  • Generally, at least one compound of formula I is formulated with common excipients, diluents or carriers, and compressed into tablets, or formulated as elixirs or solutions for convenient oral administration, or administered by the intramuscular or intravenous routes. The compounds can be administered transdermally, and may be formulated as sustained release dosage forms and the like.
  • The compounds used in the methods of the current invention can be made according to established procedures, such as those detailed in U.S. Patent Nos. 4,133,814, 4,418,068, and 4,380,635 all of which are incorporated by reference herein. In general, the process starts with a benzo[b]thiophene having a 6-hydroxyl group and a 2-(4-hydroxyphenyl) group. The starting compound is protected, acylated, and deprotected to form the formula I compounds. Examples of the preparation of such compounds are provided in the U.S. patents discussed above. The term "optionally substituted phenyl" includes phenyl and phenyl substituted once or twice with C₁-C₆ alkyl, C₁-C₄ alkoxy, hydroxy, nitro, chloro, fluoro, or tri(chloro or fluoro)methyl.
  • The compounds used in the methods of this invention form pharmaceutically acceptable acid and base addition salts with a wide variety of organic and inorganic acids and bases and include the physiologically acceptable salts which are often used in pharmaceutical chemistry. Such salts are also part of this invention. Typical inorganic acids used to form such salts include hydrochloric, hydrobromic, hydroiodic, nitric, sulfuric, phosphoric, hypophosphoric and the like. Salts derived from organic acids, such as aliphatic mono and dicarboxylic acids, phenyl substituted alkanoic acids, hydroxyalkanoic and hydroxyalkandioic acids, aromatic acids, aliphatic and aromatic sulfonic acids, may also be used. Such pharmaceutically acceptable salts thus include acetate, phenylacetate, trifluoroacetate, acrylate, ascorbate, benzoate, chlorobenzoate, dinitrobenzoate, hydroxybenzoate, methoxybenzoate, methylbenzoate, o-acetoxybenzoate, naphthalene-2-benzoate, bromide, isobutyrate, phenylbutyrate, β-hydroxybutyrate, butyne-1,4-dioate, hexyne-1,4-dioate, caprate, caprylate, chloride, cinnamate, citrate, formate, fumarate, glycollate, heptanoate, hippurate, lactate, malate, maleate, hydroxymaleate, malonate, mandelate, mesylate, nicotinate, isonicotinate, nitrate, oxalate, phthalate, teraphthalate, phosphate, monohydrogenphosphate, dihydrogenphosphate, metaphosphate, pyrophosphate, propiolate, propionate, phenylpropionate, salicylate, sebacate, succinate, suberate, sulfate, bisulfate, pyrosulfate, sulfite, bisulfite, sulfonate, benzene-sulfonate, p-bromophenylsulfonate, chlorobenzenesulfonate, ethanesulfonate, 2-hydroxyethanesulfonate, methanesulfonate, naphthalene-1-sulfonate, naphthalene-2-sulfonate, p-toluenesulfonate, xylenesulfonate, tartarate, and the like. A preferred salt is the hydrochloride salt.
  • The pharmaceutically acceptable acid addition salts are typically formed by reacting a compound of formula I with an equimolar or excess amount of acid. The reactants are generally combined in a mutual solvent such as diethyl ether or benzene. The salt normally precipitates out of solution within about one hour to 10 days and can be isolated by filtration or the solvent can be stripped off by conventional means.
  • Bases commonly used for formation of salts include ammonium hydroxide and alkali and alkaline earth metal hydroxides, carbonates, as well as aliphatic and primary, secondary and tertiary amines, aliphatic diamines. Bases especially useful in the preparation of addition salts include ammonium hydroxide, potassium carbonate, methylamine, diethylamine, ethylene diamine and cyclohexylamine.
  • The pharmaceutically acceptable salts generally have enhanced solubility characteristics compared to the compound from which they are derived, and thus are often more amenable to formulation as liquids or emulsions.
  • Pharmaceutical formulations can be prepared by procedures known in the art. For example, the compounds can be formulated with common excipients, diluents, or carriers, and formed into tablets, capsules, suspensions, powders, and the like. Examples of excipients, diluents, and carriers that are suitable for such formulations include the following: fillers and extenders such as starch, sugars, mannitol, and silicic derivatives; binding agents such as carboxymethyl cellulose and other cellulose derivatives, alginates, gelatin, and polyvinyl pyrrolidone; moisturizing agents such as glycerol; disintegrating agents such as calcium carbonate and sodium bicarbonate; agents for retarding dissolution such as paraffin; resorption accelerators such as quaternary ammonium compounds; surface active agents such as cetyl alcohol, glycerol monostearate; adsorptive carriers such as kaolin and bentonite; and lubricants such as talc, calcium and magnesium stearate, and solid polyethyl glycols.
  • The compounds can also be formulated as elixirs or solutions for convenient oral administration or as solutions appropriate for parenteral administration, for instance by intramuscular, subcutaneous or intravenous routes. Additionally, the compounds are well suited to formulation as sustained release dosage forms and the like. The formulations can be so constituted that they release the active ingredient only or preferably in a particular part of the intestinal tract, possibly over a period of time. The coatings, envelopes, and protective matrices may be made, for example, from polymeric substances or waxes.
  • The particular dosage of a compound of formula I required to inhibit an autoimmune disease or its symptoms, according to this invention, will depend upon the severity of the condition, the route of administration, and related factors that will be decided by the attending physician. Generally, accepted and effective daily doses will be from about 0.1 to about 1000 mg/day, and more typically from about 50 to about 200 mg/day. Such dosages will be administered to a subject in need thereof from once to about three times each day, or more often as needed to effectively treat or prevent the disease(s) or symptom(s).
  • It is usually preferred to administer a compound of formula I in the form of an acid addition salt, as is customary in the administration of pharmaceuticals bearing a basic group, such as the piperidino ring. It is preferred to administer a compound of the invention to an aging human (e.g. a post-menopausal female). For such purposes the following oral dosage forms are available.
  • Formulations
  • In the formulations which follow, "Active ingredient" means a compound of formula I.
  • Formulation 1: Gelatin Capsules
  • Hard gelatin capsules are prepared using the following:
    Ingredient Quantity (mg/capsule)
    Active ingredient 0.1 - 1000
    Starch, NF 0 - 650
    Starch flowable powder 0 - 650
    Silicone fluid 350 centistokes 0 - 15

    The ingredients are blended, passed through a No. 45 mesh U.S. sieve, and filled into hard gelatin capsules.
  • Examples of specific capsule formulations of raloxifene that have been made include those shown below:
  • Formulation 2: Raloxifene capsule
  • Ingredient Quantity (mg/capsule)
    Raloxifene 1
    Starch, NF 112
    Starch flowable powder 225.3
    Silicone fluid 350 centistokes 1.7
  • Formulation 3: Raloxifene capsule
  • Ingredient Quantity (mg/capsule)
    Raloxifene 5
    Starch, NF 108
    Starch flowable powder 225.3
    Silicone fluid 350 centistokes 1.7
  • Formulation 4: Raloxifene capsule
  • Ingredient Quantity (mg/capsule)
    Raloxifene 10
    Starch, NF 103
    Starch flowable powder 225.3
    Silicone fluid 350 centistokes 1.7
  • Formulation 5: Raloxifene capsule
  • Ingredient Quantity (mg/capsule)
    Raloxifene 50
    Starch NF 150
    Starch flowable powder 397
    Silicone fluid 350 centistokes 3.0
  • The specific formulations above may be changed in compliance with the reasonable variations provided.
  • A tablet formulation is prepared using the ingredients below:
  • Formulation 6: Tablets
  • Ingredient Quantity (mg/tablet)
    Active ingredient 0.1 - 1000
    Cellulose, microcrystalline 0 - 650
    Silicon dioxide, fumed 0 - 650
    Stearate acid 0 - 15

    The components are blended and compressed to form tablets.
  • Alternatively, tablets each containing 0.1 - 1000 mg of Active ingredient are made up as follows:
  • Formulation 7: Tablets
  • Ingredient Quantity (mg/tablet)
    Active ingredient 0.1 - 1000
    Starch 45
    Cellulose, microcrystalline 35
    Polyvinylpyrrolidone (as 10% solution in water) 4
    Sodium carboxymethyl cellulose 4.5
    Magnesium stearate 0.5
    Talc 1
  • The Active ingredient, starch, and cellulose are passed through a No. 45 mesh U.S. sieve and mixed thoroughly. The solution of polyvinylpyrrolidone is mixed with the resultant powders which are then passed through a No. 14 mesh U.S. sieve. The granules so produced are dried at 50°-60° C and passed through a No. 18 mesh U.S. sieve. The sodium carboxymethyl starch, magnesium stearate, and talc, previously passed through a No. 60 U.S. sieve, are then added to the granules which, after mixing, are compressed on a tablet machine to yield tablets.
  • Suspensions each containing 0.1 - 1000 mg of Active ingredient per 5 mL dose are made as follows:
  • Formulation 8: Suspensions
  • Ingredient Quantity (mg/5 ml)
    Active ingredient 0.1 - 1000 mg
    Sodium carboxymethyl cellulose 50 mg
    Syrup 1.25 mg
    Benzoic acid solution 0.10 mL
    Flavor q.v.
    Color q.v.
    Purified water to 5 mL

    The Active ingredient is passed through a No. 45 mesh U.S. sieve and mixed with the sodium carboxymethyl cellulose and syrup to form a smooth paste. The benzoic acid solution, flavor, and color are diluted with some of the water and added, with stirring. Sufficient water is then added to produce the required volume.
  • ASSAYS Assay 1
  • The procedure as set out in Holmdahl et al., Clin. Exp. Immunol., 70, 373-378 (1987) (herein incorporated by reference) is carried out. Four to thirty female mice, aged approximately 8-10 weeks, are ovariectomized. Administration of a compound of the invention is begun within three weeks after castration on the experimental group. After one week of administration of a compound of formula 1, the mice are immunized with rat type II collagen. The mice are graded for clinical severity of arthritis, as set out in Holmdahl et al., Arthritis Rheum., 29, 106 (1986), herein incorporated by reference. Sera are collected, and assayed for anti-type II collagen reactive antibodies. At the termination of the experiment, spleen cells are obtained from the mice for determination of T cell activity.
  • Activity is illustrated by a reduction in titer of anti-collagen type II antibodies determined by conventional ELISA assay. Reduction in T-cell reactivity to type II collagen presented to splenic T-cells by antigen presenting cells is evaluated by quantitation of DNA synthesis by thymidine uptake. Finally, clinical severity of disease is evaluated daily by defining first signs of erythema and swelling of one or more limbs. Clinical assessment is correlated with histologic examination.
  • Assay 2
  • Between four and thirty young adult female Sprague-Dawley rats are fed animal chow and water ad libitum. The experimental group receives a compound of formula 1, and all rats receive rat cord generally as described in Arnason et al., Arch. Neurol., 21, 103-108 (1969), incorporated herein by reference. The rats are graded for signs of experimental allergic encephalomyelitis (EAE). Between three and seven weeks after administration of a compound of formula 1 began, the rats are sacrificed, their spinal cords removed and examined.
  • Activity is illustrated by the ability of a compound to inhibit EAE.
  • ASSAY 3
  • Between five and fifty mice (MRL/lpr and NZB) are used. Reduction of anti-DNA antibodies, quantitated by ELISA, as well as changes in survival time and histologic exam of kidneys are evaluated parameters. The mice are dosed with compounds of the invention and are evaluated using the above parameters for disease progression.
  • ASSAY 4
  • Five to fifty women are selected for the clinical study. The women are post-menopausal, i.e., have ceased menstruating for between 6 and 12 months prior to the study's initiation, suffer from an autoimmune disease which exhibits symptoms, but otherwise are in good general health,. Because of the idiosyncratic and subjective nature of these disorders, the study has a placebo control group, i.e., the women are divided into two groups, one of which receives a compound of formula 1 as the active agent and the other receives a placebo. Women in the test group receive between 50-200 mg of the drug per day by the oral route. They continue this therapy for 3-12 months. Accurate records are kept as to the number and severity of the symptoms in both groups and at the end of the study these results are compared. The results are compared both between members of each group and also the results for each patient are compared to the symptoms reported by each patient before the study began.
  • Utility of the compounds of formula I is illustrated by the positive impact they have in at least one of the assays described above.

Claims (4)

  1. The use of a compound having the formula
    Figure imgb0004
       wherein R¹ and R³ are independently hydrogen, -CH₃,
    Figure imgb0005
    or
    Figure imgb0006
    wherein Ar is optionally substituted phenyl;
       R² is selected from the group consisting of pyrrolidino and piperidino; or a pharmaceutically acceptable salt or solvate thereof, in the preparation of a medicament useful for inhibiting an autoimmune disease.
  2. The use of Claim 1 wherein said compound is the hydrochloride salt thereof.
  3. The use of Claim 1 wherein said medicament is prophylactic.
  4. The use of Claim 1 wherein said compound is
    Figure imgb0007
       or its hydrochloride salt.
EP94309465A 1993-12-21 1994-12-19 Inhibition of autoimmune diseases Withdrawn EP0664123A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US08/170,608 US5521198A (en) 1993-12-21 1993-12-21 Methods of inhibiting autoimmune diseases
US170608 1993-12-21

Publications (1)

Publication Number Publication Date
EP0664123A1 true EP0664123A1 (en) 1995-07-26

Family

ID=22620579

Family Applications (1)

Application Number Title Priority Date Filing Date
EP94309465A Withdrawn EP0664123A1 (en) 1993-12-21 1994-12-19 Inhibition of autoimmune diseases

Country Status (15)

Country Link
US (2) US5521198A (en)
EP (1) EP0664123A1 (en)
JP (1) JPH07215855A (en)
KR (1) KR950016723A (en)
CN (1) CN1108102A (en)
AU (1) AU699255B2 (en)
CA (1) CA2138509A1 (en)
CZ (1) CZ320694A3 (en)
HU (1) HUT71327A (en)
IL (1) IL112031A (en)
NO (1) NO944914L (en)
NZ (1) NZ270164A (en)
PH (1) PH31599A (en)
RU (1) RU94044454A (en)
ZA (1) ZA9410083B (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0724879A2 (en) * 1995-02-06 1996-08-07 Eli Lilly And Company 2-Phenyl-3-azoylbenzothiopenes for inhibiting effects of IL-6
EP0769943A1 (en) * 1994-08-22 1997-05-02 Eli Lilly And Company Methods of inhibiting demyelinating and dysmyelinating diseases
EP0782444A1 (en) * 1994-10-20 1997-07-09 Eli Lilly And Company Method of inhibiting conditions associated with bradykinin
US5889042A (en) * 1996-02-28 1999-03-30 Pfizer Inc. Method of treating diseases and conditions with estrogen agonists and antagonists
US5985932A (en) * 1996-02-28 1999-11-16 Pfizer Inc Inhibition of autoimmune diseases
US6107331A (en) * 1996-02-28 2000-08-22 Pfizer Inc. Use of estrogen antagonists and estrogen agonists in inhibiting pathological conditions
US6117911A (en) * 1997-04-11 2000-09-12 Neorx Corporation Compounds and therapies for the prevention of vascular and non-vascular pathologies
US6491938B2 (en) 1993-05-13 2002-12-10 Neorx Corporation Therapeutic inhibitor of vascular smooth muscle cells
WO2004062653A2 (en) * 2003-01-06 2004-07-29 Wyeth The use of estrogen receptor alpha modulators for the treatment of multiphe sclerosis
US8067022B2 (en) 1992-09-25 2011-11-29 Boston Scientific Scimed, Inc. Therapeutic inhibitor of vascular smooth muscle cells
US8097642B2 (en) 1995-02-15 2012-01-17 Boston Scientific Scimed, Inc. Therapeutic inhibitor of vascular smooth muscle cells

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6197789B1 (en) 1995-06-07 2001-03-06 Neorx Corporation Prevention and treatment of cardiovascular pathologies with tamoxifen analogues
US5596106A (en) * 1994-07-15 1997-01-21 Eli Lilly And Company Cannabinoid receptor antagonists
US6008232A (en) * 1997-08-20 1999-12-28 Eli Lilly And Company Methods for preventing headaches
HUP0203437A3 (en) 1999-03-22 2003-07-28 Immugen Pharmaceuticals Inc So Use of resorcinol derivatives for producing pharmaceutical compositions for treatment of immune diseases
US6566560B2 (en) 1999-03-22 2003-05-20 Immugen Pharmaceuticals, Inc. Resorcinolic compounds
ATE301129T1 (en) 1999-05-04 2005-08-15 Strakan Int Ltd ANDROGEN GLYCOSIDES AND THE ANDROGENIC ACTIVITY THEREOF
AU2002213429A1 (en) * 2000-09-28 2002-04-08 Immugen Pharmaceuticals, Inc. Antiviral methods and compounds
AU2001296402A1 (en) * 2000-09-28 2002-04-08 Immugen Pharmaceuticals, Inc. Methods and compounds for inhibiting eicosanoid metabolism and platelet aggregation
US20030232101A1 (en) * 2002-03-18 2003-12-18 Immugen Pharmaceuticals, Inc. Topical formulations of resorcinols and cannibinoids and methods of use
JP3887588B2 (en) * 2002-08-30 2007-02-28 株式会社リガク Stress measurement method by X-ray diffraction

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5075321A (en) * 1987-03-24 1991-12-24 University Of Pennsylvania Methods of treating diseases characterized by interactions of IgG-containing immune complexes with macrophage Fc receptors using antiestrogenic benzothiophenes

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4133814A (en) * 1975-10-28 1979-01-09 Eli Lilly And Company 2-Phenyl-3-aroylbenzothiophenes useful as antifertility agents
US4380635A (en) * 1981-04-03 1983-04-19 Eli Lilly And Company Synthesis of acylated benzothiophenes
US4418068A (en) * 1981-04-03 1983-11-29 Eli Lilly And Company Antiestrogenic and antiandrugenic benzothiophenes
US5395842A (en) * 1988-10-31 1995-03-07 Endorecherche Inc. Anti-estrogenic compounds and compositions
JP3157882B2 (en) * 1991-11-15 2001-04-16 帝国臓器製薬株式会社 New benzothiophene derivatives
AU5286693A (en) * 1992-10-27 1994-05-24 Nippon Kayaku Kabushiki Kaisha Use of non steroidal anti estrogens for autoimmune diseases
JP4111352B2 (en) 1996-05-21 2008-07-02 新日鐵住金ステンレス株式会社 High-cleaning refining method for stainless steel

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5075321A (en) * 1987-03-24 1991-12-24 University Of Pennsylvania Methods of treating diseases characterized by interactions of IgG-containing immune complexes with macrophage Fc receptors using antiestrogenic benzothiophenes

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
"Lilly's raloxifene entering phase III for osteoporosis", THE PINK SHEET, vol. 55, no. 16, 19 April 1993 (1993-04-19) *
DATABASE FILE 187, FDC REPORTS Dialog Information Services; *
L. KANGAS: "Agonistic and antagonistic effects in different target organs", ACTA ONCOLOGICA, vol. 31, no. 2, pages 143 - 146 *

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8067022B2 (en) 1992-09-25 2011-11-29 Boston Scientific Scimed, Inc. Therapeutic inhibitor of vascular smooth muscle cells
US6569441B2 (en) 1993-01-28 2003-05-27 Neorx Corporation Therapeutic inhibitor of vascular smooth muscle cells
US6491938B2 (en) 1993-05-13 2002-12-10 Neorx Corporation Therapeutic inhibitor of vascular smooth muscle cells
EP0769943A4 (en) * 1994-08-22 1999-07-07 Lilly Co Eli Methods of inhibiting demyelinating and dysmyelinating diseases
EP0769943A1 (en) * 1994-08-22 1997-05-02 Eli Lilly And Company Methods of inhibiting demyelinating and dysmyelinating diseases
EP0782444A1 (en) * 1994-10-20 1997-07-09 Eli Lilly And Company Method of inhibiting conditions associated with bradykinin
EP0782444A4 (en) * 1994-10-20 2002-01-30 Lilly Co Eli Method of inhibiting conditions associated with bradykinin
EP0724879A2 (en) * 1995-02-06 1996-08-07 Eli Lilly And Company 2-Phenyl-3-azoylbenzothiopenes for inhibiting effects of IL-6
EP0724879A3 (en) * 1995-02-06 1996-09-11 Lilly Co Eli
US8158670B2 (en) 1995-02-15 2012-04-17 Boston Scientific Scimed, Inc. Therapeutic inhibitor of vascular smooth muscle cells
US8097642B2 (en) 1995-02-15 2012-01-17 Boston Scientific Scimed, Inc. Therapeutic inhibitor of vascular smooth muscle cells
US6613796B2 (en) 1996-02-28 2003-09-02 Pfizer Inc. Use of estrogen antagonists and estrogen agonists in inhibiting pathological conditions
US6403611B2 (en) 1996-02-28 2002-06-11 Pfizer Inc. Use of estrogen antagonists and estrogen agonists in inhibiting pathological conditions
US6355670B1 (en) 1996-02-28 2002-03-12 Pfizer, Inc. Use of estrogen antagonists and estrogen agonists in inhibiting pathological conditions
US6274618B1 (en) 1996-02-28 2001-08-14 Pfizer Inc Use of estrogen antagonists and estrogen agonists in inhibiting pathological conditions
US5889042A (en) * 1996-02-28 1999-03-30 Pfizer Inc. Method of treating diseases and conditions with estrogen agonists and antagonists
US6107331A (en) * 1996-02-28 2000-08-22 Pfizer Inc. Use of estrogen antagonists and estrogen agonists in inhibiting pathological conditions
US5985932A (en) * 1996-02-28 1999-11-16 Pfizer Inc Inhibition of autoimmune diseases
US6410587B1 (en) 1997-04-11 2002-06-25 Neorx Corporation Compounds and therapies for the prevention of vascular and non-vascular pathologies
US6117911A (en) * 1997-04-11 2000-09-12 Neorx Corporation Compounds and therapies for the prevention of vascular and non-vascular pathologies
WO2004062653A2 (en) * 2003-01-06 2004-07-29 Wyeth The use of estrogen receptor alpha modulators for the treatment of multiphe sclerosis
WO2004062653A3 (en) * 2003-01-06 2004-11-04 Wyeth Corp The use of estrogen receptor alpha modulators for the treatment of multiphe sclerosis

Also Published As

Publication number Publication date
PH31599A (en) 1998-11-03
AU699255B2 (en) 1998-11-26
ZA9410083B (en) 1996-06-19
US5521198A (en) 1996-05-28
CN1108102A (en) 1995-09-13
RU94044454A (en) 1996-10-10
HU9403658D0 (en) 1995-02-28
HUT71327A (en) 1995-11-28
NZ270164A (en) 1997-08-22
CZ320694A3 (en) 1995-09-13
CA2138509A1 (en) 1995-06-22
IL112031A (en) 1999-12-22
NO944914D0 (en) 1994-12-19
KR950016723A (en) 1995-07-20
JPH07215855A (en) 1995-08-15
US6436958B1 (en) 2002-08-20
IL112031A0 (en) 1995-03-15
NO944914L (en) 1995-06-22
AU8153794A (en) 1995-06-29

Similar Documents

Publication Publication Date Title
US6436958B1 (en) Methods of inhibiting autoimmune diseases
EP0771200B1 (en) Use of raloxifene and its analogs for the manufacture of a medicament for the treatment of viral diseases
EP0652001A1 (en) Methods for treating per-menopausal syndrome
EP0652005A1 (en) Methods for inhibiting endometriosis
US5708009A (en) Methods of inhibiting myeloperoxidase activity
US5534526A (en) Methods for inhibiting vasomotor symptoms and attending psychological disturbances surrounding post-menopausal syndrome
EP0659411B1 (en) Method for increasing libido in post-menopausal women
EP0659413B1 (en) Inhibition of CNS problems in post-menopausal women
CA2138510A1 (en) Methods of inhibiting dysfunctional uterine bleeding
US5451589A (en) Methods of inhibiting ovarian dysgenesis, delayed puberty, or sexual infantilism
AU701701B2 (en) Methods of inhibiting breast disorders
US5578614A (en) Methods for inhibiting weight gain or inducing weight loss
EP0659422A1 (en) 2-Phenyl-3-azoylbenzothiophenes for treating Turner's syndrome
US5719190A (en) Inhibition of myeloperoxidase activity
US5985932A (en) Inhibition of autoimmune diseases

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19950102

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LI LU NL PT SE

RAX Requested extension states of the european patent have changed

Free format text: LT PAYMENT 950102;SI PAYMENT 950102

17Q First examination report despatched

Effective date: 19960411

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 19980704