EP0636287A4 - An improved adaptive resonator vibration control system. - Google Patents

An improved adaptive resonator vibration control system.

Info

Publication number
EP0636287A4
EP0636287A4 EP92916034A EP92916034A EP0636287A4 EP 0636287 A4 EP0636287 A4 EP 0636287A4 EP 92916034 A EP92916034 A EP 92916034A EP 92916034 A EP92916034 A EP 92916034A EP 0636287 A4 EP0636287 A4 EP 0636287A4
Authority
EP
European Patent Office
Prior art keywords
control system
vibration
resonator means
resonator
noise
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP92916034A
Other languages
German (de)
French (fr)
Other versions
EP0636287B1 (en
EP0636287A1 (en
Inventor
Andrew Langley
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Noise Cancellation Technologies Inc
Original Assignee
Noise Cancellation Technologies Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Noise Cancellation Technologies Inc filed Critical Noise Cancellation Technologies Inc
Priority to AT92916034T priority Critical patent/ATE186614T1/en
Priority claimed from PCT/US1992/003024 external-priority patent/WO1993021687A1/en
Publication of EP0636287A1 publication Critical patent/EP0636287A1/en
Publication of EP0636287A4 publication Critical patent/EP0636287A4/en
Application granted granted Critical
Publication of EP0636287B1 publication Critical patent/EP0636287B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/16Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/175Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound
    • G10K11/178Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound by electro-acoustically regenerating the original acoustic waves in anti-phase
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K2210/00Details of active noise control [ANC] covered by G10K11/178 but not provided for in any of its subgroups
    • G10K2210/10Applications
    • G10K2210/129Vibration, e.g. instead of, or in addition to, acoustic noise
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K2210/00Details of active noise control [ANC] covered by G10K11/178 but not provided for in any of its subgroups
    • G10K2210/30Means
    • G10K2210/301Computational
    • G10K2210/3028Filtering, e.g. Kalman filters or special analogue or digital filters
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K2210/00Details of active noise control [ANC] covered by G10K11/178 but not provided for in any of its subgroups
    • G10K2210/30Means
    • G10K2210/301Computational
    • G10K2210/3045Multiple acoustic inputs, single acoustic output
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K2210/00Details of active noise control [ANC] covered by G10K11/178 but not provided for in any of its subgroups
    • G10K2210/30Means
    • G10K2210/321Physical
    • G10K2210/3227Resonators
    • G10K2210/32271Active resonators
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K2210/00Details of active noise control [ANC] covered by G10K11/178 but not provided for in any of its subgroups
    • G10K2210/50Miscellaneous
    • G10K2210/501Acceleration, e.g. for accelerometers

Definitions

  • the vibration typically comprises a fundamental component whose frequency is, for example, the rotation frequency of the machine (this is called the first harmonic), plus one or more additional harmonics at frequencies that are integer multiples of the first.
  • a tuned damper is a resonant system that is attached to a point where vibration is to be reduced, and it is built to resonate at or close to the frequency of the vibration. Purely passive tuned dampers have fixed characteristics, and will work only close to the frequency for which they are designed.
  • the input impedance of the resonator (defined as the ratio of a generalized force applied by the resonator at the point of attachment to a generalized velocity at the same point) will be exceptionally high (or in some cases, such as a Helmholtz resonator in a duct, exceptionally low: see the description in L E Kinsler, A R Frey, A B Coppens, J V Sanders “Fundamentals of Acoustics” 3rd ed. Wiley and Sons 1982 pp 241-242).
  • a mass suspended on a spring will resonate at a characteristic resonance frequency. If the spring is attached to a structure vibrating at this resonance frequency, the amplitude of vibration of the structure at that point will be reduced (and as a consequence, the suspended mass will vibrate strongly). Similar effects can be described for acoustic resonators (eg. Helmholtz resonators; L E Kinsler, A R Frey, A B Coppens, J V Sanders “Fundamentals of Acoustics” 3rd ed. Wiley and Sons 1982. pp 225-228) where sound pressure is the vibration to be reduced.
  • acoustic resonators eg. Helmholtz resonators; L E Kinsler, A R Frey, A B Coppens, J V Sanders “Fundamentals of Acoustics” 3rd ed. Wiley and Sons 1982. pp 225-228) where sound pressure is the vibration to be reduced.
  • An ideal adaptive-passive system would be able to control components of vibration at several different frequencies (usually the first and subsequent harmonics of a quasi-periodic vibration), whilst maintaining the performance of the system as the frequencies change.
  • the damper is a Helmholtz resonator, and the control systems use the sound pressure level inside the resonator, and just outside it, as inputs. Both control systems aim to adjust the resonators such that the phase shift between the two inputs is 90 , when the resonator will be at resonance.
  • Sato and Matsuhisa use a two-stage control system that estimates the frequency of the sound from the inputs and uses an open-loop control system initially to tune the damper close to that frequency. A second stage of closed-loop control then iterates to tune the damper precisely to the correct frequency, although there is no description of the control algorithm.
  • This system must derive the vibration frequency initially from one of the inputs, which can be difficult if the fundamental period of vibration is changing and the vibration comprises several harmonics all of which will be changing differently. Also, the control system does not allow several tuned dampers to be tuned to reduce several different frequencies in the sound simultaneously.
  • the invention provides for a noise or vibration control system comprising the following features
  • control system that has as inputs the sensors, and as outputs, signals to change the resonance frequencies of the resonators wherein the control system incorporates an algorithm to tune the resonators close to selected frequencies in the noise or vibration, and to keep them tuned as those frequencies drift (or as other factors affecting resonator performance change).
  • a still further object is to have a vibration control system with sensors attached to the source or the structure (or any other suitable location) that can be used to determine the frequencies of the noise or vibration
  • a still further object is the provision of vibration control with optional additional sensors that are used to monitor other factors that affect the resonators' performances (such as temperature)
  • control system that has as inputs the sensors, and as outputs, signals to change the resonance frequencies of the resonators wherein the control system incorporates an algorithm to tune the resonators close to selected frequencies in the noise or vibration, and to keep them tuned as those frequencies drift.
  • control system incorporates mathematical models of the resonators that are used to enhance the performance of the control system.
  • these models are continuously updated and refined by the control system as it operates.
  • FIG. 2 A very simple example of the invention will be vised to illustrate the important features.
  • a structure 1 is excited by a source 2 vibrating at a variable fundamental frequency of f .
  • the spectrum of the vibration contains harmonics at f , 2f , 3f .... etc.
  • a source 2 vibrating at a variable fundamental frequency of f .
  • the spectrum of the vibration contains harmonics at f , 2f , 3f .... etc.
  • a spring-mass-damper resonator 3 is attached. It Is assumed in this example that the nth harmonic of the fundamental component of the vibration is to be reduced by the damper, so that the aim is to tune the resonator close to nf , and to keep it tuned as f drifts.
  • structure bears the vibration from the source to the resonator, and may be a solid, fluid or gas depending on the application.
  • vibration includes any disturbance in the “structure”, including electromagnetic, as the techniques described here can be equally well applied to mechanical or electrical systems.
  • An accelerometer 4 is attached to the mass of the resonator, and another accelerometer 5 is attached to the structure close to the resonator.
  • the displacement of the mass (as monitored via the accelerometer 4) is denoted x , and the displacement of the structure m
  • m s frequency response of the sensor can usefully include any other additional filtering (eg analogue bandpass filtering and gain adjustment to improve signal to noise ratios or anti-aliasing). This compensation for the sensor responses can be applied at different points in the system, but it is most efficient to apply the compensation to the coefficients X and X described below. m s
  • control system will store necessary information about the calibration of the sensors to enable any corrections that are required to be made. In the description below, these corrections are not explicitly stated as it will be obvious to anyone skilled in the art how to compensate for sensor characteristics to derive the quantities needed by the control system.
  • the aim is to maximize the modulus of the input impedance of the resonator at the nth harmonic of the fundamental of vibration, so that the structure will vibrate less at that frequency at the point of attachment of the resonator.
  • the input impedance is defined here to be the ratio of the force applied by the structure to the resonator and the corresponding velocity of the point of attachment, and it is a function of frequency.
  • Re(X e ) are the components in x and x at angular frequency ⁇ . s m s
  • is the undamped resonance (angular) frequency of the resonator
  • Q is the "quality factor”.
  • a frequency sensor 6 in figure 2 is provided to detect the fundamental frequency of vibration, f .
  • the location and type of sensor is preferably chosen to be reasonably immune to the effects of changing the tuning of the resonator.
  • It could be a tachometer signal from a part of the source of vibration such that the output of the tachometer can be used to determine the current fundamental frequency of the source.>•
  • it may be sufficient to use one or more of the sensors mounted on the structure and resonators to derive fundamental frequencies, but it is better if the sensor is insensitive to the effects of tuning the resonators.
  • the signal from sensor 6 is used by the control system 7 to help to discriminate those components of x and x at the frequency nf in m s 1 the presence of components at other harmonics of f or any other "noise". This discrimination is crucial if the control system is to be able to alter the resonance frequency of the resonator to coincide with nf and to maintain this condition as f varies. For example, x
  • the signal from sensor 6 can be used in several different ways to process the inputs from accelerometers 4 and 5. Three examples are given below.
  • a tracking bandpass filter whose centre frequency is adjusted by the signal from sensor 6 to be close to nf (eg. see K Martin and A S Sedra, IEEE Transactions on Acoutics, Speech and Signal Processing Vol A ⁇ SP-29 no. 3 June 1981 pp 736-744).
  • the bandwidth of the filter is chosen to reject all unwanted components in the accelerometer signals.
  • Each accelerometer signal is then filtered through a tracking filter (desirably, these filters would be identical) to leave only the signals at a frequency of nf .
  • One problem with this implementation is that the bandwidth of the filter (expressed in octaves) will have to vary with the number, n, of the harmonic to be controlled. This is because harmonics become more closely spaced (in terms of octaves) as n is increased.
  • the accuracy with which sensor 6 must detect f depends upon the required bandwidth of the filter. If »the filter bandwidth must be narrow to remove an unwanted noise component close to nf , then the accuracy with which the filter's centre frequency is set (by the signal from sensor 6) must clearly be such that the pass-band still includes the frequency nf . It is immaterial whether the tracking filter is implemented digitally or with analogue electronics.
  • the output of the bandpass filters will be signals that contain information only at the frequency nf , as required.
  • nf the frequency of the complex coefficients X and X
  • the low-pass filters described for the harmonic filter can have a bandwidth of up to 2f .
  • a single FFT or DFT is all that should be required to calculate X and m
  • auxiliary signals sin(2 ⁇ nf t) and cos(2 ⁇ nf t) For example, this could be done with 1 l voltage-controlled oscillators whose inputs would be a signal derived from sensor 6 to generate outputs close to frequency nf .
  • the signals x and x are then multiplied by sin(2 ⁇ nf t) and cos(2 ⁇ nf t) (giving
  • each of the" results is low-pass filtered by filters whose bandwidths are adjusted to reject all the unwanted components in x and x .
  • the bandwidths of the low-pass filters should be less than f .
  • the low-pass filters should have bandwidths that are ideally adjusted by the control system as f changes in order to maintain rejection of unwanted components in the signals (see G P Eatwell, "Control System Using Harmonic Filters”. Copending patent application).
  • the accuracy with which the frequency of the auxiliary signals must match nf depends upon the required bandwidth of the low-pass filters: the difference between the true value of nf and the frequency of the auxiliary signals derived from sensor 6 must be less than the bandwidth of the low-pass filters.
  • I X X r 2 (y 2 + m ⁇ DC y 2 OS )/(y 2 SC + y 2 S ⁇ ) and the phase difference by
  • Arg(X /X ) arctan(y /y ) - arctan(y /y ) m s ms c ss sc
  • Another method of using the auxiliary signal from sensor 6 to discriminate against unwanted components in x and x is to use a m s
  • the pulse-train can be used to select samples from ADC's triggered by a fixed clock running at a frequency considerably higher than Nf (using interpolation extrapolation if necessary to get the sample value at the occurrence of a pulse, which may lie between two successive samples of the ADC's).
  • the result of this process is a sequence of samples of x and x , with N samples per in s fundamental period of the vibration.
  • N is a suitable number.
  • the "Fast Fourier Transform” algorithm can be used; see D E Newland “An Introduction to Random Vibrations and Spectral Analysis” Longman 1975 pp 150-166). It is also possible to perform a Discrete Fourier Transform (see 6. D E Newland “An Introduction to Random Vibrations and Spectral Analysis” Longman 1975 pp 113-124).
  • the result of this process is one or more "Fourier Coefficients", representing the real and imaginary parts of X and X at one or more m s of the frequencies f , 2f ...nf ...Nf /2.
  • the coefficient at nf will have to be calculated when this is the harmonic of the vibration that is to be reduced).
  • Noise in x and x that is not correlated to the pulse-train can also m s be reduced by averaging corresponding Fourier coefficients from successive blocks of data (this is frequency-domain averaging, another example of a standard technique).
  • the control system must arrange to adjust the tuning of the resonator accordingly.
  • the modulus of the ratio Xm/Xs is to be maximized, or the phase difference between X and Xs is to be kept at
  • controller a gradient-descent algorithm incorporating a model of the resonator is used.
  • the purpose of the model is to permit rapid and accurate estimation of the derivatives of an error function that determines the current performance of the system.
  • the controller can be configured continuously to update its model of the resonator, and to account for additional variables (such as temperature) that affect the system performance.
  • Equation 1 is a result based on a simple model of the resonator. In practice, this model should be a good approximation at least reasonably close to resonance. If r is defined to be the ratio Xs/Xm evaluated at a frequency of nf , then equation 1 gives
  • the aim of the control system is to adjust ⁇ r to minimize Irl.
  • will be a function of a control parameter ⁇ .
  • may be the position of an actuator that changes the stiffness of the spring in the spring-mass-damper resonator. From the current value of ⁇ , denoted ⁇ , the improved value of ⁇ to be set by the controller
  • Equation 3 Is of limited use because the derivative of r with respect to ⁇ is not measured (whereas r is). It would be possible to determine the value of this derivative by making small perturbations in ⁇ and observing the results, but it is better to use the model of the resonator to estimate this derivative.
  • equation 2 gives the value of r in terms of the current values of ⁇ and Q. Therefore, an estimate of the r derivative is given by
  • Q can be r estimated in a similar fashion.
  • the derivatives with respect to ⁇ can also be estimated from the model relationships between ⁇ , Q and ⁇ . r
  • r can be derived from measurements of the sound pressure in the duct just outside the neck of the resonator, and inside the cavity of the resonator. As before, r itself should be measured rather than estimated in view of its sensitivity to errors when ⁇ ⁇ . However, r the derivative required in equation 3 can safely be estimated in the manner described above via the relation
  • is a constant independent of ⁇ and the resonator performance, and the derivative is evaluated at the current value of ⁇ .
  • the best value for ⁇ can be selected by experiment. Initially, it may happen that the resonator is far from resonance. Two schemes can then be applied to bring the resonator close enough to resonance to apply the gradient-descent algorithm.
  • is known from the sensor 6 signal, and an estimate of ⁇ Is known from r the current value of ⁇ and the relation between ⁇ and ⁇ r which is stored by the controller. Therefore, it is simple to adjust ⁇ in one step to bring ⁇ much closer to ⁇ .
  • the relation between ⁇ and ⁇ will In general not be known very accurately since, for example, the relation may depend upon unobserved variables such as temperature.
  • the second scheme a measurement-based one-step algorithm, estimates ⁇ directly by solving equation 2 for ⁇ - given the current (measured) r ⁇ values of ⁇ and r, and an estimate of Q. This determines the required change in ⁇ , and an update of X can be computed via r
  • X X + ⁇ ( ⁇ - ⁇ )/d ⁇ k+l k ⁇ r r ax
  • the derivative is evaluated at a value of ⁇ corresponding to a frequency somewhere between ⁇ and ⁇ , and ⁇ is a positive control parameter that would usually be somewhat less than 1.
  • is a positive control parameter that would usually be somewhat less than 1.
  • a value of 1 tries to converge to the correct value of X in one step.
  • This method relies on the assumption that the gradient d ⁇ dX r is less sensitive to error than the resonance frequency itself.
  • This update equation can be applied iteratively, if necessary, to bring the resonator close enough to resonance for the gradient-descent algorithm to be applied.
  • ⁇ and Q may also be functions of parameters other r than ⁇ .
  • temperature may affect the resonance frequency.
  • the control system can still update these relationships as described above, the only difference being that these relationships now involve ⁇ and the additional variables instead of just ⁇ .
  • more than one harmonic of the vibration will usually be controlled. This is easily performed with the addition of one resonator per harmonic to be controlled, plus at least one additional sensor on each of the resonators. (The sensor 5 on the structure can be used to determine the vibration at all of the harmonics to be controlled, whereas a separate sensor is needed on each of the resonators). With the processing of the signals described above, the control of each resonator is largely independent.
  • the source generates more than one harmonic sequence of vibration.
  • the set of fundamental frequencies, f , f f should be resolved either from a single

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Multimedia (AREA)
  • Soundproofing, Sound Blocking, And Sound Damping (AREA)

Abstract

This invention relates to control systems for the control of noise and vibration. Resonators (3) with adjustable properties are used in conjunction with an electronic control system (7) to change the noise or vibration in a structure (1). The invention relates particularly to the control of quasi-periodic noise or vibration comprising one or more harmonics by using one or more adaptive resonators (3).

Description

AN IMPROVED ADAPTIVE RESONATOR VIBRATION CONTROL SYSTEM-
BACKGROUND OF THE INVENTION.
Many machines, such as internal combustion engines, generate unwanted noise and vibration. The vibration typically comprises a fundamental component whose frequency is, for example, the rotation frequency of the machine (this is called the first harmonic), plus one or more additional harmonics at frequencies that are integer multiples of the first.
Occasionally, the speed of a machine is more-or-less constant and it is then possible to reduce vibration caused by the machine with a "t uned damper", or "resonator" (the two terms are used interchangeably here). A tuned damper is a resonant system that is attached to a point where vibration is to be reduced, and it is built to resonate at or close to the frequency of the vibration. Purely passive tuned dampers have fixed characteristics, and will work only close to the frequency for which they are designed. At the resonance frequency, the input impedance of the resonator (defined as the ratio of a generalized force applied by the resonator at the point of attachment to a generalized velocity at the same point) will be exceptionally high (or in some cases, such as a Helmholtz resonator in a duct, exceptionally low: see the description in L E Kinsler, A R Frey, A B Coppens, J V Sanders "Fundamentals of Acoustics" 3rd ed. Wiley and Sons 1982 pp 241-242).
As an example of a tuned damper, a mass suspended on a spring will resonate at a characteristic resonance frequency. If the spring is attached to a structure vibrating at this resonance frequency, the amplitude of vibration of the structure at that point will be reduced (and as a consequence, the suspended mass will vibrate strongly). Similar effects can be described for acoustic resonators (eg. Helmholtz resonators; L E Kinsler, A R Frey, A B Coppens, J V Sanders "Fundamentals of Acoustics" 3rd ed. Wiley and Sons 1982. pp 225-228) where sound pressure is the vibration to be reduced. The disadvantage with passive tuned dampers is that they will work only close to one frequency, and if the frequency of the vibration drifts, the damper will cease to be effective. It is obvious that a damper whose characteristics can be adjusted with the frequency of vibration to be reduced would be an advantage. Implicit here is the concept that the period of the vibration varies only slowly, so that it takes many cycles of the vibration for the period of the vibration to change significantly (ie. a "quasi-periodic" system).
There have been many schemes for the adjustment of tuned dampers. Typically, the resonance frequency of the damper is changed by mechanically altering a stiffness or mass. The mechanism adjusting the damper senses the current frequency* of the vibration and tries to adjust the damper resonance frequency to be the same. The main problem with such systems is that any error in the tuning of the damper can be extremely detrimental to performance, and there is no way of detecting this in a simple "open-loop" control system.
In more complicated systems, a "closed-loop" feedback control system is used to ensure that the damper is always kept close to resonance at the frequency of the unwanted vibration. These systems require additional sensors to make them work, but the performance is improved.
There is an important distinction between the systems described here, with resonators whose properties can be adjusted (called "adaptive-passive" systems) and so-called "active control systems". In an active control system, the outputs from the controller change on a timescale characteristic of the vibration itself, and these outputs usually drive actuators vibrating at the same frequency as the vibration (see, for example, P A Nelson and S J Elliott "Active Control of Sound" Academic Press 1992 and G B B Chaplin and R A Smith, US patent no. 4566118, 1986). In the adaptive-passive system of the invention, the outputs of the controller vary on the much slower timescale characteristic of changes in the frequency of vibration. This reduces the computational requirements of the controller considerably. Furthermore, the power required to drive the actuators of an active control system is usually considerable, whereas in an adaptive-passive system, the power used to adjust the resonator characteristics is usually negligible.
An ideal adaptive-passive system would be able to control components of vibration at several different frequencies (usually the first and subsequent harmonics of a quasi-periodic vibration), whilst maintaining the performance of the system as the frequencies change.
DISCUSSION OF THE SELECTED PRIOR ART.
Sato and Matsuhisa (Internoise '90 proceedings, pp 1305-1308, "Semi-active noise control by a Resonator with Variable Parameters" published by the Noise Control Foundation) and Izumi, Takami and Narikiyo (International Symposium on Active Control of Sound and Vibration April 91, pp 261-266 "Muffler System Controlling an Aperture Neck of a Resonator" published by the Acoustical Society of Japan) describe feedback control systems for a single tuned damper of variable characteristics.
Both of these papers describe the control of a single tuned damper only. The damper is a Helmholtz resonator, and the control systems use the sound pressure level inside the resonator, and just outside it, as inputs. Both control systems aim to adjust the resonators such that the phase shift between the two inputs is 90 , when the resonator will be at resonance.
Sato and Matsuhisa use a two-stage control system that estimates the frequency of the sound from the inputs and uses an open-loop control system initially to tune the damper close to that frequency. A second stage of closed-loop control then iterates to tune the damper precisely to the correct frequency, although there is no description of the control algorithm. This system must derive the vibration frequency initially from one of the inputs, which can be difficult if the fundamental period of vibration is changing and the vibration comprises several harmonics all of which will be changing differently. Also, the control system does not allow several tuned dampers to be tuned to reduce several different frequencies in the sound simultaneously.
Izumi, Takami and Narikiyo describe a different control system. However, if, for example, the vibration comprises several harmonics, there is no guarantee that the system they describe will work in general, because their phase-detection system makes the fundamental assumption that the vibration comprises only the frequency to be controlled. It also does not allow several tuned dampers to be tuned simultaneously to different components of the vibration.
SUMMARY OF THE INVENTION.
The invention provides for a noise or vibration control system comprising the following features
(a) one or more resonators of variable characteristics that can be tuned by control signals to the same or different resonance frequencies
(b) sensors attached to parts of the resonators and the structure to which the resonators are attached in order to monitor the tuning of the resonators
(c) sensors attached to the source or the structure (or any other suitable location) that can be used to determine the frequencies of the noise or vibration
(d) optional additional sensors that are used to monitor other fac t ors tha t affect the resonators' performances (such as temperature)
(e) a control system that has as inputs the sensors, and as outputs, signals to change the resonance frequencies of the resonators wherein the control system incorporates an algorithm to tune the resonators close to selected frequencies in the noise or vibration, and to keep them tuned as those frequencies drift (or as other factors affecting resonator performance change).
Accordingly, it is an object of this invention to provide a vibration control system having one or more resonators of variable characteristics that can be tuned by control signals to the same or different resonance frequencies.
It is another object of this invention to provide a vibration control means having sensors attached to parts of the resonators and the structure to which the resonators are attached in order to monitor the tuning of the resonators
A still further object is to have a vibration control system with sensors attached to the source or the structure (or any other suitable location) that can be used to determine the frequencies of the noise or vibration
A still further object is the provision of vibration control with optional additional sensors that are used to monitor other factors that affect the resonators' performances (such as temperature)
Finally, it is an object to provide a control system that has as inputs the sensors, and as outputs, signals to change the resonance frequencies of the resonators wherein the control system incorporates an algorithm to tune the resonators close to selected frequencies in the noise or vibration, and to keep them tuned as those frequencies drift.
Preferably, the control system incorporates mathematical models of the resonators that are used to enhance the performance of the control system. Preferably, these models are continuously updated and refined by the control system as it operates.
Reference is had to the accompanying drawings in which Figure 1 illustrates the overall structure of the invention, and Figure 2 illustrates a particular structure of the invention. DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS.
A very simple example of the invention will be vised to illustrate the important features. In figure 2, a structure 1 is excited by a source 2 vibrating at a variable fundamental frequency of f . The spectrum of the vibration contains harmonics at f , 2f , 3f .... etc. At a
1 1 1 point on the structure where it is desired to reduce the vibration, a spring-mass-damper resonator 3 is attached. It Is assumed in this example that the nth harmonic of the fundamental component of the vibration is to be reduced by the damper, so that the aim is to tune the resonator close to nf , and to keep it tuned as f drifts. The
_ r i
"structure" bears the vibration from the source to the resonator, and may be a solid, fluid or gas depending on the application. "Vibration" includes any disturbance in the "structure", including electromagnetic, as the techniques described here can be equally well applied to mechanical or electrical systems.
An accelerometer 4 is attached to the mass of the resonator, and another accelerometer 5 is attached to the structure close to the resonator. The displacement of the mass (as monitored via the accelerometer 4) is denoted x , and the displacement of the structure m
(as monitored via the accelerometer 5) is denoted x . Obviously other s types of sensor could be used to measure these displacements. It is immaterial where, in fact, these sensors are mounted provided the resonator's input impedance could be derived from sensors mounted at those points. For example, a force guage mounted on the structure between the structure and the resonator, and an accelerometer also mounted on the structure would also be an acceptable pair of sensors. Note that the choice of example here, with linear motions, does not preclude application of the system to resonators with rotary motion - the principles of operation are the same.
It is assumed that the frequency responses of the sensors are known so that x and x can be derived from the sensor outputs. The m s frequency response of the sensor can usefully include any other additional filtering (eg analogue bandpass filtering and gain adjustment to improve signal to noise ratios or anti-aliasing). This compensation for the sensor responses can be applied at different points in the system, but it is most efficient to apply the compensation to the coefficients X and X described below. m s
Typically, the control system will store necessary information about the calibration of the sensors to enable any corrections that are required to be made. In the description below, these corrections are not explicitly stated as it will be obvious to anyone skilled in the art how to compensate for sensor characteristics to derive the quantities needed by the control system.
The aim is to maximize the modulus of the input impedance of the resonator at the nth harmonic of the fundamental of vibration, so that the structure will vibrate less at that frequency at the point of attachment of the resonator. The input impedance is defined here to be the ratio of the force applied by the structure to the resonator and the corresponding velocity of the point of attachment, and it is a function of frequency.
Elementary mechanics will show that the input impedance of the resonator is proportional to the ratio X /X , where Re(X e ) and m s m
Re(X e ) are the components in x and x at angular frequency ω. s m s
(Re denotes the real part, X and X are complex numbers, t denotes m s time and i=V-l). X and X are themselves functions of ω. For the s simple spring-mass-damper model of the resonator,
(1)
Here, ω is the undamped resonance (angular) frequency of the resonator, and Q is the "quality factor". For the spring-mass-damper
2 model the relations ω =k/m and Qω =k/σ apply, where k is the spring r Γ stiffness, m the mass and σ the damping rate of the damper. When Q»l (which is usually true) the modulus of X X at an angular m s frequency of ω=2πnf will be a maximum if ω =2πnf . (This Is not
1 r 1 exactly true, but the errors are negligible if Q is large enough). Also, there will then be a 90 phase difference between X and X at m s this frequency.
A frequency sensor 6 in figure 2 is provided to detect the fundamental frequency of vibration, f . The location and type of sensor is preferably chosen to be reasonably immune to the effects of changing the tuning of the resonator. For example, It could be a tachometer signal from a part of the source of vibration such that the output of the tachometer can be used to determine the current fundamental frequency of the source.>• In some cases, it may be sufficient to use one or more of the sensors mounted on the structure and resonators to derive fundamental frequencies, but it is better if the sensor is insensitive to the effects of tuning the resonators.
The signal from sensor 6 is used by the control system 7 to help to discriminate those components of x and x at the frequency nf in m s 1 the presence of components at other harmonics of f or any other "noise". This discrimination is crucial if the control system is to be able to alter the resonance frequency of the resonator to coincide with nf and to maintain this condition as f varies. For example, x
1 i * m and x will normally contain components at all harmonics of f up to s 1 the highest harmonic below the current resonance frequency of the resonator. Unless the unwanted components can be rejected, there is no guarantee that the resonator will be adjusted to the correct frequency.
The signal from sensor 6 can be used in several different ways to process the inputs from accelerometers 4 and 5. Three examples are given below.
1. Tracking Filter
It is possible to set up a tracking bandpass filter whose centre frequency is adjusted by the signal from sensor 6 to be close to nf (eg. see K Martin and A S Sedra, IEEE Transactions on Acoutics, Speech and Signal Processing Vol AΞSP-29 no. 3 June 1981 pp 736-744). The bandwidth of the filter is chosen to reject all unwanted components in the accelerometer signals. Each accelerometer signal is then filtered through a tracking filter (desirably, these filters would be identical) to leave only the signals at a frequency of nf . One problem with this implementation is that the bandwidth of the filter (expressed in octaves) will have to vary with the number, n, of the harmonic to be controlled. This is because harmonics become more closely spaced (in terms of octaves) as n is increased.
The accuracy with which sensor 6 must detect f depends upon the required bandwidth of the filter. If »the filter bandwidth must be narrow to remove an unwanted noise component close to nf , then the accuracy with which the filter's centre frequency is set (by the signal from sensor 6) must clearly be such that the pass-band still includes the frequency nf . It is immaterial whether the tracking filter is implemented digitally or with analogue electronics.
The output of the bandpass filters will be signals that contain information only at the frequency nf , as required. In order to extract the values of the complex coefficients X and X , it is m s convenient to process these signals in one of the two ways described below. Since unwanted components of x and x have already been m s removed by filtering, the low-pass filters described for the harmonic filter can have a bandwidth of up to 2f . For the same reason, a single FFT or DFT is all that should be required to calculate X and m
X as signal averaging will be unnecessary. s
The outputs of identical bandpass filters are expected to be AIX lsin(2πnf t+y ) and AIX lsin(2πnf t+γ ) where γ and γ are phase tn 1 m s I s s angles and A is the gain of the filter. Therefore, it would also be possible to estimate IX/X I and/or γ -γ (which is the phase m s ra B difference between the original components at frequency nf when the filters are identical) directly from the filter outputs. For example, peak value and zero-crossing detection could be used, and such a scheme might be computationally more efficient than other methods. The ratio of peak values gives IX l /I Xs I directly, and zero-crossings with a positive slope will occur at times tk = k/nf1 +γm/2πnf1 and tk'
= k/nf +_ /2πnf (k is an integer). Therefore, the value of r -γ can
1 s 1 m s be deduced from measurement of t -t' . k k
2. Harmonic Filters
From the sensor 6 it is possible to derive auxiliary signals sin(2πnf t) and cos(2πnf t). For example, this could be done with 1 l voltage-controlled oscillators whose inputs would be a signal derived from sensor 6 to generate outputs close to frequency nf . The signals x and x are then multiplied by sin(2πnf t) and cos(2πnf t) (giving
ID Ξ 1 four signals in total), and each of the" results is low-pass filtered by filters whose bandwidths are adjusted to reject all the unwanted components in x and x . For example, if other harmonics in x and x m s m s must be rejected, the bandwidths of the low-pass filters should be less than f . Just as with the tracking filter, the low-pass filters should have bandwidths that are ideally adjusted by the control system as f changes in order to maintain rejection of unwanted components in the signals (see G P Eatwell, "Control System Using Harmonic Filters". Copending patent application). Also, the accuracy with which the frequency of the auxiliary signals must match nf depends upon the required bandwidth of the low-pass filters: the difference between the true value of nf and the frequency of the auxiliary signals derived from sensor 6 must be less than the bandwidth of the low-pass filters.
To see how the magnitude and phase of X/X (evaluated at a frequency m s of nf ) are calculated from the four demodulated signals, define y
1 mc and y to be the outputs from the process of multiplying x by cos(2πnf t) and sin(2πnf t) respectively and then low-pass filtering the results. Similarly, define y and y for the results of
SC SΞ operating on x s . The modulus of X m X s can then be calculated as
I X X r 2= (y2 + m Ξ DC y2 OS )/(y2 SC + y2 SΞ ) and the phase difference by
Arg(X /X ) = arctan(y /y ) - arctan(y /y ) m s ms c ss sc
These results are much easier to compute if the control system is implemented digitally, and the whole harmonic filtering scheme is also ideally implemented digitally.
If the bandpass filtering described in (1. Tracking Filter) above has been performed, it is possible to take some short-cuts to computing
Arg(X /X ). For example, the phase-detection scheme of Izumi, Takami m s and Narikiyo (International Symposium on Active Control of Sound and Vibration April 91, pp 261-266 "Muffler System Controlling an Aperture Neck of a Resonator" published by the Acoustical Society of Japan) which uses balanced synchronous demodulation will work because only one harmonic now appears in the filter outputs, although it is undesirable that the magnitude of one of the signals appears in the result.
The use of the filtered signals to implement a closed-loop control system is described below.
3. Fourier Transform
Another method of using the auxiliary signal from sensor 6 to discriminate against unwanted components in x and x is to use a m s
Fourier transform (D E Newland "An Introduction to Random Vibrations and Spectral Analysis" Longman 1975 pp 33-40). As this would normally be implemented digitally, it is described here in those terms. From the sensor 6 signal, a pulse-train of N pulses per fundamental period of the vibration is derived. (This would be done directly if, for example, sensor 6 were a shaft-encoder giving N pulses per revolution of a shaft in the source rotating at the same frequency as the fundamental frequency of the vibration). This pulse-train is used to trigger analog-to-digital converters (ADC's) sampling x and x m s
(after such anti-alias filtering as is necessary). Alternatively, the pulse-train can be used to select samples from ADC's triggered by a fixed clock running at a frequency considerably higher than Nf (using interpolation extrapolation if necessary to get the sample value at the occurrence of a pulse, which may lie between two successive samples of the ADC's). In either case, the result of this process is a sequence of samples of x and x , with N samples per in s fundamental period of the vibration.
To discriminate against noise in x and x that is not correlated to tn s the pulse-train, successive blocks of N samples of can be averaged. This is synchronous time-domain averaging, and it is only one example of the standard techniques for removing uncorrelated noise from a signal that could be used.
To perform the Fourier transform, one of the standard algorithms can be used if N is a suitable number. (For example, if N is a power of 2, the "Fast Fourier Transform" algorithm can be used; see D E Newland "An Introduction to Random Vibrations and Spectral Analysis" Longman 1975 pp 150-166). It is also possible to perform a Discrete Fourier Transform (see 6. D E Newland "An Introduction to Random Vibrations and Spectral Analysis" Longman 1975 pp 113-124). The result of this process is one or more "Fourier Coefficients", representing the real and imaginary parts of X and X at one or more m s of the frequencies f , 2f ...nf ...Nf /2. (Clearly, the coefficient at nf will have to be calculated when this is the harmonic of the vibration that is to be reduced).
Noise in x and x that is not correlated to the pulse-train can also m s be reduced by averaging corresponding Fourier coefficients from successive blocks of data (this is frequency-domain averaging, another example of a standard technique).
The use of the Fourier coefficients to implement a closed-loop control system is now described. The Control System
Once the values of Xm and Xs at the frequency nf1 have been discriminated from other unwanted components, the control system must arrange to adjust the tuning of the resonator accordingly. In the example given above, the modulus of the ratio Xm/Xs is to be maximized, or the phase difference between X and Xs is to be kept at
90 as f varies. One way of achieving this goal with a model-based digital control system is described below. In the controller, a gradient-descent algorithm incorporating a model of the resonator is used. The purpose of the model is to permit rapid and accurate estimation of the derivatives of an error function that determines the current performance of the system. The controller can be configured continuously to update its model of the resonator, and to account for additional variables (such as temperature) that affect the system performance.
Equation 1 is a result based on a simple model of the resonator. In practice, this model should be a good approximation at least reasonably close to resonance. If r is defined to be the ratio Xs/Xm evaluated at a frequency of nf , then equation 1 gives
The aim of the control system is to adjust ωr to minimize Irl. ωΓ will be a function of a control parameter λ. For example, λ may be the position of an actuator that changes the stiffness of the spring in the spring-mass-damper resonator. From the current value of λ, denoted λ , the improved value of λ to be set by the controller
(λ ) can be calculated by the following equation
where μ is a scalar multiplier determined by the control system, and an asterisk indicates the complex conjugate. This is the update equation for a gradient-descent algorithm. As It stands, equation 3 Is of limited use because the derivative of r with respect to λ is not measured (whereas r is). It would be possible to determine the value of this derivative by making small perturbations in λ and observing the results, but it is better to use the model of the resonator to estimate this derivative.
In the current example, equation 2 gives the value of r in terms of the current values of ω and Q. Therefore, an estimate of the r derivative is given by
(4)
Now all of the quantities on the right hand side of equation 4 are either measured, or can be estimated from a model of the resonator. The current value of ω can be estimated from the auxiliary sensor 6 signal; ω can be estimated from the current value of X and a model
I* of the function relating ω to λ stored in the controller. Q can be r estimated in a similar fashion. The derivatives with respect to λ can also be estimated from the model relationships between ω , Q and λ. r The important aspect of equation 4 is that errors in the estimates of the quantities do not become critical around the condition ω =ω. This r is very different from r itself which is sensitive to errors around the condition ω =ω: it would be inadvisable to estimate r in the same r way as dr/dX, because errors could lead to the wrong sign in the second term on the right hand side of equation 3, and this would prevent the control system converging correctly. As another example, consider a variable Helmholtz resonator mounted in a duct to prevent transmission of noise at a frequency of nf . This system is very similar to the spring-mass-damper described above, but here the aim is to minimize the input impedance (defined as the ratio of sound pressure in the duct outside the neck of the resonator and the particle velocity of the fluid in the neck) at the frequency nf . It is not difficult to show that this amounts to the minimization of a new error function, Irl, defined by
r = l - ω + i ω (5) ω ω Q
r can be derived from measurements of the sound pressure in the duct just outside the neck of the resonator, and inside the cavity of the resonator. As before, r itself should be measured rather than estimated in view of its sensitivity to errors when ω ^ω. However, r the derivative required in equation 3 can safely be estimated in the manner described above via the relation
(6)
It should be noted that in some circumstances it may be acceptable to ignore or approximate some of the terms in equations 4 and 6. For example, the last term in equation 6 would normally be very small, and it might be neglected.
It is most appropriate to apply the gradient-descent algorithm when the resonator is already close to resonance. The step-size, μ, should then be scaled approximately as follows
μ = α (ω/Q)/ISω /8X\ r
where α is a constant independent of ω and the resonator performance, and the derivative is evaluated at the current value of λ. The best value for α can be selected by experiment. Initially, it may happen that the resonator is far from resonance. Two schemes can then be applied to bring the resonator close enough to resonance to apply the gradient-descent algorithm. First, ω is known from the sensor 6 signal, and an estimate of ω Is known from r the current value of λ and the relation between λ and ω r which is stored by the controller. Therefore, it is simple to adjust λ in one step to bring ω much closer to ω. However, the relation between ω and λ will In general not be known very accurately since, for example, the relation may depend upon unobserved variables such as temperature.
The second scheme, a measurement-based one-step algorithm, estimates ω directly by solving equation 2 for ω- given the current (measured) r Γ values of ω and r, and an estimate of Q. This determines the required change in ω , and an update of X can be computed via r
X = X + β(ω - ω )/dω k+l k ^ r r ax
for example. The derivative is evaluated at a value of λ corresponding to a frequency somewhere between ω and ω , and β is a positive control parameter that would usually be somewhat less than 1. A value of 1 tries to converge to the correct value of X in one step. This method relies on the assumption that the gradient dω dX r is less sensitive to error than the resonance frequency itself. This update equation can be applied iteratively, if necessary, to bring the resonator close enough to resonance for the gradient-descent algorithm to be applied.
The relationships between ω , Q and λ can be continually refined and r updated by the control system as it operates. For example, when the controller detects that ω and ω coincide (through a small value of r r and/or a small value the second term on the RHS of equation 3) it will be able to update its relationship between ω and λ, because ω r will be known from the sensor 6 signal and λ is a control parameter. Likewise, the minimum value of I l, from equation 2 will then be 1/Q (if Q»l, but it is not difficult to derive an exact relation if required) so Q at the current value of X is also found. As the frequency ω=2πnf changes, the relationships between ω , Q and λ can be continuously updated for the range of λ explored by the change in ω.
It is a fact that ω and Q may also be functions of parameters other r than λ. For example, temperature may affect the resonance frequency. In this case, it may be advantageous to have other inputs (8 in figure 2) to the control system that monitor such additional variables. The effect of these variables can then be built into the model relationships for ω and Q to enable better estimates to be r obtained. The control system can still update these relationships as described above, the only difference being that these relationships now involve λ and the additional variables instead of just λ.
In practical implementations of the system, more than one harmonic of the vibration will usually be controlled. This is easily performed with the addition of one resonator per harmonic to be controlled, plus at least one additional sensor on each of the resonators. (The sensor 5 on the structure can be used to determine the vibration at all of the harmonics to be controlled, whereas a separate sensor is needed on each of the resonators). With the processing of the signals described above, the control of each resonator is largely independent.
It may be possible to have a single mechanical device that resonates at two or more independently controllable frequencies. As far as the control scheme is concerned, no modifications are required provided each control variable can independently control each frequency.
There is no difficulty in controlling more than one resonator attached to different points on the structure, tuned to the same or different frequencies, provided that sensors on the resonators and structure are provided for each mounting point.
It is also possible that the source generates more than one harmonic sequence of vibration. In this case, the set of fundamental frequencies, f , f f should be resolved either from a single
1 2 n sensor 6, or preferably from several sensors that measure separately the different fundamentals. The overall control scheme is unchanged, as each additional harmonic sequence can be handled independently by a separate bank of harmonic filters.
There is sometimes an advantage to combining an active control system with the adaptive resonator system described here. It often happens that one or two harmonics of a vibration are particularly strong, or are at an inconveniently low frequency. Fully active control of these harmonics may then be costly in terms of actuator size, and power consumption. It is therefore beneficial to tackle such awkward vibration components with an adaptive resonator system, and to clear up the remaining problems actively. It is easy to modify the performance of an active control algorithm such as those described in G B B Chaplin and R A Smith, US patent no. 4566118, 1986 and S A Tretter, US patent no. 5091953, 1992 to ignore particular harmonics, if desired, and to combine the two types of control system into a single controller.

Claims

1. A noise or vibration control system for controlling noise or vibration from one or more sources comprising,
one or more adaptive resonator means, attached to one or more points on a structure, whose resonance frequencies can be adjusted by control signals,
sensor means on the said resonator means and/or the structure that are used to determine the tuning of the resonator means,
one or more sensor means on the source" of vibration, the structure, or other suitable position that can be used to derive the frequencies of various components of the vibration, and
a control system that has as inputs, the sensor means, and as outputs, control signals to change the resonance frequencies of the resonator means wherein the control system incorporates an algorithm to tune the resonator means close to selected frequencies in the noise or vibration, and to keep them tuned as those frequencies drift or as other factors affecting the resonator means' performances change.
2. A system as in claim 1 including tracking filters and/or harmonic filters and/or Fourier transformation in order to discriminate against unwanted components in the sensor means inputs to the control system.
3. A system as in claim 1 wherein the control system uses models of the resonator means in the control algorithm.
4. A system as in claim 3 wherein the control system updates and refines the models of the resonator means as it operates.
5. A system as in claim 1 wherein the control system aims either to minimize or to maximize quantities that are proportional to the moduli of the input impedances of the resonator means.
6. A system as in claim 5 wherein the control system uses a gradient descent algorithm.
7. A system as in claim 3 wherein the control system uses a measurement-based one-step algorithm.
8. A system as in claim 3 wherein additional sensor means that monitor other parameters affecting the performances of the resonator means form Inputs to the control system.
9. A noise or vibration control system for controlling noise or vibration from one or more sources comprising,
one or more adaptive resonator means, attached to one or more points on a structure, whose resonance frequencies can be adjusted by control signals,
sensor means on the said resonator means and/or the structure that are used to determine the tuning of the resonator means, and
a control system that has as inputs, the sensors, and as outputs, control signals to change the resonance frequencies of the resonator means wherein the control system incorporates an algorithm to tune the resonator means close to selected frequencies in the noise or vibration, and to keep them tuned as those frequencies drift (or as other factors affecting resonator means' performances change). The control system aims either to minimize or to maximize quantities that are proportional to the modulus of the input impedances of the resonator means.
10. A system as in claim 9 wherein the control system uses models of the resonator means in the control algorithm. 11. A system as in claim 10 wherein the control system updates and refines the models of the resonator means as it operates.
13. A system as in claim 9 wherein the control system uses a gradient descent algorithm.
14. A system as in claim 10 wherein additional sensor means that monitor other parameters affecting the performances of the resonator means form inputs to the control system.
15. A noise or vibration control system for controlling noise or vibration from one or more sources comprising,
one or more adaptive resonator means attached to one or more points on a structure, whose resonance frequencies can be adjusted by control signals,
sensor means on the said resonator means and/or the structure that are used to determine the tuning of the resonator means, and
a control system that has as inputs, the sensors, and as outputs, control signals to change the resonance frequencies of the resonator means wherein the control system incorporates an algorithm to tune the resonator means close to selected frequencies in the noise or vibration, and to keep them tuned as those frequencies drift (or as other factors affecting the resonator means' performances change). This control ^system is combined with an active-control system (plus its sensors and actuators) whose performance is designed to complement the resonator means in reducing noise or vibration in the structure.
EP92916034A 1992-04-15 1992-04-15 An improved adaptive resonator vibration control system Expired - Lifetime EP0636287B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT92916034T ATE186614T1 (en) 1992-04-15 1992-04-15 IMPROVED VIBRIATION CANCELLATION CIRCUIT WITH ADAPTIVE RESONATOR

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
PCT/US1992/003024 WO1993021687A1 (en) 1992-04-15 1992-04-15 An improved adaptive resonator vibration control system
CA002118210A CA2118210C (en) 1992-04-15 1992-04-15 Adaptive resonator vibration control system

Publications (3)

Publication Number Publication Date
EP0636287A1 EP0636287A1 (en) 1995-02-01
EP0636287A4 true EP0636287A4 (en) 1996-02-07
EP0636287B1 EP0636287B1 (en) 1999-11-10

Family

ID=4153119

Family Applications (1)

Application Number Title Priority Date Filing Date
EP92916034A Expired - Lifetime EP0636287B1 (en) 1992-04-15 1992-04-15 An improved adaptive resonator vibration control system

Country Status (2)

Country Link
EP (1) EP0636287B1 (en)
CA (1) CA2118210C (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2905973A1 (en) * 1979-02-16 1980-08-28 Gauting Gmbh Apparatebau Electromagnetic, resonant vibration damper - has spring of variable rigidity connected to first control circuit and coil connected to output of second circuit
DE3025794A1 (en) * 1980-07-08 1982-01-21 Didier-Werke Ag, 6200 Wiesbaden Oscillation suppressor for ignited industrial furnaces - has setting members for adjustment of eigen-frequency of resonator coupled to combustion chamber
EP0195850A2 (en) * 1985-03-26 1986-10-01 Barry Wright Corporation Active vibration isolation system
EP0211173A2 (en) * 1985-07-31 1987-02-25 Barry Wright Corporation Active vibration isolation system employing electro-rheological fluid
EP0215999A1 (en) * 1985-07-31 1987-04-01 Barry Wright Corporation Parametrically controlled active vibration isolation system
EP0300445A1 (en) * 1987-07-20 1989-01-25 Nissan Motor Co., Ltd. Method for controlling a vibration damping device
US4981309A (en) * 1989-08-31 1991-01-01 Bose Corporation Electromechanical transducing along a path

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2905973A1 (en) * 1979-02-16 1980-08-28 Gauting Gmbh Apparatebau Electromagnetic, resonant vibration damper - has spring of variable rigidity connected to first control circuit and coil connected to output of second circuit
DE3025794A1 (en) * 1980-07-08 1982-01-21 Didier-Werke Ag, 6200 Wiesbaden Oscillation suppressor for ignited industrial furnaces - has setting members for adjustment of eigen-frequency of resonator coupled to combustion chamber
EP0195850A2 (en) * 1985-03-26 1986-10-01 Barry Wright Corporation Active vibration isolation system
EP0211173A2 (en) * 1985-07-31 1987-02-25 Barry Wright Corporation Active vibration isolation system employing electro-rheological fluid
EP0215999A1 (en) * 1985-07-31 1987-04-01 Barry Wright Corporation Parametrically controlled active vibration isolation system
EP0300445A1 (en) * 1987-07-20 1989-01-25 Nissan Motor Co., Ltd. Method for controlling a vibration damping device
US4981309A (en) * 1989-08-31 1991-01-01 Bose Corporation Electromechanical transducing along a path

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of WO9321687A1 *

Also Published As

Publication number Publication date
CA2118210C (en) 1998-08-04
CA2118210A1 (en) 1993-10-28
EP0636287B1 (en) 1999-11-10
EP0636287A1 (en) 1995-02-01

Similar Documents

Publication Publication Date Title
US5621656A (en) Adaptive resonator vibration control system
EP0568129B1 (en) Noise attenuation system
US4715559A (en) Apparatus and method for global noise reduction
US5321759A (en) Active noise control system for attenuating engine generated noise
EP0674305B1 (en) Vibration/noise control system
EP0609846B1 (en) Vibration/noise control system
CA1334284C (en) Signal processing means for sensing a periodic signal in the presence of another interfering periodic noise
US5473698A (en) Method of controlling the application of counter-vibration to a structure
US6772074B2 (en) Adaptation performance improvements for active control of sound or vibration
AU665565B2 (en) Noise reduction system
US4950966A (en) Adaptive vibration canceller
US4891611A (en) Vibration compensated crystal oscillator
WO1990002380A1 (en) Selective active cancellation system for repetitive phenomena
WO1992015088A1 (en) Method and apparatus for attenuating acoustic vibrations in a medium
US5469087A (en) Control system using harmonic filters
KR960011152B1 (en) Active vibration control system
WO1993021687A1 (en) An improved adaptive resonator vibration control system
EP0636287B1 (en) An improved adaptive resonator vibration control system
US5953428A (en) Feedback method of noise control having multiple inputs and outputs
DE69230294T2 (en) IMPROVED VIBRIATION SUPPRESSION CIRCUIT WITH ADAPTIVE RESONATOR
WO1991010226A1 (en) Active vibration reducing system
CA2138552C (en) Control system using harmonic filters
CN112198911B (en) Method and system for eliminating random line spectrum self-adaptive tracking
JP3265715B2 (en) Active vibration control device for vehicle and active noise control device for vehicle
EP0904035A1 (en) Active feedback control system for transient narrow-band disturbance rejection over a wide spectral range

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19941014

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IT LI LU MC NL SE

A4 Supplementary search report drawn up and despatched
AK Designated contracting states

Kind code of ref document: A4

Designated state(s): AT BE CH DE DK ES FR GB GR IT LI LU MC NL SE

17Q First examination report despatched

Effective date: 19980512

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE DK ES FR GB GR IT LI LU MC NL SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19991110

Ref country code: LI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19991110

Ref country code: GR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19991110

Ref country code: ES

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 19991110

Ref country code: CH

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19991110

Ref country code: BE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19991110

REF Corresponds to:

Ref document number: 186614

Country of ref document: AT

Date of ref document: 19991115

Kind code of ref document: T

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 69230294

Country of ref document: DE

Date of ref document: 19991216

ITF It: translation for a ep patent filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20000210

ET Fr: translation filed
NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000415

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20001031

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050415

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20070313

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20070314

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20070410

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20070430

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20070529

Year of fee payment: 16

Ref country code: FR

Payment date: 20070404

Year of fee payment: 16

PGRI Patent reinstated in contracting state [announced from national office to epo]

Ref country code: IT

Effective date: 20080301

EUG Se: european patent has lapsed
GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20080415

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20081101

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20081231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080415

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080415

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080415

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080416