EP0659726A1 - Process for preparing an alkanone and/or an alkanol - Google Patents
Process for preparing an alkanone and/or an alkanol Download PDFInfo
- Publication number
- EP0659726A1 EP0659726A1 EP94203682A EP94203682A EP0659726A1 EP 0659726 A1 EP0659726 A1 EP 0659726A1 EP 94203682 A EP94203682 A EP 94203682A EP 94203682 A EP94203682 A EP 94203682A EP 0659726 A1 EP0659726 A1 EP 0659726A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- decomposition
- water phase
- process according
- catalyst
- carrier material
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 4
- 238000000354 decomposition reaction Methods 0.000 claims abstract description 88
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 84
- 239000003054 catalyst Substances 0.000 claims abstract description 78
- 239000012876 carrier material Substances 0.000 claims abstract description 34
- 229910052751 metal Inorganic materials 0.000 claims abstract description 17
- 239000002184 metal Substances 0.000 claims abstract description 17
- 150000001335 aliphatic alkanes Chemical class 0.000 claims abstract description 13
- 150000002736 metal compounds Chemical class 0.000 claims abstract description 13
- 150000001336 alkenes Chemical class 0.000 claims abstract description 12
- 229910052802 copper Inorganic materials 0.000 claims abstract description 7
- 229910052742 iron Inorganic materials 0.000 claims abstract description 7
- 229910052759 nickel Inorganic materials 0.000 claims abstract description 7
- 125000004432 carbon atom Chemical group C* 0.000 claims abstract description 6
- 229910052748 manganese Inorganic materials 0.000 claims abstract description 6
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims abstract description 5
- 230000001590 oxidative effect Effects 0.000 claims abstract description 5
- 239000001301 oxygen Substances 0.000 claims abstract description 5
- 229910052760 oxygen Inorganic materials 0.000 claims abstract description 5
- 239000000203 mixture Substances 0.000 claims description 49
- 238000007254 oxidation reaction Methods 0.000 claims description 39
- 238000000034 method Methods 0.000 claims description 38
- 230000003647 oxidation Effects 0.000 claims description 37
- 239000000243 solution Substances 0.000 claims description 24
- 239000007864 aqueous solution Substances 0.000 claims description 21
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 claims description 20
- 229910000288 alkali metal carbonate Inorganic materials 0.000 claims description 14
- 150000008041 alkali metal carbonates Chemical class 0.000 claims description 14
- XDTMQSROBMDMFD-UHFFFAOYSA-N Cyclohexane Chemical compound C1CCCCC1 XDTMQSROBMDMFD-UHFFFAOYSA-N 0.000 claims description 9
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 claims description 8
- 150000008044 alkali metal hydroxides Chemical class 0.000 claims description 7
- 239000002245 particle Substances 0.000 claims description 6
- 229910052799 carbon Inorganic materials 0.000 claims description 5
- 239000007787 solid Substances 0.000 claims description 5
- NUJOXMJBOLGQSY-UHFFFAOYSA-N manganese dioxide Chemical compound O=[Mn]=O NUJOXMJBOLGQSY-UHFFFAOYSA-N 0.000 claims description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 3
- 150000001924 cycloalkanes Chemical class 0.000 claims description 3
- 229910000318 alkali metal phosphate Inorganic materials 0.000 claims description 2
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 claims 2
- 238000010924 continuous production Methods 0.000 claims 1
- 229910000029 sodium carbonate Inorganic materials 0.000 claims 1
- 239000012071 phase Substances 0.000 description 58
- JHIVVAPYMSGYDF-UHFFFAOYSA-N cyclohexanone Chemical compound O=C1CCCCC1 JHIVVAPYMSGYDF-UHFFFAOYSA-N 0.000 description 28
- FGGJBCRKSVGDPO-UHFFFAOYSA-N hydroperoxycyclohexane Chemical compound OOC1CCCCC1 FGGJBCRKSVGDPO-UHFFFAOYSA-N 0.000 description 27
- 238000004448 titration Methods 0.000 description 18
- 241000282326 Felis catus Species 0.000 description 16
- HPXRVTGHNJAIIH-UHFFFAOYSA-N cyclohexanol Chemical compound OC1CCCCC1 HPXRVTGHNJAIIH-UHFFFAOYSA-N 0.000 description 14
- 238000006243 chemical reaction Methods 0.000 description 13
- 229910017052 cobalt Inorganic materials 0.000 description 13
- 239000010941 cobalt Substances 0.000 description 13
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 12
- 229910044991 metal oxide Inorganic materials 0.000 description 8
- 238000002360 preparation method Methods 0.000 description 8
- 150000001875 compounds Chemical class 0.000 description 7
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 7
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 7
- SXVPOSFURRDKBO-UHFFFAOYSA-N Cyclododecanone Chemical compound O=C1CCCCCCCCCCC1 SXVPOSFURRDKBO-UHFFFAOYSA-N 0.000 description 6
- 239000010949 copper Substances 0.000 description 6
- 238000002474 experimental method Methods 0.000 description 6
- 239000007788 liquid Substances 0.000 description 6
- -1 metal oxide compound Chemical class 0.000 description 6
- 150000004706 metal oxides Chemical class 0.000 description 6
- 239000012074 organic phase Substances 0.000 description 6
- 239000011541 reaction mixture Substances 0.000 description 6
- 230000000694 effects Effects 0.000 description 5
- GPHZOCJETVZYTP-UHFFFAOYSA-N hydroperoxycyclododecane Chemical compound OOC1CCCCCCCCCCC1 GPHZOCJETVZYTP-UHFFFAOYSA-N 0.000 description 5
- 239000003446 ligand Substances 0.000 description 5
- 239000011572 manganese Substances 0.000 description 5
- 229910021536 Zeolite Inorganic materials 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 4
- DDTBPAQBQHZRDW-UHFFFAOYSA-N cyclododecane Chemical compound C1CCCCCCCCCCC1 DDTBPAQBQHZRDW-UHFFFAOYSA-N 0.000 description 4
- SFVWPXMPRCIVOK-UHFFFAOYSA-N cyclododecanol Chemical compound OC1CCCCCCCCCCC1 SFVWPXMPRCIVOK-UHFFFAOYSA-N 0.000 description 4
- JBKVHLHDHHXQEQ-UHFFFAOYSA-N epsilon-caprolactam Chemical compound O=C1CCCCCN1 JBKVHLHDHHXQEQ-UHFFFAOYSA-N 0.000 description 4
- 238000006386 neutralization reaction Methods 0.000 description 4
- 239000007858 starting material Substances 0.000 description 4
- 239000010457 zeolite Substances 0.000 description 4
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 3
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 239000002585 base Substances 0.000 description 3
- 239000007795 chemical reaction product Substances 0.000 description 3
- 239000011651 chromium Substances 0.000 description 3
- 229910052804 chromium Inorganic materials 0.000 description 3
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 description 3
- 229960001484 edetic acid Drugs 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- 239000011521 glass Substances 0.000 description 3
- 239000008188 pellet Substances 0.000 description 3
- 239000000047 product Substances 0.000 description 3
- 238000010992 reflux Methods 0.000 description 3
- 238000000926 separation method Methods 0.000 description 3
- 239000002002 slurry Substances 0.000 description 3
- 229910052723 transition metal Inorganic materials 0.000 description 3
- 150000003624 transition metals Chemical class 0.000 description 3
- QPLDLSVMHZLSFG-UHFFFAOYSA-N Copper oxide Chemical compound [Cu]=O QPLDLSVMHZLSFG-UHFFFAOYSA-N 0.000 description 2
- YNQLUTRBYVCPMQ-UHFFFAOYSA-N Ethylbenzene Chemical compound CCC1=CC=CC=C1 YNQLUTRBYVCPMQ-UHFFFAOYSA-N 0.000 description 2
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 150000007513 acids Chemical class 0.000 description 2
- WNLRTRBMVRJNCN-UHFFFAOYSA-N adipic acid Chemical compound OC(=O)CCCCC(O)=O WNLRTRBMVRJNCN-UHFFFAOYSA-N 0.000 description 2
- 229910052783 alkali metal Inorganic materials 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- HGCIXCUEYOPUTN-UHFFFAOYSA-N cyclohexene Chemical compound C1CCC=CC1 HGCIXCUEYOPUTN-UHFFFAOYSA-N 0.000 description 2
- WJTCGQSWYFHTAC-UHFFFAOYSA-N cyclooctane Chemical compound C1CCCCCCC1 WJTCGQSWYFHTAC-UHFFFAOYSA-N 0.000 description 2
- 239000004914 cyclooctane Substances 0.000 description 2
- ODLMAHJVESYWTB-UHFFFAOYSA-N ethylmethylbenzene Natural products CCCC1=CC=CC=C1 ODLMAHJVESYWTB-UHFFFAOYSA-N 0.000 description 2
- 238000001704 evaporation Methods 0.000 description 2
- 239000008187 granular material Substances 0.000 description 2
- NNPPMTNAJDCUHE-UHFFFAOYSA-N isobutane Chemical compound CC(C)C NNPPMTNAJDCUHE-UHFFFAOYSA-N 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 238000005191 phase separation Methods 0.000 description 2
- BWHMMNNQKKPAPP-UHFFFAOYSA-L potassium carbonate Chemical compound [K+].[K+].[O-]C([O-])=O BWHMMNNQKKPAPP-UHFFFAOYSA-L 0.000 description 2
- CPRMKOQKXYSDML-UHFFFAOYSA-M rubidium hydroxide Chemical compound [OH-].[Rb+] CPRMKOQKXYSDML-UHFFFAOYSA-M 0.000 description 2
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 1
- 229910002451 CoOx Inorganic materials 0.000 description 1
- 229910021503 Cobalt(II) hydroxide Inorganic materials 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229910016553 CuOx Inorganic materials 0.000 description 1
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 1
- 229910015189 FeOx Inorganic materials 0.000 description 1
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- 229910016978 MnOx Inorganic materials 0.000 description 1
- 229910005855 NiOx Inorganic materials 0.000 description 1
- 229920002292 Nylon 6 Polymers 0.000 description 1
- 229920002302 Nylon 6,6 Polymers 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- 229910018557 Si O Inorganic materials 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 239000001361 adipic acid Substances 0.000 description 1
- 235000011037 adipic acid Nutrition 0.000 description 1
- 150000001340 alkali metals Chemical class 0.000 description 1
- 239000004411 aluminium Substances 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 150000001450 anions Chemical class 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- SXFQDYORBVIULR-UHFFFAOYSA-N azane;cobalt(2+) Chemical compound N.[Co+2] SXFQDYORBVIULR-UHFFFAOYSA-N 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 1
- ZJRWDIJRKKXMNW-UHFFFAOYSA-N carbonic acid;cobalt Chemical compound [Co].OC(O)=O ZJRWDIJRKKXMNW-UHFFFAOYSA-N 0.000 description 1
- 150000001735 carboxylic acids Chemical class 0.000 description 1
- 238000006555 catalytic reaction Methods 0.000 description 1
- 238000001311 chemical methods and process Methods 0.000 description 1
- QGUAJWGNOXCYJF-UHFFFAOYSA-N cobalt dinitrate hexahydrate Chemical compound O.O.O.O.O.O.[Co+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O QGUAJWGNOXCYJF-UHFFFAOYSA-N 0.000 description 1
- 229910000001 cobalt(II) carbonate Inorganic materials 0.000 description 1
- IVMYJDGYRUAWML-UHFFFAOYSA-N cobalt(ii) oxide Chemical compound [Co]=O IVMYJDGYRUAWML-UHFFFAOYSA-N 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- BERDEBHAJNAUOM-UHFFFAOYSA-N copper(I) oxide Inorganic materials [Cu]O[Cu] BERDEBHAJNAUOM-UHFFFAOYSA-N 0.000 description 1
- KRFJLUBVMFXRPN-UHFFFAOYSA-N cuprous oxide Chemical compound [O-2].[Cu+].[Cu+] KRFJLUBVMFXRPN-UHFFFAOYSA-N 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- IGARGHRYKHJQSM-UHFFFAOYSA-N cyclohexylbenzene Chemical compound C1CCCCC1C1=CC=CC=C1 IGARGHRYKHJQSM-UHFFFAOYSA-N 0.000 description 1
- 210000003298 dental enamel Anatomy 0.000 description 1
- 230000003467 diminishing effect Effects 0.000 description 1
- 238000004821 distillation Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 239000012634 fragment Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- MHAJPDPJQMAIIY-UHFFFAOYSA-M hydroperoxide group Chemical group [O-]O MHAJPDPJQMAIIY-UHFFFAOYSA-M 0.000 description 1
- 230000005660 hydrophilic surface Effects 0.000 description 1
- 238000005470 impregnation Methods 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 1
- 235000013847 iso-butane Nutrition 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 150000007522 mineralic acids Chemical class 0.000 description 1
- 238000003947 neutron activation analysis Methods 0.000 description 1
- 150000007524 organic acids Chemical class 0.000 description 1
- 235000005985 organic acids Nutrition 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 229910000027 potassium carbonate Inorganic materials 0.000 description 1
- 235000015320 potassium carbonate Nutrition 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 239000001294 propane Substances 0.000 description 1
- 230000003134 recirculating effect Effects 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- LIVNPJMFVYWSIS-UHFFFAOYSA-N silicon monoxide Inorganic materials [Si-]#[O+] LIVNPJMFVYWSIS-UHFFFAOYSA-N 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
- 238000009736 wetting Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C27/00—Processes involving the simultaneous production of more than one class of oxygen-containing compounds
- C07C27/10—Processes involving the simultaneous production of more than one class of oxygen-containing compounds by oxidation of hydrocarbons
- C07C27/12—Processes involving the simultaneous production of more than one class of oxygen-containing compounds by oxidation of hydrocarbons with oxygen
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C45/00—Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
- C07C45/51—Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by pyrolysis, rearrangement or decomposition
- C07C45/53—Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by pyrolysis, rearrangement or decomposition of hydroperoxides
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C29/00—Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
- C07C29/132—Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C29/00—Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
- C07C29/48—Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by oxidation reactions with formation of hydroxy groups
- C07C29/50—Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by oxidation reactions with formation of hydroxy groups with molecular oxygen only
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C2601/00—Systems containing only non-condensed rings
- C07C2601/12—Systems containing only non-condensed rings with a six-membered ring
- C07C2601/14—The ring being saturated
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C2601/00—Systems containing only non-condensed rings
- C07C2601/18—Systems containing only non-condensed rings with a ring being at least seven-membered
Definitions
- the invention relates to a process for preparing an alkanone and/or an alkanol by oxidizing an alkane and/or alkene having from 3 to 30 C atoms with oxygen to form an alkylhydroperoxide, followed by decomposition of the alkylhydroperoxide formed in the presence of a catalyst which contains a metal compound immobilized on a carrier material.
- EP-A-96798 A similar process is described in EP-A-96798.
- This publication describes the preparation of cyclohexanone and cyclohexanol, in which cyclohexane is first oxidized to a cyclohexylhydroperoxide-containing oxidation mixture and in which the cyclohexylhydroperoxide is subsequently decomposed into cyclohexanone and cyclohexanol.
- the decomposition is effected in the presence of a heterogeneous decomposition catalyst consisting of cobalt immobilized on a zeolite.
- This decomposition catalyst is claimed in EP-A-96798 to have a longer life and to be more resistant to acids and water than metal-on-carrier catalysts known in the art, such as cobalt on carbon as described in US-A-2851496.
- a disadvantage of the above-mentioned process is that it employs a zeolite as carrier material, which zeolite is difficult to get. Another disadvantage is that with such a cobalt-on-zeolite decomposition catalyst a small amount of cobalt little by little dissolves in the reaction mixture, resulting in limited catalyst life. A further disadvantage is that the presence of a separate water phase during the decomposition of the alkylhydroperoxides further diminishes the catalyst activity by encouraging the cobalt to dissolve in the reaction mixture. The separate water phase thereby causes a significant decrease in the activity of the decomposition catalyst over a short period of time (e.g. a few hours).
- the separate water phase forms as a byproduct in the oxidation reaction of cyclohexane and in the decompostion reaction.
- the negative effect of a separate water phase on the life of a heterogeneous decomposition catalyst is also described in, for instance, US-A-4042630.
- the object of the invention is to provide a process in which a readily obtainable decomposition catalyst is employed, which catalyst retains its activity in spite of the (possible) presence of water in the oxidation mixture.
- This object is achieved in that an amount of a basic, aqueous solution is present in the oxidation mixture so that a separate water phase with a pH higher than 8.5 is present during the decomposition and in that the metal of the catalyst is chosen from the group comprising Mn, Fe, Co, Ni and Cu and the carrier material is stable in the presence of the separate basic water phase.
- the decomposition catalyst remains active for a long period of time.
- An additional advantage is that the decomposition of the alkylhydroperoxide proceeds rapidly.
- Another additional advantage is that in this process a high ratio of alkanone to alkanol is achieved. This is advantageous if the alkanone is the desired end product which is often the case.
- the process of the invention obviates the need to remove water from the oxidation mixture before or during the decomposition of the alkylhydroperoxide.
- US-A-4042630 also discloses a process aimed at effecting an alkylhydroperoxide in the presence of a stable, heterogeneous, chromium-containing decomposition catalyst.
- the formation of a separate water phase during the decomposition is regarded as being the cause of the diminishing catalyst activity.
- the formation of a separate water phase can be prevented during the decomposition of a cycloalkylhydroperoxide by continuously stripping the oxidation mixture with a gas, in which process the water concentration remains low.
- a disadvantage of this process is that it requires a complex decomposition reactor enabling decomposition and stripping to take place simultaneously as well as an elaborate apparatus for recirculating the stripping gas.
- Another disadvantage is that, along with water, also cyclohexane and reaction products such as cyclohexanol and cyclohexanone are stripped from the oxidation mixture by the stripping gas, so that these valuable compounds need to be recovered.
- the decomposition catalyst of the invention consists of a metal compound, usually a metal oxide compound, which metal compound is immobilized on a carrier material, which carrier material is stable in the presence of a separate water phase of pH higher than 8.5.
- the metal oxide compound is a metal oxide selected from the group consisting of Mn, Fe, Co, Ni and Cu. It has been found that metals that form a stable anion complex, such as chromium, are less suited for application in the process of the invention.
- the metal oxide may be applied to the carrier by any process known to those skilled in the art.
- Such catalysts may for instance be prepared in a single step starting from readily available starting materials by applying methods often described in the literature such as impregnation and deposition-precipitation methods. Such methods are described in, for instance, J.W. Geus, Preparation of Catalysts III, pages 1 through 33, Studies in Surface Science and Catalsis Vol. 16, G. Poncelet, P. Grange and P.A. Jacobs eds., Elsevier 1983, and in P.J. v.d. Brink, A. Scholten, A. v. Wageningen, M.D.A. Lamers, A.J. v. Dillen, J.W.
- a metal compound for instance which compound need not necessarily be the metal oxide, can be dissolved in a suitable solvent such as water and subsequently be contacted with the carrier and depostied on the carrier surface.
- the carrier is calcined at a temperature higher than, say, 500°C, in which process the metal oxide is formed.
- suitable metal compounds include water-soluble metal compounds for example Co(OH)2, Co(OH)3, CuO, Cu2O, Fe2O3, CoO x .yH2O, CuO x .yH2O, FeO x .yH2O, MnO x .yH2O and NiO x .yH2O, where x may be equal to 1 ⁇ 2, 1, 11 ⁇ 2, 2 or 3 and where y may have a value of from 0 to 20.
- water-soluble metal compounds for example Co(OH)2, Co(OH)3, CuO, Cu2O, Fe2O3, CoO x .yH2O, CuO x .yH2O, FeO x .yH2O, MnO x .yH2O and NiO x .yH2O, where x may be equal to 1 ⁇ 2, 1, 11 ⁇ 2, 2 or 3 and where y may have a value of from 0 to 20.
- the carrier material may be any organic or inorganic carrier material that is stable in the presence of a separate water phase of pH higher than 8.5. Stable carrier materials will barely dissolve, if at all, in the reaction mixture during the decomposition.
- the carrier material is an inorganic carrier material.
- the carrier material preferably has a hydrophilic surface so that a water layer will readily form around the catalyst during the decomposition. Examples of suitable carrier materials are TiO2, ZrO2, MnO2 and carbon.
- Another class of decomposition catalysts useful in the present invention are catalysts that are based on Mn, Fe, Co, Ni and Cu with TiO2 or ZrO2 as carrier material to which a ligand is attached, there being no Si-O compounds present in the catalyst.
- Such catalysts are described in the afore mentioned WO-A-9216487.
- the metal compound and the ligands form a complex so that the metal compounds remain immobilized on the carrier material.
- a disadvantage of these catalysts is that they must be prepared in a plurality of steps and the starting materials for these catalysts are less readily available. Accordingly, it is preferred to use a carrier material without ligands, with the metal compound being directly linked to the carrier material.
- Such catalysts can be prepared in a single step using starting materials that are readily available.
- a further disadvantage of using a catalyst as described in WO-A-921648 with ligands attached to the carrier material, is that relatively less alkanone is produced during the decomposition.
- Still another disadvantage is that the rate of the decomposition reaction is lower than when the catalyst using a carrier material without ligands is used.
- the weight percentage of metal in relation to the carrier material is between 0.05 and 8 wt.%.
- the weight percentage is higher than 0.2 and lower than 4 wt.%.
- Another group of suitable decomposition catalysts are the metal oxides and the metal carbonates of Mn, Fe, Co, Ni and Cu. This group of catalysts is characterized in that the metal compound and the carrier material are identical.
- Another suitable decomposition catalyst is an all-metal catalyst having a thin layer of the corresponding metal oxide deposited on the outside surface.
- An all-metal catalyst means a solid structure in the form of a catalyst particle, wherein the solid wholly or almost wholly consists of metal.
- An example of a suitable all-metal catalyst is a pellet of cobalt having a thin layer of cobalt oxide (CoO) on the outside surface (resulting from oxidation of cobalt).
- the basic aqueous solution added to the oxidation mixture may be any aqueous solution that causes a separate water phase to form in the oxidation mixture which has a pH higher than 8.5 and is inert with respect to the catalyst.
- ammoniacal aqueous solutions and aqueous solutions which contain amines are not inert with respect to the catalyst according to the invention and thus are less suited for use in the present invention.
- the aqueous solution will contain a dissolved amount of alkali metal hydroxide, alkali metal carbonate and/or alkali metal phosphate. Examples of suitable alkali metals are sodium and potassium, these metals being readily available.
- alkali metal hydroxide and preferably alkali metal carbonate are dissolved inasmuch as these compounds can be recirculated in an easy manner as described in, for instance, GB-A-1398293.
- the water phase is separated out after the decomposition and subsequently combusted at a temperature of 550-1200°C, yielding solid alkali metal carbonate.
- the alkali metal carbonate so obtained can be dissolved in water and used anew as the basic aqueous solution according to the invention.
- the solid alkali metal carbonate may optionally be hydrolyzed to the alkali metal hydroxide, which compound may also be used in the preparation of the basic aqueous solution according to the invention.
- alkali metal carbonate solutions are started from inasmuch as the aforementioned hydrolysis to the alkali metal hydroxide can then be omitted.
- a portion of the basic aqueous solution will consist of the water phase separated out after the decomposition since by so doing a large amount of water phase can be created whilst the consumption of basic aqueous solution remains limited.
- the ratio of this returned amount of water and the amount of water eventually discharged may be between 50 and 0.
- the pH of the separate water phase is higher than 8.5. More preferably, the pH is higher than 9.5 and most preferably higher than 10. Where an aqueous alkali metal carbonate solution is employed, the pH will be lower than 11. It has been found that, if the pH is any higher, extremely little metal compound dissolves in the reaction mixture consisting of the water phase and the oxidation mixture.
- the weight ratio of the oxidation mixture and the water phase during the decomposition of the alkylhydroperoxide is between 200:1 and 1:20 and preferably between 100:1 and 1:1. It has been found that if relatively more water phase is present during the decomposition the reaction rate of the decomposition will increase.
- the alkane and/or alkene is oxidized in the liquid phase in a manner known in the art, using for instance air, pure oxygen or a mixture of oxygen and an inert gas at temperatures of between 120 and 200°C, in particular of between 140 and 180°C, for, say, 5 minutes to 24 hours.
- an amount of, say, 1 to 50% of the alkane and/or alkene is converted, the amount may also be from 1 to 25%.
- the pressure at which this oxidation takes place is not critical and usually is between 0.4 and 5.0 MPa.
- the alkane and/or alkene is preferably oxidized in the absence of substances promoting the decomposition of the alkylhydroperoxide formed, such as compounds of transition metals. Therefore it is preferred that the reactor used for the oxidation step has an inert inner wall, for instance an inner wall of passivated steel, aluminium, glass, enamel or another such material. If the use of an oxidation catalyst is opted for after all, the amount of transition metal should preferably be very small, for instance in the order of from 0.1 to 10 parts by weight per million. As oxidation catalyst use may be made of compounds of, for instance, cobalt, chromium, manganese, iron, nickel or copper or mixtures thereof.
- the decomposition of the alkylhydroperoxide in the oxidation mixture is effected with the aid of the immobilized metal complexes according to the invention.
- the decomposition catalyst may be applied in a variety of ways. Since the said catalyst is immobilized on a carrier material, it is possible to use slurry reactors or, for instance, packed beds for converting the alkylhydroperoxide.
- the heat of reaction released in the decomposition reaction must be adequately collected and carried off to ensure good temperature control of the process. In particular, heat removal is readily accomplished when slurry reactors are used.
- Use of slurry reactors also allows for the desired temperature to be maintained during the decomposition by applying, for instance, reflux cooling for at least a portion of the heat to be carried off.
- the amount of decomposition catalyst to be applied is, for instance, from 5 to 250 ppm metal in reference to the oxidation mixture. Preferably, an amount of from 10 to 150 ppm is applied.
- the process can also be carried out with advantage in a packed-bed reactor because of the relatively high catalyst concentration reached in it.
- the packed-bed reactor is particularly advantageous when alkylhydroperoxide mixtures with a relatively low concentration are used.
- the water phase and the oxidation mixture may be passed through the reactor in the same direction of flow (cocurrent) or in opposite directions of flow (countercurrent). Countercurrent operation is preferred because this enables the highest base concentration (high pH) to be attained at the lowest alkylhydroperoxide concentration so that a higher conversion can be obtained in process equipment of a given size.
- the catalyst particles that make up the decomposition catalyst if applied in a packed bed, will have a diameter larger than 0.5 mm, because otherwise the pressure drop across the reactor will be too high.
- the diameter is between 0.7 and 3 mm.
- the catalyst particles may be of any desired shape. Examples of possible shapes are spherules, bars and granules.
- the temperature during the decomposition is in general in the range from 25 to 200°C, preferably between 50 and 120°C. Normally, the pressure at which the decomposition takes place is chosen somewhat lower than that at which the oxidation takes place.
- the decomposition may be effected in the presence of oxygen so that a higher alkanone/alkanol (K/A) ratio can be attained.
- the decomposition rate depends in part on the concentration of the transition metal on the carrier, the concentration of hydroperoxide and the temperature. As a rule the decomposition takes between 5 and 300 min.
- the residence time of the reaction mixture in the decomposition reactor is kept between 15 and 120 minutes, but this is not critical. Those skilled in the art can establish through simple analyses whether any alkylhydroperoxide remains in a treated mixture.
- the water phase can readily be separated from the decomposition mixture, for instance by phase separation.
- the separated water phase can be partly reused in a subsequent decomposition as earlier described herein.
- the remaining amount of aqueous solution is disposed of or further processed.
- This waste stream largely consists of alkali metal salts with inorganic and/or organic acids.
- FIG. 1 shows schematically how a possible embodiment of the decomposition step according to the invention may be designed.
- the oxidation mixture obtained by oxidation of the alkane and/or alkene is supplied through stream (1) to an optional neutralization step A.
- the oxidation mixture is treated with, for instance, an aqueous alkali metal hydroxide or alkali metal carbonate solution (supplied through stream (5)), the carboxylic acids formed in the alkane and/or alkene oxidation being (partly) removed and/or neutralized.
- the water phase in step A can be discharged in whole or part through stream (6). Any water phase still present in the oxidation mixture in step A may either in its entirety or with addition of fresh basic aqueous solution supplied through stream (7) form the separate water phase according to the invention.
- the water/oxidation mixture is conveyed to the decomposition step B through stream (2).
- the water phase is separated from the oxidation mixture by phase separation in separation step C, the water phase being discharged through stream (8).
- a portion of the water phase is preferably reused and recirculated through stream (9) to stream (2) and/or to stream (5) through stream (10).
- the K/A mixture exits through stream (4).
- the oxidation mixture may optionally be subjected to a water wash before and after the above decomposition step and pretreatment step.
- FIG 2 is a schematic representation of the embodiment of the decomposition step according to Figure 1 in which the alkali metal carbonate or alkali metal hydroxide is reused by combusting the discharged water phases as described hereinabove.
- the water phase is discharged to the combustion installation D through stream (8).
- the alkali metal carbonate that forms here is discharged through stream (11) and is subsequently dissolved in water (supplied through stream (13)).
- the basic aqueous solution so obtained may subsequently be recirculated through stream (7) and/or stream (12) to the optional neutralization step A.
- reaction mixture obtained on decomposition of the hydroperoxide can be further processed by subjecting the organic phase to distillation with recovery of alkane and/or alkene as well as alkanol and alkanone to be returned to the oxidation reaction.
- alkane and/or alkene having from 3 to 30 C atoms use may be made of, for instance, propane, 2-methylpropane, cyclopheptane, cyclohexane, cyclooctane, cyclododecane and cyclohexene.
- the alkane and/or alkene may comprise aromatic groups and ethylenically unsaturated groups, for instance methylbenzene, ethylbenzene, 2-propylbenzene and phenylcyclohexane.
- the alkane and/or alkene may be branched, linear and/or cyclic.
- the process is particularly suitable for oxidizing cycloalkanes having from 4 to 18, particularly from 6 to 12 carbon atoms, more particularly for oxidizing cyclohexane, cyclooctane and cyclododecane, it being possible to utilize the reaction products from the cyclohexane oxidation especially for either the preparation of caprolactam (for nylon 6) or the preparation of adipic acid (for nylon 6,6).
- the cyclohexanol and cyclohexanone so obtained have been found to be pure enough, without further treatment, for further conversion into suitable starting materials for the preparation of caprolactam.
- the selectivity for cycloalkanol and cycloalkanone is calculated by dividing the sum of the cycloalkanol and cycloalkanone formed during the decomposition by the amount of cycloalkyl hydroperoxide converted during the decomposition (amounts in moles).
- Type A catalyst An aqueous solution of ammonium cobalt (II) EDTA (ethylene diamine tetraacetic acid) complex was prepared by dissolving Co(NO3)2.6H2O and EDTA at a molar ratio of 1/1 in water of high purity and then adding 25-wt.% NH 3 water solution so that ultimately the pH was equal to 9.0. The cobalt concentration of the resulting solution was 0.58 mol/l. This resulting solution was used for impregnating a TiO2 carrier material, with 10 g of TiO2 extrudates (Norton Chemical Process Products Corporation; BET surface area 172 m2/g, pore volume 0.31 cm3/g, 3 mm cross-sectional area, length 1 cm).
- the carrier material was kept under vacuum for 10 minutes. Subsequently, 9.5 cm3 of the cobalt solution was added to the carrier material while maintaining the vacuum. The amount of cobalt was sufficient for conducting full wetting of the carrier material.
- the extrudates were vacuum-dried; for one hour at 30°C, then for one hour at 50°C, then for one hour at 70°C, then for one hour at 90°C and then for one hour at 100°C. Finally, the catalyst particles were calcined in an electric furnace for 4 hours at (a maximum temperature) of 500°C, the temperature in the oven being increased in increments of 1°C per minute.
- the calcined catalyst was brown and, on crushing some granules, the fragments appeared to be brown also, which is indicative of a homogeneous cobalt distribution.
- the cobalt content was determined through neutron activation analysis (NAA) to be 2.6 wt.%.
- Example I was repeated to prepare the catalysts listed in Table I below. TABLE I Type Carrier Metal Metal content (wt.%) A TiO2 Co 2.6 B ZrO2 Co 1.1 C TiO2 Fe 3.5 D TiO2 Cu 3.0 E TiO2 Ni 2.5 F TiO2 Mn 1.9
- Example III was repeated except that 49 g of water phase in which Na2CO3 (750 mmol Na2CO3/kg water) was dissolved was added. This mixture was heated to a temperature of 73°C, whereupon 0.68 g of catalyst (Type A) was added. The decomposition of the CHHP was monitored by means of iodometric titration. The first-order rate constant was 9.5 * 10 ⁇ 4 kg solution/(g cat * min). The selectivity for cyclohexanol plus cyclohexanone was 100.6%. The molar cyclohexanol/cyclohexanone ratio was 0.64.
- Example III was repeated except that 200 g of water phase in which Na2CO3 (750 mmol/kg) was dissolved was added. This mixture was heated to a temperature of 73°C, whereupon 0.64 g of catalyst (Type A) was added. The decomposition of the CHHP was monitored by means of iodometric titration. The first-order rate constant was 22.6 * 10 ⁇ 4 kg solution/(g cat * min).
- Example III was repeated except that 10.4 g of water phase in which Na2CO3 (2000 mmol/kg) was dissolved was added. This mixture was heated to a temperature of 73°C, whereupon 0.60 g of catalyst (Type A) was added. The decomposition of the CHHP was monitored by means of iodometric titration. The first-order rate constant was 13.0 * 10 ⁇ 4 kg solution/(g cat * min). The selectivity for cyclohexanol plus cyclohexanone was 97.3%. The molar cyclohexanol/cyclohexanone ratio was 0.71.
- Example III was repeated except that 11.0 g of water phase in which Na2CO3 (1000 mmol/kg) was dissolved was added. This mixture was heated to a temperature of 73°C, whereupon 0.64 g of catalyst (Type B) was added. The decomposition of the CHHP was monitored by means of iodometric titration. The first-order rate constant was 10.2 * 10 ⁇ 4 kg solution/(g cat * min). The selectivity for cyclohexanol plus cyclohexanone was 100.3%. The molar cyclohexanol/cyclohexanone ratio was 0.74.
- Example III was repeated except that 11.2 g of water phase in which Na2CO3 (1000 mmol/kg) was dissolved was added. This mixture was heated to a temperature of 73°C, whereupon 0.64 g of catalyst (Type C) was added. The decomposition of the CHHP was monitored by means of iodometric titration. The first-order rate constant was 1.25 * 10 ⁇ 4 kg solution/(g cat * min).
- Example III was repeated except that 11.2 g of water phase in which Na2CO3 (1000 mmol/kg) was dissolved was added. This mixture was heated to a temperature of 73°C, whereupon 0.84 g of catalyst (Type D) was added. The decomposition of the CHHP was monitored by means of iodometric titration. The first-order rate constant was 2.02 * 10 ⁇ 4 kg solution/(g cat * min).
- Example III was repeated except that 10.2 g of water phase in which Na2CO3 (1000 mmol/kg) was dissolved was added. This mixture was heated to a temperature of 73°C, whereupon 0.98 g of catalyst (Type E) was added. The decomposition of the CHHP was monitored by means of iodometric titration. The first-order rate constant was 1.2 * 10 ⁇ 4 kg solution/(g cat * min).
- Example III was repeated except that 10.4 g of water phase in which Na2CO3 (1000 mmol/kg) was dissolved was added. This mixture was heated to a temperature of 73°C, whereupon 0.97 g of catalyst (Type F) was added. The decomposition of the CHHP was monitored by means of iodometric titration. The first-order rate constant was 1.6 * 10 ⁇ 4 kg solution/(g cat * min).
- Example III was repeated except that 78 g of water phase in which Na2CO3 (1000 mmol/kg) was dissolved was added. This mixture was heated to a temperature of 73°C, whereupon 0.82 g of an all-cobalt catalyst (pellets 5 mm in diameter) was added. The decomposition of the CHHP was monitored by means of iodometric titration. The first-order rate constant was 8.5 * 10 ⁇ 4 kg solution/(g cat * min).
- Example III was repeated except that 10.2 g of water phase in which Na2CO3 (750 mmol/kg) was dissolved was added. This mixture was heated to a temperature of 73°C, whereupon 0.84 g of pelletized CoCO3 (pellets 1 cm in diameter) was added. The decomposition of the CHHP was monitored by means of iodometric titration. The first-order rate constant was 46.2 * 10 ⁇ 4 kg solution/(g cat * min).
- Example III was repeated except that 10.4 g of water phase in which NaOH (2000 mmol/kg) was dissolved was added. This mixture was heated to a temperature of 73°C, whereupon 0.64 g of catalyst (Type A) was added. The decomposition of the CHHP was monitored by means of iodometric titration. The first-order rate constant was 15.7 * 10 ⁇ 4 kg solution/(g cat * min).
- Example III was repeated except that 10.4 g of water phase in which K2CO3 (1000 mmol/kg) was dissolved was added. This mixture was heated to a temperature of 73°C, whereupon 0.77 g of a modified Type A catalyst containing 1.4 wt.% Co was added. The decomposition of the CHHP was monitored by means of iodometric titration. The first-order rate constant was 11.0 * 10 ⁇ 4 kg solution/(g cat * min).
- Example III was repeated except that 10 g of water phase in which RbOH (1000 mmol/kg) was dissolved was added. This mixture was heated to a temperature of 73°C, whereupon 0.64 g of catalyst was added. The decomposition of the CHHP was monitored by means of iodometric titration. The first-order rate constant was 20.4 * 10 ⁇ 4 kg solution/(g cat * min).
- Example III was repeated except that no water phase was added. On heating to a temperature of 73°C, 1.1 g of catalyst (Type A) was added. The decomposition of CHHP was monitored by means of iodometric titration. The first-order rate constant was 0.6 * 10 ⁇ 4 kg solution/(g cat*min).
- 6.0 g of a Type A catalyst was introduced into a hollow, glass container provided with slits of 1 mm. This container was placed in a 1-1 continuous-flow reactor provided with baffles. 45 g per hour of an organic phase (cyclohexane oxidation mixture containing 200 mmol cyclohexylhydroperoxide (CHHP) per kilogram, 60 mmol cyclohexanol (OL) per kilogram and 30 mmol cyclohexanone (ONE) per kilogram) and 13 g of a water phase in which Na2CO3 (1000 mmol/kg) was dissolved was added using two pumps. The two phases were mixed in the reactor with the aid of a turbine stirrer (1400 revolutions per min).
- CHHP cyclohexane oxidation mixture containing 200 mmol cyclohexylhydroperoxide
- OL mmol cyclohexanol
- ONE mmol cyclohexanone
- the reaction temperature was 69°C. Any evaporating liquid was returned to the reactor by way of a reflux condenser. The liquid that overflowed was collected in a 5-1 vessel.
- the conversion of the CHHP was determined by means of iodometric titration of this overflowing liquid. By operating this system in the manner as described herein, a CHHP conversion of 40 % was achieved over a period of 1000 hours. The conversion could be varied by varying the residence time, the amount of catalyst, the concentration of the base and the ratio of the water phase to the organic phase. The measured Co concentration in the effluent was less than 2 ppb.
- Example XVIII was repeated except that only water was added as the water phase. Acids which were present in the organic phase or otherwise formed were extracted towards the water phase, causing the pH in the water phase to drop below 7. The catalyst was completely deactivated within 24 hours.
- Comparative Experiment B was repeated except that as catalyst use was made of an aminosilane modified silica to which a Co salt was linked as described in Example XXVIII of WO-A-9216487. The catalyst was completely deactivated within 24 hours.
- catalyst (Type B) 15 g was introduced into a hollow, glass containers (sic) provided with slits of 1 mm. These containers (sic) were placed in a 1-1 continuous-flow reactor provided with baffles. 45 g per hour of an organic phase (a cyclododecane oxidation mixture containing 400 mmol cyclododecylhydroperoxide (CDHP) per kilogram, 70 mmol cyclododecanol (DOL) per kilogram and 40 mmol cyclododecanone (DON) per kilogram) and 13 g of a water phase in which Na2CO3 (1000 mmol/kg) was dissolved was added using two pumps.
- organic phase a cyclododecane oxidation mixture containing 400 mmol cyclododecylhydroperoxide (CDHP) per kilogram, 70 mmol cyclododecanol (DOL) per kilogram and 40 mmol cyclododecanone (
- the two phases were mixed in the reactor with the aid of a turbine stirrer (1400 revolutions per min).
- the reaction temperature was 89°C. Any evaporating liquid was returned to the reactor by way of a heated reflux condenser.
- the liquid that overflowed was collected in a 5-1 vessel.
- the conversion of the CHHP was determined by iodometric titration of this overflowing liquid. By operating this system in the manner as described, a CDHP conversion of 80 % was achieved over a period of 500 hours.
- the conversion could be varied by varying the residence time, the amount of catalyst, the concentration of the base and the ratio of the water phase to the organic phase.
- the measured Co concentration in the effluent was less than 1 ppb.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Health & Medical Sciences (AREA)
- Emergency Medicine (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Catalysts (AREA)
- Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
Abstract
Description
- The invention relates to a process for preparing an alkanone and/or an alkanol by oxidizing an alkane and/or alkene having from 3 to 30 C atoms with oxygen to form an alkylhydroperoxide, followed by decomposition of the alkylhydroperoxide formed in the presence of a catalyst which contains a metal compound immobilized on a carrier material.
- A similar process is described in EP-A-96798. This publication describes the preparation of cyclohexanone and cyclohexanol, in which cyclohexane is first oxidized to a cyclohexylhydroperoxide-containing oxidation mixture and in which the cyclohexylhydroperoxide is subsequently decomposed into cyclohexanone and cyclohexanol. In that process, the decomposition is effected in the presence of a heterogeneous decomposition catalyst consisting of cobalt immobilized on a zeolite. This decomposition catalyst is claimed in EP-A-96798 to have a longer life and to be more resistant to acids and water than metal-on-carrier catalysts known in the art, such as cobalt on carbon as described in US-A-2851496.
- A disadvantage of the above-mentioned process is that it employs a zeolite as carrier material, which zeolite is difficult to get. Another disadvantage is that with such a cobalt-on-zeolite decomposition catalyst a small amount of cobalt little by little dissolves in the reaction mixture, resulting in limited catalyst life. A further disadvantage is that the presence of a separate water phase during the decomposition of the alkylhydroperoxides further diminishes the catalyst activity by encouraging the cobalt to dissolve in the reaction mixture. The separate water phase thereby causes a significant decrease in the activity of the decomposition catalyst over a short period of time (e.g. a few hours). The separate water phase forms as a byproduct in the oxidation reaction of cyclohexane and in the decompostion reaction. The negative effect of a separate water phase on the life of a heterogeneous decomposition catalyst is also described in, for instance, US-A-4042630.
- The object of the invention is to provide a process in which a readily obtainable decomposition catalyst is employed, which catalyst retains its activity in spite of the (possible) presence of water in the oxidation mixture.
- This object is achieved in that an amount of a basic, aqueous solution is present in the oxidation mixture so that a separate water phase with a pH higher than 8.5 is present during the decomposition and in that the metal of the catalyst is chosen from the group comprising Mn, Fe, Co, Ni and Cu and the carrier material is stable in the presence of the separate basic water phase.
- It has been found that when the decomposition is effected using the process of the invention the decomposition catalyst remains active for a long period of time. An additional advantage is that the decomposition of the alkylhydroperoxide proceeds rapidly. Another additional advantage is that in this process a high ratio of alkanone to alkanol is achieved. This is advantageous if the alkanone is the desired end product which is often the case. Furthermore, the process of the invention obviates the need to remove water from the oxidation mixture before or during the decomposition of the alkylhydroperoxide.
- It is known, for instance from WO-A-9216487 and the aforementioned EP-A-96798, to treat an oxidation mixture with a basic aqueous solution prior to decomposition. However, with such a pretreatment no basic aqueous solution is intended to remain present with the oxidation mixture after the neutralization so that there is a separate water phase during the decomposition. That the basic water phase is separated out in the processes described in EP-A-96798 and WO-A-9216487 is evident since, if such separation were not effected, the zeolite-A- and silica carrier materials utilized in the examples of these patent specifications would dissolve in the water/oxidation mixture. This is explicitely stated in US-A-4238415, in which such a treatment is also effected and in which the water phase is separated from the oxidation mixture prior to decomposition of the cyclohexylhydroperoxide.
- It is known from, for instance, US-A-4238415, GB-A-1382849 and EP-A-92867 to carry out the homogeneously catalyzed decomposition of cyclohexylhydroperoxides in the presence of a basic aqueous solution. However, the homogeneously catalyzed decomposition is totally different from the heterogeneously catalyzed decomposition. As a consequence, known processes for homogeneously catalyzed decomposition cannot as a rule be advantageously used in a heterogeneously catalyzed decomposition.
- The aforementioned US-A-4042630 also discloses a process aimed at effecting an alkylhydroperoxide in the presence of a stable, heterogeneous, chromium-containing decomposition catalyst. The formation of a separate water phase during the decomposition is regarded as being the cause of the diminishing catalyst activity. According to US-A-4042630, the formation of a separate water phase can be prevented during the decomposition of a cycloalkylhydroperoxide by continuously stripping the oxidation mixture with a gas, in which process the water concentration remains low. A disadvantage of this process, however, is that it requires a complex decomposition reactor enabling decomposition and stripping to take place simultaneously as well as an elaborate apparatus for recirculating the stripping gas. Another disadvantage is that, along with water, also cyclohexane and reaction products such as cyclohexanol and cyclohexanone are stripped from the oxidation mixture by the stripping gas, so that these valuable compounds need to be recovered.
- The decomposition catalyst of the invention consists of a metal compound, usually a metal oxide compound, which metal compound is immobilized on a carrier material, which carrier material is stable in the presence of a separate water phase of pH higher than 8.5. The metal oxide compound is a metal oxide selected from the group consisting of Mn, Fe, Co, Ni and Cu. It has been found that metals that form a stable anion complex, such as chromium, are less suited for application in the process of the invention.
- The metal oxide may be applied to the carrier by any process known to those skilled in the art. Such catalysts may for instance be prepared in a single step starting from readily available starting materials by applying methods often described in the literature such as impregnation and deposition-precipitation methods. Such methods are described in, for instance, J.W. Geus, Preparation of Catalysts III,
pages 1 through 33, Studies in Surface Science and Catalsis Vol. 16, G. Poncelet, P. Grange and P.A. Jacobs eds., Elsevier 1983, and in P.J. v.d. Brink, A. Scholten, A. v. Wageningen, M.D.A. Lamers, A.J. v. Dillen, J.W. Geus, Preparation of Catalysts V pages 527 through 536, Studies in Surface Science and Catalysis Vol. 63, G. Poncelet, P.A. Jacobs, P. Grange and B. Delmon eds., Elsevier 1991. A metal compound for instance, which compound need not necessarily be the metal oxide, can be dissolved in a suitable solvent such as water and subsequently be contacted with the carrier and depostied on the carrier surface. Next, the carrier is calcined at a temperature higher than, say, 500°C, in which process the metal oxide is formed. Examples of suitable metal compounds include water-soluble metal compounds for example Co(OH)₂, Co(OH)₃, CuO, Cu₂O, Fe₂O₃, CoOx.yH₂O, CuOx.yH₂O, FeOx.yH₂O, MnOx.yH₂O and NiOx.yH₂O, where x may be equal to ½, 1, 1½, 2 or 3 and where y may have a value of from 0 to 20. - The carrier material may be any organic or inorganic carrier material that is stable in the presence of a separate water phase of pH higher than 8.5. Stable carrier materials will barely dissolve, if at all, in the reaction mixture during the decomposition. Preferably, the carrier material is an inorganic carrier material. The carrier material preferably has a hydrophilic surface so that a water layer will readily form around the catalyst during the decomposition. Examples of suitable carrier materials are TiO₂, ZrO₂, MnO₂ and carbon.
- Another class of decomposition catalysts useful in the present invention are catalysts that are based on Mn, Fe, Co, Ni and Cu with TiO₂ or ZrO₂ as carrier material to which a ligand is attached, there being no Si-O compounds present in the catalyst. Such catalysts are described in the afore mentioned WO-A-9216487. The metal compound and the ligands form a complex so that the metal compounds remain immobilized on the carrier material. A disadvantage of these catalysts, however, is that they must be prepared in a plurality of steps and the starting materials for these catalysts are less readily available. Accordingly, it is preferred to use a carrier material without ligands, with the metal compound being directly linked to the carrier material. As a rule, such catalysts can be prepared in a single step using starting materials that are readily available. A further disadvantage of using a catalyst as described in WO-A-921648 with ligands attached to the carrier material, is that relatively less alkanone is produced during the decomposition. Still another disadvantage is that the rate of the decomposition reaction is lower than when the catalyst using a carrier material without ligands is used.
- As a rule, the weight percentage of metal in relation to the carrier material (referred to the metal only) is between 0.05 and 8 wt.%. Preferably, the weight percentage is higher than 0.2 and lower than 4 wt.%.
- Another group of suitable decomposition catalysts are the metal oxides and the metal carbonates of Mn, Fe, Co, Ni and Cu. This group of catalysts is characterized in that the metal compound and the carrier material are identical.
- Another suitable decomposition catalyst is an all-metal catalyst having a thin layer of the corresponding metal oxide deposited on the outside surface. An all-metal catalyst means a solid structure in the form of a catalyst particle, wherein the solid wholly or almost wholly consists of metal. An example of a suitable all-metal catalyst is a pellet of cobalt having a thin layer of cobalt oxide (CoO) on the outside surface (resulting from oxidation of cobalt).
- The basic aqueous solution added to the oxidation mixture may be any aqueous solution that causes a separate water phase to form in the oxidation mixture which has a pH higher than 8.5 and is inert with respect to the catalyst. In general, ammoniacal aqueous solutions and aqueous solutions which contain amines are not inert with respect to the catalyst according to the invention and thus are less suited for use in the present invention. As a rule, the aqueous solution will contain a dissolved amount of alkali metal hydroxide, alkali metal carbonate and/or alkali metal phosphate. Examples of suitable alkali metals are sodium and potassium, these metals being readily available. It is preferred to use an aqueous solution in which alkali metal hydroxide and preferably alkali metal carbonate are dissolved inasmuch as these compounds can be recirculated in an easy manner as described in, for instance, GB-A-1398293. According to this process, the water phase is separated out after the decomposition and subsequently combusted at a temperature of 550-1200°C, yielding solid alkali metal carbonate. The alkali metal carbonate so obtained can be dissolved in water and used anew as the basic aqueous solution according to the invention. The solid alkali metal carbonate may optionally be hydrolyzed to the alkali metal hydroxide, which compound may also be used in the preparation of the basic aqueous solution according to the invention. Preferably, alkali metal carbonate solutions are started from inasmuch as the aforementioned hydrolysis to the alkali metal hydroxide can then be omitted.
- Preferably, a portion of the basic aqueous solution will consist of the water phase separated out after the decomposition since by so doing a large amount of water phase can be created whilst the consumption of basic aqueous solution remains limited. The ratio of this returned amount of water and the amount of water eventually discharged may be between 50 and 0.
- According to the invention, the pH of the separate water phase (measured at 25°C) is higher than 8.5. More preferably, the pH is higher than 9.5 and most preferably higher than 10. Where an aqueous alkali metal carbonate solution is employed, the pH will be lower than 11. It has been found that, if the pH is any higher, extremely little metal compound dissolves in the reaction mixture consisting of the water phase and the oxidation mixture.
- As a rule, the weight ratio of the oxidation mixture and the water phase during the decomposition of the alkylhydroperoxide is between 200:1 and 1:20 and preferably between 100:1 and 1:1. It has been found that if relatively more water phase is present during the decomposition the reaction rate of the decomposition will increase.
- In the process according to the invention the alkane and/or alkene is oxidized in the liquid phase in a manner known in the art, using for instance air, pure oxygen or a mixture of oxygen and an inert gas at temperatures of between 120 and 200°C, in particular of between 140 and 180°C, for, say, 5 minutes to 24 hours. In the process, an amount of, say, 1 to 50% of the alkane and/or alkene is converted, the amount may also be from 1 to 25%. The pressure at which this oxidation takes place is not critical and usually is between 0.4 and 5.0 MPa.
- The alkane and/or alkene is preferably oxidized in the absence of substances promoting the decomposition of the alkylhydroperoxide formed, such as compounds of transition metals. Therefore it is preferred that the reactor used for the oxidation step has an inert inner wall, for instance an inner wall of passivated steel, aluminium, glass, enamel or another such material. If the use of an oxidation catalyst is opted for after all, the amount of transition metal should preferably be very small, for instance in the order of from 0.1 to 10 parts by weight per million. As oxidation catalyst use may be made of compounds of, for instance, cobalt, chromium, manganese, iron, nickel or copper or mixtures thereof.
- The decomposition of the alkylhydroperoxide in the oxidation mixture is effected with the aid of the immobilized metal complexes according to the invention. The decomposition catalyst may be applied in a variety of ways. Since the said catalyst is immobilized on a carrier material, it is possible to use slurry reactors or, for instance, packed beds for converting the alkylhydroperoxide. The heat of reaction released in the decomposition reaction must be adequately collected and carried off to ensure good temperature control of the process. In particular, heat removal is readily accomplished when slurry reactors are used. Use of slurry reactors also allows for the desired temperature to be maintained during the decomposition by applying, for instance, reflux cooling for at least a portion of the heat to be carried off. This obviates the need to recirculate evaporated products, consequently producing a somewhat favourable effect on the desired product yield. In such a situation, the amount of decomposition catalyst to be applied is, for instance, from 5 to 250 ppm metal in reference to the oxidation mixture. Preferably, an amount of from 10 to 150 ppm is applied.
- The process can also be carried out with advantage in a packed-bed reactor because of the relatively high catalyst concentration reached in it. The packed-bed reactor is particularly advantageous when alkylhydroperoxide mixtures with a relatively low concentration are used. The water phase and the oxidation mixture may be passed through the reactor in the same direction of flow (cocurrent) or in opposite directions of flow (countercurrent). Countercurrent operation is preferred because this enables the highest base concentration (high pH) to be attained at the lowest alkylhydroperoxide concentration so that a higher conversion can be obtained in process equipment of a given size.
- As a rule, the catalyst particles that make up the decomposition catalyst, if applied in a packed bed, will have a diameter larger than 0.5 mm, because otherwise the pressure drop across the reactor will be too high. Preferably, the diameter is between 0.7 and 3 mm. The catalyst particles may be of any desired shape. Examples of possible shapes are spherules, bars and granules.
- The temperature during the decomposition is in general in the range from 25 to 200°C, preferably between 50 and 120°C. Normally, the pressure at which the decomposition takes place is chosen somewhat lower than that at which the oxidation takes place. The decomposition may be effected in the presence of oxygen so that a higher alkanone/alkanol (K/A) ratio can be attained. The decomposition rate depends in part on the concentration of the transition metal on the carrier, the concentration of hydroperoxide and the temperature. As a rule the decomposition takes between 5 and 300 min. Preferably, the residence time of the reaction mixture in the decomposition reactor is kept between 15 and 120 minutes, but this is not critical. Those skilled in the art can establish through simple analyses whether any alkylhydroperoxide remains in a treated mixture.
- After decomposition of the alkylhydroperoxide, the water phase can readily be separated from the decomposition mixture, for instance by phase separation. The separated water phase can be partly reused in a subsequent decomposition as earlier described herein. As a rule, the remaining amount of aqueous solution is disposed of or further processed. This waste stream largely consists of alkali metal salts with inorganic and/or organic acids.
- The addition of a basic aqueous solution may optionally be combined with a neutralization step and/or water wash as disclosed in the aforementioned WO-A-9216487 and EP-A-96798. Figure 1 shows schematically how a possible embodiment of the decomposition step according to the invention may be designed. The oxidation mixture obtained by oxidation of the alkane and/or alkene is supplied through stream (1) to an optional neutralization step A. There, the oxidation mixture is treated with, for instance, an aqueous alkali metal hydroxide or alkali metal carbonate solution (supplied through stream (5)), the carboxylic acids formed in the alkane and/or alkene oxidation being (partly) removed and/or neutralized. The water phase in step A can be discharged in whole or part through stream (6). Any water phase still present in the oxidation mixture in step A may either in its entirety or with addition of fresh basic aqueous solution supplied through stream (7) form the separate water phase according to the invention. Subsequently, the water/oxidation mixture is conveyed to the decomposition step B through stream (2). As a rule, after the decomposition step B, the water phase is separated from the oxidation mixture by phase separation in separation step C, the water phase being discharged through stream (8). A portion of the water phase is preferably reused and recirculated through stream (9) to stream (2) and/or to stream (5) through stream (10). The K/A mixture exits through stream (4). The oxidation mixture may optionally be subjected to a water wash before and after the above decomposition step and pretreatment step.
- Figure 2 is a schematic representation of the embodiment of the decomposition step according to Figure 1 in which the alkali metal carbonate or alkali metal hydroxide is reused by combusting the discharged water phases as described hereinabove. The water phase is discharged to the combustion installation D through stream (8). The alkali metal carbonate that forms here is discharged through stream (11) and is subsequently dissolved in water (supplied through stream (13)). The basic aqueous solution so obtained may subsequently be recirculated through stream (7) and/or stream (12) to the optional neutralization step A.
- After separation of the water phase, the reaction mixture obtained on decomposition of the hydroperoxide can be further processed by subjecting the organic phase to distillation with recovery of alkane and/or alkene as well as alkanol and alkanone to be returned to the oxidation reaction.
- As alkane and/or alkene having from 3 to 30 C atoms use may be made of, for instance, propane, 2-methylpropane, cyclopheptane, cyclohexane, cyclooctane, cyclododecane and cyclohexene. The alkane and/or alkene may comprise aromatic groups and ethylenically unsaturated groups, for instance methylbenzene, ethylbenzene, 2-propylbenzene and phenylcyclohexane. The alkane and/or alkene may be branched, linear and/or cyclic.
- The process is particularly suitable for oxidizing cycloalkanes having from 4 to 18, particularly from 6 to 12 carbon atoms, more particularly for oxidizing cyclohexane, cyclooctane and cyclododecane, it being possible to utilize the reaction products from the cyclohexane oxidation especially for either the preparation of caprolactam (for nylon 6) or the preparation of adipic acid (for
nylon 6,6). The cyclohexanol and cyclohexanone so obtained have been found to be pure enough, without further treatment, for further conversion into suitable starting materials for the preparation of caprolactam. - The invention is elucidated by the following examples.
- The selectivity for cycloalkanol and cycloalkanone is calculated by dividing the sum of the cycloalkanol and cycloalkanone formed during the decomposition by the amount of cycloalkyl hydroperoxide converted during the decomposition (amounts in moles).
- This example describes the preparation of Type A catalyst. An aqueous solution of ammonium cobalt (II) EDTA (ethylene diamine tetraacetic acid) complex was prepared by dissolving Co(NO₃)₂.6H₂O and EDTA at a molar ratio of 1/1 in water of high purity and then adding 25-wt.% NH3 water solution so that ultimately the pH was equal to 9.0. The cobalt concentration of the resulting solution was 0.58 mol/l. This resulting solution was used for impregnating a TiO₂ carrier material, with 10 g of TiO₂ extrudates (Norton Chemical Process Products Corporation; BET surface area 172 m²/g, pore volume 0.31 cm³/g, 3 mm cross-sectional area,
length 1 cm). The carrier material was kept under vacuum for 10 minutes. Subsequently, 9.5 cm³ of the cobalt solution was added to the carrier material while maintaining the vacuum. The amount of cobalt was sufficient for conducting full wetting of the carrier material. Next, the extrudates were vacuum-dried; for one hour at 30°C, then for one hour at 50°C, then for one hour at 70°C, then for one hour at 90°C and then for one hour at 100°C. Finally, the catalyst particles were calcined in an electric furnace for 4 hours at (a maximum temperature) of 500°C, the temperature in the oven being increased in increments of 1°C per minute. - The calcined catalyst was brown and, on crushing some granules, the fragments appeared to be brown also, which is indicative of a homogeneous cobalt distribution.
- The cobalt content was determined through neutron activation analysis (NAA) to be 2.6 wt.%.
- Example I was repeated to prepare the catalysts listed in Table I below.
TABLE I Type Carrier Metal Metal content (wt.%) A TiO₂ Co 2.6 B ZrO₂ Co 1.1 C TiO₂ Fe 3.5 D TiO₂ Cu 3.0 E TiO₂ Ni 2.5 F TiO₂ Mn 1.9 - 9.9 g of water phase in which Na₂CO₃ (750 mmol Na₂CO₃/kg) was added at room temperature to 99 g of a cyclohexane oxidation mixture containing 200 mmol cyclohexylhydroperoxide (CHHP) per kilogram, 60 mmol cyclohexanol (OL) per kilogram and 30 mmol cyclohexanone (ONE) per kilogram.
This mixture was heated to a temperature of 73°C, whereupon 0.626 g of Type A catalyst (cat.) prepared in accordance with Example I was added. The decomposition of CHHP was monitored by means of iodometric titration. The first-order rate constant was 4.2 * 10⁻⁴ kg solution/(g cat * min). The selectivity for cyclohexanol plus cyclohexanone was 103.3%. The molar cyclohexanol/cyclohexanone ratio was 0.74. - Example III was repeated except that 49 g of water phase in which Na₂CO₃ (750 mmol Na₂CO₃/kg water) was dissolved was added. This mixture was heated to a temperature of 73°C, whereupon 0.68 g of catalyst (Type A) was added. The decomposition of the CHHP was monitored by means of iodometric titration. The first-order rate constant was 9.5 * 10⁻⁴ kg solution/(g cat * min). The selectivity for cyclohexanol plus cyclohexanone was 100.6%. The molar cyclohexanol/cyclohexanone ratio was 0.64.
- Example III was repeated except that 200 g of water phase in which Na₂CO₃ (750 mmol/kg) was dissolved was added. This mixture was heated to a temperature of 73°C, whereupon 0.64 g of catalyst (Type A) was added. The decomposition of the CHHP was monitored by means of iodometric titration. The first-order rate constant was 22.6 * 10⁻⁴ kg solution/(g cat * min).
- Example III was repeated except that 10.4 g of water phase in which Na₂CO₃ (2000 mmol/kg) was dissolved was added. This mixture was heated to a temperature of 73°C, whereupon 0.60 g of catalyst (Type A) was added. The decomposition of the CHHP was monitored by means of iodometric titration. The first-order rate constant was 13.0 * 10⁻⁴ kg solution/(g cat * min). The selectivity for cyclohexanol plus cyclohexanone was 97.3%. The molar cyclohexanol/cyclohexanone ratio was 0.71.
- Example III was repeated except that 11.0 g of water phase in which Na₂CO₃ (1000 mmol/kg) was dissolved was added. This mixture was heated to a temperature of 73°C, whereupon 0.64 g of catalyst (Type B) was added. The decomposition of the CHHP was monitored by means of iodometric titration. The first-order rate constant was 10.2 * 10⁻⁴ kg solution/(g cat * min). The selectivity for cyclohexanol plus cyclohexanone was 100.3%. The molar cyclohexanol/cyclohexanone ratio was 0.74.
- Example III was repeated except that 11.2 g of water phase in which Na₂CO₃ (1000 mmol/kg) was dissolved was added. This mixture was heated to a temperature of 73°C, whereupon 0.64 g of catalyst (Type C) was added. The decomposition of the CHHP was monitored by means of iodometric titration. The first-order rate constant was 1.25 * 10⁻⁴ kg solution/(g cat * min).
- Example III was repeated except that 11.2 g of water phase in which Na₂CO₃ (1000 mmol/kg) was dissolved was added. This mixture was heated to a temperature of 73°C, whereupon 0.84 g of catalyst (Type D) was added. The decomposition of the CHHP was monitored by means of iodometric titration. The first-order rate constant was 2.02 * 10⁻⁴ kg solution/(g cat * min).
- Example III was repeated except that 10.2 g of water phase in which Na₂CO₃ (1000 mmol/kg) was dissolved was added. This mixture was heated to a temperature of 73°C, whereupon 0.98 g of catalyst (Type E) was added. The decomposition of the CHHP was monitored by means of iodometric titration. The first-order rate constant was 1.2 * 10⁻⁴ kg solution/(g cat * min).
- Example III was repeated except that 10.4 g of water phase in which Na₂CO₃ (1000 mmol/kg) was dissolved was added. This mixture was heated to a temperature of 73°C, whereupon 0.97 g of catalyst (Type F) was added. The decomposition of the CHHP was monitored by means of iodometric titration. The first-order rate constant was 1.6 * 10⁻⁴ kg solution/(g cat * min).
- Example III was repeated except that 78 g of water phase in which Na₂CO₃ (1000 mmol/kg) was dissolved was added. This mixture was heated to a temperature of 73°C, whereupon 0.82 g of an all-cobalt catalyst (
pellets 5 mm in diameter) was added. The decomposition of the CHHP was monitored by means of iodometric titration. The first-order rate constant was 8.5 * 10⁻⁴ kg solution/(g cat * min). - Example III was repeated except that 10.2 g of water phase in which Na₂CO₃ (750 mmol/kg) was dissolved was added. This mixture was heated to a temperature of 73°C, whereupon 0.84 g of pelletized CoCO₃ (
pellets 1 cm in diameter) was added. The decomposition of the CHHP was monitored by means of iodometric titration. The first-order rate constant was 46.2 * 10⁻⁴ kg solution/(g cat * min). - Example III was repeated except that 10.4 g of water phase in which NaOH (2000 mmol/kg) was dissolved was added. This mixture was heated to a temperature of 73°C, whereupon 0.64 g of catalyst (Type A) was added. The decomposition of the CHHP was monitored by means of iodometric titration. The first-order rate constant was 15.7 * 10⁻⁴ kg solution/(g cat * min).
- Example III was repeated except that 10.4 g of water phase in which K₂CO₃ (1000 mmol/kg) was dissolved was added. This mixture was heated to a temperature of 73°C, whereupon 0.77 g of a modified Type A catalyst containing 1.4 wt.% Co was added. The decomposition of the CHHP was monitored by means of iodometric titration. The first-order rate constant was 11.0 * 10⁻⁴ kg solution/(g cat * min).
- Example III was repeated except that 10 g of water phase in which RbOH (1000 mmol/kg) was dissolved was added. This mixture was heated to a temperature of 73°C, whereupon 0.64 g of catalyst was added. The decomposition of the CHHP was monitored by means of iodometric titration. The first-order rate constant was 20.4 * 10⁻⁴ kg solution/(g cat * min).
- Example III was repeated except that no water phase was added. On heating to a temperature of 73°C, 1.1 g of catalyst (Type A) was added. The decomposition of CHHP was monitored by means of iodometric titration. The first-order rate constant was 0.6 * 10⁻⁴ kg solution/(g cat*min).
- 12 g of a water phase in which Na₂CO₃ (750 mmol/kg) was dissolved was added at room temperature to 100 g of a cyclododecane oxidation mixture containing 400 mmol cyclododecyl hydroperoxide (CDHP) per kilogram, 70 mmol cyclododecanol (DOL) per kilogram and 40 mmol cyclododecanone (DON) per kilogram. This mixture was heated to a temperature of 73°C, whereupon 0.7 g of a Type A catalyst with 2.4% Co was added. The decomposition of the CHHP was monitored by means of iodometric titration. The first-order rate constant was 3.6 * 10⁻⁴ kg solution/(g cat * min). The selectivity for DOL plus DON was 106.2%. The molar DOL/DON ratio was 0.85.
- 6.0 g of a Type A catalyst was introduced into a hollow, glass container provided with slits of 1 mm. This container was placed in a 1-1 continuous-flow reactor provided with baffles. 45 g per hour of an organic phase (cyclohexane oxidation mixture containing 200 mmol cyclohexylhydroperoxide (CHHP) per kilogram, 60 mmol cyclohexanol (OL) per kilogram and 30 mmol cyclohexanone (ONE) per kilogram) and 13 g of a water phase in which Na₂CO₃ (1000 mmol/kg) was dissolved was added using two pumps. The two phases were mixed in the reactor with the aid of a turbine stirrer (1400 revolutions per min). The reaction temperature was 69°C. Any evaporating liquid was returned to the reactor by way of a reflux condenser. The liquid that overflowed was collected in a 5-1 vessel. The conversion of the CHHP was determined by means of iodometric titration of this overflowing liquid. By operating this system in the manner as described herein, a CHHP conversion of 40 % was achieved over a period of 1000 hours. The conversion could be varied by varying the residence time, the amount of catalyst, the concentration of the base and the ratio of the water phase to the organic phase. The measured Co concentration in the effluent was less than 2 ppb.
- Example XVIII was repeated except that only water was added as the water phase. Acids which were present in the organic phase or otherwise formed were extracted towards the water phase, causing the pH in the water phase to drop below 7. The catalyst was completely deactivated within 24 hours.
- Comparative Experiment B was repeated except that as catalyst use was made of an aminosilane modified silica to which a Co salt was linked as described in Example XXVIII of WO-A-9216487. The catalyst was completely deactivated within 24 hours.
- 15 g of catalyst (Type B) was introduced into a hollow, glass containers (sic) provided with slits of 1 mm. These containers (sic) were placed in a 1-1 continuous-flow reactor provided with baffles. 45 g per hour of an organic phase (a cyclododecane oxidation mixture containing 400 mmol cyclododecylhydroperoxide (CDHP) per kilogram, 70 mmol cyclododecanol (DOL) per kilogram and 40 mmol cyclododecanone (DON) per kilogram) and 13 g of a water phase in which Na₂CO₃ (1000 mmol/kg) was dissolved was added using two pumps. The two phases were mixed in the reactor with the aid of a turbine stirrer (1400 revolutions per min). The reaction temperature was 89°C. Any evaporating liquid was returned to the reactor by way of a heated reflux condenser. The liquid that overflowed was collected in a 5-1 vessel. The conversion of the CHHP was determined by iodometric titration of this overflowing liquid. By operating this system in the manner as described, a CDHP conversion of 80 % was achieved over a period of 500 hours. The conversion could be varied by varying the residence time, the amount of catalyst, the concentration of the base and the ratio of the water phase to the organic phase. The measured Co concentration in the effluent was less than 1 ppb.
Claims (14)
- Process for preparing an alkanone and/or an alkanol by oxidizing an alkane and/or alkene having from 3 to 30 C atoms with oxygen to form an alkylhydroperoxide, followed by decomposition of the alkylhydroperoxide formed in the presence of a catalyst which contains a metal compound immobilized on a carrier material, characterized in that during the decomposition a separate water phase with a pH higher than 8.5 is present and in that the metal of the catalyst is chosen from the group comprising Mn, Fe, Co, Ni and Cu and the carrier material is stable in the presence of the separate basic water phase.
- Process according to claim 1, characterized in that the carrier material is an inorganic carrier material.
- Process according to claim 2, characterized in that the in organic carrier material is chosen from the group comprising TiO₂, ZrO₂, MnO₂ and carbon.
- Process according to any one of claims 1-3, characterized in that the weight percentage of metal relative to the carrier material is between 0.2 and 4 wt.%.
- Process according to any one of claims 1-4, characterized in that the basic aqueous solution is a solution which contains alkali metal hydroxide, alkali metal carbonate and/or alkali metal phosphate.
- Process according to any one of claims 1-5, characterized in that the weight ratio of oxidation mixture and water phase is between 100:1 and 1:1.
- Process according to any one of claims 1-7, characterized in that the pH of the water phase is higher than 9.
- Process according to any one of claims 1-7, characterized in that the decomposition is effected in a packed-bed reactor and that the catalyst consists of particles with a particle size of between 0.7 and 3 mm.
- Process according to any one of claims 1-8, characterized in that the alkane is a cycloalkane having from 6 to 12 carbon atoms.
- Process according to claim 9, characterized in that the cycloalkane is a cyclohexane.
- Process according to any one of claims 1-10, characterized in that the basic water phase contains dissolved sodium carbonate.
- Process according to any one of claims 1-12, characterized in that in a continuous process the water phase is separated out after the decomposition step and partly recirculated to the decomposition step.
- Process according to any one of claims 1-12, characterized in that the basic water phase contains an alkali metal carbonate, the water phase being combusted after the decomposition at a temperature of from 550 to 1200°C, solid alkali metal carbonate being obtained, which alkali metal carbonate is reused for preparing the basic aqueous solution.
- Process as substantially described in the specification, figures and examples.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
BE9301446 | 1993-12-23 | ||
BE9301446A BE1007904A3 (en) | 1993-12-23 | 1993-12-23 | Process for the preparation of an alkanol AND / OR alkanone. |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0659726A1 true EP0659726A1 (en) | 1995-06-28 |
EP0659726B1 EP0659726B1 (en) | 1999-11-03 |
Family
ID=3887673
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP94203682A Expired - Lifetime EP0659726B1 (en) | 1993-12-23 | 1994-12-19 | Process for preparing a cycloalkanone and/or a cycloalkanol |
Country Status (17)
Country | Link |
---|---|
US (1) | US5859301A (en) |
EP (1) | EP0659726B1 (en) |
JP (1) | JPH07247230A (en) |
KR (1) | KR950017887A (en) |
CN (1) | CN1071301C (en) |
BE (1) | BE1007904A3 (en) |
BR (1) | BR9405216A (en) |
CA (1) | CA2138751A1 (en) |
CZ (1) | CZ327894A3 (en) |
DE (1) | DE69421506T2 (en) |
ES (1) | ES2139047T3 (en) |
HU (1) | HU218388B (en) |
MX (1) | MX9500220A (en) |
PL (1) | PL179828B1 (en) |
RU (1) | RU94044355A (en) |
SK (1) | SK158294A3 (en) |
TW (1) | TW358800B (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0768292A1 (en) * | 1995-10-13 | 1997-04-16 | Dsm N.V. | Process for decomposing cycloalkyl hydroperoxide |
WO1998034894A2 (en) * | 1997-02-11 | 1998-08-13 | E.I. Du Pont De Nemours And Company | Hydroperoxide decomposition process |
WO1998040340A1 (en) * | 1997-03-12 | 1998-09-17 | Dsm N.V. | Process for decomposing cycloalkylhydroperoxide |
WO1999040055A1 (en) * | 1998-02-10 | 1999-08-12 | E.I. Du Pont De Nemours And Company | Direct oxidation of cycloalkanes |
US6700022B2 (en) * | 2002-06-05 | 2004-03-02 | E. I. Du Pont De Nemours And Company | High yield cyclohexyl hydroperoxide decompostition process |
WO2006033740A1 (en) * | 2004-08-24 | 2006-03-30 | Invista Technologies S.A.R.L. | Method for reducing cyclohexenone content of a cyclohexenone-containing organic mixture |
WO2006079485A1 (en) * | 2005-01-25 | 2006-08-03 | Dsm Ip Assets B.V. | Process for preparing cyclohexanone and cyclohexanol |
US7199271B2 (en) | 2005-03-17 | 2007-04-03 | Invista North America S.A.R.L. | Method for reducing cyclohexenone content of a cyclohexenone-containing organic mixture |
Families Citing this family (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2802526B1 (en) * | 1999-12-17 | 2003-04-18 | Rhodia Polyamide Intermediates | PROCESS FOR THE PREPARATION OF ALCOHOL / KETONE MIXTURES |
AU2003233738A1 (en) * | 2002-06-05 | 2003-12-22 | University Technologies International Inc. | Oxygen reduction catalyst |
US20040158103A1 (en) * | 2003-02-11 | 2004-08-12 | Solutia Inc. | Cyclohexane oxidation catalysts |
US7081552B2 (en) * | 2004-08-17 | 2006-07-25 | Solutia Inc. | Catalysts for cycloalkanes oxidation and decomposition of cycloalkyl hydroperoxide |
EP2096097B1 (en) | 2006-12-05 | 2012-08-22 | Daicel Chemical Industries, Ltd. | Method for producing oxidation product of cycloalkane |
EP2638155A1 (en) | 2010-11-08 | 2013-09-18 | Kymab Limited | Cells & vertebrates for enhanced somatic hypermutation and class switch recombination |
JP2014533930A (en) | 2011-09-19 | 2014-12-18 | カイマブ・リミテッド | Manipulation of immunoglobulin gene diversity and multi-antibody therapeutics |
JP2014531452A (en) | 2011-09-19 | 2014-11-27 | カイマブ・リミテッド | Animals, repertoire and methods |
EP2761008A1 (en) | 2011-09-26 | 2014-08-06 | Kymab Limited | Chimaeric surrogate light chains (slc) comprising human vpreb |
GB2496375A (en) | 2011-10-28 | 2013-05-15 | Kymab Ltd | A non-human assay vertebrate comprising human antibody loci and human epitope knock-in, and uses thereof |
GB201122047D0 (en) | 2011-12-21 | 2012-02-01 | Kymab Ltd | Transgenic animals |
SG11201405059XA (en) | 2012-03-28 | 2014-09-26 | Kymab Ltd | Transgenic non-human vertebrate for the expression of class - switched, fully human, antibodies |
GB2502127A (en) | 2012-05-17 | 2013-11-20 | Kymab Ltd | Multivalent antibodies and in vivo methods for their production |
CN107108424A (en) * | 2014-10-31 | 2017-08-29 | 宇部兴产株式会社 | A kind of manufacture method and its system of ketone and/or alcohol |
CN110871063B (en) * | 2018-08-29 | 2022-09-27 | 中国石油化工股份有限公司 | Carbon material treatment liquid and preparation method thereof, carbon material and application thereof |
CN114105741B (en) * | 2021-12-16 | 2024-06-04 | 中国天辰工程有限公司 | Preparation method of macrocyclic alcohol ketone |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR1369732A (en) * | 1963-09-19 | 1964-08-14 | British Petroleum Co | Process for decomposing organic hydroperoxides and process for separating ethylenic hydrocarbons from a mixture of these hydrocarbons and their hydroperoxides |
FR2140088A1 (en) * | 1971-06-03 | 1973-01-12 | Basf Ag | |
EP0004105A1 (en) * | 1978-02-25 | 1979-09-19 | Stamicarbon B.V. | Process for preparing cycloalkanols and cycloalkanones |
US5206441A (en) * | 1992-04-06 | 1993-04-27 | E. I. Du Pont De Nemours And Company | High rate process for preparation of cyclohexanol and cyclohexanone |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2851496A (en) * | 1954-07-27 | 1958-09-09 | Du Pont | Preparation of oxidation products of cyclohexane |
DE2148322B2 (en) * | 1971-09-28 | 1977-02-10 | Davy International Ag, 6000 Frankfurt | CIRCULAR PROCESS FOR THE REMOVAL OF THE CARBONIC ACIDS AND CARBONIC ACID DERIVATIVES FROM THE PARTIAL OXIDATION OF CYCLOALKAN FROM THE OBTAINED OXIDATION PRODUCTS |
US4042630A (en) * | 1973-10-19 | 1977-08-16 | Stamicarbon B.V. | Process for the preparation of cycloalkanones and cycloalkanols |
NL8201695A (en) * | 1982-04-23 | 1983-11-16 | Stamicarbon | PROCESS FOR THE PREPARATION OF CYCLOHEXANOL AND CYCLOHEXANONE. |
DE3222144A1 (en) * | 1982-06-11 | 1983-12-15 | Basf Ag, 6700 Ludwigshafen | METHOD FOR PRODUCING CYCLOHEXANOL AND CYCLOHEXANONE |
NL9100521A (en) * | 1991-03-25 | 1992-10-16 | Stamicarbon | PROCESS FOR PREPARING AN ALKANON AND / OR ALKANOL. |
NL9200187A (en) * | 1992-02-03 | 1993-09-01 | Dsm Nv | PROCESS FOR THE PREPARATION OF CYCLOALKANON AND / OR CYCLOALKANOL. |
-
1993
- 1993-12-23 BE BE9301446A patent/BE1007904A3/en not_active IP Right Cessation
-
1994
- 1994-12-13 TW TW083111600A patent/TW358800B/en active
- 1994-12-19 DE DE69421506T patent/DE69421506T2/en not_active Expired - Fee Related
- 1994-12-19 EP EP94203682A patent/EP0659726B1/en not_active Expired - Lifetime
- 1994-12-19 ES ES94203682T patent/ES2139047T3/en not_active Expired - Lifetime
- 1994-12-21 SK SK1582-94A patent/SK158294A3/en unknown
- 1994-12-21 HU HU9403725A patent/HU218388B/en not_active IP Right Cessation
- 1994-12-21 PL PL94306450A patent/PL179828B1/en unknown
- 1994-12-21 JP JP6318840A patent/JPH07247230A/en active Pending
- 1994-12-21 CA CA002138751A patent/CA2138751A1/en not_active Abandoned
- 1994-12-22 CZ CZ943278A patent/CZ327894A3/en unknown
- 1994-12-22 BR BR9405216A patent/BR9405216A/en not_active IP Right Cessation
- 1994-12-22 CN CN94113210A patent/CN1071301C/en not_active Expired - Fee Related
- 1994-12-22 RU RU94044355/04A patent/RU94044355A/en unknown
- 1994-12-23 KR KR1019940036148A patent/KR950017887A/en not_active Application Discontinuation
- 1994-12-23 US US08/363,238 patent/US5859301A/en not_active Expired - Fee Related
-
1995
- 1995-01-02 MX MX9500220A patent/MX9500220A/en unknown
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR1369732A (en) * | 1963-09-19 | 1964-08-14 | British Petroleum Co | Process for decomposing organic hydroperoxides and process for separating ethylenic hydrocarbons from a mixture of these hydrocarbons and their hydroperoxides |
FR2140088A1 (en) * | 1971-06-03 | 1973-01-12 | Basf Ag | |
EP0004105A1 (en) * | 1978-02-25 | 1979-09-19 | Stamicarbon B.V. | Process for preparing cycloalkanols and cycloalkanones |
US5206441A (en) * | 1992-04-06 | 1993-04-27 | E. I. Du Pont De Nemours And Company | High rate process for preparation of cyclohexanol and cyclohexanone |
Cited By (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1062259C (en) * | 1995-10-13 | 2001-02-21 | Dsm有限公司 | Process for decomposing cycloalkyl hydroperoxide |
BE1009662A3 (en) * | 1995-10-13 | 1997-06-03 | Dsm Nv | PROCESS FOR THE DECOMPOSITION OF CYCLOALKYL HYDROPEROXIDE. |
EP0768292A1 (en) * | 1995-10-13 | 1997-04-16 | Dsm N.V. | Process for decomposing cycloalkyl hydroperoxide |
US5905173A (en) * | 1995-10-13 | 1999-05-18 | Dsm Nv | Process for decomposing cycloalkyl hydroperoxide |
WO1998034894A2 (en) * | 1997-02-11 | 1998-08-13 | E.I. Du Pont De Nemours And Company | Hydroperoxide decomposition process |
EA002422B1 (en) * | 1997-02-11 | 2002-04-25 | Е.И.Дюпон Де Немур Энд Компани | Hydroperoxide decomposition process |
WO1998034894A3 (en) * | 1997-02-11 | 1999-01-21 | Du Pont | Hydroperoxide decomposition process |
US6284927B1 (en) | 1997-02-11 | 2001-09-04 | E. I. Du Pont Nemours And Company | Hydroperoxide decomposition process |
BE1011041A3 (en) * | 1997-03-12 | 1999-04-06 | Dsm Nv | Process for the decomposition of cycloalkyl hydroperoxide. |
US5959153A (en) * | 1997-03-12 | 1999-09-28 | Dsm N.V. | Process for decomposing cycloalkylhydroperoxide |
WO1998040340A1 (en) * | 1997-03-12 | 1998-09-17 | Dsm N.V. | Process for decomposing cycloalkylhydroperoxide |
WO1999040055A1 (en) * | 1998-02-10 | 1999-08-12 | E.I. Du Pont De Nemours And Company | Direct oxidation of cycloalkanes |
US6700022B2 (en) * | 2002-06-05 | 2004-03-02 | E. I. Du Pont De Nemours And Company | High yield cyclohexyl hydroperoxide decompostition process |
WO2006033740A1 (en) * | 2004-08-24 | 2006-03-30 | Invista Technologies S.A.R.L. | Method for reducing cyclohexenone content of a cyclohexenone-containing organic mixture |
WO2006079485A1 (en) * | 2005-01-25 | 2006-08-03 | Dsm Ip Assets B.V. | Process for preparing cyclohexanone and cyclohexanol |
WO2006079562A1 (en) * | 2005-01-25 | 2006-08-03 | Dsm Ip Assets B.V. | Process for preparing cyclohexanone and cyclohexanol |
EA011023B1 (en) * | 2005-01-25 | 2008-12-30 | ДСМ АйПи АССЕТС Б.В. | Process for preparing cyclohexanone and cyclohexanol |
US7619122B2 (en) | 2005-01-25 | 2009-11-17 | Dsm Ip Assets B.V. | Process for preparing cyclohexanone and cyclohexanol |
US7642384B2 (en) | 2005-01-25 | 2010-01-05 | Dsm Ip Assets B.V. | Process for preparing cyclohexanone and cyclohexanol |
EA014018B1 (en) * | 2005-01-25 | 2010-08-30 | ДСМ АйПи АССЕТС Б.В. | Process for preparing cyclohexanone and cyclohexanol |
US7199271B2 (en) | 2005-03-17 | 2007-04-03 | Invista North America S.A.R.L. | Method for reducing cyclohexenone content of a cyclohexenone-containing organic mixture |
Also Published As
Publication number | Publication date |
---|---|
CN1071301C (en) | 2001-09-19 |
US5859301A (en) | 1999-01-12 |
BR9405216A (en) | 1995-08-01 |
HU218388B (en) | 2000-08-28 |
MX9500220A (en) | 1997-04-30 |
BE1007904A3 (en) | 1995-11-14 |
DE69421506T2 (en) | 2000-07-06 |
PL306450A1 (en) | 1995-06-26 |
HUT69062A (en) | 1995-08-28 |
JPH07247230A (en) | 1995-09-26 |
HU9403725D0 (en) | 1995-03-28 |
DE69421506D1 (en) | 1999-12-09 |
SK158294A3 (en) | 1995-08-09 |
RU94044355A (en) | 1996-10-27 |
CZ327894A3 (en) | 1995-10-18 |
EP0659726B1 (en) | 1999-11-03 |
TW358800B (en) | 1999-05-21 |
PL179828B1 (en) | 2000-11-30 |
CA2138751A1 (en) | 1995-06-24 |
KR950017887A (en) | 1995-07-20 |
ES2139047T3 (en) | 2000-02-01 |
CN1107829A (en) | 1995-09-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0659726B1 (en) | Process for preparing a cycloalkanone and/or a cycloalkanol | |
Dartt et al. | Catalysis for environmentally benign processing | |
US5723637A (en) | Process for producing propylene oxide | |
JP3386827B2 (en) | Process for producing alkanone and / or alkanol-containing mixture | |
WO2000058250A1 (en) | Hydroperoxide decomposition process | |
CN101204664A (en) | Multiphase catalytic oxidation cyclohexane catalyst for cyclohexanone and cyclohexanol and preparation method thereof | |
EP0092867A1 (en) | Process for preparing cyclohexanol and cyclohexanone | |
US4543427A (en) | Preparation of cyclohexanol and cyclohexanone | |
US7291755B2 (en) | Process for producing alcohol and/or ketone | |
EP0688322B1 (en) | Oxidation of ketones | |
CN102177121B (en) | Process for producing phenol | |
US20230069145A1 (en) | Plant leaves-derived carbon material doped with two metals and preparation and use thereof | |
AU2002333045B2 (en) | Catalytic systems and process for treatment of industrial process and waste streams | |
CN111871418A (en) | Coated nano catalyst for one-step synthesis of isobutyraldehyde from methanol and ethanol and preparation method thereof | |
CN114105741B (en) | Preparation method of macrocyclic alcohol ketone | |
Ballarini et al. | The oxidation of isobutane to methacrylic acid: An alternative technology for MMA production | |
CN112705157B (en) | For removing Fe (CO) 5 And/or Ni (CO) 4 Purifying agent of (2), preparation method and application thereof | |
US6075170A (en) | Process for preparing cyclohexanol and cyclohexanone | |
CN111437822A (en) | Method for preparing cumene hydroperoxide by adopting ternary composite metal catalytic oxidation | |
CN117816250A (en) | Rhenium-based supported catalyst, preparation thereof and application thereof in synthesis of rose ether intermediate | |
CN116984025A (en) | Hexafluoropropylene trimer modified bimetallic porous silicon and preparation method and application thereof | |
CN1419551A (en) | Process for producing propylene oxide | |
CN117917386A (en) | Alpha, alpha-dimethylbenzyl alcohol hydrogenolysis method and application thereof in propylene oxide preparation | |
CN1519218A (en) | Technique for catalytic decompoositing hydrogen dioxide cyclohexyl by using metalloporphyrin | |
HOELDERICH | BASF AKTIENGESELLSCHAFT, Ammonia Laboratory, D-6700 Ludwigshafen, FRG |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): BE CH DE ES FR IT LI NL |
|
17P | Request for examination filed |
Effective date: 19951009 |
|
17Q | First examination report despatched |
Effective date: 19961204 |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): BE CH DE ES FR IT LI NL |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REF | Corresponds to: |
Ref document number: 69421506 Country of ref document: DE Date of ref document: 19991209 |
|
ITF | It: translation for a ep patent filed | ||
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2139047 Country of ref document: ES Kind code of ref document: T3 |
|
ET | Fr: translation filed | ||
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20011130 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20011203 Year of fee payment: 8 Ref country code: CH Payment date: 20011203 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20011204 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: BE Payment date: 20011224 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20020109 Year of fee payment: 8 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20021220 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20021231 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20021231 Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20021231 |
|
BERE | Be: lapsed |
Owner name: *DSM N.V. Effective date: 20021231 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20030701 Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20030701 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
NLV4 | Nl: lapsed or anulled due to non-payment of the annual fee |
Effective date: 20030701 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20030901 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FD2A Effective date: 20021220 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED. Effective date: 20051219 |