EP0657620B1 - Method and system for the control of the "stick-slip" of a drill tool - Google Patents

Method and system for the control of the "stick-slip" of a drill tool Download PDF

Info

Publication number
EP0657620B1
EP0657620B1 EP94402698A EP94402698A EP0657620B1 EP 0657620 B1 EP0657620 B1 EP 0657620B1 EP 94402698 A EP94402698 A EP 94402698A EP 94402698 A EP94402698 A EP 94402698A EP 0657620 B1 EP0657620 B1 EP 0657620B1
Authority
EP
European Patent Office
Prior art keywords
bit
tool
rotation
torque
speed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP94402698A
Other languages
German (de)
French (fr)
Other versions
EP0657620A1 (en
Inventor
Didier Pavone
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IFP Energies Nouvelles IFPEN
Original Assignee
IFP Energies Nouvelles IFPEN
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IFP Energies Nouvelles IFPEN filed Critical IFP Energies Nouvelles IFPEN
Publication of EP0657620A1 publication Critical patent/EP0657620A1/en
Application granted granted Critical
Publication of EP0657620B1 publication Critical patent/EP0657620B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B44/00Automatic control systems specially adapted for drilling operations, i.e. self-operating systems which function to carry out or modify a drilling operation without intervention of a human operator, e.g. computer-controlled drilling systems; Systems specially adapted for monitoring a plurality of drilling variables or conditions
    • E21B44/02Automatic control of the tool feed
    • E21B44/04Automatic control of the tool feed in response to the torque of the drive ; Measuring drilling torque
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B44/00Automatic control systems specially adapted for drilling operations, i.e. self-operating systems which function to carry out or modify a drilling operation without intervention of a human operator, e.g. computer-controlled drilling systems; Systems specially adapted for monitoring a plurality of drilling variables or conditions
    • E21B44/005Below-ground automatic control systems

Definitions

  • the present invention relates to a method and a system suitable for controlling a dysfunction in the behavior of a drilling tool driven in rotation by means of a drilling string. This dysfunction is commonly called "stick-slip”.
  • the present invention is applicable to the oscillatory behavior of the speed of rotation of a drilling tool around an average speed imposed on the surface.
  • the so-called "stick-slip” behavior is well known to drillers and is characterized by very appreciable variations in the speed of rotation of the drilling tool while it is being driven by means of a drill string put rotating from the surface at a substantially constant speed.
  • the speed of the tool can vary between a practically zero speed and a value of the speed of rotation of the tool much greater than the speed applied on the surface to the lining. This can in particular have the consequences of harmful effects on the life of the drilling tools, on the increase of the mechanical fatigue of the drill string and the frequency of the ruptures of the connections.
  • the present invention relates to a method of controlling the stability of the speed of rotation of a drilling tool driven in rotation by means of a tubular lining rotated from mechanical surface means, said tool being subjected to a reactive torque due to the drilling action of a well.
  • an additional resistive torque is created in the vicinity of the tool, a function of the speed of rotation of the tool and of a determined value so that the overall reactive torque of the drilling tool resulting from the addition of the torque to the tool and of said additional torque is an increasing function of the speed of rotation of the tool.
  • Said additional resistant torque can be created by friction means integral with the lining in the vicinity of the tool.
  • Said additional resistant torque can be created by varying the weight on the tool.
  • Said variation in weight on the tool can be provided by specific means located in the vicinity of the tool and controlled by the speed of rotation of the drilling tool.
  • the invention also relates to a system for controlling the stability of the speed of rotation of a drilling tool driven in rotation by means of a tubular lining rotated by mechanical surface means, said tool being subjected to a reactive torque due to the drilling action of a well.
  • the system comprises regulation means integral with the lining in the vicinity of the tool, said means being adapted to create an additional resistant torque to the tool, the value of said torque being a function of the speed of rotation of the tool.
  • Said regulating means may include friction means on the walls of the well.
  • Said regulation means may include means for varying the force of application of the tool on the bottom of the well.
  • Said regulating means may include means for measuring the speed of rotation of the drilling tool and means for adjusting the value of the additional resistive torque as a function of the speed of rotation of the tool.
  • FIG. 1 is a recording of the angular position of a drilling tool connected integrally to drill collars in which the measuring instruments are placed. These records have been obtained, for example using the means described according to patent FR-92/02273. Such a recording curve is described in the article "Wired Pipes for a High-Data-Rate MWD System” by JB Fa ⁇ , H. Fa ⁇ and A. Couturier (SPE 24971, European Petroleum Conference, 1991, 16- 18 November 1992).
  • the measurements of the speed of rotation of the tool can preferably be obtained by deriving the curve 1 representing the recording of the angular position of the drilling tool by sets of magnetic sensors.
  • Measuring the speed of rotation of the tool can be compared to the speed of rotation of the drill collars, since all the drill collars are very rigid in torsional deformation. There is therefore practically no difference in speed between the measuring means, preferably located for practical reasons in the drill collars, and the drilling tool.
  • curve 1 in FIG. 1 presents zones 2 in which the displacement of the tool is practically zero for durations substantially equal to one second.
  • the rotation speed can reach the frequency of 3.2 Hz, while the nominal speed of the lining, here 90 revolutions / minute, corresponds to a 1.5 Hz frequency.
  • Figure 2 shows schematically the mathematical model used to highlight and analyze the unstable behavior of the speed of rotation of the drilling tool.
  • a drilling tool 5 rests on the cutting face 8.
  • the drill string is constituted by drill collars 3 and rods 4 with determined mechanical and dimensional characteristics.
  • a rotation device 9 imposes a speed of rotation on the whole of the lining. Friction is imposed between the rods and the drill collars against the walls of the well.
  • the friction equations may be chosen as a function of the weight of the entire packing, the speed of rotation at table 9, the drilling fluid, the geometry of the rods and drill-rods respectively in zones 6 and 7, or the shape of the well trajectory.
  • the resistance to rotation of the tool 5 on the face of size 8 is also defined according to a relationship of the torque as a function of the speed of rotation for a weight on the determined tool ( Figure 4).
  • Figure 4 shows the curves representing the function between the friction torque (C) of a drilling tool and its speed of rotation.
  • C friction torque
  • This example was published in the article SPE 21943 cited above. The measurements were carried out with a used PDC tool (one-piece tool comprising cutting pads made of polychrystalline material), at constant weight and for several weight values on the tool.
  • the abscissa is graduated in revolutions / minute and the ordinate in ft ⁇ lbf, unit of torque which is converted to m ⁇ daN by multiplying by 0.1356.
  • Curve 10 was obtained for a weight on the tool of 4 tonnes, curve 11 for a weight on the tool of 2.7 tonnes and curve 12 for a weight on the tool of 1.33 tonnes. Note that the tool torque decreases when the rotation speed increases. In addition, when the weight on the tool decreases, the decreasing curve becomes flat.
  • FIG. 3 shows the response of the mathematical model according to FIG. 2 to a stress created by a variation in the speed of rotation applied to the drill string by the means 9 (FIG. 2).
  • the conditions of friction between the tool 5 and the cutting face 8 are imposed according to a law arising from the curves of FIG. 4.
  • the speed is 110 revolutions per minute.
  • the speed of rotation applied to the drill string increases until it reaches 120 revolutions per minute.
  • Curve 16 represents the speed of rotation of the drilling tool as a function of time.
  • the behavior of the drilling tool in rotation speed is unstable and oscillates around the set value of 120 revolutions per minute.
  • the speed of rotation of the tool varies according to oscillations which amplify, then reach a maximum of amplitude according to a stabilized behavior (15) representing the dysfunction "stick-slip" in which the speed of rotation is canceled before reaching a maximum much higher than the set speed.
  • the model confirms and highlights that the instability of the speed of rotation of a drilling tool driven in rotation by a drill string, is the result of the fact that the torque to the tool decreases as a function of an increase of the speed of rotation.
  • the present invention proposes to prevent the occurrence of the so-called "stick-slip” dysfunction by making the behavior of the drilling tool stable in rotation speed by acting on the cause of the instability.
  • FIGS. 5 and 6 Two methods are preferably used and illustrated by FIGS. 5 and 6.
  • curve 17 represents the torque resistant to the drilling tool in the range of rotational speeds N1 and N2.
  • Curve 18 represents a friction torque supplied by appropriate means integral with the drilling tool or drill collars.
  • the overall torque at the drilling tool will be the sum of the torque at the tool and the additional torque.
  • the overall torque is represented here by the curve 19 resulting from the addition of the curve 17 with the curve 18.
  • the friction means are determined to generate a friction curve 18 increasing with the speed of rotation.
  • the overall resistance to rotation, at the level of the drilling tool is represented by an increasing curve 19 as a function of the speed.
  • the friction means may require a measurement of the speed of rotation of the drilling tool to control, for example by electronic controls, the value of the additional torque as a function of the speed. Purely mechanical means can also be used as friction adjustment means.
  • FIG. 7A illustrates friction means designed from a stabilizer with variable geometry 22.
  • the means 22 are fixed on a tool 20 in the drilling operation of a well 21.
  • Skids 23, 25, 26 have surfaces of friction with the walls of the well 21 so as to create a friction torque.
  • the number of pads in contact with the walls is a function of the speed measured by the measuring and control apparatus 24 which controls the output of the number of pads necessary for the additional resistive torque to follow a growth law similar to the curve. 18.
  • Variable geometry stabilizers whose blades are radially movable are known and will not be described here.
  • a rotation speed sensor integrated into the device 24 controls a motorization means which radially moves the support blades against the wall of the well.
  • the energy to activate the motor can come from an electric accumulator, an electricity generating turbine or the pressure of the drilling fluid circulating in the lining.
  • the friction pads can be replaced by rollers 27 with an axis parallel to the axis of rotation of the tool 20.
  • the number of rollers distributed over the circumference will be determined for proper centering of the tool in the well.
  • Pushing means hydraulic or mechanical, apply the rollers against the walls of the well.
  • the rotation of the drilling tool rotates the rollers 27 in contact with the walls of the well, for example as a roller reamer commonly used by the profession, would.
  • a measuring and control apparatus 24 adjusts the rolling resistance as a function of the speed of rotation, for example by regulating the braking of the rollers and / or the force of application of the rollers to the walls of the well.
  • FIG. 6 which reproduces, for the example only, in part FIG. 4, illustrates another means of making the behavior of a drilling tool stable in speed.
  • Point A represents the operating point at the weight on the tool of 2.7 tonnes, at the speed of rotation N A and at the torque C A.
  • N A to N B When the speed increases from N A to N B while providing an increase in weight on the tool corresponding to point B at substantially 3 tonnes, the operating point follows the path shown by the arrows 30.
  • the torque at tool becomes C B greater than C A.
  • an increase in the speed of rotation caused an increase in the reactive torque to the tool.
  • the behavior of the drilling tool is stable in speed as described above.
  • the solution here is to create a determined increase in weight on the tool as a function of an increase in the speed of rotation.
  • FIG. 7C shows the principle of an embodiment of means for applying a weight to the additional tool when the speed of rotation increases.
  • the tool 20 is screwed onto a mandrel 31 contained in a body 32.
  • the body 32 is integral with the drill collars.
  • the mandrel 31 can slide longitudinally over a determined length while being fixed in rotation, for example by a key system 38 in a groove.
  • the shape of the mandrel 31 is such that it provides two annular chambers 33 and 34 between the exterior of the mandrel and the interior of the body 32. Sealing elements, not shown here, isolate the chambers from each other and with the outside. These chambers are filled with a substantially incompressible fluid.
  • Means 35 for adjusting the hydraulic pressure in the chambers 33 and 34 communicate with these chambers by conduits 36 and 37.
  • An apparatus 24 for measurement and control controls the adjustment means 35 as a function of measuring the speed of rotation.
  • the operation of such means can be as follows: The driller places, for example, 2.7 tonnes on a tool driven in rotation by the drilling string in rotation at the speed N A. The driller must ensure that there is an excess of weight of drill collars in the packing so as to be able to apply an increase in weight, for example of 0.3 tonnes. This safety on the weight of drill collars is generally common in the profession.
  • the apparatus 24 detects this increase and sends the order to the adjusting means 35 to increase the hydraulic pressure in the chamber 33 to a value such that this increase in pressure corresponds to about 0.3 tonnes.
  • the operating point has gone from curve 11 to 2.7 tonnes, to a point B belonging to a curve at 3 tonnes, not shown in the example.
  • the behavior of the drilling tool is thus that of a tool whose resistive torque increases with speed.

Description

La présente invention concerne une méthode et un système adaptés au contrôle d'un dysfonctionnement du comportement d'un outil de forage entraîné en rotation par l'intermédiaire d'une garniture de forage. Ce dysfonctionnement est couramment dénommé "stick-slip".The present invention relates to a method and a system suitable for controlling a dysfunction in the behavior of a drilling tool driven in rotation by means of a drilling string. This dysfunction is commonly called "stick-slip".

D'une manière plus générale, la présente invention est applicable au comportement oscillatoire de la vitesse de rotation d'un outil de forage autour d'une vitesse moyenne imposée à la surface.More generally, the present invention is applicable to the oscillatory behavior of the speed of rotation of a drilling tool around an average speed imposed on the surface.

Le comportement dit "stick-slip" est bien connu des foreurs et se caractérise par des variations très sensibles de la vitesse de rotation de l'outil de forage alors que celui-ci est entraîné par l'intermédiaire d'une garniture de forage mise en rotation à partir de la surface à une vitesse sensiblement constante. La vitesse de l'outil peut varier entre une vitesse pratiquement nulle et une valeur de la vitesse de rotation de l'outil très supérieure à la vitesse appliquée en surface à la garniture. Cela peut notamment avoir pour conséquences des effets néfastes sur la durée de vie des outils de forage, sur l'augmentation de la fatigue mécanique du train de tiges et de la fréquence des ruptures des connexions.The so-called "stick-slip" behavior is well known to drillers and is characterized by very appreciable variations in the speed of rotation of the drilling tool while it is being driven by means of a drill string put rotating from the surface at a substantially constant speed. The speed of the tool can vary between a practically zero speed and a value of the speed of rotation of the tool much greater than the speed applied on the surface to the lining. This can in particular have the consequences of harmful effects on the life of the drilling tools, on the increase of the mechanical fatigue of the drill string and the frequency of the ruptures of the connections.

On connaît par l'article "Detection and monitoring of the stick-slip motion : field experiments" de M.P. Dufeyte et H. Henneuse (SPE/IADC 21945 - Drilling Conference, Amsterdam, 11-14 March 1991) une analyse du comportement dit "stick-slip" à partir de mesures effectuées par un dispositif placé à l'extrémité supérieure de la garniture de forage. Dans le cas d'apparition du dysfonctionnement du type stick-slip, ce document recommande soit d'augmenter la vitesse de rotation de la garniture de forage à partir de la table de rotation, soit de diminuer le poids sur l'outil en agissant sur le treuil de forage.We know from the article "Detection and monitoring of the stick-slip motion: field experiments" by MP Dufeyte and H. Henneuse (SPE / IADC 21945 - Drilling Conference, Amsterdam, 11-14 March 1991) an analysis of so-called behavior " stick-slip "from measurements made by a device placed at the upper end of the drill string. In the event of a stick-slip type malfunction, this document recommends either increasing the rotation speed of the drill string from the rotation table, or reducing the weight on the tool by acting on the drilling winch.

L'article "A study of slip-stick motion of the bit" de Kyllingstad A. et Halsey G.W. (SPE 16659, 62nd Annual Technical Conference and Exhibition, Dallas, September 27-30, 1987) analyse le comportement d'un outil de forage par l'utilisation d'un modèle pendulaire.The article "A study of slip-stick motion of the bit" by Kyllingstad A. and Halsey GW (SPE 16659, 62nd Annual Technical Conference and Exhibition, Dallas, September 27-30, 1987) analyzes the behavior of a drilling using a pendulum model.

L'article "The Genesis of Bit-Induced Torsional Drillstring Vibrations" par J.F. Brett (SPE/IADC 21943 - Drilling Conference, Amsterdam, 11-14 March 1991) décrit également les vibrations en torsion créées par un outil du type PDC.The article "The Genesis of Bit-Induced Torsional Drillstring Vibrations" by J.F. Brett (SPE / IADC 21943 - Drilling Conference, Amsterdam, 11-14 March 1991) also describes the torsional vibrations created by a PDC type tool.

La présente invention concerne une méthode de contrôle de la stabilité de la vitesse de rotation d'un outil de forage entraîné en rotation par l'intermédiaire d'une garniture tubulaire mise en rotation à partir de moyens mécaniques de surface, ledit outil étant soumis à un couple réactif dû à l'action de forage d'un puits. Selon la méthode, on crée dans le voisinage de l'outil un couple résistant supplémentaire, fonction de la vitesse de rotation de l'outil et d'une valeur déterminée pour que le couple réactif global à l'outil de forage résultant de l'addition du couple à l'outil et dudit couple supplémentaire soit une fonction croissante de la vitesse de rotation de l'outil.The present invention relates to a method of controlling the stability of the speed of rotation of a drilling tool driven in rotation by means of a tubular lining rotated from mechanical surface means, said tool being subjected to a reactive torque due to the drilling action of a well. According to the method, an additional resistive torque is created in the vicinity of the tool, a function of the speed of rotation of the tool and of a determined value so that the overall reactive torque of the drilling tool resulting from the addition of the torque to the tool and of said additional torque is an increasing function of the speed of rotation of the tool.

On peut créer ledit couple résistant supplémentaire par des moyens de frottement solidaires de la garniture dans le voisinage de l'outil.Said additional resistant torque can be created by friction means integral with the lining in the vicinity of the tool.

On peut créer ledit couple résistant supplémentaire par une variation du poids sur l'outil.Said additional resistant torque can be created by varying the weight on the tool.

Ladite variation de poids sur l'outil peut être fournie par des moyens spécifiques situés dans le voisinage de l'outil et contrôlés par la vitesse de rotation de l'outil de forage.Said variation in weight on the tool can be provided by specific means located in the vicinity of the tool and controlled by the speed of rotation of the drilling tool.

L'invention concerne également un système de contrôle de la stabilité de la vitesse de rotation d'un outil de forage entraîné en rotation par l'intermédiaire d'une garniture tubulaire mise en rotation à partir de moyens mécaniques de surface, ledit outil étant soumis à un couple réactif dû à l'action de forage d'un puits. Le système comporte des moyens de régulation solidaires de la garniture dans le voisinage de l'outil, lesdits moyens étant adaptés à créer un couple résistant supplémentaire à l'outil, la valeur dudit couple étant fonction de la vitesse de rotation de l'outil.The invention also relates to a system for controlling the stability of the speed of rotation of a drilling tool driven in rotation by means of a tubular lining rotated by mechanical surface means, said tool being subjected to a reactive torque due to the drilling action of a well. The system comprises regulation means integral with the lining in the vicinity of the tool, said means being adapted to create an additional resistant torque to the tool, the value of said torque being a function of the speed of rotation of the tool.

Lesdits moyens de régulation peuvent comporter des moyens de friction sur les parois du puits.Said regulating means may include friction means on the walls of the well.

Lesdits moyens de régulation peuvent comporter des moyens de variation de la force d'application de l'outil sur le fond du puits.Said regulation means may include means for varying the force of application of the tool on the bottom of the well.

Lesdits moyens de régulation peuvent comporter des moyens de mesure de la vitesse de rotation de l'outil de forage et des moyens de réglage de la valeur du couple résistant supplémentaire en fonction de la vitesse de rotation de l'outil.Said regulating means may include means for measuring the speed of rotation of the drilling tool and means for adjusting the value of the additional resistive torque as a function of the speed of rotation of the tool.

L'invention sera mieux comprise et ses avantages apparaîtront clairement à la lecture de la description d'exemples, nullement limitatifs, illustrés par les figures ci-dessous annexées:

  • La figure 1 montre un enregistrement de la position angulaire de l'outil en fonction du temps,
  • La figure 2 schématise un modèle d'étude de représentation mécanique du comportement d'un ensemble de forage,
  • La figure 3 montre la réponse du modèle à une excitation correspondant à une augmentation de la vitesse de rotation en surface,
  • La figure 4 montre un exemple de la valeur du couple à un outil PDC en fonction de la vitesse de rotation pour différents poids sur l'outil,
  • La figure 5 illustre graphiquement l'addition d'un couple supplémentaire à l'outil de forage,
  • La figure 6 illustre graphiquement la conséquence de l'addition d'un poids sur l'outil en fonction de la vitesse de rotation,
  • Les figures 7A, 7B et 7C illustrent des réalisations des moyens de régulation de la stabilité du comportement de l'outil de forage.
The invention will be better understood and its advantages will appear clearly on reading the description of examples, in no way limiting, illustrated by the appended figures below:
  • FIG. 1 shows a recording of the angular position of the tool as a function of time,
  • FIG. 2 schematizes a study model of mechanical representation of the behavior of a drilling assembly,
  • FIG. 3 shows the response of the model to an excitation corresponding to an increase in the speed of rotation at the surface,
  • Figure 4 shows an example of the torque value for a PDC tool as a function of the speed of rotation for different weights on the tool,
  • FIG. 5 graphically illustrates the addition of an additional torque to the drilling tool,
  • FIG. 6 graphically illustrates the consequence of adding a weight to the tool as a function of the speed of rotation,
  • FIGS. 7A, 7B and 7C illustrate embodiments of the means for regulating the stability of the behavior of the drilling tool.

La figure 1 est un enregistrement de la position angulaire d'un outil de forage lié solidairement à des masses-tiges dans lesquelles sont placés les instruments de mesure. Ces enregistrements on été obtenus, par exemple à l'aide des moyens décrits selon le brevet FR-92/02273. Une telle courbe d'enregistrement est décrite dans l'article "Wired Pipes for a High-Data-Rate MWD System" par J.B. Faÿ, H. Faÿ et A. Couturier (SPE 24971, European Petroleum Conference, Cannes, France, 16-18 November 1992). Les mesures de la vitesse de rotation de l'outil peuvent être préférentiellement obtenues par la dérivation de la courbe 1 représentant l'enregistrement de la position angulaire de l'outil de forage par des ensembles de capteurs magnétiques.FIG. 1 is a recording of the angular position of a drilling tool connected integrally to drill collars in which the measuring instruments are placed. These records have been obtained, for example using the means described according to patent FR-92/02273. Such a recording curve is described in the article "Wired Pipes for a High-Data-Rate MWD System" by JB Faÿ, H. Faÿ and A. Couturier (SPE 24971, European Petroleum Conference, Cannes, France, 16- 18 November 1992). The measurements of the speed of rotation of the tool can preferably be obtained by deriving the curve 1 representing the recording of the angular position of the drilling tool by sets of magnetic sensors.

La mesure de la vitesse de rotation de l'outil peut être assimilée à la vitesse de rotation des masses-tiges, car l'ensemble des masses-tiges est très rigide en déformation de torsion. Il n'existe donc pratiquement pas de différence de vitesse entre les moyens de mesure, situés préférentiellement pour des raisons pratiques dans les masses-tiges, et l'outil de forage.Measuring the speed of rotation of the tool can be compared to the speed of rotation of the drill collars, since all the drill collars are very rigid in torsional deformation. There is therefore practically no difference in speed between the measuring means, preferably located for practical reasons in the drill collars, and the drilling tool.

On remarque que la courbe 1 de la figure 1 présente des zones 2 dans lesquelles le déplacement de l'outil est pratiquement nul pendant des durées sensiblement égales à une seconde. De plus, on s'aperçoit en comptant le nombre de cycle par seconde, que la vitesse de rotation peut atteindre la fréquence de 3,2 Hz, alors que la vitesse nominale de la garniture, ici de 90 tours/minute, correspond à une fréquence de 1,5 Hz.Note that curve 1 in FIG. 1 presents zones 2 in which the displacement of the tool is practically zero for durations substantially equal to one second. In addition, we notice by counting the number of cycles per second, that the rotation speed can reach the frequency of 3.2 Hz, while the nominal speed of the lining, here 90 revolutions / minute, corresponds to a 1.5 Hz frequency.

Cette courbe illustrent clairement le dysfonctionnement dit de "stick-slip" où l'outil de forage se bloque sur la formation (vitesse nulle) puis se libère en subissant de fortes accélérations qui conduisent ici à des vitesses supérieures au double de la vitesse de la garniture de forage en surface.This curve clearly illustrates the so-called "stick-slip" dysfunction where the drilling tool hangs on the formation (zero speed) then becomes free by undergoing strong accelerations which lead here to speeds greater than twice the speed of the drilling rig on the surface.

En conséquence d'un tel dysfonctionnement, on a pu constater que la plupart des outils de forage présentaient des usures anormales et des durées de vie raccourcies. De plus, les tiges de forage qui relient les masses-tiges à la surface sont soumises à une déformation de torsion alternée et plus particulièrement les longueurs de tiges immédiatement au-dessus des masses-tiges. La fatigue mécanique y est fortement accusée ce qui impose très souvent un renforcement mécanique de ces tiges ou bien conduit à des ruptures fréquentes.As a result of such a malfunction, it has been found that most of the drilling tools have abnormal wear and shortened service lives. In addition, the drill rods which connect the drill collars to the surface are subjected to alternating torsional deformation, and more particularly the lengths of drill rod immediately above the drill collars. Mechanical fatigue is strongly marked, which very often requires mechanical reinforcement of these rods or else leads to frequent ruptures.

La figure 2 schématise le modèle mathématique utilisé pour mettre en évidence et analyser le comportement instable de la vitesse de rotation de l'outil de forage. Un outil de forage 5 repose sur le front de taille 8. La garniture de forage est constituée par des masses-tiges 3 et des tiges 4 de caractéristiques mécaniques et dimensionnelles déterminées. Un dispositif de mise en rotation 9 impose une vitesse de rotation à l'ensemble de la garniture. Des frottements sont imposés entre les tiges et les masses-tiges contre les parois du puits. Les équations de frottement pourront être choisies fonction du poids de l'ensemble de la garniture, de la vitesse de rotation à la table 9, du fluide forage, de la géométrie des tiges et masses-tiges respectivement dans les zones 6 et 7, ou de la forme de la trajectoire du puits. On définit également la résistance à la rotation de l'outil 5 sur le front de taille 8 selon une relation du couple en fonction de la vitesse de rotation pour un poids sur l'outil déterminé (figure 4).Figure 2 shows schematically the mathematical model used to highlight and analyze the unstable behavior of the speed of rotation of the drilling tool. A drilling tool 5 rests on the cutting face 8. The drill string is constituted by drill collars 3 and rods 4 with determined mechanical and dimensional characteristics. A rotation device 9 imposes a speed of rotation on the whole of the lining. Friction is imposed between the rods and the drill collars against the walls of the well. The friction equations may be chosen as a function of the weight of the entire packing, the speed of rotation at table 9, the drilling fluid, the geometry of the rods and drill-rods respectively in zones 6 and 7, or the shape of the well trajectory. The resistance to rotation of the tool 5 on the face of size 8 is also defined according to a relationship of the torque as a function of the speed of rotation for a weight on the determined tool (Figure 4).

La figure 4 montre les courbes représentant la fonction entre le couple de frottement (C) d'un outil de forage et sa vitesse de rotation. Cet exemple a été publié dans l'article SPE 21943 cité plus haut. Les mesures on été effectuées avec un outil PDC usé (outil monobloc comportant des pastilles de coupe en matériau polychrystallin), à poids constant et pour plusieurs valeurs de poids sur l'outil. L'abscisse est graduée en tours/minute et l'ordonnée en ft∗lbf, unité de couple qui se convertit en m∗daN en multipliant par 0,1356. La courbe 10 a été obtenue pour un poids sur l'outil de 4 tonnes, la courbe 11 pour un poids sur l'outil de 2,7 tonnes et la courbe 12 pour un poids sur l'outil de 1,33 tonnes. On remarque que le couple à l'outil décroît quand la vitesse de rotation augmente. De plus, lorsque le poids sur l'outil diminue, la courbe décroissante s'aplatit.Figure 4 shows the curves representing the function between the friction torque (C) of a drilling tool and its speed of rotation. This example was published in the article SPE 21943 cited above. The measurements were carried out with a used PDC tool (one-piece tool comprising cutting pads made of polychrystalline material), at constant weight and for several weight values on the tool. The abscissa is graduated in revolutions / minute and the ordinate in ft ∗ lbf, unit of torque which is converted to m ∗ daN by multiplying by 0.1356. Curve 10 was obtained for a weight on the tool of 4 tonnes, curve 11 for a weight on the tool of 2.7 tonnes and curve 12 for a weight on the tool of 1.33 tonnes. Note that the tool torque decreases when the rotation speed increases. In addition, when the weight on the tool decreases, the decreasing curve becomes flat.

Cette forme générale de la courbe représentant la relation entre le couple résistant à un outil et la vitesse de rotation s'applique également pour les outils de forage du type tricône. En effet, cette relation entre le couple résistant et la vitesse de glissement est classique, par exemple, on sait que le frottement résultant du roulement d'un pneu d'un véhicule décroît également avec la vitesse de rotation de la roue (System Dynamics-A unified Approach, de Dean Karnopp et Ronald Rosenberg- John Wiley & Sons- Chapter 10-Tires, pages 343-344). Comme pour un tricône, le couple résistant au déplacement d'une roue de véhicule provient des frottements de roulement et du glissement du pneu sur le sol.This general shape of the curve representing the relationship between the torque resistant to a tool and the speed of rotation also applies to drilling tools of the tricone type. Indeed, this relationship between the resistant torque and the sliding speed is classic, for example, we know that the friction resulting from the rolling of a tire of a vehicle also decreases with the speed of rotation of the wheel (System Dynamics- A unified Approach, by Dean Karnopp and Ronald Rosenberg- John Wiley & Sons- Chapter 10-Tires, pages 343-344). As with a tricone bit, the torque resistant to the displacement of a vehicle wheel comes from rolling friction and from the tire sliding on the ground.

La figure 3 montre la réponse du modèle mathématique selon la figure 2 à une sollicitation créée par une variation de la vitesse de rotation appliquée à la garniture de forage par les moyens 9 (figure 2). Les conditions de frottement entre l'outil 5 et le front de taille 8 sont imposées selon une loi découlant des courbes de la figure 4. A l'instant 0, la vitesse est de 110 tours par minute. A l'instant référencé 13, la vitesse de rotation appliquée à la garniture de forage augmente jusqu'à atteindre 120 tours par minute. La courbe 16 représente la vitesse de rotation de l'outil de forage en fonction du temps. Le comportement de l'outil de forage en vitesse de rotation est instable et oscille autour de la valeur de consigne de 120 tours par minute. Pendant la durée référencée 14, la vitesse de rotation de l'outil varie selon des oscillations qui s'amplifient, puis atteignent un maximum d'amplitude selon un comportement stabilisé (15) représentant le dysfonctionnement "stick-slip" dans lequel la vitesse de rotation s'annule avant d'atteindre un maximum très supérieur à la vitesse de consigne.FIG. 3 shows the response of the mathematical model according to FIG. 2 to a stress created by a variation in the speed of rotation applied to the drill string by the means 9 (FIG. 2). The conditions of friction between the tool 5 and the cutting face 8 are imposed according to a law arising from the curves of FIG. 4. At time 0, the speed is 110 revolutions per minute. At the time referenced 13, the speed of rotation applied to the drill string increases until it reaches 120 revolutions per minute. Curve 16 represents the speed of rotation of the drilling tool as a function of time. The behavior of the drilling tool in rotation speed is unstable and oscillates around the set value of 120 revolutions per minute. During the period referenced 14, the speed of rotation of the tool varies according to oscillations which amplify, then reach a maximum of amplitude according to a stabilized behavior (15) representing the dysfunction "stick-slip" in which the speed of rotation is canceled before reaching a maximum much higher than the set speed.

Le modèle confirme et met en évidence que l'instabilité de la vitesse de rotation d'un outil de forage entraîné en rotation par une garniture de forage, est le résultat du fait que le couple à l'outil décroît en fonction d'une augmentation de la vitesse de rotation.The model confirms and highlights that the instability of the speed of rotation of a drilling tool driven in rotation by a drill string, is the result of the fact that the torque to the tool decreases as a function of an increase of the speed of rotation.

La présente invention propose d'empêcher l'apparition du dysfonctionnement dit "stick-slip" en rendant le comportement de l'outil de forage stable en vitesse de rotation en agissant sur la cause de l'instabilité.The present invention proposes to prevent the occurrence of the so-called "stick-slip" dysfunction by making the behavior of the drilling tool stable in rotation speed by acting on the cause of the instability.

Pour cela, deux méthodes sont préférentiellement utilisés et illustrés par les figures 5 et 6.For this, two methods are preferably used and illustrated by FIGS. 5 and 6.

Sur la figure 5, la courbe 17 représente le couple résistant à l'outil de forage dans la fourchette des vitesses de rotation N1 et N2. La courbe 18 représente un couple de friction fournit par des moyens appropriés solidaires de l'outil de forage ou des masses-tiges. En fonctionnement entre les vitesses de rotation N1 et N2, le couple global à l'outil de forage sera la somme du couple à l'outil et du couple supplémentaire. Le couple global est représenté ici par la courbe 19 résultant de l'addition de la courbe 17 avec la courbe 18. Les moyens de friction sont déterminés pour générer une courbe de friction 18 croissante avec la vitesse de rotation. Ainsi, la résistance globale à la rotation, au niveau de l'outil de forage, est représentée par une courbe 19 croissante en fonction de la vitesse.In FIG. 5, curve 17 represents the torque resistant to the drilling tool in the range of rotational speeds N1 and N2. Curve 18 represents a friction torque supplied by appropriate means integral with the drilling tool or drill collars. In operation between the rotational speeds N1 and N2, the overall torque at the drilling tool will be the sum of the torque at the tool and the additional torque. The overall torque is represented here by the curve 19 resulting from the addition of the curve 17 with the curve 18. The friction means are determined to generate a friction curve 18 increasing with the speed of rotation. Thus, the overall resistance to rotation, at the level of the drilling tool, is represented by an increasing curve 19 as a function of the speed.

Dans ces conditions, lorsque la vitesse de rotation de la garniture varie dans l'intervalle N1 et N2, la vitesse de rotation de l'outil oscille autour de la vitesse moyenne de la garniture mais sera convergente vers la vitesse de la garniture. Le dysfonctionnement "stick-slip" n'apparaîtra pas. La simulation par le modèle de la figure 2 confirme la stabilité de la vitesse de l'outil de forage.Under these conditions, when the speed of rotation of the lining varies in the interval N1 and N2, the speed of rotation of the tool oscillates around the average speed of the lining but will converge towards the speed of the lining. The stick-slip malfunction will not appear. The simulation by the model in FIG. 2 confirms the stability of the speed of the drilling tool.

Les moyens de friction peuvent nécessiter une mesure de la vitesse de rotation de l'outil de forage pour contrôler, par exemple par des commandes électroniques, la valeur du couple supplémentaire en fonction de la vitesse. Des moyens purement mécaniques peuvent aussi être utilisés comme moyens de réglage de la friction.The friction means may require a measurement of the speed of rotation of the drilling tool to control, for example by electronic controls, the value of the additional torque as a function of the speed. Purely mechanical means can also be used as friction adjustment means.

La figure 7A illustre des moyens de friction conçus à partir d'un stabilisateur à géométrie variable 22. Les moyens 22 sont fixés sur un outil 20 en opération de forage d'un puits 21. Des patins 23, 25, 26 présentent des surfaces de friction avec les parois du puits 21 de façon à créer un couple de friction. Le nombre de patins en contact avec les parois est fonction de la vitesse mesurée par l'appareillage de mesure et de contrôle 24 qui commande la sortie du nombre de patins nécessaires à ce que le couple résistant supplémentaire suive une loi de croissance semblable à la courbe 18. Les stabilisateurs à géométrie variable dont les lames sont mobiles radialement sont connus et ne seront pas décrit ici. Un capteur de vitesse de rotation intégré à l'appareil 24 commande un moyen de motorisation qui déplace radialement des lames d'appui contre la paroi du puits. L'énergie pour activer le moteur peut provenir d'accumulateur électrique, d'une turbine de génération d'électricité ou de la pression du fluide de forage en circulation dans la garniture.FIG. 7A illustrates friction means designed from a stabilizer with variable geometry 22. The means 22 are fixed on a tool 20 in the drilling operation of a well 21. Skids 23, 25, 26 have surfaces of friction with the walls of the well 21 so as to create a friction torque. The number of pads in contact with the walls is a function of the speed measured by the measuring and control apparatus 24 which controls the output of the number of pads necessary for the additional resistive torque to follow a growth law similar to the curve. 18. Variable geometry stabilizers whose blades are radially movable are known and will not be described here. A rotation speed sensor integrated into the device 24 controls a motorization means which radially moves the support blades against the wall of the well. The energy to activate the motor can come from an electric accumulator, an electricity generating turbine or the pressure of the drilling fluid circulating in the lining.

Selon la figure 7B, on peut remplacer les patins de friction par des rouleaux 27 à axe parallèle à l'axe de rotation de l'outil 20. Le nombre de rouleaux répartis sur la circonférence sera déterminé pour un bon centrage de l'outil dans le puits. Des moyens de poussée, hydrauliques ou mécaniques, appliquent les rouleaux contre les parois du puits. La rotation de l'outil de forage fait tourner les rouleaux 27 en contact avec les parois du puits, par exemple comme un aléseur à rouleaux couramment utilisé par la profession, le ferait. Ici, il n'est pas souhaitable que la surface des rouleaux soit agressive vis à vis des parois, mais suffisante pour que la résistance au roulement crée un couple supplémentaire au couple à l'outil de façon à ce que le comportement "stick-slip" n'apparaisse pas. Un appareillage de mesure et de contrôle 24 règle en fonction de la vitesse de rotation la résistance au roulement par exemple en régulant le freinage des rouleaux et/ou la force d'application des rouleaux sur les parois du puits.According to FIG. 7B, the friction pads can be replaced by rollers 27 with an axis parallel to the axis of rotation of the tool 20. The number of rollers distributed over the circumference will be determined for proper centering of the tool in the well. Pushing means, hydraulic or mechanical, apply the rollers against the walls of the well. The rotation of the drilling tool rotates the rollers 27 in contact with the walls of the well, for example as a roller reamer commonly used by the profession, would. Here, it is not desirable for the surface of the rollers to be aggressive with respect to the walls, but sufficient for the rolling resistance to create an additional torque to the tool torque so that the "stick-slip" behavior "does not appear. A measuring and control apparatus 24 adjusts the rolling resistance as a function of the speed of rotation, for example by regulating the braking of the rollers and / or the force of application of the rollers to the walls of the well.

La figure 6 qui reprend, pour l'exemple seulement, en partie la figure 4, illustre un autre moyen de rendre stable en vitesse le comportement d'un outil de forage. Le point A représente le point de fonctionnement au poids sur l'outil de 2,7 tonnes, à la vitesse de rotation NA et au couple CA. Lorsque la vitesse augmente de NA jusqu'à NB tout en procurant une augmentation de poids sur l'outil correspondant au point B à sensiblement 3 tonnes, le point de fonctionnement suit le chemin montré par les flèches 30. Le couple à l'outil devient CB supérieur à CA. Ainsi, de façon apparente, une augmentation de la vitesse de rotation a provoqué une augmentation du couple réactif à l'outil. Dans ces conditions, le comportement de l'outil de forage est stable en vitesse comme cela a été décrit plus haut. Pour réaliser cette stabilité, la solution est ici de créer une augmentation déterminée de poids sur l'outil en fonction d'une augmentation de la vitesse de rotation.FIG. 6 which reproduces, for the example only, in part FIG. 4, illustrates another means of making the behavior of a drilling tool stable in speed. Point A represents the operating point at the weight on the tool of 2.7 tonnes, at the speed of rotation N A and at the torque C A. When the speed increases from N A to N B while providing an increase in weight on the tool corresponding to point B at substantially 3 tonnes, the operating point follows the path shown by the arrows 30. The torque at tool becomes C B greater than C A. Thus, apparently, an increase in the speed of rotation caused an increase in the reactive torque to the tool. Under these conditions, the behavior of the drilling tool is stable in speed as described above. To achieve this stability, the solution here is to create a determined increase in weight on the tool as a function of an increase in the speed of rotation.

La figure 7C montre le principe d'une réalisation de moyens d'application d'un poids sur l'outil supplémentaire quand la vitesse de rotation augmente. L'outil 20 est vissé sur un mandrin 31 contenu dans un corps 32. Le corps 32 est solidaire des masses-tiges. Le mandrin 31 peut coulisser longitudinalement sur une longueur déterminée tout en étant fixé en rotation, par exemple par un système 38 de clavette dans une rainure. La forme du mandrin 31 est telle qu'il aménage deux chambres 33 et 34 annulaires entre l'extérieur du mandrin et l'intérieur du corps 32. Des éléments d'étanchéité, non représentés ici, isolent les chambres entre elles et avec l'extérieur. Ces chambres sont remplies d'un fluide sensiblement incompressible. Des moyens de réglage 35 de la pression hydraulique dans les chambres 33 et 34 communiquent avec ces chambres par des conduites 36 et 37. Un appareillage 24 de mesure et de contrôle commande les moyens de réglage 35 en fonction de la mesure de la vitesse de rotation. Le fonctionnement de tels moyens peut être le suivant: Le foreur pose par exemple 2,7 tonnes sur un outil entraîné en rotation par la garniture de forage en rotation à la vitesse NA. Le foreur doit veiller à avoir un excédent de poids de masses-tiges dans la garniture de façon à pouvoir appliquer une augmentation de poids par exemple de 0,3 tonnes. Cette sécurité sur le poids de masses-tiges est en générale courante dans la profession. Pendant le forage, lorsque la vitesse de l'outil passe de NA à NB, l'appareil 24 détecte cette augmentation et envoie l'ordre aux moyens de réglage 35 d'augmenter la pression hydraulique dans la chambre 33 à une valeur telle que cette augmentation de pression correspond à environ 0,3 tonnes. Ainsi selon la figure 6 prise en exemple, le point de fonctionnement est passé de la courbe 11 à 2,7 tonnes, à un point B appartenant à une courbe à 3 tonnes, non représentée sur l'exemple. Le comportement de l'outil de forage est ainsi celui d'un outil dont le couple résistant est croissant avec la vitesse.FIG. 7C shows the principle of an embodiment of means for applying a weight to the additional tool when the speed of rotation increases. The tool 20 is screwed onto a mandrel 31 contained in a body 32. The body 32 is integral with the drill collars. The mandrel 31 can slide longitudinally over a determined length while being fixed in rotation, for example by a key system 38 in a groove. The shape of the mandrel 31 is such that it provides two annular chambers 33 and 34 between the exterior of the mandrel and the interior of the body 32. Sealing elements, not shown here, isolate the chambers from each other and with the outside. These chambers are filled with a substantially incompressible fluid. Means 35 for adjusting the hydraulic pressure in the chambers 33 and 34 communicate with these chambers by conduits 36 and 37. An apparatus 24 for measurement and control controls the adjustment means 35 as a function of measuring the speed of rotation. The operation of such means can be as follows: The driller places, for example, 2.7 tonnes on a tool driven in rotation by the drilling string in rotation at the speed N A. The driller must ensure that there is an excess of weight of drill collars in the packing so as to be able to apply an increase in weight, for example of 0.3 tonnes. This safety on the weight of drill collars is generally common in the profession. During drilling, when the speed of the tool changes from N A to N B , the apparatus 24 detects this increase and sends the order to the adjusting means 35 to increase the hydraulic pressure in the chamber 33 to a value such that this increase in pressure corresponds to about 0.3 tonnes. Thus according to FIG. 6 taken as an example, the operating point has gone from curve 11 to 2.7 tonnes, to a point B belonging to a curve at 3 tonnes, not shown in the example. The behavior of the drilling tool is thus that of a tool whose resistive torque increases with speed.

On ne sortira pas du cadre de cette invention si d'autres moyens sont utilisés pour obtenir les mêmes effets techniques que ceux décrits dans la présente spécification.It will not depart from the scope of this invention if other means are used to obtain the same technical effects as those described in this specification.

Claims (8)

  1. A method of controlling the stability of the rotation speed of a drill bit driven in rotation by a drill string which is itself rotated by mechanical means at the surface, the said bit being subjected to an end torque due to the action of drilling a well bore, in which an additional resisting torque is created in the vicinity of the bit as a function of the rotation speed of the bit and a given value so that the overall end torque at the drill bit resulting from the sum of the torque at the bit and the said additional torque is an increasing function of the rotation speed of the bit.
  2. A method as claimed in claim 1, characterised in that the said additional resisting torque is created by friction means joined to the drill string in the vicinity of the bit.
  3. A method as claimed in claim 1, characterised in that the said additional resisting torque is created by increasing the weight on the bit.
  4. A method as claimed in claim 3, characterised in that the said increase in weight on the tool is provided by specific means positioned in the vicinity of the bit and activated by the rotation speed of the drill bit.
  5. A system for controlling the stability of the rotation speed of a drill bit driven in rotation by means of a drill string which is itself rotated by mechanical means from the surface, the said bit being subjected to an end torque due to the action of drilling a well bore, the said system having regulating means joined to the drill string in the vicinity of the bit, the said means being designed to create an additional resisting torque at the bit, the value of the said torque being a function of the rotation speed of the bit.
  6. A system as claimed in claim 5, characterised in that the said regulating means have means for producing friction on the well walls.
  7. A system as claimed in claim 5, characterised in that the said regulating means have means for varying the force applied by the tool to the bottom of the well bore.
  8. A system as claimed in claim 5, characterised in that the said regulating means have means for measuring the rotation speed of the drill bit and means for regulating the value of the additional resisting torque as a function of the rotation speed of the bit.
EP94402698A 1993-12-08 1994-11-25 Method and system for the control of the "stick-slip" of a drill tool Expired - Lifetime EP0657620B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9314837 1993-12-08
FR9314837A FR2713700B1 (en) 1993-12-08 1993-12-08 Method and system for controlling the stability of the rotation speed of a drilling tool.

Publications (2)

Publication Number Publication Date
EP0657620A1 EP0657620A1 (en) 1995-06-14
EP0657620B1 true EP0657620B1 (en) 1997-06-18

Family

ID=9453781

Family Applications (1)

Application Number Title Priority Date Filing Date
EP94402698A Expired - Lifetime EP0657620B1 (en) 1993-12-08 1994-11-25 Method and system for the control of the "stick-slip" of a drill tool

Country Status (4)

Country Link
US (1) US5507353A (en)
EP (1) EP0657620B1 (en)
FR (1) FR2713700B1 (en)
NO (1) NO306521B1 (en)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2720440B1 (en) * 1994-05-24 1996-07-05 Inst Francais Du Petrole Method and system for transmitting a drilling signal.
EP0870899A1 (en) * 1997-04-11 1998-10-14 Shell Internationale Researchmaatschappij B.V. Drilling assembly with reduced stick-slip tendency
US6173793B1 (en) 1998-12-18 2001-01-16 Baker Hughes Incorporated Measurement-while-drilling devices with pad mounted sensors
US6179066B1 (en) 1997-12-18 2001-01-30 Baker Hughes Incorporated Stabilization system for measurement-while-drilling sensors
NO322069B1 (en) * 1998-01-15 2006-08-07 Baker Hughes Inc Method and apparatus for stabilizing a drill string by formation evaluation paint
AU1401101A (en) 1999-11-10 2001-06-06 Petroleum Research And Development N.V. Control method for use with a steerable drilling system
US6962214B2 (en) 2001-04-02 2005-11-08 Schlumberger Wcp Ltd. Rotary seal for directional drilling tools
US6467341B1 (en) 2001-04-24 2002-10-22 Schlumberger Technology Corporation Accelerometer caliper while drilling
US7188685B2 (en) * 2001-12-19 2007-03-13 Schlumberge Technology Corporation Hybrid rotary steerable system
SE529230C2 (en) * 2004-12-10 2007-06-05 Atlas Copco Rock Drills Ab Device and method of drilling in rock
US7540337B2 (en) * 2006-07-03 2009-06-02 Mcloughlin Stephen John Adaptive apparatus, system and method for communicating with a downhole device
CN101408100B (en) * 2008-11-25 2012-09-05 天水电气传动研究所有限责任公司 Method and system for controlling rotary tray flexible torque of electric drill
RU2478781C2 (en) * 2008-12-02 2013-04-10 НЭШНЛ ОЙЛВЕЛЛ ВАРКО, Эл.Пи. Method and device to reduce oscillations of sticking-slipping in drilling string
PL2549055T3 (en) 2008-12-02 2015-02-27 Nat Oilwell Varco Lp Method and apparatus for reducing stick-slip
GB2500494B (en) * 2010-11-10 2018-10-17 Baker Hughes Inc Drilling control system and method
US10409300B2 (en) * 2013-06-27 2019-09-10 Schlumberger Technology Corporation Changing set points in a resonant system
US10689967B2 (en) 2017-05-05 2020-06-23 Schlumberger Technology Corporation Rotational oscillation control using weight

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1703234A (en) * 1920-11-04 1929-02-26 Erle P Halliburton Method and apparatus for drilling wells, such as oil wells
US1786173A (en) * 1926-04-17 1930-12-23 Standard Oil Co California Drilling apparatus
US1935105A (en) * 1931-07-18 1933-11-14 Standard Oil Co Torque control drill feed
US3550697A (en) * 1966-04-27 1970-12-29 Henry Hobhouse Drilling condition responsive drive control
US3593807A (en) * 1969-12-11 1971-07-20 Frank J Klima Drilling apparatus
US3675727A (en) * 1970-10-23 1972-07-11 Wallace Clark Apparatus and method for governing the operation of down- hole earth boring motors
US4660656A (en) * 1985-11-22 1987-04-28 Amoco Corporation Method and apparatus for controlling the rotational torque of a drill bit
FR2666374B1 (en) * 1990-09-04 1996-01-26 Elf Aquitaine METHOD FOR DETERMINING THE ROTATION SPEED OF A DRILLING TOOL.
US5226332A (en) * 1991-05-20 1993-07-13 Baker Hughes Incorporated Vibration monitoring system for drillstring

Also Published As

Publication number Publication date
EP0657620A1 (en) 1995-06-14
US5507353A (en) 1996-04-16
NO944726D0 (en) 1994-12-07
FR2713700A1 (en) 1995-06-16
FR2713700B1 (en) 1996-03-15
NO944726L (en) 1995-06-09
NO306521B1 (en) 1999-11-15

Similar Documents

Publication Publication Date Title
EP0657620B1 (en) Method and system for the control of the "stick-slip" of a drill tool
AU2014234394B2 (en) Method and system for damping vibrations in a tool string system
CA2647397C (en) Device for steering drilling tools
RU2087701C1 (en) Method and system for control of oscillations in drilling equipment
CN103270243B (en) Control the vibration in well system
FR2732403A1 (en) METHOD AND SYSTEM FOR PREDICTING THE APPEARANCE OF DYSFUNCTION DURING DRILLING
US8919457B2 (en) Apparatus and method for determining axial forces on a drill string during underground drilling
CA2594925A1 (en) Pump control for formation testing
WO2011010016A2 (en) Drill pipe and corresponding drill fitting
CN103827695A (en) Mud powered inertia drive oscillating pulser
FR2641317A1 (en) DRILL LINING EQUIPMENT COMPRISING AN ACTUATOR, A MOTOR AND CONTROL MEANS
FR2646464A1 (en) METHOD AND CONTROL ASSEMBLY OF ROCK DRILLING APPARATUS
FR2487908A1 (en) METHOD AND DEVICE FOR TELETRANSMISSION OF DATA FROM A BOREHOLE
FR2582049A1 (en) METHOD AND DEVICE FOR ACTUATING A VALVE AND TRANSMITTING SIGNALS BY PRESSURE PULSES
WO2016041671A1 (en) System for controlling the movement of a load
FR2611804A1 (en) METHOD FOR CONTROLLING WELL DRILLING OPERATIONS
FR2686425A1 (en) SEISMIC SOURCE OF WELLS.
EP1571517A1 (en) Control method for damping helicopter vibrations and device executing that method
FR2463256A1 (en) BACKHOE DRILLING TOOL AND METHOD OF DRILLING A SURVEY USING THE SAME
WO1992014908A1 (en) Method for automatically monitoring the vibrational condition of a drill string
EP3655591B1 (en) Static penetrometer and method of use
FR2816020A1 (en) METHOD FOR IMPLEMENTING AND INSTALLING REGULATION OF A CLUTCH
FR2545534A1 (en) APPARATUS FOR TRANSMITTING AND INDICATING TORQUE IN BOTTOM
WO1996023127A1 (en) Method and system for logging mechanical parameters of formations crossed through by a borehole
EP0461963B1 (en) Method and device for logging non-eruptive wells

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): GB IT NL

17P Request for examination filed

Effective date: 19951214

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

17Q First examination report despatched

Effective date: 19961029

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

ITF It: translation for a ep patent filed

Owner name: MARIETTI E GISLON S.R.L.

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): GB IT NL

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19970619

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20011022

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20011130

Year of fee payment: 8

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20021125

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030601

GBPC Gb: european patent ceased through non-payment of renewal fee
NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20030601

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20051125