EP0634358A1 - Intermetallic compound and its use - Google Patents

Intermetallic compound and its use Download PDF

Info

Publication number
EP0634358A1
EP0634358A1 EP94109471A EP94109471A EP0634358A1 EP 0634358 A1 EP0634358 A1 EP 0634358A1 EP 94109471 A EP94109471 A EP 94109471A EP 94109471 A EP94109471 A EP 94109471A EP 0634358 A1 EP0634358 A1 EP 0634358A1
Authority
EP
European Patent Office
Prior art keywords
hydrogen
intermetallic compound
storage
tritium
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP94109471A
Other languages
German (de)
French (fr)
Other versions
EP0634358B1 (en
Inventor
Ralf-Dieter Dr. Penzhorn
Leo Rivkis
Alexandre Perevezentsev
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Forschungszentrum Karlsruhe GmbH
Original Assignee
Kernforschungszentrum Karlsruhe GmbH
Forschungszentrum Karlsruhe GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kernforschungszentrum Karlsruhe GmbH, Forschungszentrum Karlsruhe GmbH filed Critical Kernforschungszentrum Karlsruhe GmbH
Publication of EP0634358A1 publication Critical patent/EP0634358A1/en
Application granted granted Critical
Publication of EP0634358B1 publication Critical patent/EP0634358B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/07Alloys based on nickel or cobalt based on cobalt
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/0005Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes
    • C01B3/001Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes characterised by the uptaking medium; Treatment thereof
    • C01B3/0031Intermetallic compounds; Metal alloys; Treatment thereof
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B6/00Hydrides of metals including fully or partially hydrided metals, alloys or intermetallic compounds ; Compounds containing at least one metal-hydrogen bond, e.g. (GeH3)2S, SiH GeH; Monoborane or diborane; Addition complexes thereof
    • C01B6/24Hydrides containing at least two metals; Addition complexes thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage

Definitions

  • the invention relates to an alloy according to claim 1 and its use according to claim 3.
  • the metal or the intermetallic compound should absorb as much tritium as possible at room temperature and at the same time have the lowest possible gas pressure when loaded; on the other hand, tritium from the loaded metal or the loaded intermetallic compound should be as completely desorbable as possible at a higher temperature, which, however, should not exceed 500 ° C. This condition is met with the intermetallic compounds mentioned.
  • ZrCo in particular forms a very stable hydride or tritide at room temperature. It is little pyrophoric both in the activated state (in powder form, for example with a grain size of 1 to 100 ⁇ m) and in hydride form (as ZrCoH x with x ⁇ 3) and has a comparatively low dehydrogenation temperature. A hydrogen pressure of 1 bar is already reached at around 380 ° C. At moderate temperatures, ZrCo reacts only slowly with gaseous impurities such as CO, CO2, CH4, N2, O2 etc. without passivating the hydrogen-storing surface. At ZrCo, the hydrogenation only leads to a slight swelling. The disadvantages of this hydrogen-storing intermetallic compound include a certain phase instability due to disproportionation, which takes place with rapid kinetics at temperatures above 350 ° C and high hydrogen pressures at the same time.
  • a method for producing a titanium-containing hydrogen storage alloy based on the Laves phases AB2 is known from DE 34 11 011 A1.
  • A represents titanium and possibly at least one further element from the beginning of the transition metal series and B represents one or more elements from the set of the other transition metals.
  • DE 30 23 770 A1, DE 30 31 471 A1 and DE 31 51 712 C1 describe a hydrogen storage material of the general formula Ti 1-a Zr a Mn 2-x Cr xy (V z Ni 1-z ) y proposed, in which nickel can be replaced in whole or in part by cobalt.
  • EP 0 410 935 A1 describes the production of vanadium-rich hydrogen storage alloys.
  • the production of the hydrogen storage alloy (Ti zx Zr x V 4-y Ni y ) 1-z Cr z is known from EP 0 450 112 A1.
  • EP 0 506 084 A1 deals with hydrogen storage alloys of the general formula ZrMn w V x M y Ni z , where M represents cobalt or iron.
  • the object of the invention is to provide an intermetallic compound consisting of a few components which has the same favorable properties as the ZrCo mentioned at the outset, but is more phase-stable.
  • the intermetallic compound is said to be particularly suitable for the safe and low-loss reversible storage and handling of hydrogen, which consists entirely or partially of the tritium isotope.
  • intermetallic compound described in the first claim.
  • a preferred composition of the intermetallic compound is given in claim 2.
  • the use of the intermetallic compound is the subject of claims 3 and 4.
  • the Zr 1-y Ti y Co / hydrogen system is much more phase-stable than ZrCo / hydrogen.
  • a high phase stability is a prerequisite for a reversible hydrogen storage material in which hydrogen is stored several times and is desorbed again using heat.
  • the fraction of the hydrogen that is difficult to recover and thus the hydrogen inventory in the desorbed state gradually increases over the course of the operating time.
  • the amount of reversibly storable gas is reduced thereby becoming constant.
  • the phase instability is a serious disadvantage, especially when storing radioactive tritium, because storage systems that are no longer usable must be disposed of as radioactive waste.
  • the intermetallic compound according to the invention can be produced by roughly mixing the pulverulent components, weighed in the predetermined ratio, and melting them in vacuo or under inert gas. For better homogenization, the solidified intermetallic compound can be comminuted and melted again under the specified conditions. This process may be repeated several times.
  • the intermetallic compound according to the invention has significant advantages in particular over the storage materials for tritium used or envisaged so far: Zr 1-y Ti y Co powder activated by repeated sorption / desorption reacts rapidly with hydrogen, e.g. B. tritium gas to form a hydride (tritide) with low dissociation pressure at room temperature.
  • hydrogen e.g. B. tritium gas to form a hydride (tritide) with low dissociation pressure at room temperature.
  • the dissociation pressure of 1 bar of the Zr 1-y Ti y Co-tritide is reached at the comparatively low temperature of 325 ° C.
  • the lowest possible release temperature is important in order to keep the permeation losses of a technical tritium storage container low during the long heating phase.
  • the powdered intermetallic compound Zr 1-y Ti y Co is also much less pyrophoric in the hydride or tritide state than the compounds previously used for tritium storage. A little pyrophoric character is crucial Significance for compliance with high safety standards, as they are particularly necessary when handling a radioactive gas such as tritium.
  • Fig. 3 the disproportionation rate at 450 ° C and a constant hydrogen pressure of 101 kPa - measured in [%] of the disproportionated portion based on the total amount - is plotted against time.
  • the disproportionation rate is a measure of the phase stability of the storage material.
  • the scale up to 1.0 on the left abscissa refers to the connection ZrCo; the scale extending to 0.2 on the right-hand side relates to the compounds according to the invention Zr 0.8 Ti 0.2 Co or Zr 0.7 Ti 0.3 Co.
  • the arrows on the curves indicate the associated scale .
  • the compounds according to the invention are considerably more phase-stable.
  • Table 1 below compares the properties of various storage materials with regard to the reversible storage of tritium.
  • Table 2 shows the temperature for various storage materials at which an accelerated reaction with air takes place.
  • Table 2 Material hydride Temperature [° C] UH3 25th LaNi3Mn2H 3.5 200 ZrCoH3 290 Zr 0.8 Ti 0.2 CoH2 330 Zr 0.7 Ti 0.3 CoH2 340

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Powder Metallurgy (AREA)

Abstract

Intermetallic cpd. has compsn. of Zr1-yTiyCo (where Y = 0.1-1). Pref. Y = 0.2-0.3. Prepn., the cpd. is prepd. by coarsely mixing the powdered components and fusing in a vacuum or in noble gas, To improve homogenisation, the solidified intermetallic cpd. is crushed and fused again. This process is opt. repeated many times.

Description

Die Erfindung betrifft eine Legierung nach Anspruch 1 und ihre Verwendung nach Anspruch 3.The invention relates to an alloy according to claim 1 and its use according to claim 3.

In der Veröffentlichung mit dem Titel: "Evaluation of ZrCo and other Getters for Tritium Handling and Storage" von R. D. Penzhorn et al Journal of Nuclear Materials 170 (1990) 217-231, werden in einer Tabelle 26 Metalle und intermetallische Verbindungen, die für eine reversible Wasserstoffspeicherung geeignet sind, miteinander verglichen. Der Veröffentlichung ist zu entnehmen, daß die Wasserstoffaufnahme von intermetallischen Verbindungen im allgemeinen größer ist als die Summe der Speicherkapazität der Verbindungskomponenten. Die intermetallischen Verbindungen ZrCo, ZrNi und LaNi5-xMnx werden für die Speicherung des Wasserstoff-Isotops Tritium als besonders geeignet angesehen.In the publication entitled "Evaluation of ZrCo and other Getters for Tritium Handling and Storage" by RD Penzhorn et al Journal of Nuclear Materials 170 (1990) 217-231, a table lists 26 metals and intermetallic compounds that are suitable for a reversible hydrogen storage are suitable, compared with each other. The publication shows that the hydrogen absorption of intermetallic compounds is generally greater than the sum of the storage capacity of the compound components. The intermetallic compounds ZrCo, ZrNi and LaNi 5-x Mn x are considered to be particularly suitable for storing the hydrogen isotope tritium.

Um Tritium mit hoher Effizienz reversibel speichern zu können, soll das Metall oder die intermetallische Verbindung bei Zimmertemperatur möglichst viel Tritium aufnehmen und zugleich im beladenen Zustand einen möglichst geringen Gasdruck aufweisen; andererseits soll Tritium aus dem beladenen Metall oder der beladenen intermetallischen Verbindung bei einer höheren Temperatur, die jedoch 500°C nicht überschreiten soll, möglichst vollständig desorbierbar sein. Diese Bedingung ist bei den erwähnten intermetallischen Verbindungen erfüllt.In order to be able to store tritium reversibly with high efficiency, the metal or the intermetallic compound should absorb as much tritium as possible at room temperature and at the same time have the lowest possible gas pressure when loaded; on the other hand, tritium from the loaded metal or the loaded intermetallic compound should be as completely desorbable as possible at a higher temperature, which, however, should not exceed 500 ° C. This condition is met with the intermetallic compounds mentioned.

Insbesondere ZrCo bildet bei Zimmertemperatur ein sehr stabiles Hydrid bzw. Tritid. Es ist sowohl im aktivierten Zustand (in Pulverform z. B. mit einer Korngröße von 1 bis 100 µm) als auch in Hydridform (als ZrCoHx mit x ≦ 3) wenig pyrophor und weist eine vergleichsweise niedrige Dehydrierungstemperatur auf. Bereits bei etwa 380°C wird ein Wasserstoffdruck von 1 bar erreicht. Bei mäßigen Temperaturen reagiert ZrCo nur langsam mit gasförmigen Verunreinigungen wie CO, CO₂, CH₄, N₂, O₂ etc., ohne daß dabei eine Passivierung der wasserstoffspeichernden Oberfläche zu verzeichnen wäre. Die Hydrierung führt bei ZrCo nur zu einem geringen Schwellen. Zu den Nachteilen dieser wasserstoffspeichernden intermetallischen Verbindung zählt eine gewisse Phasenunbeständigkeit durch Disproportionierung, die mit schneller Kinetik bei Temperaturen über 350°C und gleichzeitig hohen Wasserstoffdrücken abläuft.ZrCo in particular forms a very stable hydride or tritide at room temperature. It is little pyrophoric both in the activated state (in powder form, for example with a grain size of 1 to 100 μm) and in hydride form (as ZrCoH x with x ≦ 3) and has a comparatively low dehydrogenation temperature. A hydrogen pressure of 1 bar is already reached at around 380 ° C. At moderate temperatures, ZrCo reacts only slowly with gaseous impurities such as CO, CO₂, CH₄, N₂, O₂ etc. without passivating the hydrogen-storing surface. At ZrCo, the hydrogenation only leads to a slight swelling. The disadvantages of this hydrogen-storing intermetallic compound include a certain phase instability due to disproportionation, which takes place with rapid kinetics at temperatures above 350 ° C and high hydrogen pressures at the same time.

In der Tabelle der eingangs genannten Veröffentlichung ist außerdem die intermetallische Verbindung TiCo aufgeführt, die mit 0,4 bis 1,6 Gramm-Atome Wasserstoff pro Mol Verbindung eine mäßige Speicherkapazität aufweist und im folgenden nicht weiter erwähnt wird.The table of the publication cited at the beginning also lists the intermetallic compound TiCo, which has a moderate storage capacity of 0.4 to 1.6 gram atoms of hydrogen per mole of compound and is not mentioned further below.

Die in der Tabelle angegebenen Werte wurden der Veröffentlichung "Hydrogen Absorption-Desorption Characteristics of Titanium-Cobalt-Manganese Alloys" von Y. Osumi et al, J. Less-Common Met., 72 (1980) 79-86 entnommen. In dieser Veröffentlichung werden die Eigenschaften von TiCo in Bezug auf die Wasserstoffspeicherung beschrieben. TiCo erschient den Autoren für diesen Zweck nicht optimal geeignet, weshalb sie abgewandelte Legierungen (Ti1-xAxCo und TiCo1-xAx mit A = Cr, Cu, Fe, La, Mn, Ni und V) untersuchten. Die Legierung TiCo1-xMnx mit x = 0 bis 0,5, insbesondere mit x = 0,5, wird eingehend beschrieben. Alle in der Veröffentlichung beschriebenen Legierungen weisen bei Zimmertemperatur einen hohen Dissoziationsdruck auf und sind daher zumindest für die reversible Speicherung von Tritium weniger gut geeignet.The values given in the table were taken from the publication "Hydrogen Absorption-Desorption Characteristics of Titanium-Cobalt-Manganese Alloys" by Y. Osumi et al, J. Less-Common Met., 72 (1980) 79-86. This publication describes the properties of TiCo in relation to hydrogen storage. The authors do not consider TiCo to be optimally suited for this purpose, which is why they examined modified alloys (Ti 1-x A x Co and TiCo 1-x A x with A = Cr, Cu, Fe, La, Mn, Ni and V). The alloy TiCo 1-x Mn x with x = 0 to 0.5, in particular with x = 0.5, is described in detail. All of the alloys described in the publication have a high dissociation pressure at room temperature and are therefore less suitable, at least for the reversible storage of tritium.

Ein Verfahren zur Herstellung einer titanenthaltenden Wasserstoffspeicherlegierung auf Basis der Lavesphasen AB₂ ist aus der DE 34 11 011 A1 bekannt. Hier stellt A Titan und gegebenenfalls zumindest ein weiteres Element vom Anfang der Übergangsmetallreihe und B ein Element oder mehrere Elemente aus der Menge der übrigen Übergangsmetalle dar.A method for producing a titanium-containing hydrogen storage alloy based on the Laves phases AB₂ is known from DE 34 11 011 A1. Here A represents titanium and possibly at least one further element from the beginning of the transition metal series and B represents one or more elements from the set of the other transition metals.

Kompliziertere Wasserstoffspeichermaterialien werden in einer Reihe von weiteren Druckschriften beschrieben. In der DE 30 23 770 A1, in der DE 30 31 471 A1 und in der DE 31 51 712 C1 wird ein Wasserstoffspeichermaterial der allgemeinen Formel Ti1-a ZraMn2-xCrx-y(VzNi1-z)y vorgeschlagen, bei dem Nickel ganz oder teilweise durch Kobalt ersetzt sein kann. In der EP 0 410 935 A1 wird die Herstellung vanadiumreicher Wasserstoffspeicherlegierungen beschrieben. Die Herstellung der Wasserstoffspeicherlegierung (Tiz-xZrxV4-yNiy)1-zCrz ist aus der EP 0 450 112 A1 bekannt. Die EP 0 506 084 A1 befaßt sich mit Wasserstoffspeicherlegierungen der allgemeinen Formel ZrMnwVxMyNiz, wobei M Kobalt oder Eisen darstellt.More complicated hydrogen storage materials are described in a number of other publications. DE 30 23 770 A1, DE 30 31 471 A1 and DE 31 51 712 C1 describe a hydrogen storage material of the general formula Ti 1-a Zr a Mn 2-x Cr xy (V z Ni 1-z ) y proposed, in which nickel can be replaced in whole or in part by cobalt. EP 0 410 935 A1 describes the production of vanadium-rich hydrogen storage alloys. The production of the hydrogen storage alloy (Ti zx Zr x V 4-y Ni y ) 1-z Cr z is known from EP 0 450 112 A1. EP 0 506 084 A1 deals with hydrogen storage alloys of the general formula ZrMn w V x M y Ni z , where M represents cobalt or iron.

Aufgabe der Erfindung ist es, eine aus wenigen Komponenten bestehende intermetallische Verbindung anzugeben, die ebenso günstige Eigenschaften wie das eingangs erwähnte ZrCo aufweist, jedoch phasenbeständiger ist. Die intermetallische Verbindung soll sich insbesondere zur sicheren und verlustarmen reversiblen Speicherung und Handhabung von Wasserstoff eignen, der ganz oder teilweise aus dem Isotop Tritium besteht.The object of the invention is to provide an intermetallic compound consisting of a few components which has the same favorable properties as the ZrCo mentioned at the outset, but is more phase-stable. The intermetallic compound is said to be particularly suitable for the safe and low-loss reversible storage and handling of hydrogen, which consists entirely or partially of the tritium isotope.

Die Aufgabe wird durch die im ersten Patentanspruch beschriebene intermetallische Verbindung gelöst. Eine bevorzugte Zusammensetzung der intermetallischen Verbindung ist in Anspruch 2 angegeben. Die Verwendung der intermetallischen Verbindung ist Gegenstand der Ansprüche 3 und 4.The object is achieved by the intermetallic compound described in the first claim. A preferred composition of the intermetallic compound is given in claim 2. The use of the intermetallic compound is the subject of claims 3 and 4.

Das System Zr1-yTiyCo/Wasserstoff ist wesentlich phasenbeständiger als ZrCo/Wasserstoff. Eine hohe Phasenstabilität ist insbesondere Voraussetzung für ein reversibles Wasserstoffspeichermaterial, in dem Wasserstoff mehrfach gespeichert und unter Anwendung von Wärme wieder desorbiert wird. Bei phasenunbeständigen Materialien nimmt die Fraktion des nur schwer zurückgewinnbaren Wasserstoffs und damit das Wasserstoff-Inventar im desorbierten Zustand im Lauf der Betriebszeit allmählich zu. Die Menge an reversibel speicherbarem Gas vermindert sich dadurch beständig. Die Phasenunbeständigkeit stellt vor allem bei der Speicherung von radioaktivem Tritium einen gravierenden Nachteil dar, denn nicht mehr gebrauchsfähige Speichersysteme müssen als radioaktiver Abfall entsorgt werden.The Zr 1-y Ti y Co / hydrogen system is much more phase-stable than ZrCo / hydrogen. A high phase stability is a prerequisite for a reversible hydrogen storage material in which hydrogen is stored several times and is desorbed again using heat. In the case of phase-unstable materials, the fraction of the hydrogen that is difficult to recover and thus the hydrogen inventory in the desorbed state gradually increases over the course of the operating time. The amount of reversibly storable gas is reduced thereby becoming constant. The phase instability is a serious disadvantage, especially when storing radioactive tritium, because storage systems that are no longer usable must be disposed of as radioactive waste.

Die erfindungsgemäße intermetallische Verbindung kann hergestellt werden, indem die pulverförmigen, im vorgegebenen Verhältnis eingewogenen Komponenten grob gemischt und im Vakuum oder unter Edelgas aufgeschmolzen werden. Zur besseren Homogenisierung kann die erstarrte intermetallische Verbindung zerkleinert und unter den angegebenen Bedingungen erneut aufgeschmolzen werden. Dieser Vorgang wird gegebenenfalls mehrfach wiederholt.The intermetallic compound according to the invention can be produced by roughly mixing the pulverulent components, weighed in the predetermined ratio, and melting them in vacuo or under inert gas. For better homogenization, the solidified intermetallic compound can be comminuted and melted again under the specified conditions. This process may be repeated several times.

Die erfindungsgemäße intermetallische Verbindung weist insbesondere gegenüber den bisher verwendeten oder vorgesehenen Speichermaterialien für Tritium wesentliche Vorteile auf:
Durch wiederholte Sorption/Desorption aktiviertes Zr1-yTiyCo-Pulver reagiert rasch mit Wasserstoff, z. B. Tritiumgas, unter Bildung eines Hydrids (Tritids) mit niedrigem Dissoziationsdruck bei Zimmertemperatur.
The intermetallic compound according to the invention has significant advantages in particular over the storage materials for tritium used or envisaged so far:
Zr 1-y Ti y Co powder activated by repeated sorption / desorption reacts rapidly with hydrogen, e.g. B. tritium gas to form a hydride (tritide) with low dissociation pressure at room temperature.

Der Dissoziationsdruck von 1 bar des Zr1-yTiyCo-Tritids wird bei der vergleichsweise niedrigen Temperatur von 325°C erreicht. Eine möglichst niedrige Freisetzungstemperatur ist wichtig, um die Permeationsverluste eines technischen Tritiumspeicherbehälters während der langen Aufheizphase niedrig zu halten.The dissociation pressure of 1 bar of the Zr 1-y Ti y Co-tritide is reached at the comparatively low temperature of 325 ° C. The lowest possible release temperature is important in order to keep the permeation losses of a technical tritium storage container low during the long heating phase.

Die pulverisierte intermetallische Verbindung Zr1-yTiyCo ist auch im Hydrid- oder Tritid-Zustand wesentlich weniger pyrophor als die bisher zur Tritiumspeicherung vorgesehenen Verbindungen. Ein wenig pyrophorer Charakter ist von ausschlaggebender Bedeutung für die Einhaltung hoher Sicherheitsstandards, wie sie insbesondere bei der Handhabung eines radioaktiven Gases wie Tritium erforderlich sind.The powdered intermetallic compound Zr 1-y Ti y Co is also much less pyrophoric in the hydride or tritide state than the compounds previously used for tritium storage. A little pyrophoric character is crucial Significance for compliance with high safety standards, as they are particularly necessary when handling a radioactive gas such as tritium.

Die Erfindung wird im folgenden anhand von Vergleichstabellen und Diagrammen näher erläutert.The invention is explained in more detail below on the basis of comparison tables and diagrams.

Es zeigen

  • Fig. 1 die Druck/Konzentration-Isotherme des Systems Zr0,8Ti0,2Co/H₂ bei der Temperatur 25°C;
  • Fig. 2 einen thermogravimetrischen Vergleich der Oxidationsraten in Luft (Gewichtszunahme) verschiedener Wasserstoffspeichermaterialien in Abhängigkeit von der Temperatur;
  • Fig. 3 einen Vergleich der Disproportionierungsgeschwindigkeit verschiedener Wasserstoffspeichermaterialien bei 450°C und einem konstanten Wasserstoffdruck von 101 kPa.
Show it
  • Figure 1 shows the pressure / concentration isotherm of the system Zr 0.8 Ti 0.2 Co / H₂ at the temperature 25 ° C.
  • 2 shows a thermogravimetric comparison of the oxidation rates in air (weight gain) of various hydrogen storage materials as a function of the temperature;
  • 3 shows a comparison of the disproportionation rate of different hydrogen storage materials at 450 ° C. and a constant hydrogen pressure of 101 kPa.

In Fig. 1 ist am Beispiel von Zr0,8Ti0,2Co das Verhältnis Gramm-Atome aufgenommenen Wasserstoffs [Gramm-AtomeH] pro Mol intermetallische Verbindung [Mol{Zr0,8Ti0.2Co}] gegen den Gleichgewichtsdruck des Systems aufgetragen. Der geringe Anstieg der Kurve im Bereich zwischen 1 und 10 Pa zeigt, daß die intermetallische Verbindung bereits bei geringem Wasserstoffdruck über 1,2 Mol entsprechend 2,4 Gramm-Atome Wasserstoff pro Mol Verbindung aufnimmt.In FIG. 1, using the example of Zr 0.8 Ti 0.2 Co, the ratio of gram atoms of hydrogen taken up [gram atoms H ] per mole of intermetallic compound [mole {Zr 0.8 Ti 0.2 Co}] against the equilibrium pressure of Systems applied. The slight increase in the curve in the range between 1 and 10 Pa shows that the intermetallic compound already absorbs hydrogen per mole of compound at a low hydrogen pressure above 1.2 moles, corresponding to 2.4 gram atoms.

In Fig. 2 ist ein thermogravimetrischer Vergleich der Oxidationsraten in Luft für verschiedene Wasserstoffspeichermaterialien in vollhydriertem Zustand in Abhängigkeit von der Temperatur graphisch dargestellt. Die Oxidationsrate wurde durch die Gewichtszunahme ermittelt. Die Proben waren 50 mg schwer; sie wurden in Luft bei einem Temperaturanstieg von 5°C/min aufgeheizt. Die Temperatur in [°C] ist gegen die Gewichtszunahme in [%], bezogen auf den volloxidierten Zustand (UO₃, Zr1-yTiyCoO₃ etc.) aufgetragen. Die Kurve für Zr0,8Ti0,2Co liegt zu einem großen Teil unterhalb der Kurve für das nächstgünstige Speichermaterial ZrCo. In Klammer sind für alle Materialien die Dissoziationstemperaturen [Tdis] angegeben. Bei der Dissoziationstemperatur steht das mit Wasserstoff beladene Speichermaterial mit einem Wasserstoffdruck von 1 bar im Gleichgewicht. Aus der Kurve für Zr0,8Ti0,2CoHx wird deutlich, daß bei der Dissoziationstemperatur dieses Materials keine meßbare Oxidation erkennbar ist.2 shows a thermogravimetric comparison of the oxidation rates in air for various hydrogen storage materials in the fully hydrogenated state as a function of the temperature. The rate of oxidation was determined by the weight gain. The samples were 50 mg in weight; they were heated in air at a temperature rise of 5 ° C / min. The temperature in [° C] is against weight gain in [%], based on the fully oxidized state (UO₃, Zr 1-y Ti y CoO₃ etc.) applied. The curve for Zr 0.8 Ti 0.2 Co is largely below the curve for the next cheapest storage material ZrCo. The dissociation temperatures [T dis ] are given in brackets for all materials. At the dissociation temperature, the storage material loaded with hydrogen is in equilibrium with a hydrogen pressure of 1 bar. The curve for Zr 0.8 Ti 0.2 CoH x clearly shows that no measurable oxidation is discernible at the dissociation temperature of this material.

In Fig. 3 ist die Disproportionierungsgeschwindigkeit bei 450°C und einem konstanten Wasserstoffdruck von 101 kPa - gemessen in [%] des disproportionierten Anteils bezogen auf die Gesamtmenge - gegen die Zeit aufgetragen. Die Disproportionierungsgeschwindigkeit ist ein Maß für die Phasenstabilität des Speichermaterials. Der bis 1,0 reichende Maßstab auf der linken Abszisse bezieht sich auf die Verbindung ZrCo; der bis 0,2 reichende Maßstab auf der rechten Seite bezieht sich auf die erfindungsgemäßen Verbindungen Zr0,8Ti0,2Co bzw. Zr0,7Ti0,3Co. Die an den Kurven angebrachten Pfeile weisen auf den zugehörigen Maßstab hin. Wie sich aus dem Vergleich mit ZrCo ergibt, sind die erfindungsgemäßen Verbindungen wesentlich phasenstabiler.In Fig. 3, the disproportionation rate at 450 ° C and a constant hydrogen pressure of 101 kPa - measured in [%] of the disproportionated portion based on the total amount - is plotted against time. The disproportionation rate is a measure of the phase stability of the storage material. The scale up to 1.0 on the left abscissa refers to the connection ZrCo; the scale extending to 0.2 on the right-hand side relates to the compounds according to the invention Zr 0.8 Ti 0.2 Co or Zr 0.7 Ti 0.3 Co. The arrows on the curves indicate the associated scale . As can be seen from the comparison with ZrCo, the compounds according to the invention are considerably more phase-stable.

In der folgenden Tabelle 1 werden Eigenschaften verschiedener Speichermaterialien im Hinblick auf die reversible Speicherung von Tritium einander gegenübergestellt. Tabelle 1 Material Gleichgewichtsdruck bei 20 °C [Pa] Kapazität [cm³H2/g] Tdis bei PH2 = 1bar [°C] Disproportionierung bei Tdis Reaktion mit Luft bei Tdis U 10⁻⁴ 140 440 keine sehr rasch ZrCo 10⁻³ 220 415 rasch rasch LaNi₃Mn2 4 90 270 langsam mittel (1) 4 220 325 nicht meßb nicht meßb (2) (-) 210 280 nicht meßb nicht meßb (1): Zr0,8Ti0,2Co (2): Zr0,7Ti0,3Co Table 1 below compares the properties of various storage materials with regard to the reversible storage of tritium. Table 1 material Equilibrium pressure at 20 ° C [Pa] Capacity [cm³ H2 / g] T dis at P H2 = 1bar [° C] Disproportionation at T dis Reaction with air at T dis U 10⁻⁴ 140 440 no very quickly ZrCo 10⁻³ 220 415 quickly quickly LaNi₃Mn2 4th 90 270 slowly medium (1) 4th 220 325 not measurable not measurable (2) (-) 210 280 not measurable not measurable (1): Zr 0.8 Ti 0.2 Co (2): Zr 0.7 Ti 0.3 Co

In der folgenden Tabelle 2 ist die Temperatur für verschiedene Speichermaterialien angegeben, bei der eine beschleunigte Reaktion mit Luft erfolgt. Tabelle 2 Material Hydride Temperatur [°C] UH₃ 25 LaNi₃Mn₂H3,5 200 ZrCoH₃ 290 Zr0,8Ti0,2CoH₂ 330 Zr0,7Ti0,3CoH₂ 340 Table 2 below shows the temperature for various storage materials at which an accelerated reaction with air takes place. Table 2 Material hydride Temperature [° C] UH₃ 25th LaNi₃Mn₂H 3.5 200 ZrCoH₃ 290 Zr 0.8 Ti 0.2 CoH₂ 330 Zr 0.7 Ti 0.3 CoH₂ 340

Claims (4)

Intermetallische Verbindung der Zusammensetzung Zr1-yTiyCo mit 0,1 < y < 1.Intermetallic compound of the composition Zr 1-y Ti y Co with 0.1 <y <1. Intermetallische Verbindung nach Anspruch 1, wobei y Werte von 0,2 bis 0,3 annimmt.Intermetallic compound according to claim 1, wherein y assumes values from 0.2 to 0.3. Verwendung der intermetallischen Verbindung nach Anspruch 1 oder 2 zur reversiblen Speicherung von Wasserstoff.Use of the intermetallic compound according to claim 1 or 2 for the reversible storage of hydrogen. Verwendung nach Anspruch 3, wobei der Wasserstoff das radioaktive Isotop Tritium enthält oder aus diesem besteht.Use according to claim 3, wherein the hydrogen contains or consists of the radioactive isotope tritium.
EP94109471A 1993-07-17 1994-06-20 Intermetallic compound and its use Expired - Lifetime EP0634358B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4324054 1993-07-17
DE4324054A DE4324054C1 (en) 1993-07-17 1993-07-17 Intermetallic cpd. for storage of hydrogen@ - contg. zirconium, titanium and cobalt

Publications (2)

Publication Number Publication Date
EP0634358A1 true EP0634358A1 (en) 1995-01-18
EP0634358B1 EP0634358B1 (en) 1997-01-15

Family

ID=6493099

Family Applications (1)

Application Number Title Priority Date Filing Date
EP94109471A Expired - Lifetime EP0634358B1 (en) 1993-07-17 1994-06-20 Intermetallic compound and its use

Country Status (3)

Country Link
EP (1) EP0634358B1 (en)
AT (1) ATE147798T1 (en)
DE (1) DE4324054C1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4160014A (en) * 1977-05-10 1979-07-03 Matsushita Electric Industrial Co., Ltd. Hydrogen storage material
FR2447976A1 (en) * 1979-02-05 1980-08-29 Getters Spa NON-VAPORIZABLE ADSORBENT TERNARY ALLOY, PARTICULARLY FOR THE ADSORPTION OF WATER AND WATER VAPOR IN FUEL ELEMENTS FOR NUCLEAR REACTORS
DE3033503A1 (en) * 1979-09-07 1981-03-19 Matsushita Electric Industrial Co., Ltd., Kadoma, Osaka ALLOY FOR THE STORAGE OF HYDROGEN AND METHOD FOR THE PRODUCTION THEREOF

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3023770C2 (en) * 1980-06-25 1985-08-22 Daimler-Benz Ag, 7000 Stuttgart Alloy for storing hydrogen
DE3031471C2 (en) * 1980-08-21 1985-11-21 Daimler-Benz Ag, 7000 Stuttgart Alloy for storing hydrogen
DE3151712C1 (en) * 1981-12-29 1984-06-07 Daimler-Benz Ag, 7000 Stuttgart Alloy for storing hydrogen

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4160014A (en) * 1977-05-10 1979-07-03 Matsushita Electric Industrial Co., Ltd. Hydrogen storage material
FR2447976A1 (en) * 1979-02-05 1980-08-29 Getters Spa NON-VAPORIZABLE ADSORBENT TERNARY ALLOY, PARTICULARLY FOR THE ADSORPTION OF WATER AND WATER VAPOR IN FUEL ELEMENTS FOR NUCLEAR REACTORS
DE3033503A1 (en) * 1979-09-07 1981-03-19 Matsushita Electric Industrial Co., Ltd., Kadoma, Osaka ALLOY FOR THE STORAGE OF HYDROGEN AND METHOD FOR THE PRODUCTION THEREOF

Also Published As

Publication number Publication date
EP0634358B1 (en) 1997-01-15
ATE147798T1 (en) 1997-02-15
DE4324054C1 (en) 1994-03-17

Similar Documents

Publication Publication Date Title
DE19916614B4 (en) Hydrogen-absorbing alloy
EP0840707B1 (en) Method for the reversible storage of hydrogen
DE3003114C2 (en)
DE2701893A1 (en) HYDROGEN STORING MASS
DE2650276C2 (en) Titanium and ferrous material for storing hydrogen
DE4025282C2 (en) Rare earth metal alloy for storing hydrogen
DE2803024A1 (en) SINTERED CARBIDE METAL AND THE PROCESS FOR ITS PRODUCTION
DE3033503A1 (en) ALLOY FOR THE STORAGE OF HYDROGEN AND METHOD FOR THE PRODUCTION THEREOF
DE3003061A1 (en) NON-VAPORABLE TERNAERE GETTING ALLOY AND THEIR USE FOR SORBING OXYGEN AND HYDROGEN FROM WATER AND WATER VAPOR
DE3222633A1 (en) OXYGEN STABILIZED ZIRCON VANADIUM IRON ALLOY
DE3330647A1 (en) METHOD FOR PRODUCING A VANADINE-BASED METAL HYDRODIDE
DE3703168C2 (en)
DE60029333T2 (en) METHOD OF MANUFACTURING HYDROGEN-SAVING METAL POWDER
DE2707097B2 (en) Use of a Ti-Zr-Cr-Mn alloy to store hydrogen
EP0634358B1 (en) Intermetallic compound and its use
DE3023770A1 (en) Titanium-manganese-vanadium based laves phase material - with hexagonal structure, used as hydrogen storage material
DE19918329B4 (en) A hydrogen absorbing alloy and electrode comprising the hydrogen absorbing alloy
DE2531406C3 (en) Use of magnesium alloys for hydrogen absorption
DE3031471C2 (en) Alloy for storing hydrogen
DE2910044A1 (en) ALLOY
US3070440A (en) Production of dispersion hardened metals
DE2307177C3 (en) Material for pressureless hydrogen storage
DE2840265B2 (en) Granules made from a FeTiMn alloy for storing hydrogen and / or deuterium in pressurized gas cylinders
DE3411011C2 (en) Process for producing a titanium-containing hydrogen storage alloy
EP0316968B1 (en) Process for producing active systems for the storage of hydrogen by hydrides of magnesium

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19941111

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH FR GB IT LI NL

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: FORSCHUNGSZENTRUM KARLSRUHE GMBH

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

17Q First examination report despatched

Effective date: 19960418

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

ITF It: translation for a ep patent filed

Owner name: DE DOMINICIS & MAYER S.R.L.

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH FR GB IT LI NL

REF Corresponds to:

Ref document number: 147798

Country of ref document: AT

Date of ref document: 19970215

Kind code of ref document: T

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: ROTTMANN, ZIMMERMANN + PARTNER AG

Ref country code: CH

Ref legal event code: EP

ET Fr: translation filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19970411

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19980525

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19980603

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980620

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19980625

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19980626

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990101

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19980620

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 19990101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990620

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990630

Ref country code: FR

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 19990630

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990630

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990630

BERE Be: lapsed

Owner name: FORSCHUNGSZENTRUM KARLSRUHE G.M.B.H.

Effective date: 19990630

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050620