EP0653693B1 - Apparatus for controlling the voltage drop across an appliance - Google Patents

Apparatus for controlling the voltage drop across an appliance Download PDF

Info

Publication number
EP0653693B1
EP0653693B1 EP94112798A EP94112798A EP0653693B1 EP 0653693 B1 EP0653693 B1 EP 0653693B1 EP 94112798 A EP94112798 A EP 94112798A EP 94112798 A EP94112798 A EP 94112798A EP 0653693 B1 EP0653693 B1 EP 0653693B1
Authority
EP
European Patent Office
Prior art keywords
current
voltage
consumer
load
transistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP94112798A
Other languages
German (de)
French (fr)
Other versions
EP0653693A3 (en
EP0653693A2 (en
Inventor
Klaus Dressler
Andreas Dipl.-Ing. Koch (Fh)
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP0653693A2 publication Critical patent/EP0653693A2/en
Publication of EP0653693A3 publication Critical patent/EP0653693A3/en
Application granted granted Critical
Publication of EP0653693B1 publication Critical patent/EP0653693B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F3/00Non-retroactive systems for regulating electric variables by using an uncontrolled element, or an uncontrolled combination of elements, such element or such combination having self-regulating properties
    • G05F3/02Regulating voltage or current
    • G05F3/08Regulating voltage or current wherein the variable is dc
    • G05F3/10Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics
    • G05F3/16Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices
    • G05F3/20Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices using diode- transistor combinations
    • G05F3/26Current mirrors
    • G05F3/267Current mirrors using both bipolar and field-effect technology
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • F02D2041/2017Output circuits, e.g. for controlling currents in command coils using means for creating a boost current or using reference switching
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • F02D2041/202Output circuits, e.g. for controlling currents in command coils characterised by the control of the circuit
    • F02D2041/2058Output circuits, e.g. for controlling currents in command coils characterised by the control of the circuit using information of the actual current value

Definitions

  • the invention relates to a device for regulating one Voltage drop according to the generic term of the independent consumer Claim.
  • Devices for regulating a voltage are known in which the difference between a target voltage and the measured voltage is fed to a controller. This controller forms a manipulated variable to act on an actuator.
  • the controllers used usually include operational amplifiers and capacities.
  • the operational amplifiers in particular require one very high expenditure on components and application. So conventional Controllers are set so that they work stably.
  • the invention has for its object in a device to provide a voltage regulator mentioned in the introduction, the is as simple as possible. This task is carried out by the in the Features characterized independent claim solved.
  • the device according to the invention has the advantage that the voltage regulator has very few easily integrated components. Furthermore, the voltage regulator works stably and does not incline Vibrations. In particular, the controller does not need to be specially designed become. The dynamics of the controller is only a few components determined and is therefore easy to control.
  • the invention is described below with reference to the drawing Embodiment explained.
  • the figure shows a schematic Representation of the circuit arrangement.
  • the exemplary embodiment described is a Device for regulating the voltage on a consumer, in particular on an electromagnetic consumer.
  • the device according to the invention in connection with internal combustion engines to be used, especially when metering Fuel in a combustion chamber of the internal combustion engine.
  • a solenoid valve can then be used in a particularly advantageous manner for controlling the metering of fuel into the internal combustion engine be used.
  • GDP Begin of Injection Period
  • the applied to the solenoid valve Tension to a constant value using a voltage regulator is regulated. It is particularly advantageous if the following Described device for determining the start of injection and / or used to characterize the injection end becomes.
  • the consumer is a Solenoid valve for determining the injected into an internal combustion engine Amount of fuel.
  • the device is used to Regulate the voltage at the solenoid valve to determine the point in time can, in which the armature of the solenoid valve reaches its end position.
  • FIG. 1 are essential elements of a device schematically for controlling a solenoid-controlled fuel metering device shown.
  • a connection of a consumer 100 in particular of an electromagnetic consumer is connected to a voltage supply device (Ubat).
  • the second connection of the consumer 100 stands via a switching means 110 and a sensor 145 with ground in Connection.
  • the sensor 145 is connected to an evaluation circuit 140 Connection.
  • the switching means 110 is preferably a field effect transistor realized.
  • Voltage current transformers 421 and 422 tap the potential values present at the connections of the consumer 100.
  • the voltage current transformers 421 and 422 apply a current I H and I L to a block 400.
  • block 400 is connected to a reference voltage V CC via a current source 450.
  • An output of block 400 is connected to the gate of field effect transistor 110 via a gate resistor 423.
  • block 400 is shown in more detail in FIG. Elements already described in FIG. 1 are shown in FIG. 2 with corresponding ones Reference numbers marked.
  • the voltage current transformers act on block 400, which is essentially a first Current mirror 410 and a second current mirror 420 include.
  • the Voltage current transformers act on the first current mirror 410 Stream.
  • the first current mirror 410 is in turn with a second Current mirror 420 connected. This is over a gate resistance 423 in connection with the gate of the field effect transistor 110.
  • a current mirror is usually understood to mean interconnection two semiconductor elements in such a way that a current through the one semiconductor element a corresponding or proportional Current through the other semiconductor element results. If two transistors are used for a current mirror circuit, the two switching paths of the transistors form two current paths.
  • a transistor 440 serves as the second Current path and a transistor 445 as the first current path.
  • the potentials at the two connections of the consumer 100 are over the two resistors 421 and 422 tapped.
  • the first resistor 421 is connected to the collector of the transistor via a node 449 440 of the second current path of the first current mirror in connection.
  • the second resistor 422 is connected to a node 448 with the collector of transistor 445 of the first current path of the first current mirror in connection.
  • the base of transistor 440 and the base of transistor 445 are connected via point 446.
  • the point 446 is also with the point 448 connected.
  • a transistor 430 forms the first Rung.
  • the collector of transistor 430 is above the Point 438 in connection with point 449.
  • a transistor 435 forms the second rung.
  • the base of transistor 430 is with the base of transistor 435 and point 436. This point 436 is connected to point 438.
  • the collector-emitter current of transistor 430 is impressed on transistor 435.
  • the second current path is connected to a reference voltage V CC via a current source 450.
  • the collector of transistor 435 is connected via node 439 to current source 450, to gate resistor 423 and thus to the gate of field-effect transistor 110.
  • This device now works as a voltage regulator as follows.
  • the Potential values at consumer 100 are determined by the resistors 421 and 422 converted into currents.
  • the first current mirror 410 forms the difference between the two current values. This actual current is a measure represents the voltage drop across the consumer.
  • This actual current becomes the first current path of the second current mirror 420 acted upon. This current is mirrored and with that of compared to the current source 450 supplied target current. This one from the Current source 450 supplied target current serves as the target value. With the Differential current between target current and actual current becomes the gate of the Field effect transistor applied.
  • the target current is chosen so that through the second path of the current mirror 420 in the steady state, a current flows that the corresponds to the setpoint value supplied by the current source 450. Are these the two currents are the same, that is to say the one falling off at the consumer 100 Voltage corresponds to the target voltage, so no gate current flows the switching means remains in its position.
  • the voltage drop across the consumer is too high, it flows in correspondingly higher current through the current mirror, which in turn causes that the gate is discharged and the switching means is locked. This causes the voltage at consumer 100 to drop.
  • the voltage at the consumer is too low a value assumes. In this case, too little current flows through the current mirror and the gate is charged via the gate current.
  • the field effect transistor becomes conductive or enables one stronger current flow through the consumer.
  • the procedure is as follows.
  • the one to be regulated Voltage at consumer 100 is generated by voltage current transformers 421 and 422 and the current mirror 410 converted to a current.
  • the Current mirror 420 regulates the voltage drop across the consumer the target current. This takes place in that of the first current mirror 410 delivered current mirrored and in node 439 is subtracted from the target current.
  • This differential current becomes Control of the field effect transistor used. That is, the Current changes the gate charge and thus the state of the field effect transistor.
  • the voltage regulation has settled when the current in the second current path is equal to that from the current source delivered electricity is.
  • the second current mirror serves to bring the I current to this current level adapt.
  • the actual current directly with the Target current is compared.
  • the second current mirror the differential current is supplied as an input variable.
  • the current provided by the current source 450 corresponds to the am Consumer dropping voltage. By changing the current value directly affect the voltage at the consumer. It exists a fixed, preferably proportional relationship between the current supplied by the power source 450 and the consumer falling voltage. Therefore, through the power source 450 is one Variable setpoint specification for the voltage drop across the consumer possible.
  • the second current mirror essentially works as a controller Proportional behavior. Due to the capacities between gate and Source or between the gate and drain of the field effect transistor 110 there is also an integral behavior of the current control.
  • the dynamics of the controller are essentially determined by the current source and determines the capacitances of the field effect transistor 110.
  • the Dynamics can therefore be influenced very easily. Because no operational amplifiers no stability problems arise, that the controller is not prone to vibrations.
  • the circuit shown in the figure in particular the current mirror 410 and 420 can be easily integrated. All measuring voltages are immediately converted into currents. This has the advantage that there are no high voltages at the input of the integrated circuit. Due to the voltage current transformer there is a high common mode rejection possible.
  • the evaluation circuit determines from that by the solenoid valve 100 flowing current the time when the anchor of the energized Solenoid valve has reached an end position.
  • the course over time of the current is evaluated at a constant voltage to determine whether this course a kink or a significant change in Differential quotient of the current has.
  • the voltage at the solenoid valve by means of the device described regulated to a constant value.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Nonlinear Science (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Automation & Control Theory (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Electrical Variables (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Description

Stand der TechnikState of the art

Die Erfindung betrifft eine Vorrichtung zur Regelung einer an einem Verbraucher abfallenden Spannung gemäß dem Oberbegriff des unabhängigen Anspruchs.The invention relates to a device for regulating one Voltage drop according to the generic term of the independent consumer Claim.

Es sind Vorrichtungen zur Regelung einer Spannung bekannt, bei denen die Differenz zwischen einer Sollspannung und der gemessenen Spannung einem Regler zugeführt wird. Dieser Regler bildet eine Stellgröße zur Beaufschlagung eines Stellglieds.Devices for regulating a voltage are known in which the difference between a target voltage and the measured voltage is fed to a controller. This controller forms a manipulated variable to act on an actuator.

Üblicherweise umfassen die verwendeten Regler Operationsverstärker und Kapazitäten. Insbesondere die Operationsverstärker erfordern einen sehr hohen Aufwand an Bauteilen und Applikation. So müssen herkömmliche Regler so eingestellt werden, daß sie stabil arbeiten.The controllers used usually include operational amplifiers and capacities. The operational amplifiers in particular require one very high expenditure on components and application. So conventional Controllers are set so that they work stably.

Aufgabe der ErfindungObject of the invention

Der Erfindung liegt die Aufgabe zugrunde, bei einer Vorrichtung der eingangs genannten Art einen Spannungsregler bereitzustellen, der möglichst einfach aufgebaut ist. Diese Aufgabe wird durch die in dem unabhängigen Anspruch gekennzeichneten Merkmale gelöst. The invention has for its object in a device to provide a voltage regulator mentioned in the introduction, the is as simple as possible. This task is carried out by the in the Features characterized independent claim solved.

Vorteile der ErfindungAdvantages of the invention

Die erfindungsgemäße Vorrichtung hat den Vorteil, daß der Spannungsregler nur sehr wenige leicht zu integrierende Bauteile aufweist. Ferner arbeitet der Spannungsregler stabil und neigt nicht zu Schwingungen. Insbesondere braucht der Regler nicht speziell ausgelegt werden. Die Dynamik des Reglers wird nur durch wenige Bauelemente bestimmt und ist damit leicht beherrschbar.The device according to the invention has the advantage that the voltage regulator has very few easily integrated components. Furthermore, the voltage regulator works stably and does not incline Vibrations. In particular, the controller does not need to be specially designed become. The dynamics of the controller is only a few components determined and is therefore easy to control.

Vorteilhafte und zweckmäßige Ausgestaltungen und Weiterbildungen der Erfindung sind in den Unteransprüchen gekennzeichnet.Advantageous and expedient refinements and developments of Invention are characterized in the subclaims.

Zeichnungdrawing

Die Erfindung wird nachstehend anhand der in der Zeichnung dargestellten Ausführungsform erläutert. Die Figur zeigt eine schematische Darstellung der Schaltungsanordnung.The invention is described below with reference to the drawing Embodiment explained. The figure shows a schematic Representation of the circuit arrangement.

Beschreibung der AusführungsbeispieleDescription of the embodiments

Bei dem beschriebenen Ausführungsbeispiel handelt es sich um eine Einrichtung zum Regeln der Spannung an einem Verbraucher, insbesondere an einem elektromagnetischen Verbraucher. Besonders vorteilhaft ist es, die erfindungsgemäße Einrichtung im Zusammenhang mit Brennkraftmaschinen einzusetzen, insbesondere bei der Zumessung von Kraftstoff in einen Brennraum der Brennkraftmaschine. Zu diesem Zweck kann dann in besonders vorteilhafter Weise ein Magnetventil zur Steuerung der Zumessung von Kraftstoff in die Brennkraftmaschine verwendet werden. The exemplary embodiment described is a Device for regulating the voltage on a consumer, in particular on an electromagnetic consumer. Particularly advantageous is the device according to the invention in connection with internal combustion engines to be used, especially when metering Fuel in a combustion chamber of the internal combustion engine. To this A solenoid valve can then be used in a particularly advantageous manner for controlling the metering of fuel into the internal combustion engine be used.

Hierbei ist es insbesondere bei kleinen Lasten erforderlich, daß kleinste Einspritzmengen möglichst exakt zugemessen werden. Hierzu ist es wiederum erforderlich, daß der Zeitpunkt, bei dem der Anker des bestromten Magnetventils eine Endlage erreicht, bekannt ist. Dieser Zeitpunkt wird üblicherweise mit "Begin of Injection Period" (BIP) bezeichnet. Dieser Zeitpunkt wird durch die Auswertung des zeitlichen Verlaufs des Magnetventilstroms gewonnen. Der zeitliche Verlauf des Stroms wird bei konstanter Spannung dahingehend ausgewertet, ob dieser Verlauf einen Knick bzw. eine wesentliche Änderung des Differenzenquotienten des Stroms aufweist.It is particularly necessary for small loads that smallest injection quantities are measured as precisely as possible. For this in turn it is necessary that the time at which the anchor of the energized solenoid valve reaches an end position is known. This point in time is usually called the "Begin of Injection Period" (GDP). This point in time is evaluated by the temporal course of the solenoid valve current obtained. The temporal The course of the current is evaluated at a constant voltage, whether this course is a kink or a significant change of the difference quotient of the current.

Üblicherweise ist vorgesehen, daß die am Magnetventil anliegende Spannung mittels eines Spannungsreglers auf einen konstanten Wert eingeregelt wird. Besonders vorteilhaft ist es, wenn die im folgenden beschriebene Vorrichtung zur Ermittlung einer den Einspritzbeginn und/oder das Einspritzende charakterisierenden Größe verwendet wird. In diesem Fall handelt es sich bei dem Verbraucher um ein Magnetventil zur Festlegung der in eine Brennkraftmaschine eingespritzten Kraftstoffmenge. Die Vorrichtung wird dazu verwendet, die Spannung am Magnetventil zu regeln, um den Zeitpunkt ermitteln zu können, bei dem der Anker des Magnetventils seine Endlage erreicht.Usually, it is provided that the applied to the solenoid valve Tension to a constant value using a voltage regulator is regulated. It is particularly advantageous if the following Described device for determining the start of injection and / or used to characterize the injection end becomes. In this case, the consumer is a Solenoid valve for determining the injected into an internal combustion engine Amount of fuel. The device is used to Regulate the voltage at the solenoid valve to determine the point in time can, in which the armature of the solenoid valve reaches its end position.

In Figur 1 sind schematisch wesentliche Elemente einer Einrichtung zur Steuerung einer magnetventilgesteuerten Kraftstoffzumeßeinrichtung dargestellt. Ein Anschluß eines Verbraucher 100 insbesondere eines elektromagnetischen Verbrauchers liegt an einer Spannungsversorgungseinrichtung (Ubat). Der zweite Anschluß des Verbrauchers 100 steht über ein Schaltmittel 110 und einen Sensor 145 mit Masse in Verbindung. Der Sensor 145 steht mit einer Auswerteschaltung 140 in Verbindung. Das Schaltmittel 110 ist vorzugsweise als Feldeffekttransistor realisiert. In Figure 1 are essential elements of a device schematically for controlling a solenoid-controlled fuel metering device shown. A connection of a consumer 100 in particular of an electromagnetic consumer is connected to a voltage supply device (Ubat). The second connection of the consumer 100 stands via a switching means 110 and a sensor 145 with ground in Connection. The sensor 145 is connected to an evaluation circuit 140 Connection. The switching means 110 is preferably a field effect transistor realized.

Spannungsstromwandler 421 und 422 greifen, die an den Anschlüssen des Verbrauchers 100 anliegenden Potentialwerte ab. Die Spannungsstromwandler 421 und 422 beaufschlagen einen Block 400 mit je einem Strom IH und IL. Desweiteren steht der Block 400 über eine Stromquelle 450 mit einer Referenzspannung VCC in Verbindung. Ein Ausgang des Blockes 400 steht über einen Gatewiderstand 423 mit dem Gate des Feldeffekttransistors 110 in Verbindung.Voltage current transformers 421 and 422 tap the potential values present at the connections of the consumer 100. The voltage current transformers 421 and 422 apply a current I H and I L to a block 400. Furthermore, block 400 is connected to a reference voltage V CC via a current source 450. An output of block 400 is connected to the gate of field effect transistor 110 via a gate resistor 423.

Der Block 40 vergleicht die Ströme IH und IL mit dem Sollstrom ISoll und gibt ein Ansteuerstrom IG zur Beaufschlagung des Schaltmitteles 110 vorzugsweise gemäß der folgenden Formel vor: IG = K * (ISoll + IL - IH) Mit K ist ein Verstärkungsfaktor bezeichnetThe block 40 compares the currents I H and I L with the target current I target and specifies a control current I G for applying the switching means 110, preferably according to the following formula: I. G = K * (I Should + I L - I H ) K is a gain factor

In Figur 2 ist insbesondere der Block 400 detaillierter dargestellt. Bereits in Figur 1 beschriebene Elemente sind in Figur 2 mit entsprechenden Bezugszeichen gekennzeichnet.In particular, block 400 is shown in more detail in FIG. Elements already described in FIG. 1 are shown in FIG. 2 with corresponding ones Reference numbers marked.

Als Spannungsstromwandler werden in dem dargestellten Ausführungsbeispiel ohmsche Widerstände eingesetzt. Die Spannungsstromwandler beaufschlagen den Block 400, der im wesentlichen einen ersten Stromspiegel 410 und einen zweiten Stromspiegel 420 umfassen. Die Spannungsstromwandler beaufschlagen den ersten Stromspiegel 410 mit Strömen. Der erste Stromspiegel 410 ist wiederum mit einem zweiten Stromspiegel 420 verbunden. Dieser steht über einen Gatewiderstand 423 mit dem Gate des Feldeffekttransistors 110 in Verbindung.As a voltage current transformer in the illustrated embodiment ohmic resistors used. The voltage current transformers act on block 400, which is essentially a first Current mirror 410 and a second current mirror 420 include. The Voltage current transformers act on the first current mirror 410 Stream. The first current mirror 410 is in turn with a second Current mirror 420 connected. This is over a gate resistance 423 in connection with the gate of the field effect transistor 110.

Unter einem Stromspiegel versteht man üblicherweise die Zusammenschaltung zweier Halbleiterelemente in der Weise, daß ein Strom durch das eine Halbleiterelement einen entsprechenden oder proportionalen Strom durch das andere Halbleiterelement zur Folge hat. Werden für eine Stromspiegelschaltung zwei Transistoren verwendet, so bilden die beiden Schaltstrecken der Transistoren zwei Strompfade. A current mirror is usually understood to mean interconnection two semiconductor elements in such a way that a current through the one semiconductor element a corresponding or proportional Current through the other semiconductor element results. If two transistors are used for a current mirror circuit, the two switching paths of the transistors form two current paths.

Bei dem ersten Stromspiegel 410 dient ein Transistor 440 als zweiter Strompfad und ein Transistor 445 als erster Strompfad. Die Potentiale an den beiden Anschlüssen des Verbrauchers 100 werden über die zwei Widerstände 421 und 422 abgegriffen. Der erste Widerstand 421 steht über einen Verknüpfungspunkt 449 mit dem Kollektor des Transistors 440 des zweiten Strompfad des ersten Stromspiegels in Verbindung. Der zweite Widerstand 422 steht über einen Verknüpfungspunkt 448 mit dem Kollektor des Transistors 445 des ersten Strompfades des ersten Stromspiegels in Verbindung.In the first current mirror 410, a transistor 440 serves as the second Current path and a transistor 445 as the first current path. The potentials at the two connections of the consumer 100 are over the two resistors 421 and 422 tapped. The first resistor 421 is connected to the collector of the transistor via a node 449 440 of the second current path of the first current mirror in connection. The second resistor 422 is connected to a node 448 with the collector of transistor 445 of the first current path of the first current mirror in connection.

Die Basis des Transistors 440 und die Basis des Transistors 445 sind über den Punkt 446 verbunden. Der Punkt 446 ist ferner mit dem Punkt 448 verbunden.The base of transistor 440 and the base of transistor 445 are connected via point 446. The point 446 is also with the point 448 connected.

Bei dem zweiten Stromspiegel 420 bildet ein Transistor 430 den ersten Strompfad. Der Kollektor des Transistors 430 steht über den Punkt 438 mit dem Punkt 449 in Verbindung. Ein Transistor 435 bildet den zweiten Strompfad. Die Basis des Transistors 430 ist mit der Basis des Transistors 435 und dem Punkt 436 verbunden. Dieser Punkt 436 ist an dem Punkt 438 angeschlossen. Der Kollektor-Emitter-Strom des Transistors 430 wird dem Transistor 435 aufgeprägt.In the second current mirror 420, a transistor 430 forms the first Rung. The collector of transistor 430 is above the Point 438 in connection with point 449. A transistor 435 forms the second rung. The base of transistor 430 is with the base of transistor 435 and point 436. This point 436 is connected to point 438. The collector-emitter current of transistor 430 is impressed on transistor 435.

Der zweite Strompfad steht über eine Stromquelle 450 mit einer Referenzspannung VCC in Verbindung. Der Kollektor des Transistors 435 steht über den Verknüpfungspunkt 439 mit der Stromquelle 450, mit dem Gatewiderstand 423 und damit mit dem Gate des Feldeffekttransistors 110 in Verbindung.The second current path is connected to a reference voltage V CC via a current source 450. The collector of transistor 435 is connected via node 439 to current source 450, to gate resistor 423 and thus to the gate of field-effect transistor 110.

Diese Einrichtung arbeitet als Spannungsregelung nun wie folgt. Die Potentialwerte an dem Verbraucher 100 werden durch die Widerstände 421 und 422 in Ströme gewandelt. Der erste Stromspiegel 410 bildet die Differenz der beiden Stromwerte. Dieser Iststrom stellt ein Maß für die am Verbraucher abfallende Spannung dar. This device now works as a voltage regulator as follows. The Potential values at consumer 100 are determined by the resistors 421 and 422 converted into currents. The first current mirror 410 forms the difference between the two current values. This actual current is a measure represents the voltage drop across the consumer.

Mit diesem Iststrom wird der erste Strompfad des zweiten Stromspiegels 420 beaufschlagt. Dieser Strom wird gespiegelt und mit dem von der Stromquelle 450 gelieferten Sollstrom verglichen. Dieser von der Stromquelle 450 gelieferte Sollstrom dient als Sollwert. Mit dem Differenzstrom zwischen Sollstrom und Iststrom wird das Gate des Feldeffekttransistors beaufschlagt.This actual current becomes the first current path of the second current mirror 420 acted upon. This current is mirrored and with that of compared to the current source 450 supplied target current. This one from the Current source 450 supplied target current serves as the target value. With the Differential current between target current and actual current becomes the gate of the Field effect transistor applied.

Der Sollstrom wird so gewählt, daß durch den zweiten Pfad des Stromspiegels 420 im eingeschwungenen Zustand ein Strom fließt, der dem von der Stromquelle 450 gelieferten Sollwert entspricht. Sind diese beiden Ströme gleich, das heißt die am Verbraucher 100 abfallende Spannung entspricht der Sollspannung, so fließt kein Gate-Strom und das Schaltmittel verbleibt in seiner Stellung.The target current is chosen so that through the second path of the current mirror 420 in the steady state, a current flows that the corresponds to the setpoint value supplied by the current source 450. Are these the two currents are the same, that is to say the one falling off at the consumer 100 Voltage corresponds to the target voltage, so no gate current flows the switching means remains in its position.

Ist die am Verbraucher abfallende Spannung zu hoch, so fließt ein entsprechend höherer Strom durch den Stromspiegel, der wiederum bewirkt, daß das Gate entladen und das Schaltmittel gesperrt wird. Dies bewirkt, daß die Spannung am Verbraucher 100 abfällt. Entsprechendes gilt, wenn die Spannung am Verbraucher einen zu kleinen Wert annimmt. In diesem Fall fließt ein zu kleiner Strom durch den Stromspiegel und das Gate wird über den Gatestrom aufgeladen. Entsprechend wird der Feldeffekttransistor leitend bzw. ermöglicht einen stärkeren Stromfluß durch den Verbraucher.If the voltage drop across the consumer is too high, it flows in correspondingly higher current through the current mirror, which in turn causes that the gate is discharged and the switching means is locked. This causes the voltage at consumer 100 to drop. Corresponding applies if the voltage at the consumer is too low a value assumes. In this case, too little current flows through the current mirror and the gate is charged via the gate current. Corresponding the field effect transistor becomes conductive or enables one stronger current flow through the consumer.

Im wesentlichen wird also wie folgt vorgegangen. Die zu regelnde Spannung am Verbraucher 100 wird durch die Spannungsstromwandler 421 und 422 und den Stromspiegel 410 in einen Strom gewandelt. Der Stromspiegel 420 regelt die am Verbraucher abfallende Spannung auf den Sollstrom ein. Dies erfolgt dadurch, daß der vom ersten Stromspiegel 410 gelieferte Strom gespiegelt und im Verknüpfungspunkt 439 von dem Sollstrom subtrahiert wird. Dieser Differenzstrom wird zur Ansteuerung des Feldeffekttransistors verwendet. Das heißt, der Strom verändert die Gateladung und damit den Zustand des Feldeffekttransistors. Die Spannungsregelung ist eingeschwungen, wenn der sich im zweiten Strompfad einstellende Strom gleich dem von der Stromquelle gelieferten Strom ist. Essentially, the procedure is as follows. The one to be regulated Voltage at consumer 100 is generated by voltage current transformers 421 and 422 and the current mirror 410 converted to a current. The Current mirror 420 regulates the voltage drop across the consumer the target current. This takes place in that of the first current mirror 410 delivered current mirrored and in node 439 is subtracted from the target current. This differential current becomes Control of the field effect transistor used. That is, the Current changes the gate charge and thus the state of the field effect transistor. The voltage regulation has settled when the current in the second current path is equal to that from the current source delivered electricity is.

Zur Beeinflußung des der Gateladung und damit des Zustandes des Feldeffekttransistors sind nur sehr kleine Ströme erforderlich. Der zweite Stromspiegel dient dazu, den Istrom an dieses Stromniveau anzupassen.To influence the gate charge and thus the state of the Only very small currents are required for field effect transistors. The second current mirror serves to bring the I current to this current level adapt.

Als Alternative wäre auch denkbar, daß der Iststrom direkt mit dem Sollstrom verglichen wird. In diesem Fall würde dem zweiten Stromspiegel als Eingangsgröße der Differenzstrom zugeführt.As an alternative, it would also be conceivable that the actual current directly with the Target current is compared. In this case, the second current mirror the differential current is supplied as an input variable.

Der von der Stromquelle 450 bereitgestellte Strom entspricht der am Verbraucher abfallenden Spannung. Durch ändern des Stromwerts kann unmittelbar die Spannung am Verbraucher beeinflußt werden. Es besteht ein fester, vorzugsweise proportionaler Zusammenhang zwischen dem von der Stromquelle 450 gelieferten Strom und der am Verbraucher abfallenden Spannung. Daher ist durch die Stromquelle 450 eine variable Sollwertvorgabe für die am Verbraucher abfallende Spannung möglich.The current provided by the current source 450 corresponds to the am Consumer dropping voltage. By changing the current value directly affect the voltage at the consumer. It exists a fixed, preferably proportional relationship between the current supplied by the power source 450 and the consumer falling voltage. Therefore, through the power source 450 is one Variable setpoint specification for the voltage drop across the consumer possible.

Der zweite Stromspiegel arbeitet im wesentlichen als Regler mit Proportionalverhalten. Auf Grund der Kapazitäten zwischen Gate und Source bzw. zwischen Gate und Drain des Feldeffekttransistors 110 ergibt sich zusätzlich ein integrales Verhalten der Stromregelung.The second current mirror essentially works as a controller Proportional behavior. Due to the capacities between gate and Source or between the gate and drain of the field effect transistor 110 there is also an integral behavior of the current control.

Die Dynamik des Reglers wird im wesentlichen durch die Stromquelle und die Kapazitäten des Feldeffekttransistors 110 bestimmt. Die Dynamik ist daher sehr einfach beeinflußbar. Da keine Operationsverstärker verwendet werden ergeben sich keine Stabilitätsprobleme, das heißt der Regler neigt nicht zu Schwingungen.The dynamics of the controller are essentially determined by the current source and determines the capacitances of the field effect transistor 110. The Dynamics can therefore be influenced very easily. Because no operational amplifiers no stability problems arise, that the controller is not prone to vibrations.

Durch die Verwendung der Stromspiegel reduziert sich der Bauteileaufwand gegenüber einer Realisierung mit Operationsverstärkern erheblich. Desweiteren reduziert sich der Applikationsaufwand für den Regler, da die Regelparameter nicht eingestellt werden müssen. The use of current mirrors reduces the amount of components compared to a realization with operational amplifiers considerably. Furthermore, the application effort for the Controller, since the control parameters do not have to be set.

Die in der Figur dargestellte Schaltung insbesondere die Stromspiegel 410 und 420 können leicht integriert werden. Alle Meßspannungen werden unmittelbar in Ströme umgewandelt. Dies bietet den Vorteil, daß am Eingang der integrierten Schaltung keine hohen Spannungen anliegen. Durch den Spannungsstromwandler ist eine hohe Gleichtaktunterdrückung möglich.The circuit shown in the figure in particular the current mirror 410 and 420 can be easily integrated. All measuring voltages are immediately converted into currents. This has the advantage that there are no high voltages at the input of the integrated circuit. Due to the voltage current transformer there is a high common mode rejection possible.

Die Auswerteschaltung bestimmt ausgehend von dem durch das Magnetventil 100 fließenden Strom den Zeitpunkt, bei dem der Anker des bestromten Magnetventils eine Endlage erreicht. Der zeitliche Verlauf des Stroms wird bei konstanter Spannung dahingehend ausgewertet, ob dieser Verlauf einen Knick bzw. eine wesentliche Änderung des Differenzenquotienten des Stroms aufweist. Während der Auswertung des Stroms bzw. während der Ermittlung des Schaltzeitpunktes wird die Spannung am Magnetventil mittels der beschriebenen Vorrichtung auf einen konstanten Wert geregelt.The evaluation circuit determines from that by the solenoid valve 100 flowing current the time when the anchor of the energized Solenoid valve has reached an end position. The course over time of the current is evaluated at a constant voltage to determine whether this course a kink or a significant change in Differential quotient of the current has. During the evaluation of the current or during the determination of the switching time the voltage at the solenoid valve by means of the device described regulated to a constant value.

Claims (6)

  1. Apparatus for controlling a voltage which is dropped across a load (100), in which the load (100) and a control element (110) are connected in series between earth and the supply voltage, characterized by first means (421, 422, 410) which convert the potential values across the load (100) into current values and form an actual current which corresponds to the difference between the two converted current values, having a second means (450) for presetting a nominal current, and having control means (400) which preset a control variable, in order to act on the control element, depending on a comparison of the actual current and the nominal current.
  2. Apparatus according to Claim 1, characterized in that the first means comprise at least one current mirror which produces a current which corresponds to the voltage dropped across the load.
  3. Apparatus according to Claim 1 or 2, characterized in that the control means comprise at least one current mirror.
  4. Apparatus according to one of the preceding claims, characterized in that the difference between the actual current and the nominal current is applied to the control element.
  5. Apparatus according to one of the preceding claims, characterized in that a field-effect transistor is used as the control element.
  6. Apparatus according to one of the preceding claims, characterized in that the load is a solenoid valve for determining the amount of fuel injected into an internal combustion engine, and the apparatus is used for determining a variable which characterizes the start of injection and/or the end of injection.
EP94112798A 1993-10-20 1994-08-17 Apparatus for controlling the voltage drop across an appliance Expired - Lifetime EP0653693B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4335687A DE4335687A1 (en) 1993-10-20 1993-10-20 Device for regulating a voltage drop across a consumer
DE4335687 1993-10-20

Publications (3)

Publication Number Publication Date
EP0653693A2 EP0653693A2 (en) 1995-05-17
EP0653693A3 EP0653693A3 (en) 1995-08-30
EP0653693B1 true EP0653693B1 (en) 2001-11-21

Family

ID=6500535

Family Applications (1)

Application Number Title Priority Date Filing Date
EP94112798A Expired - Lifetime EP0653693B1 (en) 1993-10-20 1994-08-17 Apparatus for controlling the voltage drop across an appliance

Country Status (5)

Country Link
US (1) US5572111A (en)
EP (1) EP0653693B1 (en)
JP (1) JP3638318B2 (en)
DE (2) DE4335687A1 (en)
ES (1) ES2168281T3 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19726773A1 (en) * 1997-06-24 1999-01-07 Bosch Gmbh Robert Method of balancing current regulator
DE10140706A1 (en) * 2001-08-18 2003-02-27 Mahle Filtersysteme Gmbh High-speed actuating device
US8438672B2 (en) 2005-11-11 2013-05-14 Masco Corporation Of Indiana Integrated electronic shower system
JP4715807B2 (en) * 2007-05-24 2011-07-06 トヨタ自動車株式会社 Adjustment method for fuel injection device and control device for fuel injection device
DE102008007211B4 (en) 2008-02-01 2017-10-26 Continental Automotive Gmbh Circuit arrangement for driving an inductive load and use of such a circuit arrangement
TWI358621B (en) * 2008-03-11 2012-02-21 Asustek Comp Inc Voltage adjusting apparatus
JP5493711B2 (en) * 2009-10-29 2014-05-14 Jfeスチール株式会社 Thermal spray repair material

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2888632A (en) * 1956-08-23 1959-05-26 Baldwin Piano Co Transistor current regulating circuits
US2991407A (en) * 1958-02-17 1961-07-04 Sylvania Electric Prod Current supply apparatus
US3549983A (en) * 1968-06-18 1970-12-22 Union Carbide Corp High efficiency high power d.c. series type voltage regulator
DE3405599A1 (en) * 1984-02-16 1985-08-22 Siemens AG, 1000 Berlin und 8000 München Current sensor for the control loop of a switched-mode regulator
JPH0666600B2 (en) * 1989-10-02 1994-08-24 株式会社東芝 Current detection circuit
US5237262A (en) * 1991-10-24 1993-08-17 International Business Machines Corporation Temperature compensated circuit for controlling load current
JPH07121252A (en) * 1993-10-26 1995-05-12 Rohm Co Ltd Ic incorporating stabilized power circuit

Also Published As

Publication number Publication date
JP3638318B2 (en) 2005-04-13
EP0653693A3 (en) 1995-08-30
JPH07279741A (en) 1995-10-27
DE59409968D1 (en) 2002-01-03
ES2168281T3 (en) 2002-06-16
EP0653693A2 (en) 1995-05-17
DE4335687A1 (en) 1995-04-27
US5572111A (en) 1996-11-05

Similar Documents

Publication Publication Date Title
DE19814681B4 (en) Current Mode Switching Regulators
DE2338538B2 (en) Circuit arrangement for regulated direct current supply
DE4341797A1 (en) Method and device for controlling an electromagnetic consumer
DE4029794A1 (en) METHOD AND DEVICE FOR CONTROLLING AN ELECTROMAGNETIC CONSUMER
EP0765438B1 (en) Process and device for controlling an electromagnetic consumer
DE2538301A1 (en) METHOD AND DEVICE FOR CONTROLLING AN ELECTROMAGNETICALLY ACTUATED INJECTION NOZZLE
DE2745294A1 (en) THRESHOLD CIRCUIT FOR AN ELECTRONIC IGNITION SYSTEM
EP0653693B1 (en) Apparatus for controlling the voltage drop across an appliance
DE3531025A1 (en) CIRCUIT ARRANGEMENT FOR CONTROLLING THE HIGH VOLTAGE SUPPLY OF AN ELECTROSTATIC FILTER
DE69525533T2 (en) Driver circuit for an injector
EP0693756A1 (en) Method and device for driving an electromagnetic consumer
DE3022685A1 (en) DEVICE FOR FLOW MEASUREMENT IN AN INTERNAL COMBUSTION ENGINE
DE4414609B4 (en) Device for controlling a consumer
DE4034081C2 (en) Current control circuit for an inductive consumer
DE4209474A1 (en) Controller with bridge circuit e.g. for at least one electrical load in vehicle - establishes different patterns for operation of controlled switches for various ranges of values of measured variables
EP0720770B1 (en) Process and device for driving an electromagnetic consumer
DE19646052A1 (en) Method and device for controlling a consumer
DE3325044A1 (en) CURRENT CONTROLLER FOR AN ELECTROMAGNETIC CONSUMER IN CONNECTION WITH INTERNAL COMBUSTION ENGINES
DE3738055A1 (en) Method for controlling the temperature of glow plugs in diesel engines and circuit arrangement for carrying out the method
DE3516112A1 (en) INTEGRATED LOAD VOLTAGE SAMPLING CIRCUIT FOR EFFECTIVE LOAD MEDIUM VOLTAGE CONTROL DEVICE
DE3312108A1 (en) Device for electronic control of the actuation of an actuating element
DE3909141A1 (en) Circuit arrangement for operating an electromagnetic load
DE19854305A1 (en) Method and device for controlling an electromagnetic consumer
DE1751611B2 (en) ELECTRONIC CONTROL DEVICE FOR THE INJECTION QUANTITY CONTROL OF A COMBUSTION ENGINE
DE3813066A1 (en) Switched current regulator

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): DE ES FR GB IT SE

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): DE ES FR GB IT SE

17P Request for examination filed

Effective date: 19960229

17Q First examination report despatched

Effective date: 19990430

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE ES FR GB IT SE

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

REF Corresponds to:

Ref document number: 59409968

Country of ref document: DE

Date of ref document: 20020103

ET Fr: translation filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20020212

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2168281

Country of ref document: ES

Kind code of ref document: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20090819

Year of fee payment: 16

Ref country code: ES

Payment date: 20090821

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20090821

Year of fee payment: 16

Ref country code: GB

Payment date: 20090821

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20090825

Year of fee payment: 16

EUG Se: european patent has lapsed
GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20100817

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20110502

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100817

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100817

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20111019

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100818

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100818

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20131025

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 59409968

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20140819