EP0643818A1 - Infrared conveyor oven - Google Patents

Infrared conveyor oven

Info

Publication number
EP0643818A1
EP0643818A1 EP92915082A EP92915082A EP0643818A1 EP 0643818 A1 EP0643818 A1 EP 0643818A1 EP 92915082 A EP92915082 A EP 92915082A EP 92915082 A EP92915082 A EP 92915082A EP 0643818 A1 EP0643818 A1 EP 0643818A1
Authority
EP
European Patent Office
Prior art keywords
oven
chamber
conveyor belt
conveyor
inches
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP92915082A
Other languages
German (de)
French (fr)
Other versions
EP0643818A4 (en
Inventor
Lorne B. Alden
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GS Blodgett Corp
Original Assignee
GS Blodgett Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GS Blodgett Corp filed Critical GS Blodgett Corp
Publication of EP0643818A4 publication Critical patent/EP0643818A4/en
Publication of EP0643818A1 publication Critical patent/EP0643818A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A21BAKING; EDIBLE DOUGHS
    • A21BBAKERS' OVENS; MACHINES OR EQUIPMENT FOR BAKING
    • A21B1/00Bakers' ovens
    • A21B1/42Bakers' ovens characterised by the baking surfaces moving during the baking
    • A21B1/48Bakers' ovens characterised by the baking surfaces moving during the baking with surfaces in the form of an endless band
    • AHUMAN NECESSITIES
    • A21BAKING; EDIBLE DOUGHS
    • A21BBAKERS' OVENS; MACHINES OR EQUIPMENT FOR BAKING
    • A21B2/00Baking apparatus employing high-frequency or infrared heating

Definitions

  • This invention relates to infra-red ovens and primarily to commercial ovens which are compact in design and intended for rapid cooking of a variety of different food items.
  • Infra-red energy is particularly suited for smaller commercial establishments because the energy produced is directional and production does not involve cooking does not require heated air currents which may be released into the ambient atmosphere as with convection ovens and the like. While microwave ovens are also useful in such establishments, microwave ovens have distinct disadvantages relative to the inability to brown bread or rolls and to char the exterior while cooking meat. Microwave ovens, however, are compact and suitable for countertop use.
  • the sides, bottom, and top all may have different cooking requirements.
  • the emitters were separately controlled.
  • the top emitter was disposed in a movable shroud which could be adjusted in height over the turntable as desired. Shielding for the oven was not necessary because convection currents were not involved in the cooking process and only the directional radiation of the emitters used.
  • This type of oven was particularly suited to the use of etched foil emitters as contrasted to the use of conventional quartz tubes, nichrome wire and the like.
  • the foil emitters use a relatively low wattage, have a rapid warm-up and cool-down, and can be adjusted to the desired medium range wavelength of cooking energy.
  • a ceramic or other type shield is not necessary.
  • a refractory cover is provided over the wire heating elements, which cover then is the source of infra-red energy to the product to be cooked.
  • This type of device then utilizes energy both to heat the refractory material and to then generate sufficient energy to direct the same onto the product to be cooked.
  • conveyor ovens which utilize infra-red energy.
  • Such devices are described, for example, in U.S. Patents Nos. 4,245,613; 4,554,437; and 4,615,014.
  • Such ovens are normally multi-zone type ovens and large type installations.
  • the oven of this invention is also sufficiently versatile to cook a wide variety of foods including pizza, fish products, chicken products, and bakery products.
  • the device of this invention utilizes a mesh conveyor belt which is preferably 18 inches wide and extends through a heating chamber.
  • the chamber mounts, above and below the belt, upper and lower heating elements which are etched foil heaters.
  • the heaters are disposed sufficiently close to the food items to effect rapid and efficient cooking.
  • the heaters are separately controlled.
  • the etched foil heaters of this invention provide a controlled cooking environment in a predetermined wavelength range utilizing heaters which minimize the wattage required.
  • Etched foil heaters have a watt density of about 7-8 watts per square inch which is much lower than quartz tube heaters or similar types of heaters commonly used in cooking environments.
  • the lower heater in the preferred embodiment is spaced only about 1.5 inches below the conveyor belt, and the upper heater is spaced about 3-4 inches above the conveyor belt.
  • the oven of this invention is only 16 5/8 inches high, 23 inches deep, and provides an opening for the conveyor belt at either side thereof which measures 3 1/16 inch high by a 19 17/16 inches long. These latter dimensions are the food product clearance entering the device.
  • the conveyor belt feed is continuous through the oven.
  • the conveyor belt is controlled so that it operates to move the product into the heating area, hold the product therein for a predetermined period of time, and then move the product out so that the procedure is a go-stop-go procedure.
  • electronic controllers are preferred which control based on time only.
  • Etched foil heaters have the characteristics of rapid heating and cooling.
  • a timed cycling power input is utilized in the preferred embodiment. For example, full power input may be interrupted for a period of 5-15 seconds and then reinitiated for 60-120 seconds.
  • a means to determine if there is no cooking demand for a cooking cycle for a period of, for example, five minutes, a sensor could turn the power to the unit off.
  • a means for determining the position of a food product may be incorporated by an electro- optical control. This device then could be used to ensure that the food product is positioned properly between both the top and lower heaters. In this way, use of the heating elements can be controlled to maximize cooking efficiency at a minimum of power required.
  • a compact conveyor oven which may be utilized on, for example, a countertop and which utilizes etched foil infra-red elements as heat sources for rapid and efficient cooking. It is another object of this invention to provide alternative embodiments of a compact conveyor oven which either operate continuously or operate on an indexing go-stop-go procedure for cooking a wide variety of food products from pizza to fish and fowl products or bakery products.
  • Figure 1 is a perspective view of an embodiment of the oven of this invention.
  • Figure 2 is a side view thereof.
  • Figure 3 is a top view of the oven of this invention.
  • Figure 4 is a side view of the oven of this invention showing the two heating elements.
  • Figure 5 is an alternative embodiment of this invention involving stacked ovens.
  • Figure 6A is a schematic of the control circuit for an embodiment of this invention using an indexing belt feed for a go-stop-go means of travel through the oven of this invention.
  • Figure 6B is a view similar to Figure 6a only showing the control circuit for a continuous belt feed in an embodiment of this invention.
  • Figure 7A is a schematic showing the control circuits for the heating elements in a three-phase element hookup.
  • Figure 7B is a view similar to Figure 7a showing the circuit for a single-phase element hookup.
  • Figure 8 is a graph showing a typical fluctuation in the surface temperature and wavelength over time for a heating circuit in a device of this invention.
  • Figure 9 is a graph depicting surface temperature against time illustrating a typical heat up and cool down mode of operation of the device of this invention.
  • a housing 12 preferably mounts a top heater module 14, a bottom heater module 16, and a control panel 18. Both modules and the control panel preferably are slidably mounted within the housing 12 and, therefore, can be easily removed for cleaning, testing, or repair.
  • the housing has an opening 20 for a conveyor belt (not shown) to carry food through the housing 12.
  • the opening 20 is 3 1/16 inches by 19 7/16 inches in diameter. This has been found to be adequate for most food products.
  • the overall housing depth is preferred to be 23 inches with the height 16 5/8 inches, the dimensions shown of the embodiment in the view of Figure 2.
  • This unit then will accommodate a conveyor belt with a width of 18 inches, and meets a desired specification that it be no more than 24 inches deep. It then can be comfortably mounted on a restaurant counter, or food processing area, or similar location.
  • the housing 12 includes lateral extensions 22 and 24 for supporting the conveyor belt.
  • a conveyor belt support frame member 26 is mounted in each lateral extension 22 and 24 for supporting the conveyor belt (not shown) .
  • Lateral support members 28 are provided for this purpose.
  • the upstream lateral support 22 further mounts a conveyor belt sprocket drive shaft 30 for the conveyor belt and a similar shaft 32 is provided downstream at extension 24.
  • a conventional thumbscrew-type tensioning means 34 is provided on sprocket 32 to regulate the tension in the belt.
  • the conveyor belt 36 is shown in phantom therein.
  • Top and bottom heating elements respectively 38 and 40 are provided in housing 12 above and below the upper flight of the conveyor belt 36.
  • These elements are preferably etched foil heaters obtainable, for example, from Thermal Circuits, Inc., of Salem, Massachusetts.
  • the heaters typically operate in the 3- 6 micron wavelength range for optimum cooking and have a watt density of about 7-8 watts per square inch. This is a much lower watt density than quartz tube heaters that radiate in a wide wavelength range.
  • the wavelength can be further defined by adding resistance as would be obvious to those skilled in the art.
  • each heating element 38 and 40 will be separately controlled.
  • an illumination means for interior lighting at four locations 42 at, respectively, the entrances and exits to the housing 12 upstream and downstream of the cooking area.
  • an optical indicator 44 may be provided upstream of the housing 12 whereby when the cooking cycle for one food item has been completed and another food item is not entering the housing 12, the indicators 44 will so advise the controller, and the controller in turn will shut down the heating elements 38 and 40.
  • Electro-optical controllers are available, for example, from Microswitch Division of Honeywell, Inc., Freeport, Illinois.
  • the control panel 18, is part of a control module (not shown) which rests upon a tray behind the control panel 18.
  • the controller contains, as will be obvious to those skilled in the art, all major oven control elements .
  • Electronically programmable controls suitable for use in this invention can be obtained from United Electric Controls, Inc. of Watertown, Maine or conventional controllers, as will be obvious to those skilled in the art, may be used to control belt speed, top heat and bottom heat. In the preferred embodiment, the control is by time only rather than temperature.
  • a mounting collar 46 by using a mounting collar 46, a plurality of units 10 can be stacked as desired.
  • the collar 46 is merely a conventional flange-type collar adapted to rest on the upper surface of housing 12 and receive the lower surface of the next higher unit to be stacked.
  • the support legs 48 will be removed from the stacked units.
  • the housing 12 provided a plurality of vents 50. Internal fans may be provided as desired. In the preferred embodiment, with reference to Figure 4, ventilation fans 52 shown schematically are provided above the heating element 38.
  • the device of this invention then is a compact conveyor oven which utilizes upper and lower heating elements which are etched foil heaters.
  • the top heater 38 is disposed about 3-4 inches above the upper flight of the conveyor belt, and the lower heater 40 is disposed below the upper flight of the conveyor belt, a distance of about 1 1/2 inches.
  • the interior of housing 12 is further constructed of aluminum coating steel to reflect the infra-red radiation generated.
  • etched foil heaters inherently achieve a very rapid change in temperature, both in the heating up phase, and in cool down.
  • the heat up phase of about six minutes is satisfactory to produce a temperature above 640 degrees and a wavelength of about 4.5. Cool down occurs similarly rapidly.
  • it may be desirable to provide an interrupted power input whereby for a period of 5 to 15 seconds, power is cut off, and reinitiated for 60 to 120 seconds.
  • the result causes a fluctuating wavelength of from about 4.5 up to about 5 microns and a temperature variation of about 580 to about 700 degrees.
  • the controller above-identified can be so programmed if desired.
  • a cooking wavelength 4-5 microns is optimal as compared to short wavelengths in the 1-2 micron range. It is intended, within the scope of this invention, to encompass any conventional controller for regulating the generated heat to a wavelength within the desired range.
  • Figures 7A and 7B there are depicted therein a schematic in a preferred version of the heater element hookup of the device of this invention. These schematics are intended to be illustrative, however, and not limitative.
  • Figure 7A is a three-phase element hookup while Figure 7B is a single-phase element hookup.
  • H-l signifies the schematic for the top heater 38 and H-2 similarly identifies the lower heater 40.
  • the separate controllers, CR-1 and CR-2 are reflected in the panel 18.
  • Figures 6A and 6B show, respectively, schematics for the indexing belt feed and a continuous belt feed. In the indexing belt feed, the belt advances the food product into housing 12 and stops with the product located between heating elements 38 and 40.
  • control is by time rather than temperature and, therefore, after a predetermined period of time, the belt drive would then index the food out of the housing 12 and onto extension 24 whereupon the belt would stop while the food product is removed and another food product placed at the entrance, on the belt portion in extension 22.
  • the belt will run continuously at a speed to be determined at the control panel 18 whereby residence time within the housing 12 wherein the heating elements are dispensing infra-red radiation at a predetermined wavelength or within a predetermined wavelength range, the product will be cooked.
  • Figures 6A and 6B are intended to be illustrative and not limitative of this invention. Accordingly, a different type of control circuit or control function is intended to be within the scope of this invention.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Baking, Grill, Roasting (AREA)
  • Electric Stoves And Ranges (AREA)
  • General Preparation And Processing Of Foods (AREA)
  • Fish Paste Products (AREA)
  • Cereal-Derived Products (AREA)

Abstract

A conveyor oven (10) for cooking food products using infrared radiation includes upper and lower etched foil heater (38 and 40) which are disposed above and below the upper flight of a conveyor belt (36) passing therethrough. The oven also includes a controller (18) for governing the speed of the belt (36), the time of exposure to infrared radiation, and a range of radiation wavelength between about 4 and 5 microns for cooking food in the oven (10).

Description

INFRARED CONVEYOR OVEN
Field of the Invention
This invention relates to infra-red ovens and primarily to commercial ovens which are compact in design and intended for rapid cooking of a variety of different food items.
Background of the Invention
In smaller commercial establishments, it is often desirable to provide food warmers for the display of food whereby individual orders may be placed for specific items displayed. It has now become feasible to cook food items to order in such establishments utilizing infra-red energy.
Infra-red energy is particularly suited for smaller commercial establishments because the energy produced is directional and production does not involve cooking does not require heated air currents which may be released into the ambient atmosphere as with convection ovens and the like. While microwave ovens are also useful in such establishments, microwave ovens have distinct disadvantages relative to the inability to brown bread or rolls and to char the exterior while cooking meat. Microwave ovens, however, are compact and suitable for countertop use.
In U.S. Patent No. 4,960,977, assigned to the assignee of this invention, there was described a countertop-type infra-red radiation oven useful, for example, to cook pizza wherein the article to be cooked was disposed upon a mesh turntable. Infra-red emitters were disposed below and above the item to be cooked and on two of its four sides. Accordingly, as the turntable rotated, all sides of the food product were exposed to radiation for cooking.
In the case of pizza, the sides, bottom, and top all may have different cooking requirements. In the above-identified infra-red oven, the emitters were separately controlled. In addition, the top emitter was disposed in a movable shroud which could be adjusted in height over the turntable as desired. Shielding for the oven was not necessary because convection currents were not involved in the cooking process and only the directional radiation of the emitters used.
This type of oven was particularly suited to the use of etched foil emitters as contrasted to the use of conventional quartz tubes, nichrome wire and the like. The foil emitters use a relatively low wattage, have a rapid warm-up and cool-down, and can be adjusted to the desired medium range wavelength of cooking energy. In addition, a ceramic or other type shield is not necessary.
In certain infra-red emitters such as that described in U.S. Patent No. 3,809,859, a refractory cover is provided over the wire heating elements, which cover then is the source of infra-red energy to the product to be cooked. This type of device then utilizes energy both to heat the refractory material and to then generate sufficient energy to direct the same onto the product to be cooked. It is also known to provide conveyor ovens which utilize infra-red energy. Such devices are described, for example, in U.S. Patents Nos. 4,245,613; 4,554,437; and 4,615,014. Such ovens are normally multi-zone type ovens and large type installations. In addition, as described in U.S. Patent No. 4,363,955, conventional thinking used shortwave energy for food cooking such as infra-red energy in the wavelength of 1-2 microns as the preferred energy for cooking. In that latter identified patent, the conveyor oven utilized was intended to brown rolls previously partially cooked. To this end, infra-red radiating tubes were provided across the path of travel of a conveyor carrying the individual rolls with a plurality of tubes at the entrance emitting medium range microwaves, but the tubes interior to the conveyor or tunnel oven both above and below were short wavelength emitters.
As described in the above-identified patent. No. 4,960,977, it has been discovered that medium wavelength infra-red radiation is vastly desirable for cooking food as compared to the short range spectrum of 1.0 to 2.5 microns. In this way, the cooking can occur at wavelengths in excess of that absorbed by water of up to about, for example,. 4.20 to 4.90 microns or higher.
Summary of the Invention
It has been discovered that a lightweight and efficient conveyor or tunnel oven can be provided which is sufficiently compact to mount on a countertop. The oven of this invention is also sufficiently versatile to cook a wide variety of foods including pizza, fish products, chicken products, and bakery products. The device of this invention utilizes a mesh conveyor belt which is preferably 18 inches wide and extends through a heating chamber. The chamber mounts, above and below the belt, upper and lower heating elements which are etched foil heaters. The heaters are disposed sufficiently close to the food items to effect rapid and efficient cooking. The heaters, however, are separately controlled. While these heating elements normally disperse infra-red radiation at a wavelength of about 3 to 6 microns, the wavelength desired can be provided by altering the resistance on the heating element as is well known to those skilled in the art. Accordingly, the etched foil heaters of this invention provide a controlled cooking environment in a predetermined wavelength range utilizing heaters which minimize the wattage required. Etched foil heaters have a watt density of about 7-8 watts per square inch which is much lower than quartz tube heaters or similar types of heaters commonly used in cooking environments.
The lower heater in the preferred embodiment is spaced only about 1.5 inches below the conveyor belt, and the upper heater is spaced about 3-4 inches above the conveyor belt. In a preferred embodiment, the oven of this invention is only 16 5/8 inches high, 23 inches deep, and provides an opening for the conveyor belt at either side thereof which measures 3 1/16 inch high by a 19 17/16 inches long. These latter dimensions are the food product clearance entering the device.
It has further been discovered that alternate embodiments of the device of this invention can be provided. In one embodiment, the conveyor belt feed is continuous through the oven. In an alternate embodiment, the conveyor belt is controlled so that it operates to move the product into the heating area, hold the product therein for a predetermined period of time, and then move the product out so that the procedure is a go-stop-go procedure. In both instances, electronic controllers are preferred which control based on time only.
Etched foil heaters have the characteristics of rapid heating and cooling. To accommodate this characteristic, a timed cycling power input is utilized in the preferred embodiment. For example, full power input may be interrupted for a period of 5-15 seconds and then reinitiated for 60-120 seconds. Also, a means to determine if there is no cooking demand for a cooking cycle for a period of, for example, five minutes, a sensor could turn the power to the unit off. In addition, a means for determining the position of a food product may be incorporated by an electro- optical control. This device then could be used to ensure that the food product is positioned properly between both the top and lower heaters. In this way, use of the heating elements can be controlled to maximize cooking efficiency at a minimum of power required. Accordingly, it is an object of this invention to provide a compact conveyor oven which may be utilized on, for example, a countertop and which utilizes etched foil infra-red elements as heat sources for rapid and efficient cooking. It is another object of this invention to provide alternative embodiments of a compact conveyor oven which either operate continuously or operate on an indexing go-stop-go procedure for cooking a wide variety of food products from pizza to fish and fowl products or bakery products.
It is yet another object of this invention to provide a compact conveyor oven having a controller controlling the heat requirements therein by controlling the power input to upper and to lower heating elements, separately, wherein the heating elements are etched foil elements to minimize the wattage requirement. These and other objects will become readily apparent with reference to the drawings and following description wherein:
Brief Description of Drawinσs
Figure 1 is a perspective view of an embodiment of the oven of this invention.
Figure 2 is a side view thereof.
Figure 3 is a top view of the oven of this invention.
Figure 4 is a side view of the oven of this invention showing the two heating elements.
Figure 5 is an alternative embodiment of this invention involving stacked ovens.
Figure 6A is a schematic of the control circuit for an embodiment of this invention using an indexing belt feed for a go-stop-go means of travel through the oven of this invention.
Figure 6B is a view similar to Figure 6a only showing the control circuit for a continuous belt feed in an embodiment of this invention. Figure 7A is a schematic showing the control circuits for the heating elements in a three-phase element hookup. Figure 7B is a view similar to Figure 7a showing the circuit for a single-phase element hookup.
Figure 8 is a graph showing a typical fluctuation in the surface temperature and wavelength over time for a heating circuit in a device of this invention.
Figure 9 is a graph depicting surface temperature against time illustrating a typical heat up and cool down mode of operation of the device of this invention.
Detailed Description of the Invention With attention to the drawings and to Figures 1-3, in particular, the device of this invention 10 in its preferred construction is modular. Accordingly, a housing 12 preferably mounts a top heater module 14, a bottom heater module 16, and a control panel 18. Both modules and the control panel preferably are slidably mounted within the housing 12 and, therefore, can be easily removed for cleaning, testing, or repair. As shown in Figure 2, the housing has an opening 20 for a conveyor belt (not shown) to carry food through the housing 12. In the preferred embodiment of this invention, the opening 20 is 3 1/16 inches by 19 7/16 inches in diameter. This has been found to be adequate for most food products. In addition, the overall housing depth is preferred to be 23 inches with the height 16 5/8 inches, the dimensions shown of the embodiment in the view of Figure 2. This unit then will accommodate a conveyor belt with a width of 18 inches, and meets a desired specification that it be no more than 24 inches deep. It then can be comfortably mounted on a restaurant counter, or food processing area, or similar location. The housing 12 includes lateral extensions 22 and 24 for supporting the conveyor belt. A conveyor belt support frame member 26 is mounted in each lateral extension 22 and 24 for supporting the conveyor belt (not shown) . Lateral support members 28 are provided for this purpose.
The upstream lateral support 22 further mounts a conveyor belt sprocket drive shaft 30 for the conveyor belt and a similar shaft 32 is provided downstream at extension 24. A conventional thumbscrew-type tensioning means 34 is provided on sprocket 32 to regulate the tension in the belt. With attention to Figure 4, the conveyor belt 36 is shown in phantom therein.
Top and bottom heating elements respectively 38 and 40 are provided in housing 12 above and below the upper flight of the conveyor belt 36. These elements are preferably etched foil heaters obtainable, for example, from Thermal Circuits, Inc., of Salem, Massachusetts. The heaters typically operate in the 3- 6 micron wavelength range for optimum cooking and have a watt density of about 7-8 watts per square inch. This is a much lower watt density than quartz tube heaters that radiate in a wide wavelength range. As noted above, the wavelength can be further defined by adding resistance as would be obvious to those skilled in the art. As will be subsequently described, each heating element 38 and 40 will be separately controlled.
With attention to Figure 3, there is also provided an illumination means for interior lighting at four locations 42 at, respectively, the entrances and exits to the housing 12 upstream and downstream of the cooking area.
In addition, an optical indicator 44 may be provided upstream of the housing 12 whereby when the cooking cycle for one food item has been completed and another food item is not entering the housing 12, the indicators 44 will so advise the controller, and the controller in turn will shut down the heating elements 38 and 40. Electro-optical controllers are available, for example, from Microswitch Division of Honeywell, Inc., Freeport, Illinois.
The control panel 18, is part of a control module (not shown) which rests upon a tray behind the control panel 18. The controller contains, as will be obvious to those skilled in the art, all major oven control elements . Electronically programmable controls suitable for use in this invention can be obtained from United Electric Controls, Inc. of Watertown, Maine or conventional controllers, as will be obvious to those skilled in the art, may be used to control belt speed, top heat and bottom heat. In the preferred embodiment, the control is by time only rather than temperature.
With attention to Figure 5, by using a mounting collar 46, a plurality of units 10 can be stacked as desired. The collar 46 is merely a conventional flange-type collar adapted to rest on the upper surface of housing 12 and receive the lower surface of the next higher unit to be stacked. Obviously, the support legs 48 will be removed from the stacked units. As also shown in the Figures, the housing 12 provided a plurality of vents 50. Internal fans may be provided as desired. In the preferred embodiment, with reference to Figure 4, ventilation fans 52 shown schematically are provided above the heating element 38.
The device of this invention then is a compact conveyor oven which utilizes upper and lower heating elements which are etched foil heaters. The top heater 38 is disposed about 3-4 inches above the upper flight of the conveyor belt, and the lower heater 40 is disposed below the upper flight of the conveyor belt, a distance of about 1 1/2 inches. The interior of housing 12 is further constructed of aluminum coating steel to reflect the infra-red radiation generated.
As shown in Figure 9,. etched foil heaters inherently achieve a very rapid change in temperature, both in the heating up phase, and in cool down. As shown in Figure 9, the heat up phase of about six minutes is satisfactory to produce a temperature above 640 degrees and a wavelength of about 4.5. Cool down occurs similarly rapidly. Accordingly, it may be desirable to provide an interrupted power input whereby for a period of 5 to 15 seconds, power is cut off, and reinitiated for 60 to 120 seconds. For example, in Figure 8, the result causes a fluctuating wavelength of from about 4.5 up to about 5 microns and a temperature variation of about 580 to about 700 degrees. The controller above-identified can be so programmed if desired.
It has been discovered as noted above, that a cooking wavelength 4-5 microns is optimal as compared to short wavelengths in the 1-2 micron range. It is intended, within the scope of this invention, to encompass any conventional controller for regulating the generated heat to a wavelength within the desired range.
With attention to Figures 7A and 7B, there are depicted therein a schematic in a preferred version of the heater element hookup of the device of this invention. These schematics are intended to be illustrative, however, and not limitative. Figure 7A is a three-phase element hookup while Figure 7B is a single-phase element hookup. H-l, signifies the schematic for the top heater 38 and H-2 similarly identifies the lower heater 40. The separate controllers, CR-1 and CR-2 are reflected in the panel 18. Figures 6A and 6B show, respectively, schematics for the indexing belt feed and a continuous belt feed. In the indexing belt feed, the belt advances the food product into housing 12 and stops with the product located between heating elements 38 and 40. This movement would be identified by optical sensors 44 and the controller signalled accordingly. In the preferred embodiment of this invention, the control is by time rather than temperature and, therefore, after a predetermined period of time, the belt drive would then index the food out of the housing 12 and onto extension 24 whereupon the belt would stop while the food product is removed and another food product placed at the entrance, on the belt portion in extension 22.
In the continuous belt feed, the belt will run continuously at a speed to be determined at the control panel 18 whereby residence time within the housing 12 wherein the heating elements are dispensing infra-red radiation at a predetermined wavelength or within a predetermined wavelength range, the product will be cooked.
As with Figures 7A and 7B, Figures 6A and 6B are intended to be illustrative and not limitative of this invention. Accordingly, a different type of control circuit or control function is intended to be within the scope of this invention.
The invention may be embodied in other specified forms without departing from the spirit or essential characteristics thereto. The present embodiments are therefore to be considered in all respects as illustrative and not restrictive, the scope of the invention being indicated by the appended claims rather than by the foregoing description, and all changes which may come within the meaning and range of equivalency of the claims are therefore intended to be embraced therein.

Claims

Claims
1. A compact, countertop type conveyor oven comprising: a housing defining a cooking chamber having an inlet and an outlet; a conveyor belt extending through the chamber and through the inlet and outlet and drive means therefor; support arms mounted on said housing at the inlet and outlet for supporting that portion of said conveyor belt extending therefrom; top and bottom infra-red heating elements mounted within said chamber a predetermined distance above and below the upper flight of that portion of the conveyor belt disposed in said chamber each element contained in a plane disposed parallel to the upper flight and spaced a predetermined distance therefrom, said elements substantially covering that portion of the flight disposed within said chamber, said elements being etched foil heaters; and control means coupled to said oven for controlling the speed of travel of the conveyor belt through said chamber and the wavelength of the infra-red radiation generated and time of exposure thereto within the chamber to control the range of the wavelength generated between about 4-5 microns by interrupting the operation of said heaters.
2. The oven of claim 1 wherein the heaters have the capacity of about 7-8 watts power per square inch of surface area.
3. The oven of claim 1 wherein the conveyor belt is only about 18 inches wide.
4. The oven of claim 3 wherein the upper heater element is disposed about 3-4 inches above the plane containing the upper flight of said conveyor belt.
5. The oven of claim 4 wherein the lower heater element is disposed about 1 1/2 inches below the plane containing the upper flight of said conveyor.
6. The oven of claim 1 wherein said control means in sequence advances said belt into said chamber, stops for a predetermined period of time and then advances said belt again through said chamber so that a food product thereon is indexed into the chamber for a predetermined period of time to cook it and then advanced through the outlet so that it can be replaced in the chamber with another food product to be cooked.
7. The oven of claim 1 wherein said control means advances said belt continuously at a predetermined speed proportional to the residence time of an incremental portion of said conveyor belt within the cooking chamber.
8. The oven of claim 1 wherein the depth of said oven in the direction of said parallel planes is no more than about 24 inches.
9. The oven of claim 8 wherein the inlet and outlets have rectangular dimensions of about 3 by 19 1/2 inches.
10. The oven of claim 1 further comprising optical indicator means for indicating when a food product is disposed on said conveyor at the inlet to said chamber.
EP92915082A 1991-08-13 1992-03-25 Infrared conveyor oven Withdrawn EP0643818A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US74416691A 1991-08-13 1991-08-13
US744166 1991-08-13
PCT/US1992/002357 WO1993004328A1 (en) 1991-08-13 1992-03-25 Infrared conveyor oven

Publications (2)

Publication Number Publication Date
EP0643818A4 EP0643818A4 (en) 1994-11-28
EP0643818A1 true EP0643818A1 (en) 1995-03-22

Family

ID=24991703

Family Applications (1)

Application Number Title Priority Date Filing Date
EP92915082A Withdrawn EP0643818A1 (en) 1991-08-13 1992-03-25 Infrared conveyor oven

Country Status (5)

Country Link
EP (1) EP0643818A1 (en)
AU (1) AU659860B2 (en)
CA (1) CA2115580A1 (en)
IE (1) IE921857A1 (en)
WO (1) WO1993004328A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5474758A (en) * 1993-07-28 1995-12-12 Minnesota Mining And Manufacturing Company Seals for use in an aerosol delivery device
WO2000038527A1 (en) * 1998-12-31 2000-07-06 Stuck Robert M Multi-function conveyorized food broiling and toasting apparatus
FR2821524B1 (en) * 2001-03-05 2003-12-26 Jean Louis Hecht AUTOMATIC HOT POINT
US7004159B1 (en) * 2002-08-27 2006-02-28 Carpenter Keith R Conveying cooking oven and method

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1517271A (en) * 1924-12-02 Sectional
US244285A (en) * 1881-07-12 Chaeles o
US1656709A (en) * 1927-01-27 1928-01-17 Standard Electric Stove Co Electric oven
US3249741A (en) * 1963-05-20 1966-05-03 Reflectotherm Inc Apparatus for baking by differential wave lengths
US4246834A (en) * 1979-07-16 1981-01-27 Npi Corporation Patty broiler
US4389562A (en) * 1981-08-05 1983-06-21 Hatco Corporation Conveyor oven
US4565917B1 (en) * 1984-01-18 1999-06-08 Vitronics Corp Multi-zone thermal process system utilizing nonfocused infared panel emitters
US4615014A (en) * 1984-04-16 1986-09-30 Lincoln Manufacturing Company, Inc. Bake time display for cooking oven
US4616123A (en) * 1984-11-13 1986-10-07 Zagoroff Dimiter S Shrink oven
JPS61125618A (en) * 1984-11-24 1986-06-13 Ohkura Electric Co Ltd Temperature controller of pattern switching type
US4945212A (en) * 1989-07-14 1990-07-31 Savory Equipment, Inc. Thermal radiation device

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
No further relevant documents disclosed *
See also references of WO9304328A1 *

Also Published As

Publication number Publication date
CA2115580A1 (en) 1993-03-04
EP0643818A4 (en) 1994-11-28
AU659860B2 (en) 1995-06-01
AU2245592A (en) 1993-03-16
WO1993004328A1 (en) 1993-03-04
IE921857A1 (en) 1993-02-24

Similar Documents

Publication Publication Date Title
US5223290A (en) Method for cooking food in an infra-red conveyor oven
CA2807931C (en) Impingement/convection/microwave oven and method
EP0251539B1 (en) Apparatus for grilling or browning food
US6384381B2 (en) Oven device for rapid heating of food items
US4389562A (en) Conveyor oven
EP0395306B1 (en) Infra-red baking oven
JP4574933B2 (en) Baking equipment and food baking method
EP0040528A1 (en) Radiant heat cooking apparatus
WO2001012043A1 (en) Closed loop heating control for food warmer
AU659860B2 (en) Infrared conveyor oven
CA1138937A (en) Combination microwave and convection oven
CN101910732A (en) Cooking device
ES1020588U (en) Portable heating apparatus. (Machine-translation by Google Translate, not legally binding)
EP0165348B1 (en) Heating food articles
GB2035768A (en) Combination microwave and convection oven
AU2012200199B2 (en) Impingement/convection/microwave oven and method
JPS5728927A (en) Heating cooker

Legal Events

Date Code Title Description
A4 Supplementary search report drawn up and despatched
AK Designated contracting states

Kind code of ref document: A4

Designated state(s): DE FR GB

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19940308

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB

17Q First examination report despatched

Effective date: 19951004

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 19961001