EP0656072A4 - Composition de liant et procede d'agglomeration de matiere particulaire. - Google Patents
Composition de liant et procede d'agglomeration de matiere particulaire.Info
- Publication number
- EP0656072A4 EP0656072A4 EP92917701A EP92917701A EP0656072A4 EP 0656072 A4 EP0656072 A4 EP 0656072A4 EP 92917701 A EP92917701 A EP 92917701A EP 92917701 A EP92917701 A EP 92917701A EP 0656072 A4 EP0656072 A4 EP 0656072A4
- Authority
- EP
- European Patent Office
- Prior art keywords
- cellulose
- guar
- soluble polymer
- water
- carboxymethyl
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000203 mixture Substances 0.000 title claims abstract description 79
- 239000011230 binding agent Substances 0.000 title claims abstract description 66
- 238000000034 method Methods 0.000 title claims abstract description 43
- 230000008569 process Effects 0.000 title claims abstract description 39
- 239000011236 particulate material Substances 0.000 title claims abstract description 31
- 239000003518 caustics Substances 0.000 claims abstract description 46
- 229920003169 water-soluble polymer Polymers 0.000 claims abstract description 25
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 23
- 238000005054 agglomeration Methods 0.000 claims abstract description 15
- 230000002776 aggregation Effects 0.000 claims abstract description 15
- 230000027455 binding Effects 0.000 claims abstract description 15
- 230000002708 enhancing effect Effects 0.000 claims abstract description 9
- 238000002156 mixing Methods 0.000 claims abstract description 7
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 claims description 63
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical group [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 48
- 239000001768 carboxy methyl cellulose Substances 0.000 claims description 38
- -1 hydroxypropyl Chemical group 0.000 claims description 32
- 229920002134 Carboxymethyl cellulose Polymers 0.000 claims description 29
- 235000010948 carboxy methyl cellulose Nutrition 0.000 claims description 29
- 239000008112 carboxymethyl-cellulose Substances 0.000 claims description 29
- 244000007835 Cyamopsis tetragonoloba Species 0.000 claims description 24
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 claims description 24
- 229910052742 iron Inorganic materials 0.000 claims description 24
- 229910052783 alkali metal Inorganic materials 0.000 claims description 17
- 229910052751 metal Inorganic materials 0.000 claims description 14
- 239000002184 metal Substances 0.000 claims description 14
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 claims description 13
- 229920002678 cellulose Polymers 0.000 claims description 13
- 239000001913 cellulose Substances 0.000 claims description 13
- 235000010980 cellulose Nutrition 0.000 claims description 13
- 235000017550 sodium carbonate Nutrition 0.000 claims description 12
- 229910000029 sodium carbonate Inorganic materials 0.000 claims description 12
- 229920002472 Starch Polymers 0.000 claims description 11
- 125000002057 carboxymethyl group Chemical group [H]OC(=O)C([H])([H])[*] 0.000 claims description 11
- 150000003839 salts Chemical class 0.000 claims description 11
- 235000019698 starch Nutrition 0.000 claims description 11
- 229920000881 Modified starch Polymers 0.000 claims description 10
- 229920002401 polyacrylamide Polymers 0.000 claims description 10
- 239000008107 starch Substances 0.000 claims description 10
- 239000004354 Hydroxyethyl cellulose Substances 0.000 claims description 9
- 229920000663 Hydroxyethyl cellulose Polymers 0.000 claims description 9
- DPXJVFZANSGRMM-UHFFFAOYSA-N acetic acid;2,3,4,5,6-pentahydroxyhexanal;sodium Chemical compound [Na].CC(O)=O.OCC(O)C(O)C(O)C(O)C=O DPXJVFZANSGRMM-UHFFFAOYSA-N 0.000 claims description 9
- 235000019447 hydroxyethyl cellulose Nutrition 0.000 claims description 9
- 229920000058 polyacrylate Polymers 0.000 claims description 9
- 235000019812 sodium carboxymethyl cellulose Nutrition 0.000 claims description 9
- 229920001027 sodium carboxymethylcellulose Polymers 0.000 claims description 9
- 235000019426 modified starch Nutrition 0.000 claims description 8
- 229920003090 carboxymethyl hydroxyethyl cellulose Polymers 0.000 claims description 7
- 239000000047 product Substances 0.000 claims description 7
- 239000001509 sodium citrate Substances 0.000 claims description 7
- NLJMYIDDQXHKNR-UHFFFAOYSA-K sodium citrate Chemical compound O.O.[Na+].[Na+].[Na+].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O NLJMYIDDQXHKNR-UHFFFAOYSA-K 0.000 claims description 7
- 229920001577 copolymer Polymers 0.000 claims description 6
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 claims description 5
- 229920001479 Hydroxyethyl methyl cellulose Polymers 0.000 claims description 5
- 239000002253 acid Substances 0.000 claims description 5
- 239000002699 waste material Substances 0.000 claims description 5
- 239000004368 Modified starch Substances 0.000 claims description 4
- 229920003171 Poly (ethylene oxide) Polymers 0.000 claims description 4
- 229920000615 alginic acid Polymers 0.000 claims description 4
- 235000010443 alginic acid Nutrition 0.000 claims description 4
- 239000000908 ammonium hydroxide Substances 0.000 claims description 4
- 235000013365 dairy product Nutrition 0.000 claims description 4
- 229920000609 methyl cellulose Polymers 0.000 claims description 4
- 239000001923 methylcellulose Substances 0.000 claims description 4
- 235000010981 methylcellulose Nutrition 0.000 claims description 4
- 229920001277 pectin Polymers 0.000 claims description 4
- 235000010987 pectin Nutrition 0.000 claims description 4
- 239000001814 pectin Substances 0.000 claims description 4
- 239000002023 wood Substances 0.000 claims description 4
- 239000006227 byproduct Substances 0.000 claims description 3
- 239000000230 xanthan gum Substances 0.000 claims description 3
- 229920001285 xanthan gum Polymers 0.000 claims description 3
- 235000010493 xanthan gum Nutrition 0.000 claims description 3
- 229940082509 xanthan gum Drugs 0.000 claims description 3
- LNAZSHAWQACDHT-XIYTZBAFSA-N (2r,3r,4s,5r,6s)-4,5-dimethoxy-2-(methoxymethyl)-3-[(2s,3r,4s,5r,6r)-3,4,5-trimethoxy-6-(methoxymethyl)oxan-2-yl]oxy-6-[(2r,3r,4s,5r,6r)-4,5,6-trimethoxy-2-(methoxymethyl)oxan-3-yl]oxyoxane Chemical compound CO[C@@H]1[C@@H](OC)[C@H](OC)[C@@H](COC)O[C@H]1O[C@H]1[C@H](OC)[C@@H](OC)[C@H](O[C@H]2[C@@H]([C@@H](OC)[C@H](OC)O[C@@H]2COC)OC)O[C@@H]1COC LNAZSHAWQACDHT-XIYTZBAFSA-N 0.000 claims 1
- 239000008188 pellet Substances 0.000 description 50
- 238000007792 addition Methods 0.000 description 23
- 229920000642 polymer Polymers 0.000 description 21
- 239000012141 concentrate Substances 0.000 description 16
- 229910052500 inorganic mineral Inorganic materials 0.000 description 15
- 235000010755 mineral Nutrition 0.000 description 15
- 239000011707 mineral Substances 0.000 description 15
- 235000011121 sodium hydroxide Nutrition 0.000 description 14
- 239000000463 material Substances 0.000 description 12
- 238000005453 pelletization Methods 0.000 description 11
- 239000000440 bentonite Substances 0.000 description 10
- 229910000278 bentonite Inorganic materials 0.000 description 10
- SVPXDRXYRYOSEX-UHFFFAOYSA-N bentoquatam Chemical compound O.O=[Si]=O.O=[Al]O[Al]=O SVPXDRXYRYOSEX-UHFFFAOYSA-N 0.000 description 10
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 9
- 239000002245 particle Substances 0.000 description 8
- 238000010304 firing Methods 0.000 description 6
- CWYNVVGOOAEACU-UHFFFAOYSA-N Fe2+ Chemical compound [Fe+2] CWYNVVGOOAEACU-UHFFFAOYSA-N 0.000 description 5
- 230000006872 improvement Effects 0.000 description 5
- 229920001353 Dextrin Polymers 0.000 description 4
- 239000004375 Dextrin Substances 0.000 description 4
- 229920002153 Hydroxypropyl cellulose Polymers 0.000 description 4
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 4
- 230000007423 decrease Effects 0.000 description 4
- 235000019425 dextrin Nutrition 0.000 description 4
- 238000001035 drying Methods 0.000 description 4
- 239000001863 hydroxypropyl cellulose Substances 0.000 description 4
- 235000010977 hydroxypropyl cellulose Nutrition 0.000 description 4
- 239000007788 liquid Substances 0.000 description 4
- VTHJTEIRLNZDEV-UHFFFAOYSA-L magnesium dihydroxide Chemical compound [OH-].[OH-].[Mg+2] VTHJTEIRLNZDEV-UHFFFAOYSA-L 0.000 description 4
- 239000000347 magnesium hydroxide Substances 0.000 description 4
- 229910001862 magnesium hydroxide Inorganic materials 0.000 description 4
- 239000000377 silicon dioxide Substances 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- 150000004676 glycans Chemical class 0.000 description 3
- SZVJSHCCFOBDDC-UHFFFAOYSA-N iron(II,III) oxide Inorganic materials O=[Fe]O[Fe]O[Fe]=O SZVJSHCCFOBDDC-UHFFFAOYSA-N 0.000 description 3
- 229920005610 lignin Polymers 0.000 description 3
- 229920001282 polysaccharide Polymers 0.000 description 3
- 239000005017 polysaccharide Substances 0.000 description 3
- 230000002195 synergetic effect Effects 0.000 description 3
- 241000219310 Beta vulgaris subsp. vulgaris Species 0.000 description 2
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 2
- 244000303965 Cyamopsis psoralioides Species 0.000 description 2
- 229920002907 Guar gum Polymers 0.000 description 2
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 2
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 2
- 235000019738 Limestone Nutrition 0.000 description 2
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 2
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 2
- WCUXLLCKKVVCTQ-UHFFFAOYSA-M Potassium chloride Chemical compound [Cl-].[K+] WCUXLLCKKVVCTQ-UHFFFAOYSA-M 0.000 description 2
- 238000003723 Smelting Methods 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- 235000021536 Sugar beet Nutrition 0.000 description 2
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 2
- 229920006318 anionic polymer Polymers 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- 150000001768 cations Chemical class 0.000 description 2
- 239000004927 clay Substances 0.000 description 2
- 239000003245 coal Substances 0.000 description 2
- 239000000571 coke Substances 0.000 description 2
- 239000000470 constituent Substances 0.000 description 2
- 239000010459 dolomite Substances 0.000 description 2
- 229910000514 dolomite Inorganic materials 0.000 description 2
- 239000000428 dust Substances 0.000 description 2
- 230000004907 flux Effects 0.000 description 2
- 239000000665 guar gum Substances 0.000 description 2
- 235000010417 guar gum Nutrition 0.000 description 2
- 229960002154 guar gum Drugs 0.000 description 2
- 239000011019 hematite Substances 0.000 description 2
- 229910052595 hematite Inorganic materials 0.000 description 2
- LIKBJVNGSGBSGK-UHFFFAOYSA-N iron(3+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[Fe+3].[Fe+3] LIKBJVNGSGBSGK-UHFFFAOYSA-N 0.000 description 2
- 239000011133 lead Substances 0.000 description 2
- 239000006028 limestone Substances 0.000 description 2
- 239000011777 magnesium Substances 0.000 description 2
- 229910052749 magnesium Inorganic materials 0.000 description 2
- 229910000000 metal hydroxide Inorganic materials 0.000 description 2
- 150000004692 metal hydroxides Chemical class 0.000 description 2
- 229920005615 natural polymer Polymers 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- 238000006116 polymerization reaction Methods 0.000 description 2
- 229910052700 potassium Inorganic materials 0.000 description 2
- 239000011591 potassium Substances 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 230000000717 retained effect Effects 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 239000011734 sodium Substances 0.000 description 2
- 229910052708 sodium Inorganic materials 0.000 description 2
- 229910052725 zinc Inorganic materials 0.000 description 2
- 239000011701 zinc Substances 0.000 description 2
- 241000609240 Ambelania acida Species 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229920000742 Cotton Polymers 0.000 description 1
- 241000196324 Embryophyta Species 0.000 description 1
- 229920000896 Ethulose Polymers 0.000 description 1
- 239000001859 Ethyl hydroxyethyl cellulose Substances 0.000 description 1
- 241001465754 Metazoa Species 0.000 description 1
- 206010067482 No adverse event Diseases 0.000 description 1
- 240000007594 Oryza sativa Species 0.000 description 1
- 235000007164 Oryza sativa Nutrition 0.000 description 1
- 239000004372 Polyvinyl alcohol Substances 0.000 description 1
- 229920001131 Pulp (paper) Polymers 0.000 description 1
- 206010039509 Scab Diseases 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- 229910052770 Uranium Inorganic materials 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- WYTGDNHDOZPMIW-RCBQFDQVSA-N alstonine Natural products C1=CC2=C3C=CC=CC3=NC2=C2N1C[C@H]1[C@H](C)OC=C(C(=O)OC)[C@H]1C2 WYTGDNHDOZPMIW-RCBQFDQVSA-N 0.000 description 1
- 125000000129 anionic group Chemical group 0.000 description 1
- 229920006320 anionic starch Polymers 0.000 description 1
- 229910052787 antimony Inorganic materials 0.000 description 1
- WATWJIUSRGPENY-UHFFFAOYSA-N antimony atom Chemical compound [Sb] WATWJIUSRGPENY-UHFFFAOYSA-N 0.000 description 1
- 239000010905 bagasse Substances 0.000 description 1
- RQPZNWPYLFFXCP-UHFFFAOYSA-L barium dihydroxide Chemical compound [OH-].[OH-].[Ba+2] RQPZNWPYLFFXCP-UHFFFAOYSA-L 0.000 description 1
- 229910001863 barium hydroxide Inorganic materials 0.000 description 1
- 230000008275 binding mechanism Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910021538 borax Inorganic materials 0.000 description 1
- 150000001642 boronic acid derivatives Chemical class 0.000 description 1
- AXCZMVOFGPJBDE-UHFFFAOYSA-L calcium dihydroxide Chemical compound [OH-].[OH-].[Ca+2] AXCZMVOFGPJBDE-UHFFFAOYSA-L 0.000 description 1
- 239000000920 calcium hydroxide Substances 0.000 description 1
- 229910001861 calcium hydroxide Inorganic materials 0.000 description 1
- 239000001506 calcium phosphate Substances 0.000 description 1
- 235000011010 calcium phosphates Nutrition 0.000 description 1
- 239000006229 carbon black Substances 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 125000002091 cationic group Chemical group 0.000 description 1
- DVRDHUBQLOKMHZ-UHFFFAOYSA-N chalcopyrite Chemical compound [S-2].[S-2].[Fe+2].[Cu+2] DVRDHUBQLOKMHZ-UHFFFAOYSA-N 0.000 description 1
- 229910052951 chalcopyrite Inorganic materials 0.000 description 1
- 239000003610 charcoal Substances 0.000 description 1
- FOCAUTSVDIKZOP-UHFFFAOYSA-N chloroacetic acid Chemical compound OC(=O)CCl FOCAUTSVDIKZOP-UHFFFAOYSA-N 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 239000000839 emulsion Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 235000019326 ethyl hydroxyethyl cellulose Nutrition 0.000 description 1
- 239000003337 fertilizer Substances 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- 239000003500 flue dust Substances 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 239000006066 glass batch Substances 0.000 description 1
- 229910052598 goethite Inorganic materials 0.000 description 1
- 239000008187 granular material Substances 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 230000012010 growth Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 150000004679 hydroxides Chemical class 0.000 description 1
- AEIXRCIKZIZYPM-UHFFFAOYSA-M hydroxy(oxo)iron Chemical compound [O][Fe]O AEIXRCIKZIZYPM-UHFFFAOYSA-M 0.000 description 1
- 239000001866 hydroxypropyl methyl cellulose Substances 0.000 description 1
- 229920003088 hydroxypropyl methyl cellulose Polymers 0.000 description 1
- 235000010979 hydroxypropyl methyl cellulose Nutrition 0.000 description 1
- UFVKGYZPFZQRLF-UHFFFAOYSA-N hydroxypropyl methyl cellulose Chemical compound OC1C(O)C(OC)OC(CO)C1OC1C(O)C(O)C(OC2C(C(O)C(OC3C(C(O)C(O)C(CO)O3)O)C(CO)O2)O)C(CO)O1 UFVKGYZPFZQRLF-UHFFFAOYSA-N 0.000 description 1
- 229920000831 ionic polymer Polymers 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- YDZQQRWRVYGNER-UHFFFAOYSA-N iron;titanium;trihydrate Chemical compound O.O.O.[Ti].[Fe] YDZQQRWRVYGNER-UHFFFAOYSA-N 0.000 description 1
- TWNIBLMWSKIRAT-VFUOTHLCSA-N levoglucosan Chemical group O[C@@H]1[C@@H](O)[C@H](O)[C@H]2CO[C@@H]1O2 TWNIBLMWSKIRAT-VFUOTHLCSA-N 0.000 description 1
- 238000011068 loading method Methods 0.000 description 1
- 239000000395 magnesium oxide Substances 0.000 description 1
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 1
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 239000013528 metallic particle Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- FQPSGWSUVKBHSU-UHFFFAOYSA-N methacrylamide Chemical compound CC(=C)C(N)=O FQPSGWSUVKBHSU-UHFFFAOYSA-N 0.000 description 1
- CXHHBNMLPJOKQD-UHFFFAOYSA-N methyl hydrogen carbonate Chemical group COC(O)=O CXHHBNMLPJOKQD-UHFFFAOYSA-N 0.000 description 1
- 238000005065 mining Methods 0.000 description 1
- 239000010450 olivine Substances 0.000 description 1
- 229910052609 olivine Inorganic materials 0.000 description 1
- 239000013618 particulate matter Substances 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 239000002367 phosphate rock Substances 0.000 description 1
- 229920005596 polymer binder Polymers 0.000 description 1
- 239000002491 polymer binding agent Substances 0.000 description 1
- 229920002451 polyvinyl alcohol Polymers 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 239000001103 potassium chloride Substances 0.000 description 1
- 235000011164 potassium chloride Nutrition 0.000 description 1
- 229910001414 potassium ion Inorganic materials 0.000 description 1
- OTYBMLCTZGSZBG-UHFFFAOYSA-L potassium sulfate Chemical compound [K+].[K+].[O-]S([O-])(=O)=O OTYBMLCTZGSZBG-UHFFFAOYSA-L 0.000 description 1
- 229910052939 potassium sulfate Inorganic materials 0.000 description 1
- 235000011151 potassium sulphates Nutrition 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 229910052683 pyrite Inorganic materials 0.000 description 1
- 239000011028 pyrite Substances 0.000 description 1
- NIFIFKQPDTWWGU-UHFFFAOYSA-N pyrite Chemical compound [Fe+2].[S-][S-] NIFIFKQPDTWWGU-UHFFFAOYSA-N 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- 235000009566 rice Nutrition 0.000 description 1
- 239000011435 rock Substances 0.000 description 1
- 238000012216 screening Methods 0.000 description 1
- 230000035040 seed growth Effects 0.000 description 1
- 229910021646 siderite Inorganic materials 0.000 description 1
- 150000004760 silicates Chemical class 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 229940023144 sodium glycolate Drugs 0.000 description 1
- 159000000000 sodium salts Chemical class 0.000 description 1
- 239000004328 sodium tetraborate Substances 0.000 description 1
- 235000010339 sodium tetraborate Nutrition 0.000 description 1
- 235000019832 sodium triphosphate Nutrition 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000004449 solid propellant Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 238000001694 spray drying Methods 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 229920001059 synthetic polymer Polymers 0.000 description 1
- 239000000454 talc Substances 0.000 description 1
- 229910052623 talc Inorganic materials 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- 239000011135 tin Substances 0.000 description 1
- QORWJWZARLRLPR-UHFFFAOYSA-H tricalcium bis(phosphate) Chemical class [Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O QORWJWZARLRLPR-UHFFFAOYSA-H 0.000 description 1
- JEJAMASKDTUEBZ-UHFFFAOYSA-N tris(1,1,3-tribromo-2,2-dimethylpropyl) phosphate Chemical compound BrCC(C)(C)C(Br)(Br)OP(=O)(OC(Br)(Br)C(C)(C)CBr)OC(Br)(Br)C(C)(C)CBr JEJAMASKDTUEBZ-UHFFFAOYSA-N 0.000 description 1
- UONOETXJSWQNOL-UHFFFAOYSA-N tungsten carbide Chemical compound [W+]#[C-] UONOETXJSWQNOL-UHFFFAOYSA-N 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
- JFALSRSLKYAFGM-UHFFFAOYSA-N uranium(0) Chemical compound [U] JFALSRSLKYAFGM-UHFFFAOYSA-N 0.000 description 1
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
- 239000007762 w/o emulsion Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B1/00—Preliminary treatment of ores or scrap
- C22B1/14—Agglomerating; Briquetting; Binding; Granulating
- C22B1/24—Binding; Briquetting ; Granulating
- C22B1/242—Binding; Briquetting ; Granulating with binders
- C22B1/243—Binding; Briquetting ; Granulating with binders inorganic
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B1/00—Preliminary treatment of ores or scrap
- C22B1/14—Agglomerating; Briquetting; Binding; Granulating
- C22B1/24—Binding; Briquetting ; Granulating
- C22B1/242—Binding; Briquetting ; Granulating with binders
- C22B1/244—Binding; Briquetting ; Granulating with binders organic
Definitions
- the present invention relates to a novel binder composition for agglomerating particulate materials, a novel process for agglomerating particulate materials using said binder composition, and to the agglomerated products produced from said process.
- the process is particularly useful for agglomerating metallic ores such as iron ore.
- Agglomeration is commercially used in industries where materials are encountered in a form which is too finely divided for convenient processing or handling. Thus, there is a need to upgrade the size, density and/or uniformity of finely divided particles for more efficient handling, processing or recovery. Agglomeration is particularly useful in the metal refining industry, where the concentrate ore encountered is typically finely divided.
- a binding agent is added to the wetted mineral ore concentrate and the binder/mineral ore composite is conveyed to a balling drum or other means for pelletizing the ore.
- the binding agent serves to hold or bind the mineral ore together until after firing.
- the pellets are formed, but they are still wet. These wet pellets are commonly referred to as “green pellets” or “green balls”. These green pellets are thereafter transported to a kiln and heated in stages to a end temperature of about 2400°F.
- bentonite clay was the binding agent of choice in the pelletizing operations for mineral ore concentrates.
- Use of bentonite as a binding agent produces balls or pellets having a very good wet and dry strengths and also provides a desired degree of moisture control.
- Use of bentonite does, however, have several disadvantages. Initially, bentonite adds to the silica content of the pellets when the ore pellets are fired at a temperature of 2400 ⁇ F or higher. Higher amounts of silica are not desirable because silica decreases the efficiency of blast furnace operations used in smelting the ore.
- alkalis are oxides of, for example, sodium and potassium.
- alkalis oxides of, for example, sodium and potassium.
- the presence of alkalis in the blast furnace causes both the pellets and coke to deteriorate and to form scabs on the furnace wall, which increases fuel consumption and decreases the productivity of the smelting operation.
- Organic binders have proven to be an attractive alternative to bentonite because organic binders do not increase the silica content of the ore and they impart physical and mechanical properties to the pellets comparable with those of bentonite. Organic binders also burn out during ball firing operations thus causing an increase in the microporosity of the pellets. Accordingly, the pore volume and surface/mass ratio of the formed pellets produced using organic binders is larger than that of pellets produced using bentonite. Due to the larger surface area and increased permeability of the pellets produced using organic binders, the reduction of metallic oxides such as iron oxide is more efficient than with pellets prepared with bentonite.
- organic binders examples include polyacrylate, polyacrylamide and copoly ers thereof, methacrylamide, polymethacrylamide, cellulose derivatives such as alkali metal salts of carboxymethyl cellulose and carboxy ethylhydroxyethyl cellulose, poly (ethylene oxide) , guar gum, dairy wastes, starches, dextrins, wood related products, alginates, pectins, and the like.
- compositions for iron ore agglomeration which comprise 10-45% by weight of a water-in-oil emulsion of a water soluble vinyl addition polymer, 55-90% by weight of a polysaccharide, .001 - 10% by weight of a water soluble surfactant and 0-15 weight % of Borax.
- U. S. Patent No. 4,948,430 discloses a binder for the agglomeration of ore in the presence of water, which comprises 10% - 90% of a water soluble sodium carboxymethylhydroxyethyl cellulose and 10% to 90% of sodium carbonate.
- U. S. Patent No. 4,288,245 discloses pelletization of metallic ores, especially iron ore, with carboxymethyl cellulose and the salt of a weak acid.
- U. S. Patent No. 4,863,512 relates to a binder for metallic containing ores which comprises an alkali metal salt of carboxymethyl cellulose and sodium tripolyphosphate.
- European Patent Application Publication No. 0 376 713 discloses a process for making pellets of particulate metal ore, particularly iron ore.
- the process comprises mixing a water-soluble polymer with the particular metal ore and water and pelletizing the mixture.
- the water-soluble polymer may be of any typical type, e.g., natural, modified natural or synthetic.
- the mixture may optionally comprise a pelletizing aid which may be sodium citrate.
- Organic binder compositions such as those mentioned above, are not, however, without their own disadvantages. While they are effective binders, they generally do not impart adequate dry strength to the pellets at economical use levels.
- the present invention generally relates to a process for agglomerating particulate material in the presence of water which comprises mixing said particulate material with a binding effective amount of at least one water soluble polymer, and a binder enhancing effective amount of caustic to produce a mixture, and forming said mixture into agglomerates.
- the present invention contemplates a binder composition useful for the agglomeration of particulate material in the presence of water which comprises a binding effective amount of at least one water soluble polymer and a binder enhancing effective amount of caustic.
- the present invention generally relates to a process of agglomerating particulate materials, especially metal containing ores, in the presence of water.
- the process comprises mixing said particulate material with a binding effective amount of at least one polymer and a binder enhancing effective amount of caustic to produce a mixture, and thereafter or contemporaneously forming said mixture into agglomerates.
- the present inventors have found that the addition of caustic, in either liquid or powdered form, to the mineral ore, as an integral part of the organic binder or as a separate entity, unexpectedly provides a synergistic effect in the pelletization process, giving the resultant pellets superior wet drop numbers and dry crush strength compared to pellets formed without the use of caustic.
- This increase in performance obtained by the addition of caustic allows the user to effectively reduce the amount of organic binder required thus significantly reducing total binder cost.
- agglomerated or "agglomeration” as used in the context of the present invention shall mean the processing of finely divided materials, whether in powder, dust, chip, or other particulate form, to form pellets, granules, briquettes, and the like.
- the particulate material which may be agglomerated in accordance with this present invention may be almost any finely divided material including metallic minerals or ore.
- the predominant metal component in said ore may be iron, chrome, copper, nickel, zinc, lead, uranium, borium and the like. Mixtures of the above materials or any other metal occurring in the free or molecularly combined material state as a mineral, or any combination of the above, or other metals, or metal containing ores capable of pelletization, may be agglomerated in accordance with the present invention.
- the present invention is particularly well adapted for the agglomeration of materials containing iron, including iron ore deposits, ore tailings, cold and hot fines from a sinter process or aqueous iron ore concentrates from natural sources or recovered from various processes.
- Iron ore or any of a wide variety of the following minerals may form a part of the material to be agglomerated: taconite, magnetite, hematite, limonite, goethite, siderite, franklinite, pyrite, chalcopyrite, chromite, ilmenite and the like.
- Minerals other than metallic minerals which may be agglomerated in accordance with the invention include phosphate rock, talc, dolomite, limestone and the like. Still other materials which may be agglomerated in accordance with the present invention include fertilizer materials such as potassium sulfate, potassium chloride, double sulfate of potassium and magnesium; magnesium oxide; animals feeds such as calcium phosphates; carbon black; coal fines; catalyst mixtures; glass batch mixtures; borates, tungsten carbide; refractory gunning mixes; antimony, flue dust from, for example, power generating plants, solid fuels such as coal, coke or charcoal, blast furnace fines and the like.
- fertilizer materials such as potassium sulfate, potassium chloride, double sulfate of potassium and magnesium
- animals feeds such as calcium phosphates; carbon black; coal fines; catalyst mixtures; glass batch mixtures; borates, tungsten carbide; refractory gunning mixes; antimony, flue dust from
- the water-soluble polymer(s) useful in the present invention include but are not limited to:
- Water-soluble natural polymers such as guar gum, starch, alginates, pectins, xanthan gum, dairy wastes, wood related products, lignin and the like;
- Modified natural polymers such as guar derivatives (e.g. hydroxypropyl guar, carboxymethyl guar, carboxymethylhydroxypropyl guar), modified starch (e.g. anionic starch, cationic starch) , starch derivatives (e.g. dextrin) and cellulose derivatives such as alkali metal salts of carboxymethyl cellulose, hydroxyethyl cellulose, hydroxypropyl cellulose, carboxymethylhydroxyethyl cellulose, methyl cellulose, lignin derivatives (e.g. carboxymethyl lignin) and the like; and/or
- Synthetic polymers e.g. polyacrylamides such as partially hydrated polyacrylamides; polyacrylates and copolymers thereof; polyethylene oxides, and the like.
- the foregoing polymers may be used alone or in various combinations of two or more polymers.
- Water-soluble anionic polymers are a preferred class of polymers to be employed in the present invention.
- Preferred polymers for use in the present invention are alkali metal salts of carboxymethyl cellulose. Any substantially water-soluble alkali metal salt of carboxymethyl cellulose may be used in this invention.
- the sodium salt is, however, preferred.
- Alkali metal salts of carboxymethyl cellulose, more particularly sodium carboxymethyl cellulose are generally prepared from alkali cellulose and the respective alkali metal salt of monochloroacetic acid.
- Cellulose which is used in the manufacture of sodium carboxymethyl cellulose is generally derived from wood pulp or cotton linters, but may be derived from other sources such as sugar beet pulp, bagasse, rice hulls, bran, microbially- derived cellulose, and waste cellulose e.g. shredded paper) .
- the sodium carboxymethyl cellulose used in the present invention generally has a degree of substitution (the average number of carboxymethyl ether groups per repeating anhydroglucose chain unit of the cellulose molecule) of from about 0.4 to about 1.5, more preferably about 0.6 to about 0.9, and most preferably about 0.7.
- the average degree of polymerization of the cellulose furnish is from about 50 to about 4000. Polymers having a degree of polymerization on the higher end of the range are preferred. It is more preferred to use sodium carboxymethyl cellulose having a Brookfield viscosity in a 1% aqueous solution of more than 2000 cps at 30 rpm, spindle #4. Still more preferred is sodium carboxymethyl cellulose having a Brookfield viscosity in a 1% aqueous solution of more than about 4,000 cps at 30 rpm, spindle #4.
- a series of commercially available binders containing sodium carboxymethyl cellulose especially useful in the present invention is marketed by the Dreeland, Inc. of Virginia, MN, Denver, CO, and Akzo Chemicals of Amersfoort, the Netherlands, under the trademark Peridur® .
- binding effective amount of polymer will vary depending upon numerous factors known to the skilled artisan. Such factors include, but are not limited to, the type of particulate material to be agglomerated or pelletized, the moisture content of the particulate material, particle size, the agglomeration equipment utilized, and the desired properties of the final product, e.g. dry strength (crush) , drop number, pellet size and smoothness.
- a binding effective amount of polymer will typically be in the range of between about 0.01% to 1% by weight based on the dry weight of the mixture of particulate material, polymer and caustic.
- the polymer is present in a range of between about 0.01 to 0.4% by weight, and most preferred, about 0.04%.
- the term "caustic” shall mean any source of hydroxide ions (OH") including, but not limited to sodium hydroxide, potassium hydroxide, ammonium hydroxide, calcium hydroxide, barium hydroxide, magnesium hydroxide, mixtures thereof and the like.
- a "binder enhancing effective amount of caustic” depends on the same factors as does the binding effective amount of polymer.
- a binding effective amount of caustic will typically be in the range of between about .004% to .15% by weight based on the dry mixture of particulate material, polymer and caustic.
- caustic is present in the range of between about .01% to .04% by weight, and most preferred at about .03% by weight.
- the present invention contemplates a process of agglomerating particulate material in the presence of water which comprises mixing said particulate material with between about 0.01% to 1% by weight of at least one water soluble polymer selected from hydroxyethyl cellulose, alkali metal salts of carboxymethyl cellulose, methyl cellulose, methylhydroxyethyl cellulose and mixtures thereof, and .004% to .15% by weight of sodium hydroxide to produce a mixture, and forming said mixture into agglomerates.
- at least one water soluble polymer selected from hydroxyethyl cellulose, alkali metal salts of carboxymethyl cellulose, methyl cellulose, methylhydroxyethyl cellulose and mixtures thereof, and .004% to .15% by weight of sodium hydroxide
- the present invention contemplates a process of agglomerating iron ore wherein said ore is mixed with between about 0.01 to 0.4% by weight of an alkali metal salt of carboxymethyl cellulose, from about 0.01 to .04% by weight sodium hydroxide, and from about 0.02-0.5 wt% (based on dry ore) of soda ash, to produce a mixture, and forming said mixture into agglomerates.
- Agglomerated particulate materials formed from any of the foregoing processes is also deemed to be within the scope of the present invention.
- the present invention also contemplates a binder composition useful for the agglomeration of particulate materials.
- the binder composition comprises a binding effective amount of at least one water soluble polymer, and a binder enhancing effective amount of caustic.
- the present invention contemplates a binder composition which comprises between about 10% to 95% by weight of a water soluble polymer and between about 2% to 50% by weight of caustic (wt% binder composition) .
- the present invention contemplates a binder composition useful for the agglomeration of iron ore in the presence of water which comprises between about 45% to 95% by weight of a water-soluble alkali metal salt of carboxymethyl cellulose and 10% to 40% by weight of sodium hydroxide.
- the present invention contemplates a binder composition which comprises between about 50% to 80% by weight of an alkali metal salt of carboxymethyl cellulose, between about 10% to 35% by weight of caustic, and between about 2% to 20% by weight of a salt of a weak acid, such as sodium citrate and or soda ash.
- a binder composition which comprises between about 50% to 80% by weight of an alkali metal salt of carboxymethyl cellulose, between about 10% to 35% by weight of caustic, and between about 2% to 20% by weight of a salt of a weak acid, such as sodium citrate and or soda ash.
- the binder composition of the present invention may also contain other substances, for instance, those that are formed as by-products in the preparation of the alkali metal salt of carboxymethyl cellulose, such as sodium chloride and sodium glycolate, as well as other polysaccharides or synthetic water-soluble polymers and other "inorganic salts" (for want of a better term sodium carbonate, sodium citrate, and the like are referred to as “inorganic salts” herein) .
- Exemplary polysaccharides include, e.g., hydroxyethyl cellulose, hydroxypropyl cellulose, carboxymethylhydroxyethyl cellulose, methyl cellulose, hydroxypropyl methyl cellulose, guar, hydroxpropyl guar and sugar beet pulp, and the like.
- Exemplary synthetic water-soluble polymers include partially hydrated polyacrylamide, polyvinyl alcohol, styrene/maleic anhydride copolymers, and polyacrylate and copolymers thereof, etc.
- Exemplary inorganic salts include, e. g. the salts described by Roorda in U. S. Patent Nos. 4,288,245 and 4,597,797 such as sodium citrate, soda ash, and the like.
- the ratios of polymer, e.g. alkali metal salt of carboxymethyl cellulose, caustic and water to particulate material, e.g. concentrated ore are dependent on various factors including the agglomeration method used, the material to be agglomerated and the desired properties of the agglomerates to be prepared. A person of ordinary skill in the art can readily determine the specific amounts that will be most suitable for individual circumstances. Pelletization is generally carried out using the binder composition in an amount of from about 0.0044% to about 0.44%, preferably from about 0.022% to about 0.22% (by weight of the total dry mixture) , of the binder composition and about 2% to about 20%, preferably about 5% to about 15%, water, by weight of the total dry mixture.
- clays such as bentonite clay may be used in pelletization.
- the total amount of these clays will depend on the user's objectives, but will generally be less than 0.22%, based on the weight of the total dry mixture.
- Any known method for forming dry pellets or particles can be used to prepare the agglomerates of this invention.
- the concentrated ore may be agglomerated into particles or agglomerates by rotating the concentrated ore powder in a drum or disc with a binder and water, followed by drying and firing. Agglomerates can also be formed by briquetting, nodulizing, or spray drying.
- binder composition constituents may be carried out in any manner commonly applied in the art.
- the binder constituents may be mixed as solid matter with the concentrated ore in a dry or liquid form or as an emulsion or dispersion. Further, they may be simultaneously, successively or alternatively added to the concentrated ore before or during the pelletizing treatment.
- liquid caustic is sprayed on moist concentrated ore resulting from the aforementioned separation process, which has all but about 10 wt% of the water removed by, e.g. rotating disc filter.
- the polymeric binder composition is applied so that the binder components and concentrated ore are well mixed and adequately hydrated prior to being formed into green pellets.
- the water content should generally be in the range of about 4 to 30 wt% based on the weight of dry particulate matter and most preferably between about 7 and 12 wt%.
- Other substances may also be optionally added to the binder composition of the present invention.
- small amounts of flux e. g. , limestone or dolomite may also be added to enhance mechanical properties of the pellets.
- the flux also helps to reduce the dust level in the indurating furnace when the pellets are fired.
- Olivine, serpentine, magnesium and similar minerals may be used to improve metallurgical properties of the pellets. Drying the wet balls and firing the resultant dry balls may be carried out as one continuous or two separate steps. The important factors are that the balls must be dry prior to firing as the balls will degrade or spall if fired without first drying them.
- the balls be heated slowly to a temperature of at least about 2200°F, preferably to at least about 2400 ⁇ F and then fired at that temperature.
- they are dried at low temperatures, preferably by heating, or alternatively, under ambient conditions, and then fired at a temperature of at least about 2200 ⁇ F, more preferably at about 2400 ⁇ F. Firing is carried out for a sufficient period of time to bond the small particles into pellets with enough strength to enable transportation and/or further handling, generally about 15 minutes to about 3 hours.
- the process of the present invention is preferably employed with concentrated iron ore.
- This process is also suitable for non-ferrous concentrated ores such as ores of zinc, lead, tin, nickel and chromium and oxidic materials such as silicates and quartz, and sulphidic materials.
- this invention is intended for use in binding the concentrated ores which result from separation of the host rock from the ore removed from the ground. However, it can also be used to bind natural ores.
- pellets resulting from this process are dry, hard agglomerates having sizes that are suitable for, e. g. shipping, handling, sintering, etc.
- Pellets generally have an average diameter of about 1/4 to about 1 inch, preferably about 1/2 inch.
- Pellet size is generally a function of the user and operator's preference, more than of binding ability of the compositions of this invention and virtually any size pellet desired by blast furnace operations and mine operations can be prepared.
- the invention is further described by the following non- limiting examples. For the purpose of characterizing the agglomerates formed, use is made of the following procedure and test protocol.
- the process was begun by placing 2500 grams (calculated as dry weight) of iron ore concentrate (moisture content approximately 9 to 10 wt. %) into a Mullen Mixer (Model No. 1 Cincinnati Muller, manufactured by National Engineering Co.).
- polymer is then added to the mixer and spread evenly over the iron ore concentrate. If a mixture of polymers was used, the mixture was premixed by hand prior to addition to the muller mixer. The loaded mixer was run for three (3) minutes to evenly distribute the polymer. The resulting concentrate mixture was screened to remove particles smaller than those retained on an 8 mesh wire screen.
- a balling disc fabricated from an airplane tire (approx. 16" diameter) driven by a motor having a 60 RPM rotational speed was employed to produce green balls of the concentrate mixture.
- Pellet "seeds” were formed by placing a small portion of the screened concentrate mixture in the rotating balling tire and adding atomized water to initiate seed growth. As the size of the seed pellets.approached 4 mesh, they were removed from the balling disc and screened. The seed pellets with a size between 4 and 6 mesh were retained. This process was repeated if necessary until 34 grams of seed pellets were collected.
- Finished green balls were produced by placing the 34 grams of seed pellets of size between 4 and 6 mesh into the rotating tire of the balling disc and adding portion of the remaining concentrate mixture from the muller mixer over a 4 minute growth period. Atomized water was added if necessary. When the proper size was achieved (-0.530 inch, +0.500 inch) concentrate mixture addition ceased and the pellets were allowed a 30 second finishing roll. The agglomerated pellets were removed from the disc, screened to -0.530, +0.500 inch size and stored in an air-tight container until they were tested.
- Wet Drop Number was determined by repeatedly dropping two groups of ten (10) pellets each from an 18 inch height to a steel plate until a crack appeared on the surface of each pellet. The number of drops required to produce a crack on the surface of each pellet was recorded. The average of all 20 pellets was taken to determine the drop number of each agglomerated mixture.
- Dry Crush Strength was determined by drying twenty (20) pellets of each agglomerated mixture to measure the moisture content. The dry pellets were then individually subjected to a Chatillon Spring Compression Tester, Model LTCM (25 pound range) at a loading rate of 0.1 inch/second. The dry strength report for each agglomerate mixture is the average cracking pressure of the twenty pellets.
- Example 1 The following samples demonstrate processes and the binders of the present invention employing various polymers with sodium hydroxide and other OH " , as binding agents for particulate material, which is iron ore unless otherwise specified.
- Example 1 The following samples demonstrate processes and the binders of the present invention employing various polymers with sodium hydroxide and other OH " , as binding agents for particulate material, which is iron ore unless otherwise specified.
- CMC carboxymethyl cellulose
- 25 CMC is greatly enhanced by the addition of NaOH.
- the wet drops start to decrease, probably from binder deterioration at higher pH levels.
- a CMC/soda ash combination was employed with and without the addition of NaOH.
- the CMC/soda ash combination consists of about 70 to 85% technical grade CMC and 15-30% soda ash.
- the data obtained is compiled in Table 3, below.
- Peridur®2.15, Peridur® 3.15 and Peridur® 3.30 are binder compositions commercially available from Dreeland, Inc. .
- CM Starch a carboxymethyl starch
- PL1400® is a polyacrylamide commercially available from
- FPIOO® is a polyacrylate commercially available from Polyacryl Inc.
- the polyacrylamide (PL1400® ) , the polyacrylate (FPIOO® ) , CMDHPC, CMHPC, and CM- Starch showed benefits throughout the addition of caustic. This was not the case with the CM-Guar. Small additions of caustic significantly improved performance, however when the dosage of caustic was increased beyond optimum levels, both the wet and dry strengths were destroyed.
- Non-ionic polymers have also been considered for use a binders. These polymers include, but are not limited to hydroxyethyl cellulose (HEC) , methyl hydroxyethyl cellulose (Meth. HEC) , hydroxypropyl cellulose (HPC) , starch, dextrin, guar (guar 5200) , and hydroxypropyl guar (HPG) .
- HEC hydroxyethyl cellulose
- Method. HEC methyl hydroxyethyl cellulose
- HPC hydroxypropyl cellulose
- starch starch
- dextrin guar
- guar 5200 guar 5200
- HPG hydroxypropyl guar
- Example 7 All previous testing employed only NaOH as a source of OH" ions.
- the present example investigates the use of other metal hydroxides for synergistic effect. The results are tabulated in Table 7.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Geology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Environmental & Geological Engineering (AREA)
- Inorganic Chemistry (AREA)
- Manufacture And Refinement Of Metals (AREA)
- Glanulating (AREA)
- Polysaccharides And Polysaccharide Derivatives (AREA)
- Processes Of Treating Macromolecular Substances (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Catalysts (AREA)
- Separation Of Suspended Particles By Flocculating Agents (AREA)
- Compositions Of Oxide Ceramics (AREA)
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/US1992/006551 WO1994003648A1 (fr) | 1992-08-06 | 1992-08-06 | Composition de liant et procede d'agglomeration de matiere particulaire |
CA002141787A CA2141787C (fr) | 1992-08-06 | 1992-08-06 | Composition liante et procede pour agglomerer des substances particulaires |
BR9207150A BR9207150A (pt) | 1992-08-06 | 1992-08-06 | Processo e composição aglutinante para aglomeração de material particulade e minério de ferro na presença de água |
Publications (3)
Publication Number | Publication Date |
---|---|
EP0656072A1 EP0656072A1 (fr) | 1995-06-07 |
EP0656072A4 true EP0656072A4 (fr) | 1996-06-26 |
EP0656072B1 EP0656072B1 (fr) | 2000-03-15 |
Family
ID=27160068
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP92917701A Expired - Lifetime EP0656072B1 (fr) | 1992-08-06 | 1992-08-06 | Composition de liant et procede d'agglomeration de matiere particulaire |
Country Status (9)
Country | Link |
---|---|
EP (1) | EP0656072B1 (fr) |
AT (1) | ATE190671T1 (fr) |
AU (1) | AU685385B2 (fr) |
BR (1) | BR9207150A (fr) |
CA (1) | CA2141787C (fr) |
DE (1) | DE69230806T2 (fr) |
ES (1) | ES2144422T3 (fr) |
NO (1) | NO311227B1 (fr) |
WO (1) | WO1994003648A1 (fr) |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1035481C (zh) * | 1994-06-30 | 1997-07-23 | 潘金海 | 一种球团矿用冶金有机粘结剂 |
CN1037516C (zh) * | 1995-07-03 | 1998-02-25 | 潘金海 | 一种冶金烧结用添加剂 |
US20040221426A1 (en) | 1997-10-30 | 2004-11-11 | Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) | Method of producing iron oxide pellets |
CA2251339A1 (fr) | 1997-10-30 | 1999-04-30 | Hidetoshi Tanaka | Methode de production de granules d'oxyde de fer |
GB9724032D0 (en) * | 1997-11-13 | 1998-01-14 | Allied Colloids Ltd | Ore pelletisation |
DE10027796A1 (de) * | 2000-06-07 | 2002-01-10 | Thyssen Krupp Metallurg Gmbh | Verfahren zum Brikettieren von Nickeloxid-Pulver, sowie Nickeloxid-Brikett |
EP2675906A1 (fr) * | 2011-02-16 | 2013-12-25 | Solix Biosystems, Inc. | Compositions et procédés pour l'extraction de micro-organismes par lixiviation |
DE102013114339A1 (de) * | 2013-12-18 | 2015-06-18 | Outotec (Finland) Oy | Verfahren zur Pelletierung von feinkörnigen Erzen |
RU2590034C1 (ru) * | 2015-01-12 | 2016-07-10 | Общество с ограниченной ответственностью "Научно-производственное внедренческое предприятие ТОРЭКС" | Способ интенсификации процессов окускования железорудных материалов |
IT201800006815A1 (it) * | 2018-06-29 | 2019-12-29 | An organic-inorganic hybrid material comprising a metal and lignin, processes for preparing the same and uses thereof / materiale ibrido organico-inorganico comprendente metallo e lignina, processi per la sua preparazione e suoi usi | |
CN109112297B (zh) * | 2018-10-19 | 2020-08-28 | 攀钢集团攀枝花钢铁研究院有限公司 | 转炉富集污泥成型用粘结剂及转炉富集污泥成型方法 |
WO2021234759A1 (fr) * | 2020-05-18 | 2021-11-25 | 日本製鉄株式会社 | Procédé de production de matériau aggloméré et matériau aggloméré |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US825440A (en) * | 1905-08-10 | 1906-07-10 | Wesley G Woodmansee | Ironing-table. |
US4288245A (en) * | 1975-11-20 | 1981-09-08 | Akzo Nv | Process for producing agglomerates of metal containing ores and the product of the process |
US4751259A (en) * | 1987-08-05 | 1988-06-14 | Nalco Chemical Company | Compositions for iron ore agglomeration |
EP0297553A1 (fr) * | 1987-06-29 | 1989-01-04 | Aqualon Company | Liant pour minerais |
EP0376713A2 (fr) * | 1988-12-30 | 1990-07-04 | Ciba Specialty Chemicals Water Treatments Limited | Procédé et compositions pour bouletage de matières particulaires |
US4948430A (en) * | 1989-06-15 | 1990-08-14 | Aqualon Company | Ore pellets containing carboxymethylhydroxyethylcellulose and sodium carbonate |
EP0427602A1 (fr) * | 1989-11-06 | 1991-05-15 | Roquette FrÀ¨res | Agent liant et composition liante pour l'agglomération de matériaux finement divisés, agglomérés ainsi obtenus et procédé pour les préparer |
WO1992005290A1 (fr) * | 1990-09-26 | 1992-04-02 | Oriox Technologies, Inc. | Liant a base d'amidon naturel modifie utilise pour agglomerer en boulettes un materiau mineral |
US5112582A (en) * | 1990-04-09 | 1992-05-12 | Betz Laboratories, Inc. | Agglomerating agents for clay containing ores |
EP0541181A1 (fr) * | 1991-11-07 | 1993-05-12 | Akzo Nobel N.V. | Procédé d'agglomération de matières particulaires et les produits obtenus par ce procédé |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2914394A (en) * | 1956-04-05 | 1959-11-24 | Dohmen Heinrich | Briquetting of ores |
US2862809A (en) * | 1956-08-14 | 1958-12-02 | Olin Mathieson | Soda ash briquette and its method of manufacture |
US3644113A (en) * | 1968-09-04 | 1972-02-22 | Int Minerals & Chem Corp | Agglomerate including graft copolymers of acylic acid and methyl cellulose and method of making |
US3852059A (en) * | 1972-03-09 | 1974-12-03 | Allied Chem | Process for the production of sodium chromate from chromite ore |
MC1284A1 (fr) * | 1979-06-11 | 1980-07-22 | Daussan & Co | Produit isolant granulaire et son procede de preparation |
US5112391A (en) * | 1990-03-30 | 1992-05-12 | Nalco Chemical Company | Method of forming ore pellets with superabsorbent polymer |
-
1992
- 1992-08-06 CA CA002141787A patent/CA2141787C/fr not_active Expired - Lifetime
- 1992-08-06 ES ES92917701T patent/ES2144422T3/es not_active Expired - Lifetime
- 1992-08-06 AT AT92917701T patent/ATE190671T1/de not_active IP Right Cessation
- 1992-08-06 DE DE69230806T patent/DE69230806T2/de not_active Expired - Fee Related
- 1992-08-06 BR BR9207150A patent/BR9207150A/pt not_active IP Right Cessation
- 1992-08-06 WO PCT/US1992/006551 patent/WO1994003648A1/fr active IP Right Grant
- 1992-08-06 AU AU24067/92A patent/AU685385B2/en not_active Ceased
- 1992-08-06 EP EP92917701A patent/EP0656072B1/fr not_active Expired - Lifetime
-
1995
- 1995-02-03 NO NO19950401A patent/NO311227B1/no not_active IP Right Cessation
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US825440A (en) * | 1905-08-10 | 1906-07-10 | Wesley G Woodmansee | Ironing-table. |
US4288245A (en) * | 1975-11-20 | 1981-09-08 | Akzo Nv | Process for producing agglomerates of metal containing ores and the product of the process |
EP0297553A1 (fr) * | 1987-06-29 | 1989-01-04 | Aqualon Company | Liant pour minerais |
US4863512A (en) * | 1987-06-29 | 1989-09-05 | Aqualon Company | Binder for metal-containing ores |
US4751259A (en) * | 1987-08-05 | 1988-06-14 | Nalco Chemical Company | Compositions for iron ore agglomeration |
EP0376713A2 (fr) * | 1988-12-30 | 1990-07-04 | Ciba Specialty Chemicals Water Treatments Limited | Procédé et compositions pour bouletage de matières particulaires |
US4948430A (en) * | 1989-06-15 | 1990-08-14 | Aqualon Company | Ore pellets containing carboxymethylhydroxyethylcellulose and sodium carbonate |
EP0427602A1 (fr) * | 1989-11-06 | 1991-05-15 | Roquette FrÀ¨res | Agent liant et composition liante pour l'agglomération de matériaux finement divisés, agglomérés ainsi obtenus et procédé pour les préparer |
US5112582A (en) * | 1990-04-09 | 1992-05-12 | Betz Laboratories, Inc. | Agglomerating agents for clay containing ores |
WO1992005290A1 (fr) * | 1990-09-26 | 1992-04-02 | Oriox Technologies, Inc. | Liant a base d'amidon naturel modifie utilise pour agglomerer en boulettes un materiau mineral |
EP0541181A1 (fr) * | 1991-11-07 | 1993-05-12 | Akzo Nobel N.V. | Procédé d'agglomération de matières particulaires et les produits obtenus par ce procédé |
Non-Patent Citations (1)
Title |
---|
DE SOUZA ET AL.: "Production of Acid Iron Ore Pellet for Direct Reduction, Using an Organic Binder", MINING ENGINEERING, October 1984 (1984-10-01), pages 1437 - 1441, XP002001468 * |
Also Published As
Publication number | Publication date |
---|---|
DE69230806T2 (de) | 2000-11-16 |
AU685385B2 (en) | 1998-01-22 |
BR9207150A (pt) | 1995-12-12 |
NO950401L (no) | 1995-02-03 |
ES2144422T3 (es) | 2000-06-16 |
DE69230806D1 (de) | 2000-04-20 |
EP0656072B1 (fr) | 2000-03-15 |
NO950401D0 (no) | 1995-02-03 |
ATE190671T1 (de) | 2000-04-15 |
AU2406792A (en) | 1994-03-03 |
CA2141787A1 (fr) | 1994-02-17 |
CA2141787C (fr) | 2006-10-10 |
EP0656072A1 (fr) | 1995-06-07 |
WO1994003648A1 (fr) | 1994-02-17 |
NO311227B1 (no) | 2001-10-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6071325A (en) | Binder composition and process for agglomerating particulate material | |
US5698007A (en) | Process for agglomerating particulate material | |
EP2734653B2 (fr) | Composition de liant pour agglomération de matières minérales fines et procédé de pastillage | |
US5306327A (en) | Modified native starch base binder for pelletizing mineral material | |
CA2141787C (fr) | Composition liante et procede pour agglomerer des substances particulaires | |
EP1301641B1 (fr) | Agglomeration de materiaux en particules | |
AU610901B2 (en) | Binder for metal-containing ores | |
US3644113A (en) | Agglomerate including graft copolymers of acylic acid and methyl cellulose and method of making | |
CA2548395C (fr) | Procede de production d'agglomerats de minerai de fer utilisant un liant contenant du silicate de sodium | |
EP1540023B1 (fr) | Procede d'agglomeration de materiau particulaire | |
CA1336641C (fr) | Boulettes de minerai contenant de la carboxymethylhydroxyethylcellulose et du carbonate de sodium | |
US4919711A (en) | Binder for metal-containing ores | |
EP3218526B1 (fr) | Compositions de liant et procédés de préparation de pastilles de minerai de fer | |
US5171361A (en) | Modified native starch base binder for pelletizing mineral material | |
US20050183544A1 (en) | Method for producing mineral ore agglomerates using a hemicellulose binder and associated products | |
WO1992005290A1 (fr) | Liant a base d'amidon naturel modifie utilise pour agglomerer en boulettes un materiau mineral | |
US3425823A (en) | Method of improving shock temperature of metallic pellets |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 19950123 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE CH DE DK ES FR GB GR IT LI LU MC NL SE |
|
A4 | Supplementary search report drawn up and despatched | ||
AK | Designated contracting states |
Kind code of ref document: A4 Designated state(s): AT BE CH DE DK ES FR GB GR IT LI LU MC NL SE |
|
17Q | First examination report despatched |
Effective date: 19961122 |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE CH DE DK ES FR GB GR IT LI LU MC NL SE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20000315 Ref country code: GR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20000315 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20000315 |
|
REF | Corresponds to: |
Ref document number: 190671 Country of ref document: AT Date of ref document: 20000415 Kind code of ref document: T |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REF | Corresponds to: |
Ref document number: 69230806 Country of ref document: DE Date of ref document: 20000420 |
|
ET | Fr: translation filed | ||
ITF | It: translation for a ep patent filed | ||
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20000615 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2144422 Country of ref document: ES Kind code of ref document: T3 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: AT Payment date: 20000721 Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: LU Payment date: 20000802 Year of fee payment: 9 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY Effective date: 20000831 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20010806 Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20010806 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: IF02 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20080826 Year of fee payment: 17 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20080828 Year of fee payment: 17 Ref country code: FR Payment date: 20080818 Year of fee payment: 17 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20080827 Year of fee payment: 17 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20080930 Year of fee payment: 17 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: BE Payment date: 20080922 Year of fee payment: 17 |
|
BERE | Be: lapsed |
Owner name: *AKZO NOBEL N.V. Effective date: 20090831 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20090806 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20100430 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20090831 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20090831 Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20100302 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FD2A Effective date: 20090807 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20100824 Year of fee payment: 19 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20090806 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SE Payment date: 20100827 Year of fee payment: 19 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20090806 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20090807 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: V1 Effective date: 20120301 |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: EUG |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20120301 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20110807 |