EP0649000A1 - Measuring-device to control buildings, fields etc. - Google Patents

Measuring-device to control buildings, fields etc. Download PDF

Info

Publication number
EP0649000A1
EP0649000A1 EP94115019A EP94115019A EP0649000A1 EP 0649000 A1 EP0649000 A1 EP 0649000A1 EP 94115019 A EP94115019 A EP 94115019A EP 94115019 A EP94115019 A EP 94115019A EP 0649000 A1 EP0649000 A1 EP 0649000A1
Authority
EP
European Patent Office
Prior art keywords
optical waveguide
sensor
measuring device
receiving space
sections
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP94115019A
Other languages
German (de)
French (fr)
Other versions
EP0649000B1 (en
Inventor
Rainer Dr. Rer. Nat. Lessing
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
OSMOS DEHA-COM BV
Original Assignee
Sicom Gesellschaft fuer Sensor und Vorspanntechnik mbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sicom Gesellschaft fuer Sensor und Vorspanntechnik mbH filed Critical Sicom Gesellschaft fuer Sensor und Vorspanntechnik mbH
Publication of EP0649000A1 publication Critical patent/EP0649000A1/en
Application granted granted Critical
Publication of EP0649000B1 publication Critical patent/EP0649000B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/028Optical fibres with cladding with or without a coating with core or cladding having graded refractive index
    • G02B6/0288Multimode fibre, e.g. graded index core for compensating modal dispersion
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/16Measuring arrangements characterised by the use of optical techniques for measuring the deformation in a solid, e.g. optical strain gauge
    • G01B11/18Measuring arrangements characterised by the use of optical techniques for measuring the deformation in a solid, e.g. optical strain gauge using photoelastic elements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • G01M11/08Testing mechanical properties
    • G01M11/083Testing mechanical properties by using an optical fiber in contact with the device under test [DUT]
    • G01M11/086Details about the embedment of the optical fiber within the DUT

Definitions

  • the invention relates to a measuring device for monitoring buildings, terrain areas or the like. With the features of the preamble of patent claim 1.
  • the optical fiber bending sensor consists consistently of a gradient multimode optical fiber GI.
  • This optical waveguide is arranged in the form of a loop. It has two arcuate sensor sections S between mutually movable, slide-shaped support parts, the support plates of which are connected to the areas of the building to be checked.
  • a light source is connected to the optical waveguide at one end and a light receiver with evaluation devices for light attenuation values is connected at the other end.
  • the disadvantage here is that such a measuring device may be too insensitive and the sensitivity cannot be increased significantly either. This is essentially due to the fact that the bending sensitivity of such an optical waveguide is weakened after a bend. In the measuring device described, the optical waveguide is bent several times, so the sensitivity to bending is greatly reduced.
  • a step index optical waveguide which has a low sensitivity to bending.
  • it is not suitable as an optical waveguide for the sensor path of the measuring device described.
  • the invention has for its object to provide a measuring device for monitoring buildings, terrain areas or the like.
  • the sensitivity of which is considerably increased.
  • the measuring device according to the invention has a significantly increased sensitivity. This is based on the fact that the bending sensitivity of the sensor section with gradient multimode optical waveguides is maintained by subsequent step index optical waveguide sections.
  • each arcuate sensor section is guided by deflections, the outer surfaces of which have a bending radius.
  • the deflections are connected to the mutually facing ends of the carrier plates.
  • the optical waveguide is guided on the outer surface without kinks.
  • each carrier plate has a receiving space for an optical waveguide with feeds and designs, wherein the optical waveguide can rest securely on the inner wall of the receiving space without kinking.
  • the receiving space for the optical waveguide can have concentric inner walls for inner loops of the optical waveguide.
  • the invention is described below with reference to an embodiment shown in the drawing.
  • the drawing shows is a schematic plan view of a measuring device according to the invention.
  • the measuring device 1 shown in the drawing can be used in buildings, terrain areas, e.g. Rock falls or the like can be applied.
  • It comprises two carrier plates 2, 3. These are firmly connected to building areas, which is indicated schematically in the drawing. Between the mutually facing ends 6, 7 of the carrier plates 2, 3 is the zone of a building to be monitored or e.g. a crack 10 in the field.
  • the carrier plate 2, 3 is preferably rectangular. It consists of a rigid metal body.
  • the pins 12 are firmly connected to the ends 6, 7. They have an outer surface with a bending radius.
  • the optical waveguide 15 is connected to a light source, not shown, which feeds light in the direction indicated by the arrow.
  • the optical waveguide 15 is preferably supplied to a receiving space 17 via a guide 16, which is only indicated by dashed lines.
  • the recording space can, for example, have an oval shape, as shown. It is formed by a milling in the carrier plate 2.
  • the optical waveguide 15 can, as shown, traverse the receiving space 17 in a straight line and exit at the other end in a guided manner via an outlet 18 at the end of the carrier plate 6, but it is preferable to guide the optical waveguide 15 freely against the inner wall 19 of the receiving space 17 in the receiving space and only then to lead to the outlet 18.
  • the optical waveguide 15 then continues over the pin 12, guided by its outer wall, freely in the form of an arcuate sensor section S to the opposite pin 12.
  • the optical waveguide 15 Guided from its outer surface with a bending radius, the optical waveguide 15 then enters the receiving space 21 of the other carrier plate 3 via a guide 20.
  • the optical waveguide 15 of the gradient optical waveguide (GI) type by means of a splice 25 is only schematic shown - connected to an optical fiber of the type step index optical fiber (SI).
  • the optical fiber 15 is then further arranged in a loop with the reversal 26.
  • the optical waveguide 15 is then in turn via a splice 25 with an optical waveguide 15 of the GI type.
  • This runs via a second sensor path S, which is designed as described, back into the receiving space 17 of the carrier plate 2. Again, a feed is provided here.
  • the optical waveguide 15 of the GI type is connected in the receiving space 17 by the splice 25 to an optical waveguide 15 of the SI type.
  • a further sensor path S by means of a reversal 26 and a splice 25 with a subsequent optical waveguide 15 of the GI type.
  • the optical waveguide 15 of the GI type runs via a guide into the receiving space 21. It is connected there via a splice 25 to a subsequent optical waveguide section SI.
  • the optical waveguide GI runs via a further splice 25 to a further sensor path S back into the receiving space 17 and from there via an embodiment 27 via the carrier plate 2 to the outside to a light reception and evaluation unit, not shown.
  • the inner loops of the optical waveguide can also bear against a concentric inner wall (not shown) in the receiving space 17 to 21.
  • the optical waveguide 15 can also be routed in any multiple loop. Due to the increasing number of Grinding can increase the sensitivity. The limit is given by the fact that the emerging attenuated light is reduced more and more and possibly more expensive transmitting and receiving devices have to be used.
  • an optical waveguide of the GI type is used in the area of the sensor path S and that this is followed by an optical waveguide section of the SI type which effects the effect of the preceding optical waveguide section in which the light is concentrated by the bend, then by the optical waveguide section SI is again distributed homogeneously over the fiber optic cross section.
  • Types GI are to be used for the input and output sections of the optical waveguide 15.
  • the optical waveguide 15 is to be firmly connected to the carrier plates 2, 3 on both sides of the sensor paths S, e.g. by gluing. Glue points 30 are shown schematically.

Abstract

The measuring device for monitoring buildings, areas of grounds or the like consists of an optical fibre bending sensor which has a multimode optical fibre (GI) and is arranged in the form of a loop. A plurality of arcuate sensor segments (S) are arranged between support plates which are permanently connected to areas of buildings or grounds such that they can move with respect to the sensor segments. A light source and an opto receiver having evaluation devices for light attenuation values are connected to the optical fibre bending sensor. The optical fibre bending sensor is arranged in the form of a plurality of loops. The optical fibre bending sensor consists of graded-index multimode optical fibre segments (GI) and of step-index multimode optical fibre segments (SI) connected thereto. The sensor segments (S) are formed by gradient-index multimode optical fibres (GI).

Description

Die Erfindung betrifft eine Meßeinrichtung zur Überwachung von Bauwerken, Geländebereichen oder dgl. mit den Merkmalen des Oberbegriffs des Patentanspruchs 1.The invention relates to a measuring device for monitoring buildings, terrain areas or the like. With the features of the preamble of patent claim 1.

Aus der DE-PS 39 02 997 ist eine Meßeinrichtung zur Überwachung von Bauwerken mit einem Lichtwellenleiter-Biegesensor bekannt. Hierbei besteht der Lichtwellenleiter-Biegesensor durchgehend aus einem Gradienten-Multimode-Lichtwellenleiter GI. Dieser Lichtwellenleiter ist in Form einer Schleife angeordnet. Er besitzt zwei bogenförmige Sensorabschnitte S zwischen zueinander bewegbaren, schlittenförmigen Trägerteilen, deren Trägerplatten mit den zu überprüfenden Bauwerksbereichen verbunden sind. An den Lichtwellenleiter ist an einem Ende eine Lichtquelle und am anderen Ende ein Lichtempfänger mit Auswerteinrichtungen für Lichtdämpfungswerte angeschlossen. Nachteilig ist hierbei, daß eine solche Meßeinrichtung gegebenenfalls zu unempfindlich ist und die Empfindlichkeit auch nicht wesentlich gesteigert werden kann. Dies hängt im wesentlichen damit zusammen, daß bei einem derartigen Lichtwellenleiter nach einer Biegung die Biegeempfindlichkeit geschwächt wird. Bei der beschriebenen Meßeinrichtung erfolgt eine mehrmalige Krümmung des Lichtwellenleiters, demnach ist die Biegeempfindlichkeit stark vermindert.From DE-PS 39 02 997 a measuring device for monitoring buildings with an optical fiber bending sensor is known. Here, the optical fiber bending sensor consists consistently of a gradient multimode optical fiber GI. This optical waveguide is arranged in the form of a loop. It has two arcuate sensor sections S between mutually movable, slide-shaped support parts, the support plates of which are connected to the areas of the building to be checked. A light source is connected to the optical waveguide at one end and a light receiver with evaluation devices for light attenuation values is connected at the other end. The disadvantage here is that such a measuring device may be too insensitive and the sensitivity cannot be increased significantly either. This is essentially due to the fact that the bending sensitivity of such an optical waveguide is weakened after a bend. In the measuring device described, the optical waveguide is bent several times, so the sensitivity to bending is greatly reduced.

Andererseits ist ein Step-Index-Lichtwellenleiter bekannt, der eine geringe Biegeempfindlichkeit besitzt. Er eignet sich aber nicht als Lichtwellenleiter für die Sensorstrecke der beschriebenen Meßeinrichtung.On the other hand, a step index optical waveguide is known which has a low sensitivity to bending. However, it is not suitable as an optical waveguide for the sensor path of the measuring device described.

Der Erfindung liegt die Aufgabe zugrunde, eine Meßeinrichtung zur Überwachung von Bauwerken, Geländebereichen oder dgl. zu schaffen, deren Empfindlichkeit erheblich vergrößert ist.The invention has for its object to provide a measuring device for monitoring buildings, terrain areas or the like. The sensitivity of which is considerably increased.

Die Erfindung löst diese Aufgabe mit den kennzeichnenden Merkmalen des Patentanspruches 1.The invention solves this problem with the characterizing features of claim 1.

Die Meßeinrichtung nach der Erfindung besitzt eine erheblich gesteigerte Empfindlichkeit. Dies beruht darauf, daß die Biegeempfindlichkeit des Sensorabschnittes mit Gradienten-Multimode-Lichtwellenleiter durch nachgeschaltete Step-Index-Lichtwellenleiterabschnitte aufrechterhalten wird.The measuring device according to the invention has a significantly increased sensitivity. This is based on the fact that the bending sensitivity of the sensor section with gradient multimode optical waveguides is maintained by subsequent step index optical waveguide sections.

Nach einer Ausgestaltung der Erfindung ist jeder bogenförmige Sensorabschnitt von Umlenkungen geführt, deren Außenflächen einen Biegeradius aufweisen. Die Umlenkungen sind mit den einander zugekehrten Enden der Trägerplatten verbunden. Hierdurch wird der Lichtwellenleiter an der Außenfläche knickungsfrei geführt.According to one embodiment of the invention, each arcuate sensor section is guided by deflections, the outer surfaces of which have a bending radius. The deflections are connected to the mutually facing ends of the carrier plates. As a result, the optical waveguide is guided on the outer surface without kinks.

Nach einer weiteren Ausgestaltung der Erfindung weist jede Trägerplatte einen Aufnahmeraum für einen Lichtwellenleiter mit Zuführungen und Ausführungen auf, wobei der Lichtwellenleiter an der Innenwandung des Aufnahmeraumes knickungsfrei und gesichert anliegen kann.According to a further embodiment of the invention, each carrier plate has a receiving space for an optical waveguide with feeds and designs, wherein the optical waveguide can rest securely on the inner wall of the receiving space without kinking.

Nach einer weiteren Ausgestaltung der Erfindung kann der Aufnahmeraum für den Lichtwellenleiter konzentrische innere Wandungen für innere Schleifen des Lichtwellenleiters aufweisen.According to a further embodiment of the invention, the receiving space for the optical waveguide can have concentric inner walls for inner loops of the optical waveguide.

Die Erfindung wird nachfolgend anhand eines in der Zeichnung dargestellten Ausführungsbeispieles näher beschrieben. Die Zeichnung zeigt
   eine schematische Draufsicht auf eine Meßeinrichtung nach der Erfindung.
The invention is described below with reference to an embodiment shown in the drawing. The drawing shows
is a schematic plan view of a measuring device according to the invention.

Die in der Zeichnung dargestellte Meßeinrichtung 1 kann bei Bauwerken, Geländebereichen, z.B. Felsabstürzen oder dgl. angewendet werden.The measuring device 1 shown in the drawing can be used in buildings, terrain areas, e.g. Rock falls or the like can be applied.

Sie umfaßt zwei Trägerplatten 2, 3. Diese sind fest mit Bauwerksbereichen verbunden, was in der Zeichnung schematisch angedeutet ist. Zwischen den einander zugekehrten Enden 6, 7 der Trägerplatten 2, 3 verläuft die zu überwachende Zone eines Bauwerkes oder z.B. eines Risses 10 im Gelände.It comprises two carrier plates 2, 3. These are firmly connected to building areas, which is indicated schematically in the drawing. Between the mutually facing ends 6, 7 of the carrier plates 2, 3 is the zone of a building to be monitored or e.g. a crack 10 in the field.

Die Trägerplatte 2, 3 ist vorzugsweise rechteckförmig. Sie besteht aus einem starren Metallkörper.The carrier plate 2, 3 is preferably rectangular. It consists of a rigid metal body.

An den Enden 6, 7 sind beispielsweise je vier zueinander ausgerichtete Umlenkungen 11, z.B. in Form von Zapfen 12 vorgesehen. Die Zapfen 12 sind fest mit den Enden 6, 7 verbunden. Sie besitzen eine einen Biegeradius aufweisende Außenfläche.At the ends 6, 7 there are, for example, four mutually aligned deflections 11, e.g. provided in the form of pin 12. The pins 12 are firmly connected to the ends 6, 7. They have an outer surface with a bending radius.

Der Lichtwellenleiter 15 ist an eine nicht dargestellte Lichtquelle angeschlossen, die Licht in der angegebenen Pfeilrichtung einspeist. Der Lichtwellenleiter 15 ist vorzugsweise über eine nur strichliert angedeutete Führung 16 einem Aufnahmeraum 17 zugeführt. Der Aufnahmeraum kann z.B., wie dargestellt, ovale Form besitzen. Er wird von einer Ausfräsung in der Trägerplatte 2 gebildet.The optical waveguide 15 is connected to a light source, not shown, which feeds light in the direction indicated by the arrow. The optical waveguide 15 is preferably supplied to a receiving space 17 via a guide 16, which is only indicated by dashed lines. The recording space can, for example, have an oval shape, as shown. It is formed by a milling in the carrier plate 2.

Der Lichtwellenleiter 15 kann zwar, wie dargestellt, geradlinig den Aufnahmeraum 17 durchqueren und am anderen Ende geführt über einen Austritt 18 am Trägerplattenende 6 austreten, jedoch ist es vorzuziehen, den Lichtwellenleiter 15 an der Innenwandung 19 des Aufnahmeraumes 17 frei anliegend im Aufnahmeraum gegebenenfalls einmal herumzuführen und erst dann dem Austritt 18 zuzuleiten.The optical waveguide 15 can, as shown, traverse the receiving space 17 in a straight line and exit at the other end in a guided manner via an outlet 18 at the end of the carrier plate 6, but it is preferable to guide the optical waveguide 15 freely against the inner wall 19 of the receiving space 17 in the receiving space and only then to lead to the outlet 18.

Der Lichtwellenleiter 15 verläuft dann weiter über den Zapfen 12, von dessen Außenwandung geführt, frei in Form einer bogenförmigen Sensorstrecke S zu dem gegenüberliegenden Zapfen 12.The optical waveguide 15 then continues over the pin 12, guided by its outer wall, freely in the form of an arcuate sensor section S to the opposite pin 12.

Von dessen Außenfläche mit Biegeradius geführt, tritt der Lichtwellenleiter 15 dann über eine Führung 20 in den Aufnahmeraum 21 der anderen Trägerplatte 3. Im Bereich des Aufnahmeraumes 21 ist der Lichtwellenleiter 15 von dem Typ Gradienten-Lichtwellenleiter (GI) durch einen Spleiß 25 - nur schematisch dargestellt - mit einem Lichtwellenleiter der Art Step-Index-Lichtwellenleiter (SI) verbunden.Guided from its outer surface with a bending radius, the optical waveguide 15 then enters the receiving space 21 of the other carrier plate 3 via a guide 20. In the area of the accommodating space 21, the optical waveguide 15 of the gradient optical waveguide (GI) type by means of a splice 25 is only schematic shown - connected to an optical fiber of the type step index optical fiber (SI).

Der Lichtwellenleiter 15 ist dann weiter in einer Schleife mit der Umkehrung 26 angeordnet. Er kann auch hier wieder - wie im Aufnahmeraum 17 - an der Wandung des Aufnahmeraums 21 frei anliegend geführt sein. Im abgehenden Schleifenteil ist der Lichtwellenleiter 15 dann wiederum über einen Spleiß 25 mit einem Lichtwellenleiter 15 des Typs GI. Dieser verläuft über eine zweite Sensorstrecke S, die wie beschrieben ausgeführt ist, zurück in den Aufnahmeraum 17 der Trägerplatte 2. Auch hier wird wiederum eine Zuführung vorgesehen. Der Lichtwellenleiter 15 von der Art GI ist im Aufnahmeraum 17 durch den Spleiß 25 mit einem Lichtwellenleiter 15 der Art SI verbunden. Dieser ist mittels einer Umkehrung 26 und einem Spleiß 25 mit einem anschließenden Lichtwellenleiter 15 der Art GI zu einer weiteren Sensorstrecke S geführt. Von dort verläuft der Lichtwellenleiter 15 der Art GI über eine Führung in den Aufnahmeraum 21. Er ist dort über einen Spleiß 25 mit einem anschließenden Lichtwellenleiterabschnitt SI verbunden. Schließlich verläuft über einen weiteren Spleiß 25 der Lichtwellenleiter GI zu einer weiteren Sensorstrecke S zurück in den Aufnahmeraum 17 und von da über eine Ausführung 27 über die Trägerplatte 2 nach außen zu einer nicht dargestellten Lichtempfangs- und Auswerteinheit.The optical fiber 15 is then further arranged in a loop with the reversal 26. Here again, as in the receiving space 17, it can be guided so as to rest freely against the wall of the receiving space 21. In the outgoing loop part, the optical waveguide 15 is then in turn via a splice 25 with an optical waveguide 15 of the GI type. This runs via a second sensor path S, which is designed as described, back into the receiving space 17 of the carrier plate 2. Again, a feed is provided here. The optical waveguide 15 of the GI type is connected in the receiving space 17 by the splice 25 to an optical waveguide 15 of the SI type. This is led to a further sensor path S by means of a reversal 26 and a splice 25 with a subsequent optical waveguide 15 of the GI type. From there, the optical waveguide 15 of the GI type runs via a guide into the receiving space 21. It is connected there via a splice 25 to a subsequent optical waveguide section SI. Finally, the optical waveguide GI runs via a further splice 25 to a further sensor path S back into the receiving space 17 and from there via an embodiment 27 via the carrier plate 2 to the outside to a light reception and evaluation unit, not shown.

Die inneren Schleifen des Lichtwellenleiters können auch gegen eine nicht dargestellte konzentrische Innenwandung im Aufnahmeraum 17 bis 21 anliegen.The inner loops of the optical waveguide can also bear against a concentric inner wall (not shown) in the receiving space 17 to 21.

Anstatt, wie dargestellt, den Lichtwellenleiter 15 in einer Doppelschleife zu führen, kann er auch in einer beliebigen Mehrfachschleife geführt werden. Durch die steigende Zahl von Schleifen kann die Meßempfindlichkeit gesteigert werden. Die Grenze wird dadurch gegeben, daß das austretende gedämpfte Licht immer mehr verringert und ggf. teurere Send- und Empfangseinrichtungen eingesetzt werden müssen.Instead of guiding the optical waveguide 15 in a double loop, as shown, it can also be routed in any multiple loop. Due to the increasing number of Grinding can increase the sensitivity. The limit is given by the fact that the emerging attenuated light is reduced more and more and possibly more expensive transmitting and receiving devices have to be used.

Von Bedeutung ist, daß im Bereich der Sensorstrecke S ein Lichtwellenleiter des Typs GI verwendet wird und daß sich hieran ein Lichtwellenleiterabschnitt des Typs SI anschließt, der die Wirkung des vorausgehenden Lichtwellenleiterabschnittes, in dem durch die Biegung das Licht konzentriert wird, anschließend durch den Lichtwellenleiterabschnitt SI wieder homogen über den Lichtwellenleiterquerschnitt verteilt wird. Für die Eingangs- und Ausgangsabschnitte des Lichtwellenleiters 15 sind Typen GI zu verwenden.It is important that an optical waveguide of the GI type is used in the area of the sensor path S and that this is followed by an optical waveguide section of the SI type which effects the effect of the preceding optical waveguide section in which the light is concentrated by the bend, then by the optical waveguide section SI is again distributed homogeneously over the fiber optic cross section. Types GI are to be used for the input and output sections of the optical waveguide 15.

Beiderseits der Sensorstrecken S ist der Lichtwellenleiter 15 mit den Trägerplatten 2, 3 fest zu verbinden, z.B. durch Kleben. Klebestellen 30 sind schematisch dargestellt.The optical waveguide 15 is to be firmly connected to the carrier plates 2, 3 on both sides of the sensor paths S, e.g. by gluing. Glue points 30 are shown schematically.

Claims (5)

Meßeinrichtung zur Überwachung von Bauwerken, Geländebereichen oder dgl.
mit einem Lichtwellenleiter-Biegesensor, der einen Multimode-Lichtwellenleiter (GI) aufweist und in Form einer Schleife angeordnet ist,
mehrere bogenförmige Sensorabschnitte (S) zwischen Trägerplatten aufweist, die gegenüber den Sensorabschnitten und mit Bauwerks- bzw. Geländebereichen fest verbunden sind und
mit an den Lichtwellenleiter-Biegesensor angeschlossener Lichtquelle und Lichtempfänger mit Auswerteinrichtung für Lichtdämpfungswerte,
dadurch gekennzeichnet, daß der Lichtwellenleiter-Biegesensor in Form von mehreren Schleifen angeordnet ist und
daß der Lichtwellenleiter-Biegesensor aus Gradient-Index-Multimode-Lichtwellenleiterabschnitten (GI) und damit verbundenen Step-Index-Multimode-Lichtwellenleiterabschnitten (SI) besteht, wobei die Sensorabschnitte (S) von Gradient-Index-Multimode-Lichtwellenleiter (GI) gebildet sind.
Measuring device for monitoring buildings, terrain areas or the like.
with an optical waveguide bending sensor which has a multimode optical waveguide (GI) and is arranged in the form of a loop,
has a plurality of arcuate sensor sections (S) between support plates which are fixedly connected with respect to the sensor sections and with building or terrain areas and
with a light source connected to the optical fiber bending sensor and light receiver with evaluation device for light attenuation values,
characterized in that the optical fiber bending sensor is arranged in the form of several loops and
that the optical waveguide bending sensor consists of gradient index multimode optical waveguide sections (GI) and associated step index multimode optical waveguide sections (SI), the sensor sections (S) being formed by gradient index multimode optical waveguides (GI) .
Meßeinrichtung nach Anspruch 1,
dadurch gekennzeichnet,
daß jeder bogenförmige Sensorabschnitt (S) von Umlenkungen (11) mit einer einen Biegeradius aufweisenden Außenfläche geführt ist und die Umlenkungen mit den einander zugekehrten Enden (6, 7) der Trägerplatten (2, 3) verbunden sind.
Measuring device according to claim 1,
characterized,
that each arcuate sensor section (S) of deflections (11) is guided with an outer surface having a bending radius and the deflections are connected to the mutually facing ends (6, 7) of the carrier plates (2, 3).
Meßeinrichtung nach Anspruch 1 oder 2,
dadurch gekennzeichnet,
daß jede Trägerplatte (2, 3) einen Aufnahmeraum (17, 21) für den Lichtwellenleiter (15) mit Zuführung (16, 20) und Ausführung (27) aufweist, wobei der Lichtwellenleiter an der Innenwandung des Aufnahmeraumes anliegt.
Measuring device according to claim 1 or 2,
characterized,
that each carrier plate (2, 3) has a receiving space (17, 21) for the optical waveguide (15) with feed (16, 20) and design (27), the optical waveguide abutting the inner wall of the receiving space.
Meßeinrichtung nach Anspruch 3,
dadurch gekennzeichnet,
daß der Aufnahmeraum (17, 21) innere konzentrische Wandungen für innere Schleifen des Lichtwellenleiters (15) aufweist.
Measuring device according to claim 3,
characterized,
that the receiving space (17, 21) has inner concentric walls for inner loops of the optical waveguide (15).
Meßeinrichtung nach Anspruch 1,
dadurch gekennzeichnet,
daß der Lichtwellenleiter (15) beiderseits der Sensorstrecke S an den Trägerplatten (2, 3) befestigt ist.
Measuring device according to claim 1,
characterized,
that the optical waveguide (15) is attached to the carrier plates (2, 3) on both sides of the sensor path S.
EP94115019A 1993-09-24 1994-09-23 Measuring-device to control buildings, fields etc. Expired - Lifetime EP0649000B1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE4332621A DE4332621A1 (en) 1993-09-24 1993-09-24 Measuring device for monitoring structures, terrain areas or the like
DE4332621 1993-09-24
US08/330,130 US5594239A (en) 1993-09-24 1994-10-25 Measuring system for monitoring buildings, terrain sections or the like
CA002135723A CA2135723A1 (en) 1993-09-24 1994-11-14 Measuring system for monitoring buildings, terrain sections or the like

Publications (2)

Publication Number Publication Date
EP0649000A1 true EP0649000A1 (en) 1995-04-19
EP0649000B1 EP0649000B1 (en) 1997-12-10

Family

ID=27169892

Family Applications (1)

Application Number Title Priority Date Filing Date
EP94115019A Expired - Lifetime EP0649000B1 (en) 1993-09-24 1994-09-23 Measuring-device to control buildings, fields etc.

Country Status (7)

Country Link
US (1) US5594239A (en)
EP (1) EP0649000B1 (en)
AT (1) ATE161092T1 (en)
CA (1) CA2135723A1 (en)
DE (2) DE4332621A1 (en)
DK (1) DK0649000T3 (en)
ES (1) ES2113021T3 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014147301A1 (en) 2013-03-21 2014-09-25 Osmos Sa Method for monitoring deformation of a rotating element via a monitoring device employing optical fibre, and wind turbine equipped with such a device

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010084777A (en) * 2000-02-29 2001-09-06 윤종용 Fiber optic intrusion system using mode coupling
US20080210852A1 (en) * 2003-03-21 2008-09-04 Browning Thomas E Fiber optic security system for sensing the intrusion of secured locations
US8514076B2 (en) 2003-05-03 2013-08-20 Woven Electronics, Llc Entrance security system
US7852213B2 (en) * 2007-08-06 2010-12-14 Woven Electronics, Llc Double-end fiber optic security system for sensing intrusions
US7800047B2 (en) * 2003-05-03 2010-09-21 Woven Electronics, Llc Apparatus and method for a computerized fiber optic security system
US7782196B2 (en) 2003-05-03 2010-08-24 Woven Electronics, Llc Entrance security system
EP1620835A4 (en) * 2003-05-03 2010-02-17 Woven Electronics Corp A South Fiber optic security system for sensing the intrusion of secured locations
US20040245734A1 (en) * 2003-06-04 2004-12-09 William Thomas Mobile cleaning bucket caddy
DE102004003797A1 (en) * 2004-01-26 2005-08-18 Meiko Maschinenbau Gmbh & Co. Kg Dishwasher with adjustable heat recovery
US7755027B2 (en) * 2005-04-21 2010-07-13 Woven Electronics, Llc Secure transmission cable having windings continuously laid in opposite directions
US20060248954A1 (en) * 2005-04-26 2006-11-09 Snieder Roelof K System for and method of monitoring structural integrity of a structure
DE102006027322A1 (en) * 2006-06-13 2007-12-20 Ulrich Hannen Support bar`s deformation determining method for e.g. hall, involves continuously or discontinuously monitoring parameter of load and/or deformation of support bars by using mechanical, hydraulic, electrical and/or optical measuring unit
US8020428B2 (en) * 2007-04-04 2011-09-20 Colorado School Of Mines System for and method of monitoring properties of a fluid flowing through a pipe
DE202010002129U1 (en) 2010-02-10 2010-06-02 Rosenberger-Osi Gmbh & Co. Ohg Sensor for detecting relative movements between objects
WO2013117954A1 (en) 2012-02-09 2013-08-15 Osmos Sa A monitoring device, system and method for the monitoring of an area of building or land, using at least one light waveguide
US9183714B2 (en) 2012-10-17 2015-11-10 Douglas E. Piper, Sr. Entrance security system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3506844A1 (en) * 1985-02-27 1986-09-04 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V., 8000 München Fibre-optical Fabry-Perot sensor
FR2692038A1 (en) * 1992-06-03 1993-12-10 Silec Liaisons Elec Optical fibre temp. or vibration sensor - has monomode optical fibres which are insensitive to detected variable for transporting beam to and from multimode fibre loop acting as transducer

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4775216A (en) * 1987-02-02 1988-10-04 Litton Systems, Inc. Fiber optic sensor array and method
US4814562A (en) * 1987-11-13 1989-03-21 University Of Arkansas Electro-optic force and pressure transducer and sensor
US4931771A (en) * 1988-09-27 1990-06-05 Anro Engineering, Inc. Optical fiber intrusion location sensor for perimeter protection of precincts
DE8901113U1 (en) * 1989-02-02 1990-03-01 Felten & Guilleaume Energietechnik Ag, 5000 Koeln, De
US5049855A (en) * 1989-10-24 1991-09-17 Slemon Charles S Security screen system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3506844A1 (en) * 1985-02-27 1986-09-04 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V., 8000 München Fibre-optical Fabry-Perot sensor
FR2692038A1 (en) * 1992-06-03 1993-12-10 Silec Liaisons Elec Optical fibre temp. or vibration sensor - has monomode optical fibres which are insensitive to detected variable for transporting beam to and from multimode fibre loop acting as transducer

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
N. LAGAKOS, J.A. BUCARO: "Fiber Optic Microbend Sensor", ADVANCES IN INSTRUMENTATION, vol. 42, no. 3, 1987, RESEARCH TRIANGLE PARK, NC, USA, pages 1241 - 1250 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014147301A1 (en) 2013-03-21 2014-09-25 Osmos Sa Method for monitoring deformation of a rotating element via a monitoring device employing optical fibre, and wind turbine equipped with such a device

Also Published As

Publication number Publication date
EP0649000B1 (en) 1997-12-10
US5594239A (en) 1997-01-14
DE59404775D1 (en) 1998-01-22
DE4332621A1 (en) 1995-03-30
DK0649000T3 (en) 1998-08-24
ES2113021T3 (en) 1998-04-16
ATE161092T1 (en) 1997-12-15
CA2135723A1 (en) 1996-05-15

Similar Documents

Publication Publication Date Title
EP0649000B1 (en) Measuring-device to control buildings, fields etc.
DE2944977C2 (en) Optical wave mode mixer
DE2159327B2 (en) Device for adjusting two optical components
DE3002813A1 (en) METHOD AND DEVICE FOR CHECKING THE LOCATION OF A LIGHT GUIDE IN A CONNECTOR PART
EP0361588A1 (en) Optical fibre sensor
DE2905916A1 (en) FIBER OPTICAL TRANSMISSION DEVICE
DE3704603A1 (en) LIGHT WAVE GUIDE SLIP RING DEVICE
DE3735399A1 (en) MEASURING ARRANGEMENT FOR TESTING A MULTIPLE OF LIGHTWAVE GUIDES
EP1049916B1 (en) Fibre-optic force sensor, use of the sensor for monitoring closing edges and method fro producing said sensor
DE102007004517A1 (en) Two-channel multimode rotary transformer
DE2847488A1 (en) Glass fibre attenuation test rig - with light sources of different wavelength coupled by branch junctions to test fibre
EP0078029A1 (en) Connection for optical fibres
DE102011008273A1 (en) Sensor for detecting relative movements between objects
EP0274791B1 (en) Method for measuring the curvature dependent specific attenuation height of a light waveguide
EP0380801A2 (en) Process for determining the optical loss of optical fibres in reflected light
DE3942556C2 (en)
EP0412311B1 (en) Fiber optic gyroscope of the sagnac-type
DE3411595C2 (en)
DE2913794C2 (en)
EP2913698B1 (en) Light conducting component and field bus module
DE102018110003A1 (en) OPTICAL DEVICE, COMMUNICATION SYSTEM AND METHOD FOR MULTIPLEXING AND DEMULTIPLEXING AN OPTICAL SIGNAL
DE19502007C2 (en) Method of manufacturing a sensor head for a temperature measuring device
DE10238991B4 (en) Fiber optic sensor
WO1993022637A1 (en) Interferometer
EP0380779A2 (en) Method for determining the optical losses of optical fibres by reflected light

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB IT LI NL SE

RBV Designated contracting states (corrected)

Designated state(s): AT BE CH DE DK ES FR GB IT LI NL SE

17P Request for examination filed

Effective date: 19950803

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

17Q First examination report despatched

Effective date: 19970113

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: OSMOS DEHA-COM B.V.

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE DK ES FR GB IT LI NL SE

REF Corresponds to:

Ref document number: 161092

Country of ref document: AT

Date of ref document: 19971215

Kind code of ref document: T

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 59404775

Country of ref document: DE

Date of ref document: 19980122

ITF It: translation for a ep patent filed

Owner name: STUDIO INGG. FISCHETTI & WEBER

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19980311

ET Fr: translation filed
REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2113021

Country of ref document: ES

Kind code of ref document: T3

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: ISLER & PEDRAZZINI AG

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19991006

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000923

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20000923

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060531

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20060531

REG Reference to a national code

Ref country code: FR

Ref legal event code: D3

REG Reference to a national code

Ref country code: CH

Ref legal event code: PCAR

Free format text: ISLER & PEDRAZZINI AG;POSTFACH 1772;8027 ZUERICH (CH)

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DK

Payment date: 20080912

Year of fee payment: 15

Ref country code: CH

Payment date: 20080915

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20080915

Year of fee payment: 15

Ref country code: IT

Payment date: 20080922

Year of fee payment: 15

Ref country code: AT

Payment date: 20080915

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20080924

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20080912

Year of fee payment: 15

Ref country code: ES

Payment date: 20080929

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20081001

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20080924

Year of fee payment: 15

BERE Be: lapsed

Owner name: *OSMOS DEHA-COM B.V.

Effective date: 20090930

REG Reference to a national code

Ref country code: NL

Ref legal event code: V1

Effective date: 20100401

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

EUG Se: european patent has lapsed
REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20100531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090923

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100401

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100401

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090930

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090923

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090924

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20110718

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110706

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090924

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090930