EP0641934B1 - Manufacturing process for a micropump - Google Patents

Manufacturing process for a micropump Download PDF

Info

Publication number
EP0641934B1
EP0641934B1 EP94107419A EP94107419A EP0641934B1 EP 0641934 B1 EP0641934 B1 EP 0641934B1 EP 94107419 A EP94107419 A EP 94107419A EP 94107419 A EP94107419 A EP 94107419A EP 0641934 B1 EP0641934 B1 EP 0641934B1
Authority
EP
European Patent Office
Prior art keywords
oxide layer
fluid
layer
silicon
plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP94107419A
Other languages
German (de)
French (fr)
Other versions
EP0641934A1 (en
Inventor
Nicolaas Frans De Rooij
Sylvain Jeanneret
Volker Gass
Bart Van Der Schoot
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
EP Systems SA
Original Assignee
Fondation Pour Le Soutien A La Recherche Appliquee Et Orientee (fsrao)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fondation Pour Le Soutien A La Recherche Appliquee Et Orientee (fsrao) filed Critical Fondation Pour Le Soutien A La Recherche Appliquee Et Orientee (fsrao)
Publication of EP0641934A1 publication Critical patent/EP0641934A1/en
Application granted granted Critical
Publication of EP0641934B1 publication Critical patent/EP0641934B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B43/00Machines, pumps, or pumping installations having flexible working members
    • F04B43/02Machines, pumps, or pumping installations having flexible working members having plate-like flexible members, e.g. diaphragms
    • F04B43/04Pumps having electric drive
    • F04B43/043Micropumps
    • F04B43/046Micropumps with piezoelectric drive

Definitions

  • the present invention relates to a method for manufacturing devices produced by micromachining of silicon and called to contain or convey gaseous or liquid fluids. More particularly, the invention relates to the manufacture of silicon micropumps produced by photolithography machining techniques.
  • the solution to this problem mentioned in the aforementioned international patent application namely to make the surfaces in contact with the fluid to be conveyed hydrophilic, consists in oxidizing the pump body in silicon after its manufacture so as to form a very weak surface layer d silicon oxide which is hydrophilic and can thus considerably improve the wettability of the volumes of the pump in contact with the fluid to be conveyed. More specifically, in the aforementioned document, it is proposed to soak the completed pump body in boiling nitric acid for a period of time. sufficient to create a suitable thickness of the hydrophilic layer.
  • the presence of the oxide layer covering the silicon exposed to the fluid remains desirable, however, because it also has another advantage in that it makes it possible to protect the silicon against attack by the fluid provided that it naturally has an aggressive behavior.
  • the fluid consists of a corrosive gas, the harmful effects of which under these conditions are canceled under these conditions.
  • the oxide layer can constitute an electrical insulator, when the fluid is electrically conductive.
  • the object of the invention is to remedy the above-mentioned drawback of the prior art and to propose a method for manufacturing micro-machined devices of the type indicated above which makes it possible to guarantee a good bond between the silicon body. of the device and the glass closure plates, while retaining an oxide layer on the expired surfaces with the fluid.
  • said screen layer is made of silicon nitride and deposited on said wafer with the interposition of an intermediate oxide layer.
  • said intermediate oxide layer has a thickness less than that of said oxide layer promoting wettability, the method further consisting, after the elimination of said screen layer, in eliminating said intermediate oxide layer, while said oxide layer promoting wettability is exposed.
  • the invention also relates to a micro-machined device obtained by the method as defined above.
  • the micropump comprises a base plate 1 or first closure plate, preferably made of glass and pierced in its thickness by two channels 2 and 3 which are respectively the inlet channel and the outlet channel of the micropump.
  • a third relatively thin plate 5 made of glass, preferably.
  • This plate constitutes the second closing plate of the pump. It is surmounted by a piezoelectric transducer 6 extending over part of its outer surface, this transducer being intended, by virtue of its vibrational regime generated when it is excited by an electric voltage, to deform the second closure plate 5 and consequently to vary the volume of the pumping chamber of the pump during its operation.
  • a micropump thus constructed has a dimension in its general plane of 22 ⁇ 22 mm, the thicknesses of the plates 1, 4 and 5 being respectively 1.5 mm, 280 microns and 0.3 mm.
  • the intermediate plate 4 forming the pump body has an inlet chamber 7 (FIG. 2) communicating with the inlet channel 2 pierced in the base plate 1.
  • This inlet chamber 7 surrounds an inlet valve 8, the l shutter 9 is formed by a thin and deformable veil machined in the silicon of the plate 4.
  • the shutter 9 cooperates with a valve seat 10 which is not specially materialized, but is formed by the corresponding part of the surface of the base plate 1 on which the shutter rests. It will be noted that this shutter 9 has a ring-shaped lining 9a which is brought to it during the process of the invention, and which is intended to slightly arch the thin veil and thus guarantee proper application of the shutter 9 on its seat 10.
  • the shutter 9 is provided with a central communication hole 11 which opens, on the side of the veil opposite to the inlet chamber 7, in a pumping chamber 12 above which the piezoelectric transducer is placed 6. It is therefore the volume of this pumping chamber 12 which is caused to change periodically to obtain the action of pumping of the micropump.
  • the pumping chamber 12 is in communication with a transfer chamber 13 via a communication orifice 14, this transfer chamber surrounding a second valve of the pump which is the outlet valve 15 of the latter.
  • This valve is constructed substantially in the same way as the inlet valve and therefore comprises a shutter 16, a shutter lining 16a, a seat 17 and a central communication orifice 18.
  • the latter connects, if necessary it is ie when the outlet valve 15 is open, the transfer chamber 13 to an outlet chamber 19 located above the outlet valve 15.
  • This outlet chamber 19 in turn communicates with the outlet channel 3 of the pump via a communication orifice 20.
  • FIGs 3a to 3j schematically show a partial sectional view of a pump body 4 taken along line III-III of Figures 1b, during the various stages of the method according to the invention. He is at note that in the description of the process which follows, the values of all the parameters such as layer thicknesses, temperatures, residence time in the ovens, etc., are only given by way of example and are not to be considered as limiting the present invention.
  • the thickness of the layer can be 1 micron and the step can be carried out in an oven in which an atmosphere of water vapor prevails which is brought to a temperature of 1100 ° C.
  • Water vapor can be generated in a bubbler in which oxygen is introduced at a flow rate of 0.5 l / min and nitrogen at a flow rate of 4 l / min.
  • the wafer thus provided with the oxide layers 22 is subjected to a conventional photolithography operation by which an attack of the oxide with hydrofluoric acid buffered with ammonium fluoride is carried out in a proportion of 1: 7 and at temperature ambient, through a photoresist mask, to keep only annular zones 23 intended to subsequently form the linings 9a and 16a of the valves.
  • a photolithography operation by which an attack of the oxide with hydrofluoric acid buffered with ammonium fluoride is carried out in a proportion of 1: 7 and at temperature ambient, through a photoresist mask, to keep only annular zones 23 intended to subsequently form the linings 9a and 16a of the valves.
  • Figures 3a to 3j show only the area corresponding to only one outlet valve 15).
  • the wafer resulting from the operation of the step of Figure 3b is then coated in its entirety with an oxide layer 24 of a predetermined thickness (in the example of 1000 ⁇ ngströms) by dry oxidation in a tubular oven at 1100 ° C in which a stream of oxygen circulates with a flow rate of 2 l / min.
  • the oxide layers thus obtained which have a role of bonding layer are in turn coated with a layer 25 of silicon nitride (Si 3 N 4 ) by chemical vapor deposition (LPCVD) at 800 °. C and up to a thickness of 1500 ⁇ ngströms.
  • the silicon nitride can be replaced by aluminum oxide (Al 2 O 3 ) of the same thickness.
  • the next step of the process consists in selectively removing the layers 24 and 25 in order to delimit expanses 26 and 27 on the wafer in which the various cavities of the pump are subsequently formed.
  • these are respectively the outlet chamber 19 and the transfer chamber 13.
  • the annular zones corresponding to the linings 9a and 16a, respectively, are preserved.
  • This step therefore comprises a conventional photolithography operation using a photoresist during which the silicon nitride is first removed selectively by plasma etching, then the oxide by etching with buffered hydrofluoric acid.
  • the wafer 21 is then again subjected to an oxidation operation on the two faces, outside the zones already covered by the silicon nitride to form the layers 28 (see FIG. 3e).
  • This oxidation takes place in the same way as that which led to the formation of the layers 22 (see FIG. 3a), the thickness of the layers 28 being 3000 ⁇ ngströms, for example.
  • an opening 29 of circular shape is made in the oxide layer 28 at the places where the central passages of the valve 8 and 15 must be located.
  • This opening is produced by subjecting the wafer to photolithography operations using photoresist, the attack itself being carried out with buffered hydrofluoric acid. This results in the configuration shown in Figure 3f.
  • a cavity 30 is then formed in the silicon by subjecting the wafer to a KOH solution at a temperature between 40 and 60 ° C to attack it anisotropically until the depth of the cavity is approximately equal to 50 microns , after which we removes residual oxide which has not yet been removed by KOH attack, by again subjecting the wafer to a solution of hydrofluoric acid buffered with ammonium fluoride in a proportion of 1: 7 and at room temperature, until that all the oxide has disappeared on both sides of the wafer.
  • This operation leads to the configuration shown in Figure 3g.
  • the wafer is then again subjected to an anisotropic attack with KOH by soaking in a solution of this compound for a sufficient time so that what has become the haze of each valve is only 50 microns thick.
  • This operation also leads to the piercing of the plate in the center of the valve and to the formation of the various cavities provided for the pump, as shown in Figure 3h.
  • the wafer is subjected to wet oxidation under the same conditions as those which led to the formation of layer 22 until an oxide layer 31 with a thickness of approximately 3000 ⁇ ngströms is obtained, this layer covering with oxide all the expanses of the pump intended to come into contact with the fluid.
  • the zones which have remained covered with silicon nitride during all the stages of the process which have just been described are not affected by this oxidation operation, as shown in FIG. 3i.
  • the next step in the process consists in removing the silicon nitride from the layer still present on the wafer by subjecting it to an 85% solution of phosphoric acid at a temperature of around 180 ° C. and then to a solution. hydrofluoric acid buffered to remove the oxide from layer 24, previously underlying the silicon nitride.
  • This last operation also leads to the partial removal of the oxide layer 31.
  • the oxide layer 24 had a thickness of approximately 1000 ⁇ ngströms
  • the operation of removal of oxide carried out last allows to remain a sufficient thickness on the surfaces exposed to the fluid (approximately 2000 ⁇ ngströms) so that these surfaces have sufficient wettability and are sufficiently protected against possible attacks by this fluid.
  • This last operation leads to the configuration shown in FIG. 3j, where it can be seen that an oxide layer 32 has remained present.
  • the hydrophilic and protective layer 32 is provided during the process of making up the pump body without requiring subsequent dipping operations capable of oxidizing not only the surfaces which must actually be, but also the surfaces 33 against which the closure plates of the pump are to be fixed, as was the case in the prior art.
  • the method of the invention makes it possible to easily obtain a thicker oxide layer than was the case in the prior art, so that it can provide better electrical insulation.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Micromachines (AREA)
  • Reciprocating Pumps (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • External Artificial Organs (AREA)
  • Weting (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Lubricants (AREA)

Abstract

This process consists of machining a silicon piece (4) by means of selective oxidation operations and photolithography to form therein at least one cavity (7, 12) adapted to contain or convey a fluid, and of oxidizing the wall of the cavity to make this hydrophilic. The device is completed by fixing closing plates (1, 5) to its body thus formed. Prior to the machining operations the surfaces of the piece (4) adapted to be in contact with the closing plates (1, 5) are covered with a screening layer that resists these machining operations. Then, after these have been completed, the surfaces of the piece intended to be exposed to the fluid are oxidized to form therein an oxide layer favoring the wettability of these surfaces. The screening layer is then removed and the closing plates are fixed to the piece. The invention has applications, notably in micropumps.

Description

La présente invention est relative à un procédé de fabrication de dispositifs réalisés par micro-usinage de silicium et appelés à contenir ou à véhiculer des fluides gazeux ou liquides. Plus particulièrement, l'invention a trait à la fabrication de micropompes au silicium réalisées par des techniques d'usinage par photolithographie.The present invention relates to a method for manufacturing devices produced by micromachining of silicon and called to contain or convey gaseous or liquid fluids. More particularly, the invention relates to the manufacture of silicon micropumps produced by photolithography machining techniques.

Une construction particulière de micropompe au silicium à excitation par un élément piézo-électrique est connue de la demande de brevet PCT-WO 91/07591. Dans ce document, on évoque accessoirement les problèmes qui sont liés au fait que le silicium est un matériau hydrophobe de sorte que les surfaces du silicium, en contact avec le fluide à pomper, ont une mouillabilité médiocre. Ce problème est d'autant plus ardu que, souvent, ce genre de micropompe est utilisé pour véhiculer des substances médicamenteuses présentées sous la forme d'une solution aqueuse. Dans ces conditions, et sans prendre des précautions particulières, le remplissage correct de la chambre de pompage et/ou les chambres des clapets d'entrée et de sortie, n'est pas possible.A particular construction of a silicon micropump excited by a piezoelectric element is known from patent application PCT-WO 91/07591. In this document, the problems which are linked to the fact that silicon is a hydrophobic material are evoked incidentally so that the surfaces of the silicon, in contact with the fluid to be pumped, have poor wettability. This problem is all the more difficult since, often, this kind of micropump is used to convey medicinal substances presented in the form of an aqueous solution. Under these conditions, and without taking any special precautions, correct filling of the pumping chamber and / or the chambers of the inlet and outlet valves is not possible.

La solution à ce problème évoquée dans la demande de brevet internationale précitée, à savoir rendre les surfaces en contact avec le fluide à véhiculer hydrophiles, consiste à oxyder le corps de pompe en silicium après sa fabrication de manière à former une très faible couche superficielle d'oxyde de silicium qui, elle, est hydrophile et peut ainsi améliorer considérablement la mouillabilité des volumes de la pompe en contact avec le fluide à véhiculer. Plus spécifiquement, dans le document précité, on propose de tremper le corps de pompe achevé dans de l'acide nitrique bouillant pendant une durée suffisante pour créer une épaisseur convenable de la couche hydrophile.The solution to this problem mentioned in the aforementioned international patent application, namely to make the surfaces in contact with the fluid to be conveyed hydrophilic, consists in oxidizing the pump body in silicon after its manufacture so as to form a very weak surface layer d silicon oxide which is hydrophilic and can thus considerably improve the wettability of the volumes of the pump in contact with the fluid to be conveyed. More specifically, in the aforementioned document, it is proposed to soak the completed pump body in boiling nitric acid for a period of time. sufficient to create a suitable thickness of the hydrophilic layer.

Cependant, cette façon de procéder présente l'inconvénient qu'en oxydant de la sorte le corps de pompe, toute la surface exposée du silicium subit le traitement, y compris les surfaces sur lesquelles ultérieurement on vient souder les verres de recouvrement de la pompe. Or, on sait que le soudage d'un verre sur une surface en oxyde de silicium est difficile voire impossible à réaliser.However, this procedure has the disadvantage that by oxidizing the pump body in this way, the entire exposed surface of the silicon undergoes the treatment, including the surfaces on which the cover glasses of the pump are subsequently welded. However, it is known that the welding of a glass on a silicon oxide surface is difficult or even impossible to achieve.

La présence de la couche d'oxyde recouvrant le silicium exposé au fluide reste cependant souhaitable, car elle présente également un autre avantage en ce qu'elle permet de protéger le silicium contre les attaques du fluide pour autant naturellement qu'il ait un comportement agressif vis-à-vis du silicium, Par exemple, on peut imaginer que le fluide soit constitué par un gaz corrosif dont dans ces conditions les effets nuisibles sur le silicium sont annulés. Par ailleurs, la couche d'oxyde peut constituer un isolant électrique, lorsque le fluide est conducteur de l'électricité.The presence of the oxide layer covering the silicon exposed to the fluid remains desirable, however, because it also has another advantage in that it makes it possible to protect the silicon against attack by the fluid provided that it naturally has an aggressive behavior. With respect to silicon, for example, one can imagine that the fluid consists of a corrosive gas, the harmful effects of which under these conditions are canceled under these conditions. Furthermore, the oxide layer can constitute an electrical insulator, when the fluid is electrically conductive.

L'invention a pour but de remédier à l'inconvénient mentionné ci-dessus de la technique antérieure et de proposer un procédé de fabrication de dispositifs micro-usinés du genre indiqué ci-dessus qui permette de garantir une bonne liaison entre le corps en silicium du dispositif et les plaques de fermeture en verre, tout en conservant une couche d'oxyde sur les surfaces expirées au fluide.The object of the invention is to remedy the above-mentioned drawback of the prior art and to propose a method for manufacturing micro-machined devices of the type indicated above which makes it possible to guarantee a good bond between the silicon body. of the device and the glass closure plates, while retaining an oxide layer on the expired surfaces with the fluid.

L'invention a donc pour objet un procédé de fabrication d'un dispositif micro-usiné destiné à contenir ou à véhiculer des substances liquides, ce procédé consistant à:

  • usiner par des opérations d'oxydation sélective et de photolithographie une plaquette en silicium pour y former au moins une cavité destinée à contenir ou à véhiculer ledit fluide, et à oxyder la paroi de ladite cavité pour la rendre hydrophile, et
  • achever ledit dispositif en assujetissant contre le corps de dispositif ainsi formé des plaques de fermeture,
  • ce procédé étant caractérisé en ce qu'il consiste:
  • préalablement auxdites opérations d'usinage, à recouvrir les surfaces de ladite plaquette destinées à être en contact desdites plaques de fermeture d'une couche-écran résistant auxdites opérations d'usinage;
  • après achèvement desdites opérations d'usinage à oxyder les surfaces de ladite plaquette destinées à être exposées audit fluide pour y former une couche d'oxyde favorisant la mouillabilité de ces surfaces;
  • à éliminer ladite couche d'écran; et
  • à assujettir lesdites plaques de fermeture contre ladite plaquette.
The subject of the invention is therefore a method of manufacturing a micro-machined device intended to contain or convey liquid substances, this method consisting in:
  • machine, by selective oxidation and photolithography operations, a silicon wafer to form at least one cavity therein intended to contain or conveying said fluid, and oxidizing the wall of said cavity to make it hydrophilic, and
  • complete said device by subjecting closure plates against the device body thus formed,
  • this process being characterized in that it consists:
  • prior to said machining operations, covering the surfaces of said wafer intended to be in contact with said closure plates with a screen layer resistant to said machining operations;
  • after completion of said machining operations to oxidize the surfaces of said wafer intended to be exposed to said fluid to form an oxide layer promoting the wettability of these surfaces;
  • removing said screen layer; and
  • securing said closure plates against said wafer.

Selon une autre caractéristique de l'invention, ladite couche écran est réalisée en nitrure de silicium et déposée sur ladite plaquette avec interposition d'une couche d'oxyde intermédiaire.According to another characteristic of the invention, said screen layer is made of silicon nitride and deposited on said wafer with the interposition of an intermediate oxide layer.

Selon encore une autre caractéristique de l'invention, ladite couche intermédiaire d'oxyde présente une épaisseur inférieure à celle de ladite couche d'oxyde favorisant la mouillabilité, le procédé consistant en outre, après l'élimination de ladite couche-écran, à éliminer ladite couche d'oxyde intermédiaire, pendant que ladite couche d'oxyde favorisant la mouillabilité est à découvert.According to yet another characteristic of the invention, said intermediate oxide layer has a thickness less than that of said oxide layer promoting wettability, the method further consisting, after the elimination of said screen layer, in eliminating said intermediate oxide layer, while said oxide layer promoting wettability is exposed.

L'invention a également pour objet un dispositif micro-usiné obtenu par le procédé tel que défini ci-dessus.The invention also relates to a micro-machined device obtained by the method as defined above.

Il résulte de ces caractéristiques que le montage des plaques de fermeture, opération qui complète le dispositif micro-usiné, reste facile à exécuter avec une grande fiabilité du résultat, tandis que les surfaces du silicium du dispositif micro-usiné destinées à être en contact avec le fluide à véhiculer ou à abriter, sont hydrophiles et/ou résistantes à l'agression éventuelle de ce fluide.It follows from these characteristics that the assembly of the closing plates, an operation which completes the micro-machined device, remains easy to execute with great reliability of the result, while the silicon surfaces of the micro-machined device intended to be in contact with the fluid to be conveyed or to be sheltered, are hydrophilic and / or resistant to the possible aggression of this fluid.

D'autres caractéristiques et avantages de la présente invention apparaîtront au cours de la description qui va suivre, donnée uniquement à titre d'exemple et faite en se référant aux dessins annexés sur lesquels:

  • les figures 1a et 1b sont des vues schématiques en plan, respectivement de dessus et de dessous, d'un exemple de dispositif micro-usiné réalisé à l'aide du procédé selon l'invention, cet exemple concernant une micropompe à entraînement piézo-électrique à laquelle, toutefois l'invention n'est nullement limitée;
  • la figure 2 est une vue en coupe transversale de la micropompe représentée aux figures 1a et 1b, vue qui est prise selon la ligne II-II de ces figures;
  • la figure 3 montre, par une coupe partielle schématique selon la ligne III-III des figures 1a et 1b, les opérations successives nécessaires pour exécuter le procédé suivant l'invention.
Other characteristics and advantages of the present invention will become apparent during the description which follows, given solely by way of example and made with reference to the appended drawings in which:
  • FIGS. 1a and 1b are schematic plan views, respectively from above and from below, of an example of a micro-machined device produced using the method according to the invention, this example concerning a micropump with piezoelectric drive to which, however, the invention is in no way limited;
  • Figure 2 is a cross-sectional view of the micropump shown in Figures 1a and 1b, a view taken along line II-II of these figures;
  • Figure 3 shows, in a schematic partial section along the line III-III of Figures 1a and 1b, the successive operations necessary to carry out the method according to the invention.

On va tout d'abord se référer aux figures 1a, 1b et 2 pour décrire, à titre d'exemple de la mise en oeuvre du procédé selon l'invention, une micropompe à entraînement piézo-électrique, objet qui se prête particulièrement bien à être réalisé à l'aide de ce procédé. On notera que les termes "dessus" et "dessous" ne sont utilisés qu'à des fins descriptives, la pompe pouvant être utilisée dans une attitude quelconque dans l'espace.We will first refer to Figures 1a, 1b and 2 to describe, by way of example of the implementation of the method according to the invention, a piezoelectric drive micropump, an object which lends itself particularly well to be done using this process. Note that the terms "above" and "below" are used only for descriptive purposes, the pump can be used in any attitude in space.

La micropompe comporte une plaque de base 1 ou première plaque de fermeture, réalisée de préférence en verre et percée dans son épaisseur de deux canaux 2 et 3 qui sont respectivement le canal d'entrée et le canal de sortie de la micropompe.The micropump comprises a base plate 1 or first closure plate, preferably made of glass and pierced in its thickness by two channels 2 and 3 which are respectively the inlet channel and the outlet channel of the micropump.

Sur cette plaque de base 1 est fixée une plaque 4 formant corps de pompe et réalisée en silicium, cette plaque étant micro-usinée pour y former, par le procédé de l'invention, les divers cavités et organes actifs de la pompe, comme on le décrira ci-après.On this base plate 1 is fixed a plate 4 forming a pump body and made of silicon, this plate being micro-machined to form there, by the method of the invention, the various cavities and active members of the pump, as will be described below.

Sur la plaque 4 formant corps de pompe est fixée à son tour une troisième plaque 5 relativement mince et réalisée en verre, de préférence. Cette plaque constitue la deuxième plaque de fermeture de la pompe. Elle est surmontée d'un transducteur piézo-électrique 6 s'étendant sur une partie de sa surface extérieure, ce transducteur étant destiné, de par son régime vibratoire engendré lorsqu'il est excité par une tension électrique, à déformer la deuxième plaque de fermeture 5 et par suite de faire varier le volume de la chambre de pompage de la pompe au cours de son fonctionnement.On the plate 4 forming the pump body is fixed in turn a third relatively thin plate 5 made of glass, preferably. This plate constitutes the second closing plate of the pump. It is surmounted by a piezoelectric transducer 6 extending over part of its outer surface, this transducer being intended, by virtue of its vibrational regime generated when it is excited by an electric voltage, to deform the second closure plate 5 and consequently to vary the volume of the pumping chamber of the pump during its operation.

Pour fixer les idées et à titre d'exemple uniquement, on peut noter qu'une micropompe ainsi construite a une dimension dans son plan générale de 22 x 22 mm, les épaisseurs des plaques 1, 4 et 5 étant respectivement de 1,5mm, 280 microns et 0,3 mm.To fix the ideas and by way of example only, it can be noted that a micropump thus constructed has a dimension in its general plane of 22 × 22 mm, the thicknesses of the plates 1, 4 and 5 being respectively 1.5 mm, 280 microns and 0.3 mm.

La plaque intermédiaire 4 formant corps de pompe présente une chambre d'entrée 7 (figure 2) communiquant avec le canal d'entrée 2 percée dans la plaque de base 1. Cette chambre d'entrée 7 entoure un clapet d'entrée 8 dont l'obturateur 9 est formé par un voile mince et déformable usiné dans le silicium de la plaque 4. L'obturateur 9 coopère avec un siège de clapet 10 qui n'est pas matérialisé spécialement, mais est formé par la partie correspondante de la surface de la plaque de base 1 sur laquelle vient s'appuyer l' obturateur 9. On notera que cette obturateur 9 comporte une garniture 9a en forme de bague qui y est apportée au cours du procédé de l'invention, et qui est destinée à cambrer légèrement le voile mince et garantir ainsi une bonne application de l'obturateur 9 sur son siège 10.The intermediate plate 4 forming the pump body has an inlet chamber 7 (FIG. 2) communicating with the inlet channel 2 pierced in the base plate 1. This inlet chamber 7 surrounds an inlet valve 8, the l shutter 9 is formed by a thin and deformable veil machined in the silicon of the plate 4. The shutter 9 cooperates with a valve seat 10 which is not specially materialized, but is formed by the corresponding part of the surface of the base plate 1 on which the shutter rests. It will be noted that this shutter 9 has a ring-shaped lining 9a which is brought to it during the process of the invention, and which is intended to slightly arch the thin veil and thus guarantee proper application of the shutter 9 on its seat 10.

L'obturateur 9 est muni d'un trou de communication central 11 qui débouche, du côté du voile opposé à la chambre d'entrée 7, dans une chambre de pompage 12 au dessus de laquelle est placé le transducteur piézo-électrique 6. C'est donc le volume de cette chambre de pompage 12 qui est amené à se modifier périodiquement pour obtenir l'action de pompage de la micropompe.The shutter 9 is provided with a central communication hole 11 which opens, on the side of the veil opposite to the inlet chamber 7, in a pumping chamber 12 above which the piezoelectric transducer is placed 6. It is therefore the volume of this pumping chamber 12 which is caused to change periodically to obtain the action of pumping of the micropump.

La chambre de pompage 12 est en communication avec une chambre de transfert 13 par l'intermédiaire d'un orifice de communication 14, cette chambre de transfert entourant un second clapet de la pompe qui est le clapet de sortie 15 de celle-ci. Ce clapet est construit sensiblement de la même façon que le clapet d'entrée et comporte donc un obturateur 16, une garniture d'obturateur 16a, un siège 17 et un orifice central de communication 18. Ce dernier relie, le cas échéant c'est à dire lorsque le clapet de sortie 15 est ouvert, la chambre de transfert 13 à une chambre de sortie 19 située au-dessus du clapet de sortie 15. Cette chambre de sortie 19 communique à son tour avec le canal de sortie 3 de la pompe par l'intermédiaire d'un orifice de communication 20.The pumping chamber 12 is in communication with a transfer chamber 13 via a communication orifice 14, this transfer chamber surrounding a second valve of the pump which is the outlet valve 15 of the latter. This valve is constructed substantially in the same way as the inlet valve and therefore comprises a shutter 16, a shutter lining 16a, a seat 17 and a central communication orifice 18. The latter connects, if necessary it is ie when the outlet valve 15 is open, the transfer chamber 13 to an outlet chamber 19 located above the outlet valve 15. This outlet chamber 19 in turn communicates with the outlet channel 3 of the pump via a communication orifice 20.

La construction de la micropompe que l'on vient de décrire est connue en soi et l'on s'abstient donc d'en décrire en détail le fonctionnement d'autant qu'il peut être reconstitué aisément de la description qui vient d'être donné de cette construction.The construction of the micropump which has just been described is known per se and we therefore refrain from describing its operation in detail as far as it can be easily reconstituted from the description which has just been given of this construction.

On va donc décrire maintenant le procédé de fabrication du corps de pompe 4 en insistant sur les caractéristiques essentielles de la présente invention qui comme déjà indiqué au début du présent mémoire, visent à améliorer les propriétés hydrophiles et de résistance à l'agressivité des fluides à pomper, des surfaces du corps de pompe 4 en contact avec ce fluide au cours du fonctionnement de la pompe.We will therefore now describe the process for manufacturing the pump body 4, emphasizing the essential characteristics of the present invention which, as already indicated at the beginning of this specification, aim to improve the hydrophilic properties and resistance to the aggressiveness of fluids. pump, surfaces of the pump body 4 in contact with this fluid during operation of the pump.

Les figures 3a à 3j représentent schématiquement une vue partielle en coupe d'un corps de pompe 4 prise selon la ligne III-III de la figures 1b, au cours des diverses étapes du procédé selon l'invention. Il est à noter que dans la description du procédé qui va suivre, les valeurs de tous les paramètres tels qu'épaisseurs de couches, températures, temps de séjour dans les fours etc, ne sont données qu'à titre d'exemple et ne sont pas à considérer comme limitatives de la présente invention.Figures 3a to 3j schematically show a partial sectional view of a pump body 4 taken along line III-III of Figures 1b, during the various stages of the method according to the invention. He is at note that in the description of the process which follows, the values of all the parameters such as layer thicknesses, temperatures, residence time in the ovens, etc., are only given by way of example and are not to be considered as limiting the present invention.

Une plaquette de silicium 21, dans laquelle selon la technologie habituelle, plusieurs corps de pompe peuvent être formés simultanément, est soumise tout d'abord à une oxydation humide (étape de la figure 3a) ce qui forme sur ses deux faces une couche d'oxyde 22. L'épaisseur de la couche peut être de 1 micron et l'étape peut être exécutée dans un four dans lequel règne une atmosphère de vapeur d'eau qui est portée à une température de 1100 °C. La vapeur d'eau peut être engendrée dans un barboteur dans lequel on introduit de l'oxygène à un débit de 0,5 l/min et de l'azote à un débit de 4 l/min.A silicon wafer 21, in which according to the usual technology, several pump bodies can be formed simultaneously, is first of all subjected to wet oxidation (step of FIG. 3a) which forms on its two faces a layer of oxide 22. The thickness of the layer can be 1 micron and the step can be carried out in an oven in which an atmosphere of water vapor prevails which is brought to a temperature of 1100 ° C. Water vapor can be generated in a bubbler in which oxygen is introduced at a flow rate of 0.5 l / min and nitrogen at a flow rate of 4 l / min.

La plaquette ainsi pourvue des couches d'oxyde 22 est soumise à une opération de photolithographie classique par laquelle on procède à une attaque de l'oxyde à l'acide fluorhydrique tamponné au fluorure d'ammonium dans une proportion de 1:7 et à température ambiante, à travers un masque de photoresist, pour ne conserver que des zones annulaires 23 destinées à former ultérieurement les garnitures 9a et 16a des clapets. (Il est à noter que les figures 3a à 3j ne montrent que la zone ne correspondant qu'à un seul clapet de sortie 15).The wafer thus provided with the oxide layers 22 is subjected to a conventional photolithography operation by which an attack of the oxide with hydrofluoric acid buffered with ammonium fluoride is carried out in a proportion of 1: 7 and at temperature ambient, through a photoresist mask, to keep only annular zones 23 intended to subsequently form the linings 9a and 16a of the valves. (It should be noted that Figures 3a to 3j show only the area corresponding to only one outlet valve 15).

La plaquette résultant de l'opération de l'étape de la figure 3b est alors revêtue dans sa totalité d'une couche d'oxyde 24 d'une épaisseur prédéterminée (dans l'exemple de 1000 Ångströms) par oxydation sèche dans un four tubulaire à 1100°C dans lequel circule un courant d'oxygène avec un débit de 2 l/min. Puis, les couches d'oxyde ainsi obtenues qui ont un rôle de couche de liaison, sont revêtues à leur tour d'une couche 25 de nitrure de silicium (Si3N4) par dépôt chimique à la vapeur (LPCVD) à 800°C et jusqu'à une épaisseur de 1500 Ångströms. Selon une variante, on peut remplacer le nitrure de silicium par de l'oxyde d'aluminium (Al2O3) d'une même épaisseur.The wafer resulting from the operation of the step of Figure 3b is then coated in its entirety with an oxide layer 24 of a predetermined thickness (in the example of 1000 Ångströms) by dry oxidation in a tubular oven at 1100 ° C in which a stream of oxygen circulates with a flow rate of 2 l / min. Then, the oxide layers thus obtained which have a role of bonding layer, are in turn coated with a layer 25 of silicon nitride (Si 3 N 4 ) by chemical vapor deposition (LPCVD) at 800 °. C and up to a thickness of 1500 Ångströms. Alternatively, the silicon nitride can be replaced by aluminum oxide (Al 2 O 3 ) of the same thickness.

L'étape suivante du procédé, illustrée sur la figure 3d, consiste à ôter sélectivement les couches 24 et 25 pour délimiter des étendues 26 et 27 sur la plaquette dans lesquelles on formera ultérieurement les diverses cavités de la pompe. Pour ce qui concerne les figures 3a à 3j, il s'agit respectivement de la chambre de sortie 19 et de la chambre de transfert 13. Les zones annulaires correspondant aux garnitures 9a et 16a, respectivement sont préservées. Cette étape comprend donc une opération de photolithographie classique à l'aide d'un photoresist pendant laquelle on élimine sélectivement d'abord le nitrure de silicium par attaque au plasma, puis l'oxyde par attaque à l'acide fluorhydrique tamponné.The next step of the process, illustrated in FIG. 3d, consists in selectively removing the layers 24 and 25 in order to delimit expanses 26 and 27 on the wafer in which the various cavities of the pump are subsequently formed. With regard to FIGS. 3a to 3j, these are respectively the outlet chamber 19 and the transfer chamber 13. The annular zones corresponding to the linings 9a and 16a, respectively, are preserved. This step therefore comprises a conventional photolithography operation using a photoresist during which the silicon nitride is first removed selectively by plasma etching, then the oxide by etching with buffered hydrofluoric acid.

La plaquette 21 est ensuite de nouveau soumise à une opération d'oxydation sur les deux faces, en dehors des zones déjà couvertes par le nitrure de silicium pour former les couches 28 (voir la figure 3e). Cette oxydation se fait de la même façon que celle qui a conduit à la formation des couches 22 (voir la figure 3a), l'épaisseur des couches 28 étant de 3000 Ångströms, par exemple.The wafer 21 is then again subjected to an oxidation operation on the two faces, outside the zones already covered by the silicon nitride to form the layers 28 (see FIG. 3e). This oxidation takes place in the same way as that which led to the formation of the layers 22 (see FIG. 3a), the thickness of the layers 28 being 3000 Ångströms, for example.

Puis, une ouverture 29 de forme circulaire est pratiquée dans la couche d'oxyde 28 aux endroits où doivent se trouver les passages centraux des clapet 8 et 15. Cette ouverture est réalisée en soumettant la plaquette à des opérations de photolithographie à l'aide de photoresist, l'attaque elle-même étant réalisée à l'acide fluorhydrique tamponné. Il en résulte la configuration représentée sur la figure 3f.Then, an opening 29 of circular shape is made in the oxide layer 28 at the places where the central passages of the valve 8 and 15 must be located. This opening is produced by subjecting the wafer to photolithography operations using photoresist, the attack itself being carried out with buffered hydrofluoric acid. This results in the configuration shown in Figure 3f.

On forme ensuite une cavité 30 dans le silicium en soumettant la plaquette à une solution de KOH à une température entre 40 et 60°C pour l'attaquer de façon anisotrope jusqu'à ce que la profondeur de la cavité soit approximativement égale à 50 microns, après quoi on élimine l'oxyde résiduel non encore ôté par l'attaque au KOH, en soumettant de nouveau la plaquette à une solution d'acide fluorhydrique tamponné au fluorure d'ammonium dans une proportion de 1:7 et à température ambiante, jusqu'à ce que tout l'oxyde ait disparu sur les deux faces de la plaquette. Cette opération conduit à la configuration représentée sur la figure 3g.A cavity 30 is then formed in the silicon by subjecting the wafer to a KOH solution at a temperature between 40 and 60 ° C to attack it anisotropically until the depth of the cavity is approximately equal to 50 microns , after which we removes residual oxide which has not yet been removed by KOH attack, by again subjecting the wafer to a solution of hydrofluoric acid buffered with ammonium fluoride in a proportion of 1: 7 and at room temperature, until that all the oxide has disappeared on both sides of the wafer. This operation leads to the configuration shown in Figure 3g.

La plaquette est alors de nouveau soumise à une attaque anisotrope au KOH par trempage dans une solution de ce composé pendant un temps suffisant pour que ce qui est devenu le voile de chaque clapet n'ait plus qu'une épaisseur de 50 microns. Cette opération conduit également au percement de la plaquette au centre du clapet et à la formation des diverses cavités prévues pour la pompe, comme représenté sur la figure 3h.The wafer is then again subjected to an anisotropic attack with KOH by soaking in a solution of this compound for a sufficient time so that what has become the haze of each valve is only 50 microns thick. This operation also leads to the piercing of the plate in the center of the valve and to the formation of the various cavities provided for the pump, as shown in Figure 3h.

Puis, la plaquette est soumise à une oxydation humide dans les mêmes conditions que celles qui ont conduit à la formation de la couche 22 jusqu'à ce qu'une couche d'oxyde 31 d'une épaisseur d'environ 3000 Ångströms soit obtenue, cette couche recouvrant d'oxyde toutes les étendues de la pompe destinées à venir en contact avec le fluide. Les zones qui sont restées recouvertes de nitrure de silicium pendant toutes les étapes du procédé que l'on vient de décrire ne sont pas affectées par cette opération d'oxydation, comme représenté sur la figure 3i.Then, the wafer is subjected to wet oxidation under the same conditions as those which led to the formation of layer 22 until an oxide layer 31 with a thickness of approximately 3000 Ångströms is obtained, this layer covering with oxide all the expanses of the pump intended to come into contact with the fluid. The zones which have remained covered with silicon nitride during all the stages of the process which have just been described are not affected by this oxidation operation, as shown in FIG. 3i.

L'étape suivante du procédé consiste à éliminer le nitrure de silicium de la couche 25 encore présent sur la plaquette en soumettant celle-ci à une solution de 85% d'acide phosphorique à une température d'environ 180°C puis à une solution d'acide fluorhydrique tamponné pour enlever l'oxyde de la couche 24, sous-jacente auparavant au nitrure de silicium. Cette dernière opération conduit également à l'enlèvement partiel de la couche d'oxyde 31. Cependant, comme la couche d'oxyde 24 avait une épaisseur de 1000 Ångströms environ, l'opération d'enlèvement d'oxyde exécutée en dernier lieu laisse subsister une épaisseur suffisante sur les surfaces exposées au fluide (environ 2000 Ångströms) pour que ces surfaces aient une mouillabilité suffisante et soient suffisamment protégées contre d'éventuelles agressions de ce fluide. Cette dernière opération conduit à la configuration représentée sur la figure 3j, où on voit qu'une couche d'oxyde 32 est restée présente.The next step in the process consists in removing the silicon nitride from the layer still present on the wafer by subjecting it to an 85% solution of phosphoric acid at a temperature of around 180 ° C. and then to a solution. hydrofluoric acid buffered to remove the oxide from layer 24, previously underlying the silicon nitride. This last operation also leads to the partial removal of the oxide layer 31. However, since the oxide layer 24 had a thickness of approximately 1000 Ångströms, the operation of removal of oxide carried out last allows to remain a sufficient thickness on the surfaces exposed to the fluid (approximately 2000 Ångströms) so that these surfaces have sufficient wettability and are sufficiently protected against possible attacks by this fluid. This last operation leads to the configuration shown in FIG. 3j, where it can be seen that an oxide layer 32 has remained present.

On remarquera que cette configuration correspond au corps de pompe achevé auquel il suffit ensuite d'assujettir les plaques de fermeture 1 et 5 par soudure anodique, ainsi que de mettre en place le transducteur piézo-électrique pour finaliser la construction de la micropompe.It will be noted that this configuration corresponds to the completed pump body to which it then suffices to subject the closure plates 1 and 5 by anodic welding, as well as to set up the piezoelectric transducer to finalize the construction of the micropump.

Ainsi, comme on peut le constater, la couche hydrophile et de protection 32 est apportée durant le procédé de confection du corps de pompe sans nécessiter des opérations de trempage ultérieur susceptibles d'oxyder non seulement les surfaces qui doivent réellement l'être, mais encore les surfaces 33 contre lesquelles doivent être fixées les plaques de fermeture de la pompe, comme cela était le cas dans la technique antérieure.Thus, as can be seen, the hydrophilic and protective layer 32 is provided during the process of making up the pump body without requiring subsequent dipping operations capable of oxidizing not only the surfaces which must actually be, but also the surfaces 33 against which the closure plates of the pump are to be fixed, as was the case in the prior art.

Enfin, le procédé de l'invention permet d'obtenir facilement une couche d'oxyde plus épaisse que cela n'était le cas dans la technique antérieure, si bien qu'elle peut assurer une meilleure isolation électrique.Finally, the method of the invention makes it possible to easily obtain a thicker oxide layer than was the case in the prior art, so that it can provide better electrical insulation.

Claims (4)

  1. Process for the manufacture of a micromachined device adapted to contain or to convey fluid substances in particular liquids, this process consisting of :
    - machining a silicon plate (4) by means of selective oxidation and photolithographic operations to form therein at least one cavity (7, 12) adapted to contain or to convey said fluid, and to oxidize the wall of said cavity to render it hydrophilic, and
    - to complete said device by fixing closure plates (1, 5) to the body of the device thus formed,
    characterized in that it consists in :
    - preceding said machining operations by covering the surfaces of said plate (4) adapted to be in contact with said closure plates (1, 5) with a screening layer (25) resistant to said machining operations;
    - after completing said machining operations, oxidizing the surfaces of said plate adapted to be exposed to said fluid to form thereon an oxide layer (32) favouring the wettability of these surfaces;
    - removing said screening layer (25); and
    - fixing said closure plates (1, 5) to said plate (4).
  2. Process according to claim 1, characterized in that said screening layer (25) is made of silicon nitride and deposited on said plate (4) with interposition of an intermediate oxide layer (24).
  3. Process according to claim 2, characterized in that said intermediate oxide layer (24) has a thickness less than that said oxide layer (31) favouring the wettability, the process also consisting, after removal of said screening layer, of eliminating said intermediate oxide layer while said oxide layer favouring wettability is uncovered.
  4. Device produced by micromachining silicon adapted to contain or convey a fluid, characterized in that it is obtained according to the process as defined in any one of claims 1 to 3.
EP94107419A 1993-05-24 1994-05-13 Manufacturing process for a micropump Expired - Lifetime EP0641934B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9306281 1993-05-24
FR9306281A FR2705693B1 (en) 1993-05-24 1993-05-24 Method of manufacturing a micro-machined device to contain or convey a fluid.

Publications (2)

Publication Number Publication Date
EP0641934A1 EP0641934A1 (en) 1995-03-08
EP0641934B1 true EP0641934B1 (en) 1996-12-27

Family

ID=9447460

Family Applications (1)

Application Number Title Priority Date Filing Date
EP94107419A Expired - Lifetime EP0641934B1 (en) 1993-05-24 1994-05-13 Manufacturing process for a micropump

Country Status (10)

Country Link
US (1) US5462839A (en)
EP (1) EP0641934B1 (en)
JP (1) JP3651809B2 (en)
AT (1) ATE146853T1 (en)
DE (1) DE69401250T2 (en)
DK (1) DK0641934T3 (en)
ES (1) ES2099991T3 (en)
FR (1) FR2705693B1 (en)
HK (1) HK1006739A1 (en)
SG (1) SG47036A1 (en)

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5847631A (en) * 1995-10-10 1998-12-08 Georgia Tech Research Corporation Magnetic relay system and method capable of microfabrication production
US6377155B1 (en) 1995-10-10 2002-04-23 Georgia Tech Research Corp. Microfabricated electromagnetic system and method for forming electromagnets in microfabricated devices
US6281560B1 (en) 1995-10-10 2001-08-28 Georgia Tech Research Corp. Microfabricated electromagnetic system and method for forming electromagnets in microfabricated devices
US5879632A (en) * 1996-04-09 1999-03-09 Sarnoff Corporation Apportioning system
US20050214827A1 (en) * 1996-07-08 2005-09-29 Burstein Technologies, Inc. Assay device and method
US6342349B1 (en) 1996-07-08 2002-01-29 Burstein Technologies, Inc. Optical disk-based assay devices and methods
US6331275B1 (en) 1996-07-08 2001-12-18 Burstein Technologies, Inc. Spatially addressable, cleavable reflective signal elements, assay device and method
EP0918845A4 (en) 1996-07-08 2000-08-30 Burstein Lab Inc Cleavable signal element device and method
DE19705910C1 (en) * 1997-02-15 1998-06-18 Inst Physikalische Hochtech Ev Micro-chamber array formed by anisotropic etching e.g. for biotechnology applications
DE19719862A1 (en) 1997-05-12 1998-11-19 Fraunhofer Ges Forschung Micro diaphragm pump
EP1129741B1 (en) 1997-11-19 2006-04-12 Microflow Engineering SA Spray device for an inhaler
JP2002521666A (en) * 1998-07-21 2002-07-16 バースタイン テクノロジーズ,インコーポレイティド Optical disc based assay device and method
PT1005917E (en) 1998-12-01 2007-02-28 Microflow Eng Sa Inhaler with ultrasonic wave nebuliser having nozzle openings superposed on peaks of a standing wave pattern
US6410360B1 (en) 1999-01-26 2002-06-25 Teledyne Industries, Inc. Laminate-based apparatus and method of fabrication
US6905614B1 (en) 2000-05-24 2005-06-14 Active Optical Networks, Inc. Pattern-transfer process for forming micro-electro-mechanical structures
US6827866B1 (en) * 2000-05-24 2004-12-07 Active Optical Networks, Inc. Deep-well lithography process for forming micro-electro-mechanical structures
WO2002044695A1 (en) * 2000-11-16 2002-06-06 Burstein Technologies, Inc. Methods and apparatus for detecting and quantifying lymphocytes with optical biodiscs
US6965433B2 (en) * 2000-11-16 2005-11-15 Nagaoka & Co., Ltd. Optical biodiscs with reflective layers
US7087203B2 (en) * 2000-11-17 2006-08-08 Nagaoka & Co., Ltd. Methods and apparatus for blood typing with optical bio-disc
US7026131B2 (en) * 2000-11-17 2006-04-11 Nagaoka & Co., Ltd. Methods and apparatus for blood typing with optical bio-discs
EP1236517A1 (en) * 2001-02-23 2002-09-04 Microflow Engineering SA Method of manufacturing a liquid droplet spray device and such spray device
US7141416B2 (en) * 2001-07-12 2006-11-28 Burstein Technologies, Inc. Multi-purpose optical analysis optical bio-disc for conducting assays and various reporting agents for use therewith
US20030143637A1 (en) * 2001-08-31 2003-07-31 Selvan Gowri Pyapali Capture layer assemblies for cellular assays including related optical analysis discs and methods
AU2002335715A1 (en) * 2001-09-07 2003-03-24 Burstein Technologies, Inc. Optical bio-disc systems for nuclear morphology based identification
US20050003459A1 (en) * 2002-01-30 2005-01-06 Krutzik Siegfried Richard Multi-purpose optical analysis disc for conducting assays and related methods for attaching capture agents
US20040241381A1 (en) * 2002-01-31 2004-12-02 Chen Yihfar Microfluidic structures with circumferential grooves for bonding adhesives and related optical analysis discs
WO2003065355A2 (en) * 2002-01-31 2003-08-07 Burstein Technologies, Inc. Bio-safety features for optical analysis disc and disc system including same
JP2007500351A (en) * 2003-07-25 2007-01-11 長岡実業株式会社 Fluid circuit for sample preparation with biodisc and related method
US7538473B2 (en) * 2004-02-03 2009-05-26 S.C. Johnson & Son, Inc. Drive circuits and methods for ultrasonic piezoelectric actuators
US7723899B2 (en) 2004-02-03 2010-05-25 S.C. Johnson & Son, Inc. Active material and light emitting device
EP1792662A1 (en) 2005-11-30 2007-06-06 Microflow Engineering SA Volatile liquid droplet dispenser device
TWI580878B (en) * 2016-07-19 2017-05-01 科際精密股份有限公司 One way valve assembly
CN112016805B (en) * 2020-07-23 2023-06-06 上海工程技术大学 Magnetorheological fluid performance evaluation method and system

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4938742A (en) * 1988-02-04 1990-07-03 Smits Johannes G Piezoelectric micropump with microvalves
JPH04501449A (en) * 1989-06-14 1992-03-12 ウエストンブリッジ インターナショナル リミティド micro pump
CH681168A5 (en) * 1989-11-10 1993-01-29 Westonbridge Int Ltd Micro-pump for medicinal dosing
US5171132A (en) * 1989-12-27 1992-12-15 Seiko Epson Corporation Two-valve thin plate micropump
EP0465229B1 (en) * 1990-07-02 1994-12-28 Seiko Epson Corporation Micropump and process for manufacturing a micropump

Also Published As

Publication number Publication date
JP3651809B2 (en) 2005-05-25
US5462839A (en) 1995-10-31
HK1006739A1 (en) 1999-03-12
DE69401250T2 (en) 1997-07-10
DE69401250D1 (en) 1997-02-06
ES2099991T3 (en) 1997-06-01
FR2705693A1 (en) 1994-12-02
FR2705693B1 (en) 1995-07-28
SG47036A1 (en) 1998-03-20
JPH0719170A (en) 1995-01-20
EP0641934A1 (en) 1995-03-08
ATE146853T1 (en) 1997-01-15
DK0641934T3 (en) 1997-10-13

Similar Documents

Publication Publication Date Title
EP0641934B1 (en) Manufacturing process for a micropump
EP1878693B1 (en) Encapsulated microcomponent equipped with at least one getter
EP0596456B1 (en) Method of manufacturing an integrated capacitive transductor
LU84413A1 (en) CAPACITIVE PRESSURE TRANSDUCER WITH ELECTROSTATICALLY LINKED SILICON
WO2005061374A1 (en) Microcomponent comprising a hermetic microcavity and method for production of such a microcomponent
EP0798548A1 (en) Strain gauged sensor utilising the piezoresistive effect and its fabrication procedure
EP0983609A1 (en) Method for making a machined silicon micro-sensor
FR2864341A1 (en) Micro-component for enclosing micro-electro mechanical system, has stopper enclosing opening and part of cover in periphery of opening, and disposed on sealing layer which delimits micro-cavity
CH688745A5 (en) differential pressure sensor of capacitive type.
EP3898503A1 (en) Method for manufacturing a device comprising a membrane extending over a cavity
EP1467947B1 (en) Method and zone for sealing between two microstructure substrates
EP2926865B1 (en) Method for manufacturing a sealed housing for encapsulating an implantable device and corresponding housing
FR2948495A1 (en) Component, has substrate provided with continuous opening that is realized by forming holes by deep reactive ion etching, where one of holes is located close to other hole and has depth lower than that of former hole
WO2020128244A1 (en) Method for transferring a surface layer to cavities
EP1572578A2 (en) Method for making a planar suspended microstructure, using a sacrificial layer of polymer material and resulting component
FR2828579A1 (en) Handling of thin silicon wafer involves fastening external layer of wafer and gluing layer of support wafer by direct gluing, and processing the wafer to form circuits
EP3172357B1 (en) Method for removing a metal deposit placed on a surface in a chamber
FR3074358A1 (en) METHOD FOR MAKING A THIN-FILM SEALED CAVITY
FR2738705A1 (en) ELECTROMECHANICAL SENSOR DEVICE AND METHOD FOR MANUFACTURING SUCH A DEVICE
WO2002076881A1 (en) Method for making a structure with micromachined membrane
FR3076662A1 (en) Process for producing a micromechanical structure of layers and structure obtained
FR2722878A1 (en) Capacitive differential pressure sensor on micromachined semiconductor substrate
CH716211A2 (en) Particularly horological component with a surface topology and its manufacturing process.
EP3742237A1 (en) Component, in particular for a timepiece, with a surface topology and manufacturing method thereof
CH718818B1 (en) Process for manufacturing a silicon watch component

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB IE IT LI LU NL SE

17P Request for examination filed

Effective date: 19950708

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

17Q First examination report despatched

Effective date: 19960123

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: FONDATION POUR LE SOUTIEN A LA RECHERCHE APPLIQUEE

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE DK ES FR GB IE IT LI LU NL SE

REF Corresponds to:

Ref document number: 146853

Country of ref document: AT

Date of ref document: 19970115

Kind code of ref document: T

REF Corresponds to:

Ref document number: 69401250

Country of ref document: DE

Date of ref document: 19970206

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: 71277

ITF It: translation for a ep patent filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19970228

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: ICB INGENIEURS CONSEILS EN BREVETS SA

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2099991

Country of ref document: ES

Kind code of ref document: T3

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: CH

Ref legal event code: PUE

Owner name: FONDATION POUR LE SOUTIEN A LA RECHERCHE APPLIQUEE

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

NLS Nl: assignments of ep-patents

Owner name: MICROFLOW ENGINEERING SA

NLS Nl: assignments of ep-patents

Owner name: MICROFLOW ENGINEERING SA

REG Reference to a national code

Ref country code: ES

Ref legal event code: PC2A

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

REG Reference to a national code

Ref country code: CH

Ref legal event code: PFA

Owner name: MICROFLOW ENGINEERING SA

Free format text: MICROFLOW ENGINEERING SA#RUE JAQUET-DROZ, 1#2007 NEUCHATEL (CH) -TRANSFER TO- MICROFLOW ENGINEERING SA#GALILEO CENTER RUE DE LA GARE 4#2034 PESEUX (CH)

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20090427

Year of fee payment: 16

Ref country code: IE

Payment date: 20090428

Year of fee payment: 16

Ref country code: ES

Payment date: 20090506

Year of fee payment: 16

Ref country code: DK

Payment date: 20090427

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20090427

Year of fee payment: 16

Ref country code: LU

Payment date: 20090429

Year of fee payment: 16

Ref country code: IT

Payment date: 20090424

Year of fee payment: 16

Ref country code: FR

Payment date: 20090527

Year of fee payment: 16

Ref country code: DE

Payment date: 20090603

Year of fee payment: 16

Ref country code: AT

Payment date: 20090424

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20090429

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20090429

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20090427

Year of fee payment: 16

BERE Be: lapsed

Owner name: S.A. *MICROFLOW ENGINEERING

Effective date: 20100531

REG Reference to a national code

Ref country code: NL

Ref legal event code: V1

Effective date: 20101201

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20100513

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100513

EUG Se: european patent has lapsed
REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20110131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100531

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100531

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100514

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100513

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101201

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100531

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100513

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100531

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20110708

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100513

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110628

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100514

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100513